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Abstract—The Internet-of-Things (IoT) paradigm at large
continues to be compromised, hindering the privacy, depend-
ability, security, and safety of our nations. While the operational
security communities (i.e., CERTS, SOCs, CSIRT, etc.) continue
to develop capabilities for monitoring cyberspace, tools which
are IoT-centric remain at its infancy. To this end, we address
this gap by innovating an actionable Cyber Threat Intelligence
(CTI) feed related to Internet-scale infected IoT devices. The feed
analyzes, in near real-time, 3.6TB of daily streaming passive mea-
surements (=1M pps) by applying a custom-developed learning
methodology to distinguish between compromised IoT devices
and non-IoT nodes, in addition to labeling the type and vendor.
The feed is augmented with third party information to provide
contextual information. We report on the operation, analysis, and
shortcomings of the feed executed during an initial deployment
period. We make the CTI feed available for ingestion through a
public, authenticated API and a front-end platform.

Index Terms—Internet-of-Things (IoT), Cyber Threat Intelli-
gence, Security capabilities, Network telescopes, Data science

[. INTRODUCTION

The Internet-of-Things (IoT) paradigm is no longer just a
concept. It has indeed touched and infiltrated various facets of
contemporary life. The number and types of deployed IoT
devices in households, organizations, critical infrastructure,
and cities have increased with rampant speed [1]. Meanwhile,
the security posture of these devices did not keep abreast with
their applicability and have undoubtedly not received enough
security attention dealing with their design, manufacturing,
and provisioning by vendors, policymakers, and consumers,
all resulting in disastrous consequences [2, 3]. As a result, the
IoT paradigm continues to attract malicious actors’ attention,
through targeted exploitations by evolving malware [4]. While
the operational security communities continue to lay down
efforts for IoT security monitoring and response, several
challenges hinder such endeavors.

First and foremost, patch management is more difficult
in the IoT context than conventional systems, given the
heterogeneous nature of the IoT devices and their far-from-
optimal update mechanisms [2]. In many cases, organizations
deploying such IoT devices might not be aware of the exact
details of the IoT models, which renders their management
quite difficult especially in realms with significant amount
of deployed devices (i.e., health and transportation sectors)
[5]. Further, a large number of IoT devices are not yet
compatible with central management systems for monitoring

and management. Therefore, the chances that an IoT device
becomes infected and goes unnoticed is quite high.

Second, for continuous and proactive monitoring of the
cyber security posture, threat intelligence and security ser-
vice providers typically require access to the organizations’
network traffic and systems’ data. This is achieved either
by installing special agents/software or setting up hardware
to curate and analyze the required data, while processing
it on-site or using a cloud-based capability. Nevertheless,
organizations are most often reluctant to even share their
basic internal information for privacy and liability concerns.
This situation has induced the broad lack of available real-
world data (including IoT-centric empirical data) to utilize
for identifying compromised devices. Additionally, with the
IoT paradigm being deployed at an Internet-scale perspective,
having microscopic data access is impractical and would
definitely not scale well.

Third, the objective of IoT device fingerprinting (i.e., identi-
fication) by analyzing network traffic continues to be an open
research problem. Along this line of thought, the capability
to infer compromised devices is even more challenging, given
the increasing sophistication of IoT-malware which execute
various actions (i.e., killing running services or altering de-
vice characteristics) to avoid being flagged by detection and
monitoring systems as well as by competing IoT botnets [6].

Given the aforementioned challenges, coupled with the
lack of IoT-centric Cyber Threat Intelligence (CTI) capabil-
ities which would aid the operational security community in
identifying and responding to Internet-wide compromised IoT
devices, in this work, we make the following contributions:

1) We introduce eX-IoT (for exploited IoT), a first-of-

a-kind operational, real-time CTI feed, operating on
streaming Internet-scale network telescope data, for
fingerprinting (and notifying about) compromised [oT
devices deployed in Internet-wide realms. eX-IoT is
advantageous as it provides a macroscopic visibility of
deployed IoT devices, independent of the host organi-
zation. Indeed, while other scan-based threat detection
capabilities exist, eX-IoT complements them by inno-
vating scientific and engineering methods to specifically
address the IoT insecurity problem.

2) We design eX-IoT, both in terms of its dynamically-

updating machine learning methodology to keep track
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of newly discovered IoT devices in the wild, and its
computing architecture, from the data source to the
indexing (and augmentation) of the generated threat
intelligence. We report on the operation of an initial
deployment of eX-IoT, while evaluating it against other
CTI feeds in terms of various metrics including latency,
accuracy and coverage.

