See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/353588726
Revisiting [oT Fingerprinting behind a NAT

Conference Paper - July 2021

DOI: 10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00235

CITATIONS READS
2 203

2 authors, including:

Elias Bou-Harb
Y University of Texas at San Antonio
120 PUBLICATIONS 1,862 CITATIONS

SEE PROFILE

All content following this page was uploaded by Elias Bou-Harb on 30 July 2021.

The user has requested enhancement of the downloaded file.

ResearchGate

https://www.researchgate.net/publication/353588726_Revisiting_IoT_Fingerprinting_behind_a_NAT?enrichId=rgreq-c14ac0b9f637331a0aeb3513103f3cd8-XXX&enrichSource=Y292ZXJQYWdlOzM1MzU4ODcyNjtBUzoxMDUxMzgxNDYwOTE4MjczQDE2Mjc2ODAyODIyMDI%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/353588726_Revisiting_IoT_Fingerprinting_behind_a_NAT?enrichId=rgreq-c14ac0b9f637331a0aeb3513103f3cd8-XXX&enrichSource=Y292ZXJQYWdlOzM1MzU4ODcyNjtBUzoxMDUxMzgxNDYwOTE4MjczQDE2Mjc2ODAyODIyMDI%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-c14ac0b9f637331a0aeb3513103f3cd8-XXX&enrichSource=Y292ZXJQYWdlOzM1MzU4ODcyNjtBUzoxMDUxMzgxNDYwOTE4MjczQDE2Mjc2ODAyODIyMDI%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Elias-Bou-Harb?enrichId=rgreq-c14ac0b9f637331a0aeb3513103f3cd8-XXX&enrichSource=Y292ZXJQYWdlOzM1MzU4ODcyNjtBUzoxMDUxMzgxNDYwOTE4MjczQDE2Mjc2ODAyODIyMDI%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Elias-Bou-Harb?enrichId=rgreq-c14ac0b9f637331a0aeb3513103f3cd8-XXX&enrichSource=Y292ZXJQYWdlOzM1MzU4ODcyNjtBUzoxMDUxMzgxNDYwOTE4MjczQDE2Mjc2ODAyODIyMDI%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-Texas-at-San-Antonio?enrichId=rgreq-c14ac0b9f637331a0aeb3513103f3cd8-XXX&enrichSource=Y292ZXJQYWdlOzM1MzU4ODcyNjtBUzoxMDUxMzgxNDYwOTE4MjczQDE2Mjc2ODAyODIyMDI%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Elias-Bou-Harb?enrichId=rgreq-c14ac0b9f637331a0aeb3513103f3cd8-XXX&enrichSource=Y292ZXJQYWdlOzM1MzU4ODcyNjtBUzoxMDUxMzgxNDYwOTE4MjczQDE2Mjc2ODAyODIyMDI%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Elias-Bou-Harb?enrichId=rgreq-c14ac0b9f637331a0aeb3513103f3cd8-XXX&enrichSource=Y292ZXJQYWdlOzM1MzU4ODcyNjtBUzoxMDUxMzgxNDYwOTE4MjczQDE2Mjc2ODAyODIyMDI%3D&el=1_x_10&_esc=publicationCoverPdf

Revisiting [oT Fingerprinting behind a NAT

Christelle Nader and Elias Bou-Harb
The Cyber Center for Security and Analytics
University of Texas at San Antonio
San Antonio, USA
christelle.nader @my.utsa.edu, elias.bouharb@utsa.edu

