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ABSTRACT
The explosive growth of the Internet-of-Things (IoT) paradigm has
brought the rise of malicious activity targeting the Internet. Indeed,
the lack of basic security protocols and measures in IoT devices is
allowing attackers to use exploited Internet-scale IoT devices to
organize malicious botnets, and cause significant damage to the
Internet through Denial of Service (DoS) attacks, illicit scraping,
and cryptojacking attacks. Such IoT botnets can be Internet-facing,
or can also be deployed behind Network Address Translation (NAT)
gateways that provide anonymity to the exploited bots. In this paper,
we aim at detecting compromised IoT bots behind NAT gateways
which could possibly generate malicious activities towards the In-
ternet by leveraging large-scale macroscopic one-way darknet data.
To the best of our knowledge, we are among the first to explore
the capabilities of attentive interpretable tabular transformers to
capture the nature of such nodes operating on one-way network
traffic. Our results, which employed 2.6GB of darknet data, show
that our approach was able to classify malware-infected NATed
IoT bots with an accuracy of 93%, outperforming the state-of-the-
art machine learning (ML) approaches. Additionally, we were able
to infer around 4 million Internet-scale Mirai-infected NATed IoT
bots and 16,871 unique NATed IP addresses. Results from this work
put forward interesting future work in the area of network traf-
fic analysis of NATed IoT bots for better Internet security, while
highlighting the need for addressing the notions of attention and
interpretability.

CCS CONCEPTS
• Security and privacy → Network security; • Computing
methodologies → Machine learning approaches; • Computer
systems organization → Embedded and cyber-physical systems.
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1 INTRODUCTION
The Internet serves billions of users every day, running a plethora of
clients, while connecting billions of devices, including IoT devices.
By 2023, the number of networked devices will reach 29.3 billion,
up from 18.4 billion in 2018 [14]. Thus, assessing any element per-
taining to the Internet on a global scale is challenging. With the
explosive growth of deployed IoT devices over the past couple of
years, comes the rise of malicious activity targeting the Internet.
Due to the lack of basic security protocols and measures, IoT de-
vices have become easy targets for exploitations and recruitment
within coordinated IoT botnets [9], causing significant damage to
the Internet and its related infrastructure. Such IoT botnets could
perform malicious activities such as malware attacks, social engi-
neering attacks, Distributed Denial of Service (DDoS) attacks, illicit
scraping, and cryptojacking attacks [10, 11, 16, 22, 27].

Particularly, the Mirai botnet has attracted the attention of the
research community after it infected more than 200,000 devices and
performed the DDoS attacks of late 2016 [7]. Since then, we have
seen an increase in the sophistication of malware targeting IoT sys-
tems such as the rapid proliferation of Mirai-based malware; Mirai
being one of the most active IoT botnets to date [15]. In addition,
with the recent exploitation of the Log4j2 web vulnerability, which
enables threat actors to send a specially crafted request to launch a
remote code execution attack [1], several botnet families (includ-
ing Mirai) are recruiting IoT bots to exploit this web vulnerability.
Consequently, detecting malicious activities generated by IoT bots
becomes of paramount importance.

However, such IoT bots are not only Internet-facing, but can also
be deployed behind NAT gateways. Indeed, the usage of NAT has
grown exponentially over the last few decades as it allows several
devices to share a limited number of public IP addresses in addition
to providing Internet-wide services via port mapping. Consequently,
the anonymity that NAT provides have induced the problem of iden-
tifying the nature of the NATed IoT bots. Indeed, NAT introduces
numerous security issues and technical challenges in the IoT realm,
including, but not limited to (1) under quantification or overestima-
tion of the number of vulnerable devices found behind a NAT [18],
which hinders IoT-centric botnet characterization and attribution,
(2) the issue of legitimate IoT device/type/vendor identification and
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characterization, and (3) the sound and comprehensive analysis
of IoT malware evolution residing on NATed IoT devices. Broadly,
fingerprinting IoT bots behind a NAT would aid in network and
security provisioning, and cyber forensic triage.

Many researchers have leveraged ML and deep learning ap-
proaches in order to fingerprint such nodes due to their high effi-
ciency. However, deep learning solutions lack in interpretability
because of their black-box approaches. To this end, a new line of
deep learning models “Transformers” came to light. Such models
are widely used in the field of natural language processing (NLP)
for various tasks, such as document classification, document entan-
glement, sentiment analysis, sentence similarity, etc. Such models
are known for their interpretable feature provided by their “Self-
Attention" mechanism which differentially weighs the significance
of each part of the input data. Indeed, they have achieved a de-
gree of performance competitive with popular, shallow and deep
learning techniques such as Random Forest, gradient boosting, and
Recurrent neural networks (RNNs).