We make eX-IoT available to the security community
for ingestion through an authenticated RESTful API
and a streamlined front-end platform. We also develop
eX-IoT to monitor certain IP spaces of interest and
to automatically respond to IoT exploitations through
email notifications. We validate eX-IoT’s initial results
by collaborating with US and international operators.

3)

The remainder of this paper is organized as follows. In the
next section, we review the relevant literature to demonstrate
the state-of-the-art contributions of this work. In Section III,
we detail the science and the engineering methodologies em-
ployed within eX-IoT. In Section IV, we detail how we make
eX-IoT available for ingestion. We evaluate eX-IoT in contrast
to other CTI feeds under various data-driven metrics in Section
V. The shortcomings and conclusion are respectively discussed
in Section VI and VIIL

II. RELATED WORKS

In this section, we review two topics. The first focuses on
efforts pertaining to compromised IoT device fingerprinting.
The second summarizes available operational cyber security
capabilities for monitoring cyberspace to highlight the need
for tools and platforms which are IoT-centric.

A. Fingerprinting Compromised IoT devices

Honeypots. The first line of research leverages IoT-specific
honeypots to gain CTI into IoT maliciousness [6-9]. However,
often, the vantage size is extremely narrow and limited to a
small set of mimicked devices, firmware versions, and services
which hinders the completeness and the quality of the results
to be employed for operational security. In addition, sophisti-
cated IoT malware and attackers execute reconnaissance and
discovery tactics to avoid honeypots [7].

Internet telescope and edge. Another line of research relies
on Internet telescope (darknet) [10, 11] or similar passively
collected edge network traffic to identify infected IP addresses.
However, additional steps are required to identify IoT-specific
characteristics. Some studies relied on the unique identifier in
the received packets (TCP seq == dst IP) to attribute them
to Mirai infected devices [6, 12, 13]. Similarly, Cetin et al.
[13] identified Mirai-related infections following an attempt to
eradicate them from the hosting network where notification-
based remediation efforts were successfully tested. However,
not every malware will carry such a profound signature
as Mirai [14]. Indeed, works that leverage malware-specific
signatures are not generic enough, rendering them impotent to
fingerprint devices infected by emerging malware.

An alternative technique relies on correlating a list of
identified malicious IP addresses with fingerprinted devices
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through the application of banner grabbing using Shodan
[15-17] or actively scanning set of IP addresses to retrieve
available service banners. Banners contain text information
that needs to be processed to characterize the type and model
of the device. Acknowledging the variety of IoT devices in the
wild, various learning techniques have emerged to accomplish
the classification objective [18-25].

Nevertheless, several challenges related to banner-based
IoT fingerprinting techniques exist, including (i) the fact that
modern malware close ports and services with the intention to
avoid reinfection by competing malware and to conceal their
identity from Internet scanners [12, 26]. (ii) That IoT devices
may reside behind a border firewall/NAT where accessing
such devices becomes restricted and (iii) the fact that some
vendors avoid hard-coding device information in clear text
which makes banner analysis almost impossible. In the context
of eX-IoT, we combined passive Internet traffic with active
application banners while feeding the output to a machine
learning model to address these IoT fingerprinting challenges,
especially for devices where their banners are not available.

ISP level and Internet transit. Some studies leveraged
Internet backbone and transit traffic to identify botnet activities
and related compromised hosts and devices [27-30]. These
proposed detection methods often require intensive computa-
tion due to the high volume of curated traffic (benign and
malicious) and they generally might possess lower accuracy
in contrast to leveraging passive measurement techniques.

Internal network traffic. This line of research is based
on analyzing internal network traffic. Meidan et al. [31]
proposed a network-based anomaly detection technique that
employs deep autoencoders to discover abnormal network
traffic generated from compromised IoT devices, while Hafeez
et al. [32] introduced IoT-Keeper, a lightweight anomaly
detection system at edge gateways. Though noteworthy, these
techniques require special software and hardware to curate
such data, in addition to possessing a small-scale, microscopic
perspective of IoT maliciousness. In contrast, eX-IoT CTI’s
feed leverages Internet telescope traffic which is a “pure”
source of unsolicited/malicious activities while providing a
global view towards compromised IoT devices.