Abstract—The growing usage of Network Address Translation
(NAT) over the past couple of years has become a double-edged
sword. On one hand, it provides an added measure of security
for legitimate users. On the other hand, the anonymity provided
by NAT could undoubtedly be leveraged by malicious actors.
To this end, the objective of fingerprinting devices behind a
NAT aims at properly comprehending the nature of such devices
while aiding in proper network and security provisioning and
characterization. While the problem scope is certainly not new,
it has been evolving quite rapidly given the wide macroscopic
and microscopic deployments of IoT devices, and have recently
attracted significant attention from the research community.
Throughout this paper, we revisit the task of classifying IoT
devices deployed within a localized IoT realm. In contrast to
the state-of-the-art, we explore the capabilities of unsupervised
and semi-supervised shallow and deep learning methodologies
in capturing the nature of such NATed devices. Initial results
using empirical data indicate the failure of clustering methods
in fingerprinting both IoT and non-IoT nodes behind a NAT.
Further, and knowing that IoT devices typically possess relatively
consistent traffic patterns, the results shed light on the unexpected
capability of autoencoders in better capturing non-IoT devices (in
contrast to IoT nodes) behind a NAT. In an effort to comprehend
such results, we implement and evaluate an explainable mech-
anism that provides preliminary insights into this phenomena.
Additionally, the developed semi-supervised Restricted Boltz-
mann Machine (RBM) approach generated comparative results
to the state-of-the-art, without relying on the stringent and ad-
hoc process of features’ engineering, with relatively very good
algorithm complexity and scalability. Results from this work put
forward interesting future work in the area of network traffic
analysis of NATed IoT devices, while highlighting the need for
addressing the notions of explainability and concept drift.

Index Terms—Network traffic analysis, Internet of Things,
IoT fingerprinting, Network Address Translation, Explainable
Al, Machine Learning

I. INTRODUCTION

The usage of Network Address Translation (NAT) has
grown exponentially over the last few decades as it allows
several devices to share a limited number of public IP ad-
dresses in addition to providing Internet-wide services via
port mapping. Consequently, the anonymity that NAT provides
have induced the problem of identifying the nature of the
NATed devices, which has always attracted the attention of
the research community. For example, back in 2009, Rui et
al. [1] proposed an algorithm that detects devices behind a
NAT based on Support Vector Machine (SVM). Additionally,
in 2014, Gokcen et al. [2] analyzed traffic flows in an attempt
to identify and characterize NAT behavior.

Although the problem of device fingerprinting behind a NAT
has been explored in the past in various contexts, the explosive
growth of deployed IoT devices over the past few years has
motivated researchers to bring new solutions to specifically
address the IoT context. Indeed, NAT introduces numerous
security issues and technical challenges in the IoT realm,
including, but not limited to (1) under quantification or over-
estimation of the number of vulnerable devices found behind a
NAT [3], which hinders IoT-centric botnet characterization and
attribution, (2) the issue of legitimate IoT device/type/vendor
identification and characterization [4, 5], and (3) the sound
and comprehensive analysis of IoT malware evolution residing
on NATed IoT devices [6]. Broadly, fingerprinting IoT devices
behind a NAT would aid in network and security provisioning,
and cyber forensic triage.

As aresult, Meidan et al. [7] were among the first to explore
this problem by drawing upon IoT-relevant empirical data cap-
tured from a localized IoT environment. The authors proposed
a state-of-the-art approach for inferring IoT devices connected
behind a home NAT by leveraging several supervised learning
algorithms along with engineering a number of features that
they have employed.

Motivated by this research direction and the open problem
of fingerprinting (IoT) devices behind a NAT, this paper
explores shallow and deep learning methods in an attempt
to fingerprint such nodes. The paper reports on the failure
of some methods, the unexpected results of others (while
attempting to explain the achieved results), while reporting
on comparative state-of-the-art performance.