Broadly, there still exist several challenges that need to be over-
come to enable effective fingerprinting of exploited IoT bots re-
siding behind a NAT: (1) There is a lack of visibility related to
Mirai-infected NATed IoT bots on a macroscopic level. To this end,
we leverage network telescopes (darknet data), i.e., a passive traf-
fic monitoring system built on a globally routed set of unused IP
addresses, which are able to capture over 1 million of packets per
second to infer and characterize such nodes. (2) There is a lack of
research work that have explored transformers with tabular data. In-
deed, deep neural networks (DNNs) have shown significant success
with images, text, and audio data types [6, 19, 24]. However, one
data type that has yet to see such success is tabular data. Despite be-
ing the most common data type in the real-world, deep learning for
tabular data remains under-explored, with ensemble decision trees
(DTs) dominating most applications due to their plethora of bene-
fits. (3) There is a lack of Internet-scale measurement techniques to
provide near real-time continuous situational awareness for Mirai-
infected NATed IoT bots as well as a lack of existing ground truth
in this context. To this end, we innovate a ground truth dataset in
order to train machine learning algorithms to identify such nodes.

To motivate empirical IoT cyber security initiatives as well as aid
in reproducibility of the obtained results, we make the datasets and
source codes of all the developed methods available to the research
community at [2].
Contributions.Motivated by this research direction and the afore-
mentioned challenges, we make the following contributions in this
work:

• We build a ground truth dataset by exploiting a weakness
in the packet generation algorithm and random number
generation of the Mirai IoT malware. We leverage more than
113K Mirai scanning events obtained from darknet traffic
over a total period of 6 days.

• We propose and evaluate a new approach to infer, character-
ize, and attribute Internet-scale NATed IoT bots by leveraging
passive empirical measurements and transformers. To the
best of our knowledge, we are among the first to explore such
an approach. Our results show that our implementation out-
performs the state-of-the-art shallow learning approaches.

We limit our comparison to shallow learning approaches due
to the fact that most popular deep learning approaches are
either not applicable in our case or cannot be implemented
due to the tabular nature of our data.

• We report on close to 4 million Internet-scale Mirai-infected
NATed IoT bots and 16,871 unique NATed IP addresses. We
also generate amalgamated statistics related to these inferred
and exploited IoT bots, including but not limited to their
country of origin and their organization type.

Organization. The rest of this paper is organized as follows. In the
next section, we detail our approach and rationale. In Section 3, we
empirically evaluate it using darknet data, while reporting on its
accuracy metrics. In Section 4, we infer, measure, and characterize
the Internet-Scale NATed IoT devices. In Section 5, we elaborate on
the related work. Finally, in Section 6, we draw some conclusions
and pinpoint a few endeavors which aim at paving the way for
future work.

2 PROPOSED APPROACH
In this section, we present our approach and its related components.
In Section 2.1, we build a ground truth in order to infer and char-
acterize Mirai-infected NATed IoT bots on a macroscopic level. In
Section 2.2, we leverage this ground truth as well as transformers
to classify such nodes.

2.1 Building the ground truth
The idea behind building the ground truth is leveraging a weakness
in the packet generation algorithm and random number generation
of the Mirai IoT malware in order to label darknet packets as IoT
bots behind a NAT. We particularly focus on Mirai-based malware
due to its rapid proliferation as well as Mirai being one of the
most active IoT botnets to date. In addition, as Mirai appears to
have spurred hundreds of variants in the wild [15], by leveraging a
weakness in Mirai’s source code, we would be able to not only label
Mirai-infected IoT bots, but also some of its variants. To this end,
we use the methodology described by Griffioen and Doerr [18] on
two separate network telescopes data captures to obtain a list of
NATed Mirai packets.