B. Operational Cyber Security Capabilities

Although the operational security communities continue
to develop capabilities for monitoring cyberspace [33], tools
which are IoT-centric remain at its infancy. Shodan [34]
was among the first search engine for constantly monitoring
cyberspace to index all Internet-facing end-hosts. The engine
allows users to find specific types of devices and services
(webcams, routers, servers, etc.) connected to the Internet. Fol-
lowing closely the same objective, Censys [35], developed
by the University of Michigan, based upon the open source
tools Zmap [36] and Zgrab [37], forked many Internet- and
security-based studies [12, 38-40]. Shodan, Censys and
ZoomEye [41] are used by organizations to monitor their
IP space for publicly accessible services and vulnerabilities
related to them. However, actual infections are not visible
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to their vantage points and thus they do not cover or report
about infected (IoT) devices. Dshield [42], in contrast,
provides amalgamated statistics about the daily activity of
each targeted ports based on IDS crowd-sourcing and reports
provided by entities and individuals. The closest work to
eX-IoT is GreyNoise [43], which provides general lists
of Internet-wide scanners. However, its implementation and
modus operandi are obscure and the engine does not provide
ToT-specific CTL.

Thus, it is intuitive to note that eX-IoT will be among the
first to focus on the Internet-scale [oT cyber threat landscape
by devising integrated scientific and data engineering method-
ologies while pinpointing and sharing relevant CTI, in near
real-time, on hundreds of thousands of newly infected IoT
devices, this developed capability is postulated to contribute
toward a better [oT hygiene while aiding security operators and
hosting organizations with their (IoT) security triad endeavors.

III. METHODOLOGY AND ARCHITECTURE

The rationale of eX-IoT is to possess an Internet-scale
visibility of deployed IoT devices. To this end, it leverages
passive network telescope traffic. A network telescope is set
of routable, allocated yet unused IP addresses [10, 44]. Such
IPs passively collect incoming packets without sending any
replies; they have also not been assigned to any machine
(with a legitimate service) and therefore there is no rea-
son for Internet nodes to send packets towards these IPs.
Therefore, all the incoming packets are either (i) Internet-
wide scans, (ii) backscatters from DDoS attacks, and (iii)
results of machine/network malfunctioning. Therefore, Internet
telescope data provides a clean, unsolicited dataset (no traffic
with legitimate intention) of Internet-scale malicious activities.
Compromised IoT devices are often constantly scanning the
Internet to discover more vulnerable devices and during this
procedure, they inevitably send a packet to Internet telescopes.
Following the filtering of backscatter packets based on their
flags and other header fields, an employed Threshold Random
Walk (TRW) scan detector algorithm [45] identifies scan
activities. Since there is no purpose that an IoT device (e.g. IP
camera) would perform Internet scanning as part of its normal
operation, this would be a strong indicator of its compromise.

The methodology at the core of eX-IoT is illustrated in
Figure 1. Following the detection of the scanners @, the tool
immediately probes the scanners for open ports and application
banners @. The returned application banners @ are checked
with a database of text fingerprints of IoT devices @ to
generate labels (IoT vs non-IoT). The label for IP address
X.X.X.X along with the traffic samples originated from x.x.x.x
will be used to train (update) the machine learning classifier
®. Finally, the classifier is applied on newly incoming scan
traffic to predict their label ®. Particularly, we train a random
forest classifier to predict the label (IoT vs non-IoT) of sources
that are generating scans towards the network telescope. Each
sample in the training and test datasets consists of fields
extracted from the received packets with a corresponding label.
The output of the machine learning classifier is one of the
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Fig. 1. Methodology of the detection system

binary classes (IoT or non-IoT). Note that the model can
adaptively learn the behavior and implementation differences
of IoT-specific malware families and evolving IoT botnets.
The effect of these differences is indeed reflected in their
generated scanning packets and can be observed in various
features such as scan packet inter-arrival times [46], and the set
of targeted ports (and corresponding assigned weights to each)
[47]. Readers that are interested in the inner modus operandi
of the employed machine learning methods are kindly referred
to the “Annotate” and “Update Classifer” subsections herein
as well as to our previous in-depth studies in [47-49].