Specifically, this work makes the following three contribu-
tions:

« In contrast to [7], we propose a set of learning algorithms
without relying on feature engineering processes. We
leverage more than 1 million network flows obtained
from [7] over a period of 37 days to perform the em-
pirical experimentation. Our results show that one of the
developed and implemented semi-supervised approach
generates comparative results in contrast to the state-of-
the-art supervised approach.

e We implement two unsupervised clustering algorithms,
namely, Density Based Spatial Clustering of Applications
with Noise (DBSCAN) and K-Means. We evaluate these
two algorithms based on homogeneity, completeness, and
silhouette scores. The results show that such unsupervised
clustering algorithms fail to accurately fingerprint IoT

(and non-IoT) devices behind a NAT; as opposed to their
known efficient use in properly identifying Internet-facing
IoT devices in the wild [8-10].

e We devise and employ two semi-supervised machine
learning algorithms, namely, Logistic Regression with
autoencoders and Logistic Regression with a Restricted
Boltzmann machine (RBM). The results indicate that the
autoencoder approach is better capable of fingerprinting
non-IoT devices behind a NAT; a somehow bewilder-
ing result given the heterogeneity of non-lIoT traffic
in contrast to the quite consistent IoT-generated traffic
patterns. By designing and implementing an explainable
mechanism, the results shed light on the impact of the
NAT device which induces such outcome.

The remainder of this paper is organized as follows. In the
next section, we detail the experimental setup and describe a
number of data preprocessing steps. In Section III, we describe
our experiments and thoroughly report and comment on their
respective results. In Section IV, we discuss relevant literature
while positioning the presented work. Finally, in Section V, we
draw some conclusions and pinpoint a few endeavors which
aim at paving the way for future work.

II. EXPERIMENTAL SETUP

A. Data Collection

In this paper, we leverage empirical data collected by
Meidan et al. [7]. To curate such data, the authors set up a
network that represents a real-world scenario of various IoT

Devices

Access Point

>
J N
Switch — A
A 4
Internet
NAT Router ﬁ

<

Central Server with
nProbe

Local Detector with
nProbe

Fig. 1: The data curation setup [7]

and non-IoT devices connected behind a NAT, as illustrated in

Figure 1. They first connected several commercial IoT devices
as well as laptops and smartphones to a switch (Cisco Catalyst
2960-X, 1G ports) via a wireless access point. Second, they
connected this switch to a NAT router (Cisco 3825) where
NetFlow was installed. Subsequently, they installed nProbe
on a server and a Raspberry Pi to collect NetFlow records
from the router for further analysis. The IoT devices that

[Device | Manufacturer[Type |
doorbell Amazon TIoT
light_bulb TP_Link IoT
socket Wemo IoT
socket Wemo IoT
speaker Sonos IoT
streamer Amazon IoT
webcam Amcrest TIoT
webcam Samsung IoT
access_point | TP_Link Non-IoT
laptop Dell Non-IoT
laptop Dell Non-IoT
smartphone | Samsung Non-IoT
smartphone | Samsung Non-IoT

TABLE I: Devices used in our approach

they deployed represent seven manufacturers such as Amazon,
Samsung, and WEMO, as well as three of the most popular
types of home IoT devices, namely “Media/TV” (streamer,
speaker), “Surveillance” (webcam), and “Home Automation”
(light bulb, doorbell), as summarized in Table I.

In terms of the IoT devices, they distinguished between
three operational phases:

o Initial: The device setup immediately after booting.

o Active: User interaction such as webcam viewing.

o Idle: Network connectivity without any user-driven traf-
fic.

They chose to focus on the idle phase, where human interac-
tion is lacking. Nevertheless, in this phase, the IoT devices can
be very active, e.g., video streaming or sending measurements.
The reason to focus on the idle stage is that IoT devices are in
that phase most of the time, and thus it provided them with the
highest coverage. In addition, during this phase, [oT devices
have characteristic behaviors such as sending regular messages
to their servers. Therefore, their traffic patterns are relatively
consistent and stable; a fact that is desired when leveraging
machine learning-based classification.

[| #Instances Percentage |
IoT 1,397,704 89.29
Non-IoT 167,582 10.71

TABLE II: Dataset Overview

The data encompasses over 1 million network flows, col-
lected throughout a period of 37 days. Indeed, this data is
comprised of 1,397,704 IoT instances (89.29%) and 167,582
non-IoT instances (10.71%) as shown in Table II.