Algorithm 1: Building the Ground Truth
Data: 𝑁𝑎𝑡𝑒𝑑_𝑑𝑓 ,𝑚𝑖𝑟𝑎𝑖_𝑑𝑢𝑚𝑝
Result: NATed Infected Packets

1 𝑚𝑖𝑟𝑎𝑖_𝑑𝑢𝑚𝑝 ⇐ 𝑑𝑎𝑟𝑘𝑛𝑒𝑡 𝑑𝑎𝑡𝑎
2 for packet1 in mirai_dump do
3 for packet2 in mirai_dump do
4 if packet1.ipsrc = packet2.ipsrc then
5 if 𝑝𝑎𝑐𝑘𝑒𝑡1.𝑡𝑐𝑝_𝑤𝑖𝑛 ≠ 𝑝𝑎𝑐𝑘𝑒𝑡2.𝑡𝑐𝑝_𝑤𝑖𝑛 or
6 𝑝𝑎𝑐𝑘𝑒𝑡1.𝑠𝑟𝑐𝑃𝑜𝑟𝑡 ≠ 𝑝𝑎𝑐𝑘𝑒𝑡2.𝑠𝑟𝑐𝑃𝑜𝑟𝑡 or
7 𝑝𝑎𝑐𝑘𝑒𝑡1.𝑡𝑐𝑝_𝑠𝑒𝑞 ≠ 𝑝𝑎𝑐𝑘𝑒𝑡2.𝑡𝑐𝑝_𝑠𝑒𝑞 or
8 𝑝𝑎𝑐𝑘𝑒𝑡1.𝑑𝑠𝑡𝑃𝑜𝑟𝑡 ≠ 𝑝𝑎𝑐𝑘𝑒𝑡2.𝑑𝑠𝑡𝑃𝑜𝑟𝑡 then
9 𝑁𝑎𝑡𝑒𝑑_𝑑𝑓 ⇐ 𝑝𝑎𝑐𝑘𝑒𝑡1, 𝑝𝑎𝑐𝑘𝑒𝑡2

10 end
11 end
12 end
13 end

After the Mirai source code was posted on the Internet, many
copycats entered the scene by recycling Mirai’s source code and
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introducing minor changes to create their own IoT botnets. Despite
such alterations (e.g., the passwords used or ports targeted), the
scan and probe packets remained unchanged from the original
Mirai. Thus, many IoT malware share behavioral characteristics
that we leverage to build the ground truth.

The way Mirai generates its scan and attack packets exhibits
some particularities. Initially, after start-up, the malware instanti-
ates a custom-built random number generator (RNG). In addition,
the source port and window size are randomly generated from the
RNG but are fixed throughout the entire execution of the malware,
i.e., these header values are the same until the device is cleaned up
or rebooted.

Thus, if a device is assigned a new IP address, we are able to link
it to a previous IP address due to the same configuration values.
However, the session-permanent source port and window size are
not sufficient to conclusively link packets to a specific infection.
Therefore, we would also need other packet features such as the
TCP sequence number and destination ports. The logic behind this
algorithm is shown in Algorithm 1.

A

B

C
3 Different

configurations on
Same Public IP

AddressTime

Figure 1: Scenario where IP churn is combined with a NAT

Figure 1 explains the scenario where we consider multiple con-
tinuous infections on different IP addresses in combination with
a NAT. Consider three infections at hosts behind a NAT with the
public IP address C (which are identifiable due to the different
configuration values). Although possible, multiple Mirai infections
originating from one IP are unlikely. Thus, several infections on
one IP alone are not enough to verify the use of a NAT. However,
if the infections churn to several IP addresses rather than a single
IP, these infections have to be located at different devices behind
a single IP address. In our example, if the infections from C churn
to two separate IP addresses (i.e., IP address A and B), this would
allow us to identify an IP address in a NAT.

2.2 Classifying NATed IoT Bots
We leverage the ground truth and a new canonical DNN architec-
ture for tabular data, TabNet [8] in order to classify NATed IoT bots.
We specifically use this ML model because of its ability to extract
interesting insights more efficiently when compared to the labeling
function described in Algorithm 1. Indeed, TabNet is trained using
gradient descent-based optimization, which enables flexible inte-
gration into end-to-end learning. It also enables interpretability and
better learning since its learning capacity is only used for important
features. Figure 2 shows the general idea behind TabNet.
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Figure 2: TabNet Transformer

In addition, TabNet employs a single deep learning architecture
for feature selection and reasoning. Initially, batch normalization
(BN) is applied to the raw numerical features instead of considering
any global feature normalization. The same 𝐷-dimensional features
f ∈ ℜ𝐵×𝐷 are passed to each decision step, where 𝐵 is the batch
size. This model also leverages the mapping of categorical features
with trainable embeddings. Moreover, TabNet’s encoding is based
on a sequential multi-step processing with 𝑁𝑠𝑡𝑒𝑝𝑠 decision steps.
The 𝑖𝑡ℎ step inputs the processed information from the (𝑖−1)𝑡ℎ step
in order to decide which features should be used and outputs the
processed feature representation to be aggregated into the overall
decision.