The overall data engineering architecture of eX-IoT is
demonstrated in Figure 2. The numbers highlight the imple-
mentation/usage of the same steps as in Figure 1. We leverage
a /8 Internet telescope (16M+ IP addresses) from CAIDA [50].
The passive traffic collected by CAIDA consists of approxi-
mately 150GB/hour which is on average more than 1M packets
per second (with ascending trend). The data is collected hourly,
compressed and stored using OpenStack Swift [51]. Access to
data is provided through a cluster located at UCSD. Due to
the agreement policy and the high volume of data, transferring
the entire data stream and processing it locally in real-time is
infeasible. Therefore, the flow detection and packet sampling
stages are executed on the assigned cluster at CAIDA. The
analyzed sampled batch of packets are then sent to the local
eX-IoT server through an established secure tunnel for further
processing. The processing pipeline is divided into several
distinct modules and run separately to achieve high level of
parallel processing, high throughput and low latency for real-
time stream processing. Besides, eX-IoT depends on three
distinct databases; (i) A MongoDB database to store the latest
threat information related to compromised IoT devices, (ii)
Another historical MongoDB database to store information of
compromised devices with a lapsing two-week period, (iii)
A Redis in-memory database to store records (OBjectIDs) of
MongoDB instances related to compromised devices that are
still active; and to use for fast and low-overhead update of the
devices coupled with their malicious activities.

Flow detection and packet sampling. This module is
developed in C++ and utilizes the Libtrace [52] packet
handling library to achieve real-time processing. The program
constantly checks for newly added data sources (hourly),
decompresses and analyzes every single packet. Packets that
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are not backscatter-related (e.g., packets with only TCP ACK
flag set, ICMP packet with unreachable code set, etc.) are
considered as potentially scan packets. For packets which pass
this step, their state is kept in a GLib Hashtable [53] with the
source IP address as the key. The state for source IP = consists
of a {start timestamp, timestamp of latest arrived packet from
x, number of packets from z, IsScanner}.

We then use a TRW-based scan detector [54, 55]. The
program considers a source x as a scanner if it receives
at least 100 packets without expiration (inter-arrival time
between consecutive packets from x should not be more than
300 seconds). Also, its duration should not be less than 1
minute to find and exclude flows that are result of network
misconfigurations. Upon detection of a source IP address =
as a scanner, the IsScanner attribute for = is set, and the
number of received packets is reset to zero to start packet
sampling. Subsequently, a full list of field values (fields in
IP, TCP, UDP, ICMP headers, timestamp, packet and header
length) from x is generated for the next threshold (200) packets
and sent to the next module. The module seizes after the
threshold sample is acquired.

For the next batch of incoming packets from x, the program
ignores the packets and updates the latest timestamp for x. At
the end of an hour and before starting to process the new hour,
if the latest timestamp for x is more than 1 hour ago, it expires
the scan flow, concludes that the scan has ended, and sends a
message that the flow generated by x has ended. Another task
of this module is to provide packet-level reports every second
including total processed packets, number of TCP, ICMP, UDP,
number of newly detected scan flows, and number of packets
target specific ports. On average, this module spends close to
20 minutes to analyze one hour of data.

The output is sent to a specific local port using Socat [56].
Therefore, if any network communication is disrupted, the flow
detection and sampling module will go idle until the next stage
can reconnect to that port and be ready to receive the data.
Thus, no data will be lost due to network failures.

Receiver. This module establishes and maintains the secure
communication as well as analyze the control and report
messages. If the secure communication is disrupted for any
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TABLE I
LIST OF SUPPORTED PORTS AND PROTOCOLS

80, 22, 443, 21, 23, 8291, 554, 8080, 7547, 8888, 5555,
81, 631, 8081, 8443, 9000, 8888, 2323, 85, 88, 8082, 445,
8088, 4567, 82, 7000, 83, 84, 8181, 5357, 1900, 8083,
8089, 8090, 110, 143, 993, 995, 20000, 502, 102, 47808,
1911, 5060, 5000, 60001

HTTP(s), TELNET, SMTP(s), IMAP(s), POP3(s), SSH,
FTP, CWMP, SMB, MODBUS, BACNET, FOX, SIP,
RSTP, SSL/TSL, DNP3

Ports

Protocols

reason, it will retry to establish a new SSH tunnel and connect
to the specific local port on the CAIDA cluster. The receiver
then sends the report messages to the MongoDB.

Packet Organizer. This module receives all the sampled
packets from different sources, organizes them based on their
source IP address and arrival time, packs them and dispatch
them to the next module. This way, the module ignores the
sources that do not contain enough samples to be used for
applying the model or for updating the classifier. These are
typically sources that have been erroneously identified as
scanners and may be the results of node malfunction on the
Internet (which usually send out burst of small number of
packets for a very short period). The output of this module is
in a JSON format piped to buffer.

Buffer. The buffer is an in-memory large FIFO (15GB) to
curb the effect of mismatched processing delays among the
modules especially due to the rising volumes of data which is
sent out from the CAIDA cluster. We leveraged the mbuffer
implementation [57] for this purpose.