B. Data Preprocessing

For consistency, completeness and soundness purposes, we
perform two data preprocessing steps on the raw captured
Netflow records. Such records are summarized in Table III.

[Netflow Feature | Description

|

IN_BYTES Incoming counter for # bytes associated with
an [P Flow
IN_PKTS Incoming counter for # packets associated

with an IP Flow

IPV4_DST_ADDR| IPv4 destination address

L4_DST_PORT TCP/UDP destination port number

L4_SRC_PORT TCP/UDP source port number

PROTOCOL IP protocol byte (6: TCP, 17: UDP)

SRC_TOS Type of Service byte setting when there is
an incoming interface

TCP_FLAGS Cumulative of all the TCP flags seen for this
flow

DURATION Time (seconds) between first/last packet
switching

Time (seconds) between successive flows of
the same device

inter_arrival_time

TABLE III: Summary of the Netflow Features

The steps taken include:

e Removing all of the zero variance Netflow features that
have no contribution to classification (e.g. SRC_AS,
DST_AS, INPUT_SNMP, OUTPUT_SNMP). Omitting
the source IP addresses as well, given that they represent
the IPs of the NAT device.

o Encoding the categorical feature “IPV4_DST_ADDR”
and scaling all the numerical features such that all feature
inputs would be in the range of [0,1].

III. METHODOLOGY AND EMPIRICAL RESULTS

This section details our proposed approach as well as its
experimental results. In Section III-A, we implement two
unsupervised clustering algorithms, namely, DBSCAN, and K-
Means. In Sections III-B and III-C, we implement two semi-
supervised machine learning approaches, namely, Logistic
regression with autoencoders, and Logistic regression with
RBM. At the end of each section, we assess the algorithms
and draw some conclusions. We implement our algorithms
using Python’s Keras and Scikit-learn libraries. In addition, we
evaluate our approach on a Ubuntu 18.04.5 LTS machine with
a 62.5GB memory, an Intel Xeon(R) W-2145 CPU @3.70GHz
x 16, and a hard disk of 251GB.

A. Clustering

In this section, we were interested in exploring the capabil-
ities of unsupervised approaches in identifying IoT devices
behind a NAT. To this end, we implement two unsuper-
vised clustering algorithms. We chose two commonly used
algorithms, namely K-Means and DBSCAN, due to their
wide adoption in data clustering applications related to cyber
forensics [11, 12].

0.50

0.25

0.00

-0.25

-0.50

-0.75

-0.50 -0.25 000 025 050 075 100

(a) DBSCAN
Fig. 2: DBSCAN and K-Means clustering results.

-0.50

(b) K-Means

Since it is known that clustering algorithms operate more
effectively with a lower dimensional space, we initially ap-
ply the Principal Component Analysis (PCA) technique on
several random data samples starting with 10,000 flows and
incrementing it each time by 20,000 flows. We notice that
after 150,000 flows, the results are the same. Therefore, we
find that applying the PCA technique on a random data sample
of 150,000 flows gives us the best possible outcome.

Consequently, we show the clustering results in Figure 2.
Figure 2a erroneously shows four clusters, given that we

0.5 - mmm K-Means
s DBSCAN

0.4 -

0.3-

0.2 -

0.1-

1 1
Homogeneity Completeness Silhouette

Fig. 3: Performance Evaluation of DBSCAN and K-Means

already know that we should perceive two (i.e., IoT and non-
IoT). To grasp a better notion of the (lack of) soundness related
to the observed clusters (including those of K-Means in Figure
2b), we further evaluate the deployed algorithms according to
three metric scores:

« Silhouette Coefficient. This score is calculated using the
following equation on each sample: (b — a)/maz(a,b),
where a is the mean intra-cluster distance, and b is the
mean nearest-cluster distance between a sample and the
nearest cluster that the sample is not part of.

o Completeness Score. This metric shows if all the data
points that are a member of a given class are elements of
the same cluster.

o Homogeneity Score. This metric shows if all of its
clusters contain only data points which are members of

025 000 025 050 075 100

a single class.