Moreover, TabNet employs a learnable multiplicative maskM[i]
∈ ℜ𝐵×𝐷 for soft selection of the important features. The attentive
transformer is used to obtain such masks by using the processed
features from the preceding step, a[i-1]: M[i] = sparsemax(P[i-
1].h𝑖 (a[i-1])), where P denotes the prior scale term, i.e., how much
a specific feature has been previously used, and h𝑖 is a trainable
function that uses a single fully connected layer (FC) followed
by BN. The latter FC employs a sparsemax normalization due to
its superior performance and ability to select sparse features for
explainability. The filtered features are then split for the decision
step output and information for the subsequent step, [d[i], a[i]] =
f𝑖 (M[i] . f), where d[i] ∈ ℜ𝐵×𝑁𝑑 and a[i] ∈ ℜ𝐵×𝑁𝑎 .

3 IMPLEMENTATION AND EVALUATION
This section details our implementation as well as its experimental
results. In Section 3.1, we present the datasets used in our approach.
In Section 3.2, we detail the preprocessing steps taken. In Section
3.3, we assess TabNet according to several accuracy metrics and
compare its performance with known ML algorithms. Lastly, in
Section 3.4, we assess the soundness of TabNet’s output according
to a heuristic methodology that we devise. We implement our algo-
rithms using Python’s Scikit-learn libraries. Additionally, we imple-
ment TabNet according to its pyTorch implementation [3]. More-
over, we evaluate our approach on a Ubuntu 18.04.5 LTS machine
with a 62.6GB memory, an Intel Xeon(R) W-2145 CPU @3.70GHz
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x 16, and a hard disk of 251GB. The datasets and source codes
of all the developed methods are made available to the research
community at [2].

3.1 Datasets and Findings
We leverage two separate network telescopes data captures to ob-
tain the list of NATed Mirai packets. The first dataset comprises
of 33,404 Mirai scanning events (around 800MB of data) collected
during a three-hour period on October 20, 2021. The second dataset
comprises of 80,000 Mirai scanning events (around 1.8GB of data)
collected during a 5-day period from November 20, 2021 till No-
vember 24, 2021. Our findings are two-fold:

• October 20, 2021 Data.We label 831,482 packets (33.22%)
as NATed Mirai packets. Out of these packets, we classify
2,513 unique addresses behind a NAT.

• November 2021 Data. We label 4,001,644 packets (20%) as
NATedMirai packets. Out of these packets, we classify 17,315
unique addresses behind a NAT.

3.2 Data Prepocessing
For consistency, completeness and soundness purposes, we perform
a data preprocessing step on the captured traffic which includes
omitting the source and destination IP addresses that have no contri-
bution to classification. The remaining data consists of 21 features
(e.g., 𝑑𝑠𝑡𝑃𝑜𝑟𝑡 , 𝑡𝑐𝑝_𝑤𝑖𝑛, 𝑠𝑟𝑐𝑃𝑜𝑟𝑡 , etc. [12]).

The data that we collected is highly imbalanced, e.g., the NATed
Mirai packets only constitute 33.22% and 20% of the total packets for
the October 20, 2021 data and November 2021 data respectively. See-
ing as Mirai generated packets are generally rare like other threats
that are measured in the wild, and having only approximately 830K
of NATed Mirai samples, we create two new balanced datasets, that
we use in our implementation, comprising of 830K random samples
of NATed Mirai packets and 830K random samples of not NATed
Mirai packets for each dataset. In addition, we divide the October
20, 2021 data into three sets, namely, a training set consisting of
80%, a validation set consisting of 10%, and a testing set consisting
of 10%.

For the other ML algorithms that we implement, each training
set consists of 80%, and each testing set consists of 20%. In addition,
we scale all the numerical features such that all feature inputs would
be in the range of [0,1].

3.3 Experimental Results
To validate the effectiveness of TabNet, we assign accuracy as the
evaluation metric in the 𝑓 𝑖𝑡 () function of the model. Additionally,
we monitor the training time. We first train the model on the Octo-
ber 20, 2021 dataset and then test it on two datasets: (1) the October
20, 2021 dataset, and (2) the November 2021 dataset to validate the
resiliency of our model against classification decay. For the second
dataset, we divide the October 20, 2021 Data into two sets, namely,
a training set consisting of 80%, and a validation set consisting of
20%. Additionally, the testing set consists of all the data from the
November 2021 dataset. We then compare the obtained results with
other known machine learning algorithms, namely, Logistic Regres-
sion with Restricted Boltzman Machine (RBM), Logistic Regression,
Light Gradient Boosting Machine (LGBM), Linear Support Vector

Classifier (LinearSVC), Random Forest (RF), Gaussian Naive Bayes,
and Multi-layer Perceptron (MLP).

