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Abstract—The Internet-of-Things (IoT) paradigm at large
continues to be compromised, hindering the privacy, depend-
ability, security, and safety of our nations. While the operational
security communities (i.e., CERTS, SOCs, CSIRT, etc.) continue
to develop capabilities for monitoring cyberspace, tools which
are IoT-centric remain at its infancy. To this end, we address
this gap by innovating an actionable Cyber Threat Intelligence
(CTI) feed related to Internet-scale infected IoT devices. The feed
analyzes, in near real-time, 3.6TB of daily streaming passive mea-
surements (≈1M pps) by applying a custom-developed learning
methodology to distinguish between compromised IoT devices
and non-IoT nodes, in addition to labeling the type and vendor.
The feed is augmented with third party information to provide
contextual information. We report on the operation, analysis, and
shortcomings of the feed executed during an initial deployment
period. We make the CTI feed available for ingestion through a
public, authenticated API and a front-end platform.

Index Terms—Internet-of-Things (IoT), Cyber Threat Intelli-
gence, Security capabilities, Network telescopes, Data science

I. INTRODUCTION

The Internet-of-Things (IoT) paradigm is no longer just a

concept. It has indeed touched and infiltrated various facets of

contemporary life. The number and types of deployed IoT

devices in households, organizations, critical infrastructure,

and cities have increased with rampant speed [1]. Meanwhile,

the security posture of these devices did not keep abreast with

their applicability and have undoubtedly not received enough

security attention dealing with their design, manufacturing,

and provisioning by vendors, policymakers, and consumers,

all resulting in disastrous consequences [2, 3]. As a result, the

IoT paradigm continues to attract malicious actors’ attention,

through targeted exploitations by evolving malware [4]. While

the operational security communities continue to lay down

efforts for IoT security monitoring and response, several

challenges hinder such endeavors.

First and foremost, patch management is more difficult

in the IoT context than conventional systems, given the

heterogeneous nature of the IoT devices and their far-from-

optimal update mechanisms [2]. In many cases, organizations

deploying such IoT devices might not be aware of the exact

details of the IoT models, which renders their management

quite difficult especially in realms with significant amount

of deployed devices (i.e., health and transportation sectors)

[5]. Further, a large number of IoT devices are not yet

compatible with central management systems for monitoring

and management. Therefore, the chances that an IoT device

becomes infected and goes unnoticed is quite high.
Second, for continuous and proactive monitoring of the

cyber security posture, threat intelligence and security ser-

vice providers typically require access to the organizations’

network traffic and systems’ data. This is achieved either

by installing special agents/software or setting up hardware

to curate and analyze the required data, while processing

it on-site or using a cloud-based capability. Nevertheless,

organizations are most often reluctant to even share their

basic internal information for privacy and liability concerns.

This situation has induced the broad lack of available real-

world data (including IoT-centric empirical data) to utilize

for identifying compromised devices. Additionally, with the

IoT paradigm being deployed at an Internet-scale perspective,

having microscopic data access is impractical and would

definitely not scale well.
Third, the objective of IoT device fingerprinting (i.e., identi-

fication) by analyzing network traffic continues to be an open

research problem. Along this line of thought, the capability

to infer compromised devices is even more challenging, given

the increasing sophistication of IoT-malware which execute

various actions (i.e., killing running services or altering de-

vice characteristics) to avoid being flagged by detection and

monitoring systems as well as by competing IoT botnets [6].
Given the aforementioned challenges, coupled with the

lack of IoT-centric Cyber Threat Intelligence (CTI) capabil-

ities which would aid the operational security community in

identifying and responding to Internet-wide compromised IoT

devices, in this work, we make the following contributions:

1) We introduce eX-IoT (for exploited IoT), a first-of-

a-kind operational, real-time CTI feed, operating on

streaming Internet-scale network telescope data, for

fingerprinting (and notifying about) compromised IoT

devices deployed in Internet-wide realms. eX-IoT is

advantageous as it provides a macroscopic visibility of

deployed IoT devices, independent of the host organi-

zation. Indeed, while other scan-based threat detection

capabilities exist, eX-IoT complements them by inno-

vating scientific and engineering methods to specifically

address the IoT insecurity problem.

2) We design eX-IoT, both in terms of its dynamically-

updating machine learning methodology to keep track
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of newly discovered IoT devices in the wild, and its

computing architecture, from the data source to the

indexing (and augmentation) of the generated threat

intelligence. We report on the operation of an initial

deployment of eX-IoT, while evaluating it against other

CTI feeds in terms of various metrics including latency,

accuracy and coverage.