Figure 3 provides comparative results of the three different
metric scores for the two algorithms. Although DBSCAN’s
homogeneity and completeness scores are slightly higher than
the scores of K-Means (i.e., 0.081 and 0.026 versus 0.031 and
0.015 respectively), these scores tend to 0, which demonstrates
the ineffectiveness of such algorithms in properly clustering
(IoT) devices behind a NAT. In addition, K-Means’ silhou-
ette coefficient (0.497) is somewhat higher than DBSCANSs’
(0.434). Nonetheless, values that are quite low (i.e., lower
than 70-80%) indicate poor clustering outcomes. Thus, it is
apparent that both algorithms fail to achieve any meaningful
fingerprinting of devices behind a NAT.

B. Logistic Regression with Autoencoders

In this section, we devise and implement a semi-supervised
machine learning algorithm that is based on Logistic Regres-
sion and autoencoders [13]. We note that semi-supervised
learning is a combination of supervised (e.g. Logistic Regres-
sion) and unsupervised (e.g. Autoencoders) learning processes
in which the unlabeled data is used for training a model.
Indeed, in this approach, autoencoders (i.e., a special type of
neural network architectures where the output is the same as
the input) are used to learn the best possible representation
of data which is then passed onto the Logistic model to learn
the relationships in the representations in order to make the
predictions.

We first develop a network with one input layer and one
output layer in which they have the same dimensions. We
also employ an optimizer function (“Adam”[14]) because it is
efficient, works well with training deep learning models, and
can handle a large amount of data. Additionally, we use a loss
function (“binary_crossentropy” [15]) because we are dealing
with a binary problem, i.e., classifying IoT and non-IoT flows.
Moreover, we choose a batch size of 256 and epochs of 30.
Note that autoencoders do not need too many samples of data
for learning good representations. Therefore, we experiment
with several random data samples of various flows starting
with 10,000 flows and incrementing it each time by 10,000
flows. We find that a random data sample of 40,000 flows gives
us good representations. Further, as autoencoders endeavor to
learn only one class in order to automatically distinguish the
other class, we only feed it with IoT samples.

After the model is trained, we obtain the latent representa-
tion of the input (i.e., a simplified model of the input data)

[| Precision Recall F1-Score Support |
IoT 0.67 0.75 0.71 558
Non-IoT 0.81 0.75 0.78 824
Accuracy 0.75 1,382
Macro Avg 0.74 0.75 0.75 1,382
Weighted Avg 0.76 0.75 0.75 1,382
Training Time 2.149 Seconds

TABLE IV: Results of Logistic Regression with Autoencoders

and train a simple linear classifier such as Logistic Regression
with such obtained data.

The results of Table IV show that this approach achieved an
overall accuracy of 75% and has a training time of 2 seconds.
What is interesting in these results is that the algorithm was
able to classify non-IoT devices behind a NAT with a higher
precision and F1-Score than IoT devices, i.e., 81% and 78%
versus 67% and 71% respectively. Indeed, we would have
expected that IoT devices would yield a higher classification
rate than non-IoT devices due to their more predictable and
somehow limited/consistent traffic patterns.

Local...explanation...for...class...Non-loT

L4_SRC_PORT...>...0.

IPV4_DST_ADDR...<=...0.

SRC_TOS...<=...0.

TCP_FLAGS...>...0.

PROTOCOL...<=...0.

Local...explanation...for...class...Non-loT

SRC_TOS...<=...0.00

0.60...<...L4_SRC_PORT...<=...0.79

oat....rrotocoL..<-. + || R
0.12...<...IPV4_DST_ADDR...<=...0.31

-0.075 -0.050 -0.025 0.000 0.025 0.050 0.075 0.100 0.125

TCP_FLAGS...<=...0.00

(b) IoT Instance

Fig. 4: LIME’s deep learning explainability of non-IoT and
IoT instances

In an attempt to comprehend how we arrived at such results,
we relied on an explainability mechanism. To this end, Ribeiro
et al. [16] proposed a package called LIME that explains
individual predictions for any black box classifier. In fact,
LIME takes the raw data (and the classification model) as
input and outputs a probability for each class. Thus, we
implemented LIME to better understand the features involved
in such classification results. We experimented with 10 random
instances from our data and passed them as a parameter to the
“explainer” provided by the LIME model.