Particularly, the Logistic Regressionwith RBM is a semi-supervised
ML algorithm that is based on Logistic Regression with Bernoulli
RBM. Indeed, Bernoulli RBM estimates its parameters by using a
Stochastic Maximum Likelihood (SML). In addition, we employ the
“newton-cg” solver because it yielded the best results. Initially, we
instantiate an RBM features’ classifier which consists of pipelining
an RBM model with a Logistic Regression model. We then imple-
ment the GridSearchCV function which converges towards the best
parameter values for these models. As a result, the best parameter
values are obtained as: Logistic C (10,000), RBM Learning Rate (0.01),
and RBM Number of Components (200). Moreover, for the MLP
classifier, we employ a “tanh” activation and a Stochastic Gradient
Descent “sgd” solver because they yielded the best results.

We evaluate these deployed ML algorithms according to several
metrics such as the accuracy, the training time (in sec), and the
average Precision, Recall, and F1-Score. Figure 3 demonstrates the
obtained results.

By comparing Figure 3a with Figure 3b, we show that Tabnet
outperforms all the other ML algorithms implemented, with an ac-
curacy of 99% and 91% for the October 20, 2021 data and November
2021 data respectively. In addition, the results show that TabNet has
a training time of approximately 40 minutes, which is an acceptable
result. Although the RF model achieved a high overall accuracy
with the October 20, 2021 dataset (93%), due to classification de-
cay, when testing the trained model on the November 2021 data,
it performed poorly with an accuracy of 53%. Indeed, in a real-life
scenario, it is unwise to assume that the relation between the input
data and the target variable of an ML model will remain unchanged
over time [17]. Thus, it is most likely that the model will become
obsolete when the incoming data at testing time is different from
that of training time. However, classification decay typically occurs
when the training time and testing time are months or years apart
[20, 28]. Therefore, it is surprising to witness this phenomenon in
only a one month period; an observation that can only reinforce
the ever-evolving malware threat landscape.
Features’ importance. To better understand why the RF model
displayed such a drop in accuracy, we look into the features’ scores
from the RF model. We discover five features that have the most
impact:𝑑𝑠𝑡𝑃𝑜𝑟𝑡 , 𝑡𝑐𝑝_𝑤𝑖𝑛, 𝑠𝑟𝑐𝑃𝑜𝑟𝑡 , 𝑡𝑐𝑝_𝑠𝑒𝑞, and 𝑖𝑝_𝑖𝑑 . Four of these
features are directly related to the ones used in Algorithm 1. Thus,
such a drop in accuracy can possibly be explained by the con-
stant change in the chosen session-permanent source and window
size, as well as the TCP sequence number and destination ports.
We also look into the features that provide little to no impact on
the model. We find eight features: 𝑇𝐶𝑃_𝑂𝑃𝑇_𝑆𝐴𝐶𝐾 , 𝑡𝑐𝑝_𝑟𝑒𝑠𝑒𝑟𝑣𝑒 ,
𝑡𝑐𝑝_𝑢𝑟𝑝 , 𝑡𝑐𝑝𝑑𝑎𝑡𝑎𝑙𝑒𝑛, 𝑡𝑐𝑝_𝑎𝑐𝑘_𝑠𝑒𝑞, 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 , 𝑝𝑟𝑡𝑐𝑙 , and 𝑡𝑐𝑝_𝑓 𝑙𝑎𝑔.
We decide to drop these features and re-train the model on the
October 20, 2021 data and test it on the November 2021 data. Upon
further evaluation, we discover that although the RFmodel achieved
a higher accuracy (62% versus 53% before dropping the features), it
still performs poorly compared to TabNet.
We then shed light on the features that were most decisive in the
learning process of TabNet. Based on the features’ scores derived
from the model, we find that five features have the most impact

282



An Attentive Approach for Identifying andQuantifying Infected Internet-Scale NATed IoT Bots CF’22, May 17–19, 2022, Torino, Italy

0% 20% 40% 60% 80% 100%

LR/RBM

LR

LGBM

LinearSVC

RF

GNB

MLP

TabNet

F1-Score Recall Precision Accuracy Training Time (sec)

496.49

11.569 

3.041 

80.599

196.08

2.038

217.274 

2,424

(a) October 20, 2021 Data

0% 20% 40% 60% 80% 100%

LR/RBM

LR

LGBM

LinearSVC

RF

GNB

MLP

TabNet

F1-Score Recall Precision Accuracy

(b) November, 2021 Data

Figure 3: Experimental Results

on TabNet: 𝑇𝐶𝑃_𝑂𝑃𝑇_𝑇 𝐼𝑀𝐸𝑆𝑇𝐴𝑀𝑃 , 𝑝𝑟𝑡𝑐𝑙 , 𝑖𝑝_𝑖𝑑 , 𝑡𝑐𝑝_𝑜 𝑓 𝑓 , and
𝑇𝐶𝑃_𝑂𝑃𝑇_𝑆𝐴𝐶𝐾 .