3) We make eX-IoT available to the security community

for ingestion through an authenticated RESTful API

and a streamlined front-end platform. We also develop

eX-IoT to monitor certain IP spaces of interest and

to automatically respond to IoT exploitations through

email notifications. We validate eX-IoT’s initial results

by collaborating with US and international operators.

The remainder of this paper is organized as follows. In the

next section, we review the relevant literature to demonstrate

the state-of-the-art contributions of this work. In Section III,

we detail the science and the engineering methodologies em-

ployed within eX-IoT. In Section IV, we detail how we make

eX-IoT available for ingestion. We evaluate eX-IoT in contrast

to other CTI feeds under various data-driven metrics in Section

V. The shortcomings and conclusion are respectively discussed

in Section VI and VII.

II. RELATED WORKS

In this section, we review two topics. The first focuses on

efforts pertaining to compromised IoT device fingerprinting.

The second summarizes available operational cyber security

capabilities for monitoring cyberspace to highlight the need

for tools and platforms which are IoT-centric.

A. Fingerprinting Compromised IoT devices

Honeypots. The first line of research leverages IoT-specific

honeypots to gain CTI into IoT maliciousness [6–9]. However,

often, the vantage size is extremely narrow and limited to a

small set of mimicked devices, firmware versions, and services

which hinders the completeness and the quality of the results

to be employed for operational security. In addition, sophisti-

cated IoT malware and attackers execute reconnaissance and

discovery tactics to avoid honeypots [7].

Internet telescope and edge. Another line of research relies

on Internet telescope (darknet) [10, 11] or similar passively

collected edge network traffic to identify infected IP addresses.

However, additional steps are required to identify IoT-specific

characteristics. Some studies relied on the unique identifier in

the received packets (TCP seq == dst IP) to attribute them

to Mirai infected devices [6, 12, 13]. Similarly, Cetin et al.

[13] identified Mirai-related infections following an attempt to

eradicate them from the hosting network where notification-

based remediation efforts were successfully tested. However,

not every malware will carry such a profound signature

as Mirai [14]. Indeed, works that leverage malware-specific

signatures are not generic enough, rendering them impotent to

fingerprint devices infected by emerging malware.

An alternative technique relies on correlating a list of

identified malicious IP addresses with fingerprinted devices

through the application of banner grabbing using Shodan
[15–17] or actively scanning set of IP addresses to retrieve

available service banners. Banners contain text information

that needs to be processed to characterize the type and model

of the device. Acknowledging the variety of IoT devices in the

wild, various learning techniques have emerged to accomplish

the classification objective [18–25].

Nevertheless, several challenges related to banner-based

IoT fingerprinting techniques exist, including (i) the fact that

modern malware close ports and services with the intention to

avoid reinfection by competing malware and to conceal their

identity from Internet scanners [12, 26]. (ii) That IoT devices

may reside behind a border firewall/NAT where accessing

such devices becomes restricted and (iii) the fact that some

vendors avoid hard-coding device information in clear text

which makes banner analysis almost impossible. In the context

of eX-IoT, we combined passive Internet traffic with active

application banners while feeding the output to a machine

learning model to address these IoT fingerprinting challenges,

especially for devices where their banners are not available.

ISP level and Internet transit. Some studies leveraged

Internet backbone and transit traffic to identify botnet activities

and related compromised hosts and devices [27–30]. These

proposed detection methods often require intensive computa-

tion due to the high volume of curated traffic (benign and

malicious) and they generally might possess lower accuracy

in contrast to leveraging passive measurement techniques.

Internal network traffic. This line of research is based

on analyzing internal network traffic. Meidan et al. [31]

proposed a network-based anomaly detection technique that

employs deep autoencoders to discover abnormal network

traffic generated from compromised IoT devices, while Hafeez

et al. [32] introduced IoT-Keeper, a lightweight anomaly

detection system at edge gateways. Though noteworthy, these

techniques require special software and hardware to curate

such data, in addition to possessing a small-scale, microscopic

perspective of IoT maliciousness. In contrast, eX-IoT CTI’s

feed leverages Internet telescope traffic which is a “pure”

source of unsolicited/malicious activities while providing a

global view towards compromised IoT devices.