Scan Module. This module performs buffering of batch
of identified scanners for 100k records or 60 minutes, run
Zmap for target ports (50 ports) with 5K pps rate, followed
by running Zgrab for several protocols (16 protocols). Table
I enumerates the supported ports and protocols in the initial
deployment of the system. These ports/protocols are known
empirically to be the most responding; could be easily ex-
tended using updated measurements from emerging threats.

The module also prepares an updated database of applica-
tion banner fingerprints based on Recog [58] and Ztag [59]
and applies it on returned banners using Beautifulsoup
and regex to add information regarding their vendor, type,
model and firmware version which are also used as labels in
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the update classifier module. We select Recog since it is an
open source repository, where individuals contribute actively
to add new rules. The scan module also dumps unknown
banners that contain the ”[a-z]+[-]?[a-z!]*[0-9]+[-]?[-]?[a-z0-
9]” regex rule as a generic rule for inferring device-related
information in text [21] to a log file for further inspection
and for generating rules for new devices that are not covered
by the mentioned public resources. Meanwhile, the returned
banners are added to the records in JSON format. Besides,
upon receiving an END_FLOW message for a source IP =z,
the module retrieves the ObjectID of that specific infected
IoT device from the Redis database (which contains a list of
active infected devices) and use that for updating the status of
the device in the MongoDB. Searching the MongoDB based
on returned ObjectID is less expensive than finding the latest
record for that IP address among all records in the database.

Annotate Module. The annotate module first pre-processes
traffic for each identified scanner and then applies the latest
updated classifier to the network flow to identify if the flow
has been generated by an infected IoT device or not. The pre-
processing step consists of (i) calculating inter-arrival times,
processing the TCP options field and then normalizing every
field using MinMax and subtracting it from the mean value
of the training dataset; a final list of fields are summarized in
Table II, (ii) Min, first-Quantile, Median, third-Quantile and
Max values for each field over all sequence of packets from
each source are calculated which is a tuple of size 24 x5 = 120
that are considered as the final feature set to be fed into the
machine learning model for training and classification. The
output of the classifier is the predicted label and a value
between O and 1 which is the prediction score.

TABLE II
LIST OF EXTRACTED FIELDS FROM INCOMING PACKETS

General Protocol ({TCP, UDP, ICMP}), Dst port, Total length,
TCP offset, TCP data length, Inter-arrival time

IP header Type of Service, Identification, TTL, Src IP, Dst IP

TCP header Src Port, Sequence, ACK Sequence, Reserved, Flags,
Window Size, Urgent Pointer

TCP Options WSCALE, MSS, TIMESTAMP (Binary), NOP (Bi-
nary), SACK-permitted (Binary), SACK (Binary)

In the next step, the module looks up every identified
IP address in various databases including MaxMind dataset,
IP WHOIS, and reverse DNS. The results comprise of geo-
location data (country, state, city, latitude and longitude co-
ordinates), hosted ISP, Autonomous system (ASN), domain
address, business sector, resided organization and registered
emails related to the hosting entity. In addition, the results of
packet-level fingerprinting of IoT malware’s scanning module
(e.g., Mirai) [12, 60] and Internet scanning tools (ZMap,
MASSCAN, Unicorn, Nmap) [61] is appended. Additionally,
a list of targeted ports and their distribution, scanning rates
and address repetition ratio (ratio of the number of all packets
to the number of unique targets) for each flow is estimated
[47]. Besides, scanners are labeled as Benign if their rDNS
records contain domains that can be attributed to legitimate
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security companies and research institutions such as scanners
from University of Michigan, Shodan, Censys, Rapid7, etc.
Update Classifier. Traffic that has the original labels (from
the tagging step in the scan module) are passed to this module.
The flow pre-processing step is exactly the same as the
explained step in the annotation module. The model, which
is updated every 24 hours, use data samples during the past
14 days to make sure that the model is always updated based
on the latest information and can comprehend the patterns
related to emerging IoT malware. Available data is split into
training (20%) and testing (80%) datasets and the best Random
Forest classifier model (from the sklearn package which
maximizis roc_auc metric) is selected among 1000 iterations
over a set of tuned hyperparameters. All the daily trained
models are augmented with training timestamp and stored
in a directory to make the results easily reproducible. In
preliminary tests, the performance of Random Forrest (RF),
Support Vector Machine (SVM) and Gaussian Naive Bayes
(GNB) over a wide-range of hyper parameters are compared.
Results based on ROC-AUC and F1 score motivated us to
leverage the Random Forrest model for implementing eX-IoT.