Table 1: Summary of the most important features used by
TabNet

Feature Description
TCP_OPT_TIMESTAMP Current roundtrip time (RTT) of the

network between endpoints
prtcl IP protocol
ip_id ID used to re-associate fragmented packets
tcp_off Total size of a TCP header in multiples of

four bytes
TCP_OPT_SACK The left and right edges of data that has

been received beyond the packet’s
acknowledgment number

These features are summarized in Table 1. The 𝑖𝑝_𝑖𝑑 and the
𝑇𝐶𝑃_𝑂𝑃𝑇_𝑇 𝐼𝑀𝐸𝑆𝑇𝐴𝑀𝑃 can indicate an automatic and systematic
scanning generator, whereas the 𝑝𝑟𝑡𝑐𝑙 , 𝑡𝑐𝑝_𝑜 𝑓 𝑓 , and𝑇𝐶𝑃_𝑂𝑃𝑇_𝑆𝐴𝐶𝐾
can be an indicator of a broad probing behavior. Therefore, such be-
haviors can be directly correlated to malware machinery. Although
the RF model and TabNet have one feature in common (𝑖𝑝_𝑖𝑑), Tab-
Net’s features are more indicative of the malware that is generating
the probing behavior.

We finally look into TabNet’s architecture to try and explain why
it outperformed all the other models. Indeed, with a specific design,
conventional DNN can be leveraged to implement a DT-like output
manifold based on a linear combination of features where coeffi-
cients determine the proportion of each feature. TabNet is based
on such a functionality to reap the benefits of DT-based algorithms
while outperforming them. This is not only due to the use of sparse
instance-wise feature selection learned from data but also by the
learning capacity via non-linear processing of the selected features
[8]. Consequently, it is no surprise that TabNet outperformed other
DT-based algorithms such as the Random Forest.

3.4 Vetting Methodology
We design a heuristic vetting process in order to ensure that Tab-
Net’s output is sound. Our methodology depicts a two-step process.
In step 1, we look up the obtained NATed addresses in the Shodan
search engine to check what kind of results we obtain. Indeed,
Shodan is the world’s first search engine for Internet-connected
devices that allows users to search for various types of servers,
routers, or IoT devices that are connected to the Internet using a
variety of filters [5]. We devise a binary scoring mechanism that
we apply on the obtained results. We assign the binary number 1
to an address that has a higher likelihood of being behind a NAT
and a binary number 0 for an address that has a lower likelihood
of being behind a NAT. We summarize the results and assign this
binary number to each IP address according to three use cases:

• No Banners. In the case where we obtain no results, there is
a high probability that the IP address is behind a NAT. Thus,
we assign this IP address the binary number 1.

• Many Banners / Many Devices. In the case where we
obtain several banners originating from different kinds of
devices, there is a high probability that the IP address is
behind a NAT. Thus, we assign this IP address the binary
number 1.

• Few Banners / One Device. In the case where we obtain
one or few banners originating from one type of device,
there is a need for further exploration. If the protocol UPnP
is found, this indicates that the IP address is behind a NAT
but used port forwarding to become accessible. Thus, in this
specific case, we assign this IP address the binary number 1.
Aside from this case, no conclusive result can be acquired,
and therefore we assign this IP address the binary number 0.

In step 2, we filter the IP addresses based on their score. If the
score is 1, then we can assume that the IP address is in fact behind
a NAT and that our approach did not yield a false positive. We
perform this vetting process on the results of the classifier after
testing it on the November 2021 dataset. Initially, we pass a list of
the unique IP addresses that were classified as NATed to the Shodan
search engine. Out of the 4,001,644 NATed Mirai packets, we find
17,315 unique addresses behind a NAT. After looking them up in the
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Shodan search engine, only 510 addresses gave us back results. We
further explore these addresses according to the aforementioned use
cases. Finally, we obtain 16,871 IP addresses that are deemed behind
a NAT. Therefore, we only dropped 444 IP addresses (i.e., only
2.564% of the unique NATed IP addresses), which were considered
false positives.