B. Operational Cyber Security Capabilities

Although the operational security communities continue

to develop capabilities for monitoring cyberspace [33], tools

which are IoT-centric remain at its infancy. Shodan [34]

was among the first search engine for constantly monitoring

cyberspace to index all Internet-facing end-hosts. The engine

allows users to find specific types of devices and services

(webcams, routers, servers, etc.) connected to the Internet. Fol-

lowing closely the same objective, Censys [35], developed

by the University of Michigan, based upon the open source

tools Zmap [36] and Zgrab [37], forked many Internet- and

security-based studies [12, 38–40]. Shodan, Censys and

ZoomEye [41] are used by organizations to monitor their

IP space for publicly accessible services and vulnerabilities

related to them. However, actual infections are not visible
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to their vantage points and thus they do not cover or report

about infected (IoT) devices. Dshield [42], in contrast,

provides amalgamated statistics about the daily activity of

each targeted ports based on IDS crowd-sourcing and reports

provided by entities and individuals. The closest work to

eX-IoT is GreyNoise [43], which provides general lists

of Internet-wide scanners. However, its implementation and

modus operandi are obscure and the engine does not provide

IoT-specific CTI.

Thus, it is intuitive to note that eX-IoT will be among the

first to focus on the Internet-scale IoT cyber threat landscape

by devising integrated scientific and data engineering method-

ologies while pinpointing and sharing relevant CTI, in near

real-time, on hundreds of thousands of newly infected IoT

devices, this developed capability is postulated to contribute

toward a better IoT hygiene while aiding security operators and

hosting organizations with their (IoT) security triad endeavors.

III. METHODOLOGY AND ARCHITECTURE

The rationale of eX-IoT is to possess an Internet-scale

visibility of deployed IoT devices. To this end, it leverages

passive network telescope traffic. A network telescope is set

of routable, allocated yet unused IP addresses [10, 44]. Such

IPs passively collect incoming packets without sending any

replies; they have also not been assigned to any machine

(with a legitimate service) and therefore there is no rea-

son for Internet nodes to send packets towards these IPs.

Therefore, all the incoming packets are either (i) Internet-

wide scans, (ii) backscatters from DDoS attacks, and (iii)
results of machine/network malfunctioning. Therefore, Internet

telescope data provides a clean, unsolicited dataset (no traffic

with legitimate intention) of Internet-scale malicious activities.

Compromised IoT devices are often constantly scanning the

Internet to discover more vulnerable devices and during this

procedure, they inevitably send a packet to Internet telescopes.

Following the filtering of backscatter packets based on their

flags and other header fields, an employed Threshold Random

Walk (TRW) scan detector algorithm [45] identifies scan

activities. Since there is no purpose that an IoT device (e.g. IP

camera) would perform Internet scanning as part of its normal

operation, this would be a strong indicator of its compromise.

The methodology at the core of eX-IoT is illustrated in

Figure 1. Following the detection of the scanners �, the tool

immediately probes the scanners for open ports and application

banners �. The returned application banners � are checked

with a database of text fingerprints of IoT devices � to

generate labels (IoT vs non-IoT). The label for IP address

x.x.x.x along with the traffic samples originated from x.x.x.x

will be used to train (update) the machine learning classifier

�. Finally, the classifier is applied on newly incoming scan

traffic to predict their label �. Particularly, we train a random

forest classifier to predict the label (IoT vs non-IoT) of sources

that are generating scans towards the network telescope. Each

sample in the training and test datasets consists of fields

extracted from the received packets with a corresponding label.

The output of the machine learning classifier is one of the

IP:x.x.x.x

0.0.0.0

255.255.255.255

IP:x.x.x.x Banner-based 
IoT fingerprinting

220 AXIS Q6115-E PTZ Dome Network Camera 6.20.1.2 (2016) ready. 
530 Login incorrect. 
214-The following commands are implemented. 

USER QUIT PASS SYST HELP PORT PASV LIST …

Detecting
IP:x.x.x.x

maliciously 
scan Internet

application banner 
resp.

Training the classifier

labels

Sampled 
traffic

Unknown sources

Applying the classifier

Identified 
compromised 

IoT devicesInternet Telescope 
traffic

Organization

Fig. 1. Methodology of the detection system

binary classes (IoT or non-IoT). Note that the model can

adaptively learn the behavior and implementation differences

of IoT-specific malware families and evolving IoT botnets.

The effect of these differences is indeed reflected in their

generated scanning packets and can be observed in various

features such as scan packet inter-arrival times [46], and the set

of targeted ports (and corresponding assigned weights to each)

[47]. Readers that are interested in the inner modus operandi

of the employed machine learning methods are kindly referred

to the “Annotate” and “Update Classifer” subsections herein

as well as to our previous in-depth studies in [47–49].

The overall data engineering architecture of eX-IoT is

demonstrated in Figure 2. The numbers highlight the imple-

mentation/usage of the same steps as in Figure 1. We leverage

a /8 Internet telescope (16M+ IP addresses) from CAIDA [50].