IV. EXPOSING DATA (USER INTERFACES)

To provide a fast and reliable way of accessing both the
raw data and the generated CTI, eX-IoT exposes its data
to the operational security communities and researchers in
several ways: a web-based interface for data analysis and
data visualizations, a RESTful API for programmatic access,
raw bulk data and email notifications. Please note that eX-
IoT’s CTI feed will be available for free to other academic
researchers to use through data sharing agreements via DHS
IMPACT [62], which addresses legal and logistical concerns.
Meanwhile, interested parties can also contact the authors to
access the feed.

Web Interface. eX-IoT’s web Interface is a hub for data
visualizations and raw data searches. It is comprised of 5 parts:
(1) an Internet snapshot that provides high-level real-time data,
(2) an interactive map of all data points in the past week, (3) a
dashboard with data visualizations and the ability to examine
specific database fields and (4) a raw database query builder.

Programmatic Access. eX-IoT’s REST API is a way for
data to be easily filtered and extracted from the database in
an ingestible format. The API returns data encoded as JSON
objects for ease of interpretation or integration by third-party
applications. Details about the API could be found on [63].

Raw Data. In some cases, bulk historical data is re-
quired and thus eX-IoT can provide this to security opera-
tors/researchers, practitioners and government authorities for
research/training purposes and cyber situational awareness.

Email Notification. Two mechanisms for email notification
are considered. First, organizations and users can set alarms
for their IP block and instantly receive notification through
their provided email address. In the second mechanism, eX-
IoT feed will notify organizations and ISPs who host infected
IoT devices by the list of organization’s email address available
in their WHOIS record.
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V. INITIAL OPERATION AND EVALUATION

To report on the operation, analysis, and shortcomings of
eX-IoT, we first executed it for two weeks to make sure
the model had enough data points for training purposes. We
consistently completing all steps on an Intel Xeon W-2145 (16
cores at 3.70GHz) processors, 128GB of DDR4 memory, and
RAID 1+0 with an Intel 850 Pro 1TB SSD drives. The cluster
at CAIDA is running an Intel processor (Skylake, IBRS) with
8 cores at 2.20GHz and 32GB of RAM.

A. Initial CTI Validation

While we only operated eX-IoT for a short period of time,
we made an effort to validate the generated CTI in terms of the
exploited IoT devices. Ideally, we would use the email notifi-
cation capabilities to contact each entity in which eX-IoT have
identified a compromised hosted IoT device. Nevertheless, for
initial validation purposes and to obtain quite a comprehensive
and a convincing response rate, we utilized two approaches.
First, we worked with a US-based entity, namely, Bad Packets
[64]. Bad Packets deploy and operate large-scale honeypots
(including IoT-specific honeypots) distributed across many
network providers and spread across multiple countries. We
used CTI from Bad Packets to correlate eX-IoT’s CTI feed
related to US-based IoT exploitations. Second, we worked
with a CSIRT in Czech Republic and cross validated eX-1oT’s
IoT exploitations that are specific to Czech Republic with the
CSIRT’s scanners’ database [65]. For both approaches, we
used data from the week extending from March 14% to March
18%, 2021. Broadly, we were able to validate close to 70% of
eX-IoT’s detected IoT exploitations from both sources, with
the CSIRT in Czech validating close to 83% of the country-
based IoT exploitations. Several factors could have affected
the validation accuracy, including, the limited/different vantage
points used by those sources, the time frame of the conducted
validation, the fact that IoT malware continue to avoid honey-
pots, and eX-IoT’s false positives in terms of misclassifying
a scanning source to be an IoT device (rather than a generic
scanning host, though the learning approach have previously
demonstrated high accuracy [47]). Nevertheless, we believe
the initial validation results are motivating and we continue
to work with local, federal and international collaborators to
fine-tune it.

B. Evaluation

Although there exists no similar feed which solely and
exclusively focuses on compromised IoT devices, we further
evaluate eX-IoT based on a well-defined set of metrics [33] in
contrast to the other two scan-based feeds, namely Dshield
(one of the high volume public feeds) and GreyNoise
(commercial threat intelligence that tags the records with
”Mirai” and “Mirai variant”). In the sequel, we elaborate on
such metrics and on the corresponding evaluation.