4 QUANTIFICATION AND
CHARACTERIZATION

Our goal is to infer and measure Internet-scale malware-infected
NATed IoT bots. To this end, we leverage the output of TabNet and
index the obtained insights, including near-real-time information
related to Internet-scale malware-infected IoT bots behind a NAT
coupled with their geolocation information. To characterize the
hosting environments of such nodes, we executed geo-location
procedures by employing the MaxMind GeoIP2 database [4] and
leveraging the list of IP addresses that remained after the vetting
process.

70%
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5%
4%

Professional, Scientific And
Technical Activities

Education

Other Service Activities

Human Health And Social Work
Activities

Government (Municipal)

Manufacturing

Retail

Banking and Finance

Accomodation and Food Service
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Figure 4: Distribution of NATed exploited IP addresses by
organization type

In total, after analyzing the darknet data from November 20 till
November 24 2021, we were able to find 3,879,426 malware-infected
IoT devices behind a NAT, with an average of 230 IoT devices per
IP address. We discovered that most of the IoT bots are targeting
web services on ports 80, 81, 8080, and 8181. Other ports target-
ing SSH were also observed. We then investigated the distribution
of exploited IP addresses behind a NAT by organization type as
illustrated in Figure 4. We initially found that the majority of those
IP addresses belong to the Information and Telecommunication
sector (mainly Internet Service Providers), which makes sense as
ISPs host the majority of NATed infrastructures such as home NATs.
Consequently, we were more interested in the distribution of the
remaining IP addresses as shown in Figure 4. We found that these
remaining IP addresses belong to Professional, Scientific, and Tech-
nical activities (70%), Education (10%), Other Service activities such
as Business Conglomerate (5%), Health (4%), Government such as
municipal administrative activities (3%), and Manufacturing such as

manufacture of basic pharmaceutical products and pharmaceutical
preparations (3%), to name a few. Indeed, professional, scientific,
and technical activities include, but are not limited to, private or
public testing and research facilities (e.g., university labs, technical
testing and analysis), or professional and private services (e.g., spe-
cialized design activities). Additionally, the health sector includes,
but is not limited to, residential care activities or any activity related
to human health and social work.

Table 2: Distribution of NATed exploited IoT bots by ISP

ISP Country # Bots %
China Unicom Liaoning China 1,327,332 35%
China Telecom China 412,128 11%
National Telecom. Corp. HQ Pakistan 166,168 4%
Hathway India 113,372 3%
BSNL India 107,476 3%
MTS PJSC Russia 97,678 3%
Rostelecom Russia 64,550 2%
China Mobile Guangdong China 60,826 2%
Paulino Perreira Dos Santos ME Brazil 56,396 1%
Wantel Tecnologia Ltda. Epp Brazil 54,724 1%
Spectrum U.S. 52,590 1%
VNPT Vietnam 43,386 1%
HiNet Taiwan 41,690 1%

Since the majority of the IP addresses belonged to Internet Ser-
vice Providers, we proceeded by characterizing the distribution of
the exploited IoT bots behind a NAT by ISP. The results are shown
in Table 2. We find that the top 2 ISPs, namely, China Unicom Liaon-
ing, and China Telecom, comprise 35% and 11% of the total number
of NATed malware-infected IoT bots respectively. These ISPs are
then followed by an ISP originating from Pakistan (4%) and two
Indian ISPs (3% for both). We note that the United States falls in
eleventh place with its ISP (Spectrum) only comprising of 1% of the
total number of malware-infected IoT bots behind a NAT.

We finally proceeded by illustrating the worldwide distribution
of top countries hosting exploited IoT bots behind a NAT as depicted
in Figure 5. Intuitively, this outcome is affected by the investigated
IP addresses, the specific darknet data sample that has been utilized,
and the timeframe of the executed analysis. We find that China
takes the lead by hosting 48% of the malware-infected IoT bots
behind a NAT, followed by India (8%) and Russia (7%). We note that
the Unites States and Brazil each hosts 5% of those bots.