The passive traffic collected by CAIDA consists of approxi-

mately 150GB/hour which is on average more than 1M packets

per second (with ascending trend). The data is collected hourly,

compressed and stored using OpenStack Swift [51]. Access to

data is provided through a cluster located at UCSD. Due to

the agreement policy and the high volume of data, transferring

the entire data stream and processing it locally in real-time is

infeasible. Therefore, the flow detection and packet sampling

stages are executed on the assigned cluster at CAIDA. The

analyzed sampled batch of packets are then sent to the local

eX-IoT server through an established secure tunnel for further

processing. The processing pipeline is divided into several

distinct modules and run separately to achieve high level of

parallel processing, high throughput and low latency for real-

time stream processing. Besides, eX-IoT depends on three

distinct databases; (i) A MongoDB database to store the latest

threat information related to compromised IoT devices, (ii)

Another historical MongoDB database to store information of

compromised devices with a lapsing two-week period, (iii)

A Redis in-memory database to store records (OBjectIDs) of

MongoDB instances related to compromised devices that are

still active; and to use for fast and low-overhead update of the

devices coupled with their malicious activities.

Flow detection and packet sampling. This module is

developed in C++ and utilizes the Libtrace [52] packet

handling library to achieve real-time processing. The program

constantly checks for newly added data sources (hourly),

decompresses and analyzes every single packet. Packets that
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Fig. 2. Architecture of eX-IoT

are not backscatter-related (e.g., packets with only TCP ACK

flag set, ICMP packet with unreachable code set, etc.) are

considered as potentially scan packets. For packets which pass

this step, their state is kept in a GLib Hashtable [53] with the

source IP address as the key. The state for source IP x consists

of a {start timestamp, timestamp of latest arrived packet from

x, number of packets from x, IsScanner}.

We then use a TRW-based scan detector [54, 55]. The

program considers a source x as a scanner if it receives

at least 100 packets without expiration (inter-arrival time

between consecutive packets from x should not be more than

300 seconds). Also, its duration should not be less than 1
minute to find and exclude flows that are result of network

misconfigurations. Upon detection of a source IP address x
as a scanner, the IsScanner attribute for x is set, and the

number of received packets is reset to zero to start packet

sampling. Subsequently, a full list of field values (fields in

IP, TCP, UDP, ICMP headers, timestamp, packet and header

length) from x is generated for the next threshold (200) packets

and sent to the next module. The module seizes after the

threshold sample is acquired.

For the next batch of incoming packets from x, the program

ignores the packets and updates the latest timestamp for x. At

the end of an hour and before starting to process the new hour,

if the latest timestamp for x is more than 1 hour ago, it expires

the scan flow, concludes that the scan has ended, and sends a

message that the flow generated by x has ended. Another task

of this module is to provide packet-level reports every second

including total processed packets, number of TCP, ICMP, UDP,

number of newly detected scan flows, and number of packets

target specific ports. On average, this module spends close to

20 minutes to analyze one hour of data.

The output is sent to a specific local port using Socat [56].

Therefore, if any network communication is disrupted, the flow

detection and sampling module will go idle until the next stage

can reconnect to that port and be ready to receive the data.

Thus, no data will be lost due to network failures.

Receiver. This module establishes and maintains the secure

communication as well as analyze the control and report

messages. If the secure communication is disrupted for any

TABLE I
LIST OF SUPPORTED PORTS AND PROTOCOLS

Ports 80, 22, 443, 21, 23, 8291, 554, 8080, 7547, 8888, 5555,
81, 631, 8081, 8443, 9000, 8888, 2323, 85, 88, 8082, 445,
8088, 4567, 82, 7000, 83, 84, 8181, 5357, 1900, 8083,
8089, 8090, 110, 143, 993, 995, 20000, 502, 102, 47808,
1911, 5060, 5000, 60001

Protocols HTTP(s), TELNET, SMTP(s), IMAP(s), POP3(s), SSH,
FTP, CWMP, SMB, MODBUS, BACNET, FOX, SIP,
RSTP, SSL/TSL, DNP3

reason, it will retry to establish a new SSH tunnel and connect

to the specific local port on the CAIDA cluster. The receiver

then sends the report messages to the MongoDB.

Packet Organizer. This module receives all the sampled

packets from different sources, organizes them based on their

source IP address and arrival time, packs them and dispatch

them to the next module. This way, the module ignores the

sources that do not contain enough samples to be used for

applying the model or for updating the classifier. These are

typically sources that have been erroneously identified as

scanners and may be the results of node malfunction on the

Internet (which usually send out burst of small number of

packets for a very short period). The output of this module is

in a JSON format piped to buffer.