Volume is the rate of a feed, which quantifies the amount
of data appearing in a feed on a daily basis. Table III reports
the average number of new daily records in the evaluated
feeds over a week period. GreyNoise, on average, reports

TABLE III
VOLUMETRIC COMPARISON OF SCAN-BASED CTI FEEDS
eX-IoT | GreyNoise | DShield
All 757,289 215,350 214,390
IoT-specific | 145,989 20,557 N/A

around 215, 350 records which classifies 85, 330 as being ma-
licious, 126, 018 unknown and 4, 002 as benign. GreyNoise
also tags 20,557 records with "Mirai” and “Mirai variants”.
DShield have 214, 390 records in general without any infor-
mation about IoT exploits. eX-IoT in general identifies close
to 4 times more threats than the other two feeds. Further,
regarding the number of infected IoT devices, eX-IoT detects
about 7 times more comparing to GreyNoise.

Another metric is the differential contribution of one feed
with respect to another. That is the number of indicators
which appear in the first feed that are not in the second
feed over the same measurement time; Diff4 g = |A\B|/|A|.
Diffs g = 1 indicates that the two feeds have no elements
in common, while Diff4 p = 0 indicates that every indicator
in A also appears in B. It is a measure to characterize how
many additional indicators a feed offers relative to one or
more feeds. Respectively, normalized intersection is defined
as 1-Diff4 p. Similarly to differential contribution, exclusive
contribution is defined as the contribution of a feed with
respect to a set of other feeds which is the proportion of
indicators unique to a feed; Uniqa,p = [A\Up4 /|4]. To
this end, the set of newly infected devices from eX-IoT during
the 9" of Dec 2020 is considered which contains 134,782
unique [P addresses. The IP addresses are contrasted against
GreyNoise and DShield, where GreyNoise was found to
contain information about 28,338 of them (28,338 in it’s
historical database, 12,282 have updated in the same time
period, 10,460 tagged with "Mirai” and “Mirai variants”).
Further, we matched them with the DShield feeds from the
same time period which lead to 8,559 common records. Sub-
sequently, we report on differential contribution, normalized
intersection and exclusive contribution of eX-IoT with respect
to these statistics. The results in Table IV show the significant
contribution of eX-IoT against the other CTI feeds (more
particularly, in the compromised IoT-context) where typically
devices execute scanning in low rates. First, DShield does
not provide information about the IoT/non-IoT type of these
scanners, and GreyNoise tagged 10,640 of 134,782 as
”Mirai” and “Mirai variants” which confirms the lack of
IoT-specific focus in the existing threat feeds. Second, the
differential contribution which is close to 1 confirms the high
contribution level of eX-IoT feed over the other feeds. The
maximum value for the normalized intersection only reached

TABLE IV
METRICS OF EX-IOT IN CONTRAST TO GREYNOISE AND DSHIELD. THE
FEEDS ARE COMPARED WITH 134, 782 IOT RECORDS FROM EX-I0T

GreyNoise | GreyNoise(Mirai) | DShield
# of indicators 28,338 10,640 8,559
Diff4 B 0.78974 0.92105 0.93649
Normalized Intersection 0.21025 0.07894 0.06350
[ANWUpza)l 31,563
Uniqu B 0.76582
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TABLE V
REPORT ON TOP-5 CHARACTERISTICS OF GLOBAL 0T INFECTIONS ON THE 7™, 8™ AND 9™ OF DECEMBER 2020 TIME PERIOD.

Country Continent ASN

ISP

Critical Sector Vendor Target Ports

China (43.46%) Asia (73.31%) 4134 (21.28%)

China Telecom [CN] (21.16%)

Education (649) MikroTik (11583) 23 (43.25%)

India (10.32%) S. America (10.82%) || 4837 (16.45%)

Unicom Liaoning [CN] (16.23%)

Manufacturing (240) Aposonic (1809) 8080 (37.40%)

Brazil (8.48%) Europe (8.62%) 9829 (5.38%)

Vivo [BR] (5.38%)

Government (184) Foscam (1206) 80 (37.16%)

Iran (5.51%) N. America (5.57%) 27699 (4.96%)

BSNL [IN] (5.31%)

Banking (80) ZTE (709) 81 (13.10%)

Mexico (3.52%) Africa (4.10%) 58244 (3.30%)

Axtel [MX] (3.03%)

Medical (79) Hikvision (638) 5555 (12.92%)

0.21. In other words, 78.9% of IoT infections flies under the
GreyNoi se radar without being detected. Finally, about 76%
of eX-IoT output are unique and the records are not indexed
in other feeds.