5 RELATED WORK
In this section, we elaborate on three related topics that are rele-
vant to our work herein, namely, IoT device fingerprinting, device
identification behind a NAT, and application-based transformers
for tabular data.
IoT Fingerprinting. Perdisci et al. [29] developed IoTFinder, an
independent system for large-scale IoT device identification. Indeed,
their proposed approach leveraged distributed passive DNS data
which is comprised of more than 40 million clients. This collected
data was then passed on to a multi-label machine learning-based
classifier that only uses DNS fingerprints to classify IoT devices.
Additionally, Kumar et al. [23] performed an in depth comparative
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Figure 5: Global distribution of NATed exploited IoT bots

analysis of several machine learning algorithms by using different
effective features extracted from IoT network traffic. Indeed, they
leveraged 20 days of network traces generated from 20 popular IoT
devices in order to evaluate the performance of thoseML algorithms.
Moreover, Pour el al. [30] leveraged network telescopes to classify
compromised IoT devices from one way-network traffic by develop-
ing a multi-window convolutional neural network. By analyzing 3.6
TB of darknet traffic, their approach effectively uncovered 440,000
compromised IoT devices and 350 IoT botnets in the wild. Further,
Cabana et al. [13] investigated the threat landscape of Industrial
Control Systems (ICSs) devices by leveraging network telescope
traffic and ML. Indeed, their tool generates threat intelligence by
using Deep Packet Inspection (DPI) techniques on scanning cam-
paigns that target ICSs. By analyzing 12.8 TB of darknet traffic, they
were able to classify the sources behind the campaigns as well as
their threat actors.
Device Identification behind a NAT. Khatouni et al. [21] pro-
posed a passive supervised machine learning methodology to detect
hosts behind NAT devices by using flow level statistics without
any application layer information. Indeed, the authors captured
a large dataset and performed an extensive evaluation with four
existing approaches from the literature. Their results showed that
their methodology can identify NAT behaviors and hosts with
high accuracy. In addition, Yang et al. [32] proposed a methodol-
ogy to identify NATs for online IoT devices based on Tri-Net; a
semi-supervised DNN, by learning features on three layers, namely
network, transport, and application layer in a small labeled data
set. After evaluating this approach on a real-world dataset with
more than 8 million online IoT devices, the authors were able to
efficiently find 2,511,499 NATed IoT devices. Moreover, Meidan et
al. [26] proposed a supervised machine learning-based method that
can detect specific vulnerable IoT device models that are connected
behind a domestic NAT. After evaluation, the authors showed that

their flow-based method is robust and can detect IoT devices behind
a home NAT with high accuracy.
Application-based transformers for tabular data. Yin et al.
[33] proposed TABERT, a pretrained language model that jointly
learns representation from both textual and tabular data. In addition,
Yoon et al. [34] presented VIME, a novel tabular data augmentation
method for self- and semi-supervised learning frameworks for the
genomics and clinical data domains. Moreover, Somepalli et al.
[31] proposed SAINT, a neural network methodology for tabular
data via row attention and contrastive pre-training. Their findings
showed that SAINT improves the performance over previous deep
learning models and outperforms gradient boosting methods on
average over several benchmark tasks. Further, Arik and Pfister
[8] presented TabNet, a novel high-performance and interpretable
tabular learning architecture that yields feature attributions and
insights into its global behavior.
This paper contributes to IoT device identification behind a NAT,
but focuses instead on the niche problem of fingerprinting Internet-
scale NATed malware-infected IoT bots. Further, it explores a novel
learning method (i.e., tabular transformers) while reporting on its
performance and resiliency against classification decay, with an at-
tempt to interpret the obtained results while also demonstrating its
superior results compared to the state-of-the-art machine learning
algorithms.

6 CONCLUDING REMARKS
This paper complements current device classification methods be-
hind a NAT by leveraging an attentive interpretable tabular trans-
former and darknet data to detect Internet-scale malware-infected
IoT bots behind NAT. This paper initially builds a ground truth
based on Christian and Doerr’s methodology [18] and implements
TabNet [8] to efficiently classify NATed malware-infected IoT bots.
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As a result, we found that our approach outperforms known ML
methodologies and was proven resilient against classification de-
cay with an accuracy of 91%. Moreover, we were able to identify
3,879,426 Internet-scale malware-infected IoT bots behind a NAT
where 48% of them originated from China.
As for future work, we will continue to explore the notions behind
interpretability and attention as applied on network traffic analysis.
In addition, with the rise of the ZHtrap [25] botnet, which is a
Mirai-based botnet that uses Tor for communications, it would be
interesting to examine if a flavor of our developed method could
be applied to the Tor network in order to detect compromised IoT
bots behind Tor proxies. Finally, we will be attempting to infer
malware-infected IoT bots behind a NAT on a real network traffic.
As our approach only leverages data from network telescopes, and
therefore likely malicious data, it would be interesting to see if our
model would work on real network traffic given that benign traffic
outweighs malicious data.
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