Buffer. The buffer is an in-memory large FIFO (15GB) to

curb the effect of mismatched processing delays among the

modules especially due to the rising volumes of data which is

sent out from the CAIDA cluster. We leveraged the mbuffer
implementation [57] for this purpose.

Scan Module. This module performs buffering of batch

of identified scanners for 100k records or 60 minutes, run

Zmap for target ports (50 ports) with 5K pps rate, followed

by running Zgrab for several protocols (16 protocols). Table

I enumerates the supported ports and protocols in the initial

deployment of the system. These ports/protocols are known

empirically to be the most responding; could be easily ex-

tended using updated measurements from emerging threats.

The module also prepares an updated database of applica-

tion banner fingerprints based on Recog [58] and Ztag [59]

and applies it on returned banners using Beautifulsoup
and regex to add information regarding their vendor, type,

model and firmware version which are also used as labels in
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the update classifier module. We select Recog since it is an

open source repository, where individuals contribute actively

to add new rules. The scan module also dumps unknown

banners that contain the ”[a-z]+[-]?[a-z!]*[0-9]+[-]?[-]?[a-z0-

9]” regex rule as a generic rule for inferring device-related

information in text [21] to a log file for further inspection

and for generating rules for new devices that are not covered

by the mentioned public resources. Meanwhile, the returned

banners are added to the records in JSON format. Besides,

upon receiving an END_FLOW message for a source IP x,

the module retrieves the ObjectID of that specific infected

IoT device from the Redis database (which contains a list of

active infected devices) and use that for updating the status of

the device in the MongoDB. Searching the MongoDB based

on returned ObjectID is less expensive than finding the latest

record for that IP address among all records in the database.

Annotate Module. The annotate module first pre-processes

traffic for each identified scanner and then applies the latest

updated classifier to the network flow to identify if the flow

has been generated by an infected IoT device or not. The pre-

processing step consists of (i) calculating inter-arrival times,

processing the TCP options field and then normalizing every

field using MinMax and subtracting it from the mean value

of the training dataset; a final list of fields are summarized in

Table II, (ii) Min, first-Quantile, Median, third-Quantile and

Max values for each field over all sequence of packets from

each source are calculated which is a tuple of size 24×5 = 120
that are considered as the final feature set to be fed into the

machine learning model for training and classification. The

output of the classifier is the predicted label and a value

between 0 and 1 which is the prediction score.

TABLE II
LIST OF EXTRACTED FIELDS FROM INCOMING PACKETS

General Protocol ({TCP, UDP, ICMP}), Dst port, Total length,
TCP offset, TCP data length, Inter-arrival time

IP header Type of Service, Identification, TTL, Src IP, Dst IP
TCP header Src Port, Sequence, ACK Sequence, Reserved, Flags,

Window Size, Urgent Pointer
TCP Options WSCALE, MSS, TIMESTAMP (Binary), NOP (Bi-

nary), SACK-permitted (Binary), SACK (Binary)

In the next step, the module looks up every identified

IP address in various databases including MaxMind dataset,

IP WHOIS, and reverse DNS. The results comprise of geo-

location data (country, state, city, latitude and longitude co-

ordinates), hosted ISP, Autonomous system (ASN), domain

address, business sector, resided organization and registered

emails related to the hosting entity. In addition, the results of

packet-level fingerprinting of IoT malware’s scanning module

(e.g., Mirai) [12, 60] and Internet scanning tools (ZMap,

MASSCAN, Unicorn, Nmap) [61] is appended. Additionally,

a list of targeted ports and their distribution, scanning rates

and address repetition ratio (ratio of the number of all packets

to the number of unique targets) for each flow is estimated

[47]. Besides, scanners are labeled as Benign if their rDNS

records contain domains that can be attributed to legitimate

security companies and research institutions such as scanners

from University of Michigan, Shodan, Censys, Rapid7, etc.

Update Classifier. Traffic that has the original labels (from

the tagging step in the scan module) are passed to this module.

The flow pre-processing step is exactly the same as the

explained step in the annotation module. The model, which

is updated every 24 hours, use data samples during the past

14 days to make sure that the model is always updated based

on the latest information and can comprehend the patterns

related to emerging IoT malware. Available data is split into

training (20%) and testing (80%) datasets and the best Random

Forest classifier model (from the sklearn package which

maximizis roc auc metric) is selected among 1000 iterations

over a set of tuned hyperparameters. All the daily trained

models are augmented with training timestamp and stored

in a directory to make the results easily reproducible. In

preliminary tests, the performance of Random Forrest (RF),

Support Vector Machine (SVM) and Gaussian Naive Bayes

(GNB) over a wide-range of hyper parameters are compared.