Latency related to a feed is the elapsed time between an
instance’s first appearance in any feed and its appearance in
the feed in question. Latency characterizes how rapidly new
threats are included in a feed. To this end, by leveraging
Zmap, we execute a 3-hour Internet-wide scanning for port
80 with a rate of 1000 pps on Dec 9" 2020 at 7:30:00. It then
indeed appeared in eX-IoT as "Desktop (non-IoT)” and tool
as "Zmap” at 12:42:04 of the same day, which means that it
took 5 hours and 12 minutes from the time that scan started
to appear in the feed. The main contributor of this delay is
CAIDA’s role in collecting, compressing and storing to prepare
hourly pcap files which approximately take 3.5 hours. The
detected start time and end time for this test scan in eX-IoT
is recorded as 7:30:24 and 17:48:59 which respectively have
erroneously 24 seconds and 13 minutes difference. Comparing
with other feeds, the IP did not appear in DShield, while
the record was added to the GreyNoise feed with close to
10 hours of latency since the beginning of the scan and the
tool was incorrectly identified as "Nmap”.

The accuracy in this context is equivalent to precision of a
feed which is the percentage of indicators in the eX-IoT that
are correctly labeled as IoT. The coverage is equivalent to
recall in information retrieval contexts [66] and defined as the
proportion of the correctly labeled IoT devices contained in
the feed. Accordingly, here we consider accuracy and coverage
with respect to the assigned labels as IoT not the accuracy and
coverage for all scan feeds. Therefore, we compare the labels
in the eX-IoT with the labels derived directly from the returned
banners. We checked this for all the records on the 7%, 8%
and 9" of December 2020 that had the true label (IoT/non-
IoT) based on their banners and use them as the grand truth
to evaluate eX-IoT. The analysis led to accuracy (precision)
of 94.63% and a coverage of (recall) 77.21%.

Next, we report on a snapshot of compromised IoT devices.
All the discovered compromised IoT devices that are active
during the 7"-9" of December 2020 are selected. Although it
is not possible to remove the effect of dynamic IP allocation
and IP churn on the reported statistics, we select three days
as a trade-off between the completeness of the view and the
IP churn effect. eX-IoT generated CTI related to 488,570 in-
stances belonging to 405, 875 unique IP addresses. Therefore,
only 82,695 (=~ 16%) have redundant IP addresses. Based on
Table V, China (43.46%), India (10.32%), Brazil (8.48%),
Iran (5.51%) and Mexico (3.52%) are the top 5 countries
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which host infected IoT devices. Further, the top ASN in-
cluded 4134 (21.28%), 4837 (16.45%), 9829 (5.38%), 27699
(4.96%) and 58244 (3.30%). By identifying the type of the
hosting organizations [67], the existence of compromised IoT
devices in Education (649), Manufacturing (240), Government
(184), Banking (80) and Medical (79), although proportionally
small, is quite alarming. Top targeted ports by the infected
IoT devices were 23 [TELNET] (43.25%), 8080 [HTTP alt]
(37.40%), 80 [HTTP] (37.16%), 81 [HTTP alt] (13.10%) and
5555 [ADB] (12.92%). Details about the top hosted ISPs and
continents, and infected vendors are also provided in Table V.

VI. LIMITATIONS AND FUTURE DIRECTIONS

Gathering fine-grained details about compromised IoT de-
vices (e.g., type, vendor, model, and firmware version) remains
challenging. Empirical analysis reveals that less than 10%
of the infected hosts return application banners and approxi-
mately 3% of them contain textual information which enable
us to determine their detailed information. Further, eX-IoT
was tested during a short period of initial deployment and
needs to be assessed in the long run to gain insights regarding
the challenges and opportunities in gaining a more rounded
understanding of the IoT security posture.

VII. CONCLUSION

We introduce eX-IoT, a network-independent Al-
empowered cyber threat intelligence capability for inferring
compromised IoT devices. eX-IoT’s feed is implemented to
process more than 1M+ packets/sec of scan traffic arriving
at our passive sensors, labeling the flows by analyzing the
returned application banners, while also utilizing an online,
adaptive training/fingerprinting model and by applying it on
passive traffic data. The experimental evaluation shows that
eX-IoT’s CTI feed provides exclusive contribution of more
than 0.76 with respect to other scan-based feeds. eX-1oT also
reports on 145K+ newly compromised IoT devices daily and
its CTI can be fed to organizations and security operators
through an API, email notifications, and a visualization
dashboard.
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