Results based on ROC-AUC and F1 score motivated us to

leverage the Random Forrest model for implementing eX-IoT.

IV. EXPOSING DATA (USER INTERFACES)

To provide a fast and reliable way of accessing both the

raw data and the generated CTI, eX-IoT exposes its data

to the operational security communities and researchers in

several ways: a web-based interface for data analysis and

data visualizations, a RESTful API for programmatic access,

raw bulk data and email notifications. Please note that eX-

IoT’s CTI feed will be available for free to other academic

researchers to use through data sharing agreements via DHS

IMPACT [62], which addresses legal and logistical concerns.

Meanwhile, interested parties can also contact the authors to

access the feed.

Web Interface. eX-IoT’s web Interface is a hub for data

visualizations and raw data searches. It is comprised of 5 parts:

(1) an Internet snapshot that provides high-level real-time data,

(2) an interactive map of all data points in the past week, (3) a

dashboard with data visualizations and the ability to examine

specific database fields and (4) a raw database query builder.

Programmatic Access. eX-IoT’s REST API is a way for

data to be easily filtered and extracted from the database in

an ingestible format. The API returns data encoded as JSON
objects for ease of interpretation or integration by third-party

applications. Details about the API could be found on [63].

Raw Data. In some cases, bulk historical data is re-

quired and thus eX-IoT can provide this to security opera-

tors/researchers, practitioners and government authorities for

research/training purposes and cyber situational awareness.

Email Notification. Two mechanisms for email notification

are considered. First, organizations and users can set alarms

for their IP block and instantly receive notification through

their provided email address. In the second mechanism, eX-

IoT feed will notify organizations and ISPs who host infected

IoT devices by the list of organization’s email address available

in their WHOIS record.
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V. INITIAL OPERATION AND EVALUATION

To report on the operation, analysis, and shortcomings of

eX-IoT, we first executed it for two weeks to make sure

the model had enough data points for training purposes. We

consistently completing all steps on an Intel Xeon W-2145 (16

cores at 3.70GHz) processors, 128GB of DDR4 memory, and

RAID 1+0 with an Intel 850 Pro 1TB SSD drives. The cluster

at CAIDA is running an Intel processor (Skylake, IBRS) with

8 cores at 2.20GHz and 32GB of RAM.

A. Initial CTI Validation

While we only operated eX-IoT for a short period of time,

we made an effort to validate the generated CTI in terms of the

exploited IoT devices. Ideally, we would use the email notifi-

cation capabilities to contact each entity in which eX-IoT have

identified a compromised hosted IoT device. Nevertheless, for

initial validation purposes and to obtain quite a comprehensive

and a convincing response rate, we utilized two approaches.

First, we worked with a US-based entity, namely, Bad Packets

[64]. Bad Packets deploy and operate large-scale honeypots

(including IoT-specific honeypots) distributed across many

network providers and spread across multiple countries. We

used CTI from Bad Packets to correlate eX-IoT’s CTI feed

related to US-based IoT exploitations. Second, we worked

with a CSIRT in Czech Republic and cross validated eX-IoT’s

IoT exploitations that are specific to Czech Republic with the

CSIRT’s scanners’ database [65]. For both approaches, we

used data from the week extending from March 14th to March

18th, 2021. Broadly, we were able to validate close to 70% of

eX-IoT’s detected IoT exploitations from both sources, with

the CSIRT in Czech validating close to 83% of the country-

based IoT exploitations. Several factors could have affected

the validation accuracy, including, the limited/different vantage

points used by those sources, the time frame of the conducted

validation, the fact that IoT malware continue to avoid honey-

pots, and eX-IoT’s false positives in terms of misclassifying

a scanning source to be an IoT device (rather than a generic

scanning host, though the learning approach have previously

demonstrated high accuracy [47]). Nevertheless, we believe

the initial validation results are motivating and we continue

to work with local, federal and international collaborators to

fine-tune it.

B. Evaluation

Although there exists no similar feed which solely and

exclusively focuses on compromised IoT devices, we further

evaluate eX-IoT based on a well-defined set of metrics [33] in

contrast to the other two scan-based feeds, namely Dshield
(one of the high volume public feeds) and GreyNoise
(commercial threat intelligence that tags the records with

”Mirai” and ”Mirai variant”). In the sequel, we elaborate on

such metrics and on the corresponding evaluation.

Volume is the rate of a feed, which quantifies the amount

of data appearing in a feed on a daily basis. Table III reports

the average number of new daily records in the evaluated

feeds over a week period. GreyNoise, on average, reports

TABLE III
VOLUMETRIC COMPARISON OF SCAN-BASED CTI FEEDS

eX-IoT GreyNoise DShield
All 757,289 215,350 214,390

IoT-specific 145,989 20,557 N/A

around 215, 350 records which classifies 85, 330 as being ma-

licious, 126, 018 unknown and 4, 002 as benign. GreyNoise
also tags 20, 557 records with ”Mirai” and ”Mirai variants”.

DShield have 214, 390 records in general without any infor-

mation about IoT exploits. eX-IoT in general identifies close

to 4 times more threats than the other two feeds. Further,

regarding the number of infected IoT devices, eX-IoT detects

about 7 times more comparing to GreyNoise.

Another metric is the differential contribution of one feed

with respect to another. That is the number of indicators

which appear in the first feed that are not in the second

feed over the same measurement time; DiffA,B = |A\B|/|A|.
DiffA,B = 1 indicates that the two feeds have no elements

in common, while DiffA,B = 0 indicates that every indicator

in A also appears in B. It is a measure to characterize how

many additional indicators a feed offers relative to one or

more feeds. Respectively, normalized intersection is defined

as 1−DiffA,B . Similarly to differential contribution, exclusive
contribution is defined as the contribution of a feed with

respect to a set of other feeds which is the proportion of

indicators unique to a feed; UniqA,B = |A\⋃B �=A |/|A|. To

this end, the set of newly infected devices from eX-IoT during

the 9th of Dec 2020 is considered which contains 134, 782
unique IP addresses. The IP addresses are contrasted against

GreyNoise and DShield, where GreyNoise was found to

contain information about 28, 338 of them (28, 338 in it’s

historical database, 12, 282 have updated in the same time

period, 10, 460 tagged with ”Mirai” and ”Mirai variants”).

Further, we matched them with the DShield feeds from the

same time period which lead to 8, 559 common records. Sub-

sequently, we report on differential contribution, normalized

intersection and exclusive contribution of eX-IoT with respect

to these statistics. The results in Table IV show the significant

contribution of eX-IoT against the other CTI feeds (more

particularly, in the compromised IoT-context) where typically

devices execute scanning in low rates. First, DShield does

not provide information about the IoT/non-IoT type of these

scanners, and GreyNoise tagged 10, 640 of 134, 782 as

”Mirai” and ”Mirai variants” which confirms the lack of

IoT-specific focus in the existing threat feeds. Second, the

differential contribution which is close to 1 confirms the high

contribution level of eX-IoT feed over the other feeds. The

maximum value for the normalized intersection only reached

TABLE IV
METRICS OF EX-IOT IN CONTRAST TO GREYNOISE AND DSHIELD. THE

FEEDS ARE COMPARED WITH 134, 782 IOT RECORDS FROM EX-IOT

GreyNoise GreyNoise(Mirai) DShield
# of indicators 28,338 10,640 8,559

DiffA,B 0.78974 0.92105 0.93649
Normalized Intersection 0.21025 0.07894 0.06350

|A⋂
(∪B �=A)| 31,563

UniqA,B 0.76582
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TABLE V
REPORT ON TOP-5 CHARACTERISTICS OF GLOBAL IOT INFECTIONS ON THE 7TH , 8TH AND 9TH OF DECEMBER 2020 TIME PERIOD.

Country Continent ASN ISP Critical Sector Vendor Target Ports
China (43.46%) Asia (73.31%) 4134 (21.28%) China Telecom [CN] (21.16%) Education (649) MikroTik (11583) 23 (43.25%)
India (10.32%) S. America (10.82%) 4837 (16.45%) Unicom Liaoning [CN] (16.23%) Manufacturing (240) Aposonic (1809) 8080 (37.40%)
Brazil (8.48%) Europe (8.62%) 9829 (5.38%) Vivo [BR] (5.38%) Government (184) Foscam (1206) 80 (37.16%)
Iran (5.51%) N. America (5.57%) 27699 (4.96%) BSNL [IN] (5.31%) Banking (80) ZTE (709) 81 (13.10%)

Mexico (3.52%) Africa (4.10%) 58244 (3.30%) Axtel [MX] (3.03%) Medical (79) Hikvision (638) 5555 (12.92%)

0.21. In other words, 78.9% of IoT infections flies under the

GreyNoise radar without being detected. Finally, about 76%
of eX-IoT output are unique and the records are not indexed

in other feeds.

Latency related to a feed is the elapsed time between an

instance’s first appearance in any feed and its appearance in

the feed in question. Latency characterizes how rapidly new

threats are included in a feed. To this end, by leveraging

Zmap, we execute a 3-hour Internet-wide scanning for port

80 with a rate of 1000 pps on Dec 9th 2020 at 7:30:00. It then

indeed appeared in eX-IoT as ”Desktop (non-IoT)” and tool

as ”Zmap” at 12:42:04 of the same day, which means that it

took 5 hours and 12 minutes from the time that scan started

to appear in the feed. The main contributor of this delay is

CAIDA’s role in collecting, compressing and storing to prepare

hourly pcap files which approximately take 3.5 hours. The

detected start time and end time for this test scan in eX-IoT

is recorded as 7:30:24 and 17:48:59 which respectively have

erroneously 24 seconds and 13 minutes difference. Comparing

with other feeds, the IP did not appear in DShield, while

the record was added to the GreyNoise feed with close to

10 hours of latency since the beginning of the scan and the

tool was incorrectly identified as ”Nmap”.

The accuracy in this context is equivalent to precision of a

feed which is the percentage of indicators in the eX-IoT that

are correctly labeled as IoT. The coverage is equivalent to

recall in information retrieval contexts [66] and defined as the

proportion of the correctly labeled IoT devices contained in

the feed. Accordingly, here we consider accuracy and coverage

with respect to the assigned labels as IoT not the accuracy and

coverage for all scan feeds. Therefore, we compare the labels

in the eX-IoT with the labels derived directly from the returned

banners. We checked this for all the records on the 7th, 8th

and 9th of December 2020 that had the true label (IoT/non-

IoT) based on their banners and use them as the grand truth

to evaluate eX-IoT. The analysis led to accuracy (precision)

of 94.63% and a coverage of (recall) 77.21%.

Next, we report on a snapshot of compromised IoT devices.

All the discovered compromised IoT devices that are active

during the 7th-9th of December 2020 are selected. Although it

is not possible to remove the effect of dynamic IP allocation

and IP churn on the reported statistics, we select three days

as a trade-off between the completeness of the view and the

IP churn effect. eX-IoT generated CTI related to 488, 570 in-

stances belonging to 405, 875 unique IP addresses. Therefore,

only 82,695 (≈ 16%) have redundant IP addresses. Based on

Table V, China (43.46%), India (10.32%), Brazil (8.48%),

Iran (5.51%) and Mexico (3.52%) are the top 5 countries

which host infected IoT devices. Further, the top ASN in-

cluded 4134 (21.28%), 4837 (16.45%), 9829 (5.38%), 27699

(4.96%) and 58244 (3.30%). By identifying the type of the

hosting organizations [67], the existence of compromised IoT

devices in Education (649), Manufacturing (240), Government

(184), Banking (80) and Medical (79), although proportionally

small, is quite alarming. Top targeted ports by the infected

IoT devices were 23 [TELNET] (43.25%), 8080 [HTTP alt]

(37.40%), 80 [HTTP] (37.16%), 81 [HTTP alt] (13.10%) and

5555 [ADB] (12.92%). Details about the top hosted ISPs and

continents, and infected vendors are also provided in Table V.

VI. LIMITATIONS AND FUTURE DIRECTIONS

Gathering fine-grained details about compromised IoT de-

vices (e.g., type, vendor, model, and firmware version) remains

challenging. Empirical analysis reveals that less than 10%

of the infected hosts return application banners and approxi-

mately 3% of them contain textual information which enable

us to determine their detailed information. Further, eX-IoT

was tested during a short period of initial deployment and

needs to be assessed in the long run to gain insights regarding

the challenges and opportunities in gaining a more rounded

understanding of the IoT security posture.

VII. CONCLUSION

We introduce eX-IoT, a network-independent AI-

empowered cyber threat intelligence capability for inferring

compromised IoT devices. eX-IoT’s feed is implemented to

process more than 1M+ packets/sec of scan traffic arriving

at our passive sensors, labeling the flows by analyzing the

returned application banners, while also utilizing an online,

adaptive training/fingerprinting model and by applying it on

passive traffic data. The experimental evaluation shows that

eX-IoT’s CTI feed provides exclusive contribution of more

than 0.76 with respect to other scan-based feeds. eX-IoT also

reports on 145K+ newly compromised IoT devices daily and

its CTI can be fed to organizations and security operators

through an API, email notifications, and a visualization

dashboard.
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