We compare the results in Figure 4 for two instances which
classify the flows as non-IoT and IoT with 76% and 86%
accuracy respectively. The features involved in non-IoT clas-
sification are shown in green, whereas the features involved
in IoT classification are in red. The explainability mechanism
yielded two insightful observations. First, it seems that for
proper IoT fingerprinting, the black-box model employed the

PROTOCOL feature, which is the transport layer protocol,
to achieve the fingerprinting. Thus, it is plausible to note that if
the NATed device is using some UDP-based protocol, similar
to the ones used exclusively in IoT contexts, such as MQTT
and CoAP, then the classifier, despite the NAT device can
easily fingerprint this behavior. Second, if the device “piggy-
backs” on traditional application layer protocols (i.e., HTTP)
which employ TCP, it seems that it is not enough for the
classifier to deem it as a non-IoT device. However, this, in
combination with a NAT device-selected source port, would
indeed be sufficient to deem the device as non-IoT. From these
points, we can deduce that while IoT devices typically possess
somehow uniform traffic patterns/flows in contrast to the
heterogeneity of the traffic generated from non-IoT devices,
it seems that the autoencoder is putting less emphasis on the
actual traffic dynamics, while focusing more on the semantics
of the actual protocol being operated on that device (which
is reflected in the usages of the transport layer protocols,
type of services, flags, and source ports). We believe that this
output is quite interesting and undoubtedly begs for in-depth
future exploration of network traffic analysis in conjunction
with stronger explainability mechanisms, as applied to various
security applications (including IoT fingerprinting).

C. Logistic Regression with RBM

In this section, we implement another semi-supervised ma-
chine learning algorithm that is based on Logistic Regression
with Bernoulli Restricted Boltzmann Machine (RBM)[17].
Indeed, Bernoulli RBM estimates its parameters by using
a Stochastic Maximum Likelihood (SML), also known as
Persistent Contrastive Divergence (PCD). In addition, after ex-
perimenting with different solvers for the Logistic Regression
model, we employ the “newton-cg” solver because it yielded
the best results.

Compared to the previous approach in Section III-B, we
utilize all the flows from [7] because we want to compare
the results of this classifier to the state-of-the-art supervised
approach [7]. In fact, the training set consists of the first 30
days (approximately 81% of each device, on average), and the
testing set consists of the remaining 7 days (approximately
19%).

[Parameters [Possible Values | Best Value |
Logistic C 1 6,000 10,000 10,000
RBM learning_rate 0.06 0.01 0.001 0.01
RBM n_components 50 100 200 50

TABLE V: Possible Values of Parameters for the Logistic
RBM approach

Initially, we instantiate an RBM features’ classifier which
consists of pipelining an RBM model with a Logistic Re-
gression model. Table V presents the possible values of one
Logistic Regression parameter (C), and two RBM parameters
(learning rate and number of components). As the classifiers
have a large number of possible hyperparameter values, we

implement the GridSearchCV function which converges to-
wards the best parameter values for these models. As a result,
the best parameter values are obtained as: Logistic C (10,000),
RBM Learning Rate (0.01), and RBM Number of Components
(50).

We then apply these values to the created classifier and
evaluate it.

[| Precision Recall F1-Score Support |
IoT 0.98 1.00 0.99 267,757
Non-IoT 0.95 0.71 0.81 18,370
Accuracy 0.98 286,127
Macro Avg 0.96 0.85 0.90 286,127
Weighted Avg 0.98 0.98 0.98 286,127
Training Time 267.143 Seconds

TABLE VI: Results of Logistic Regression using RBM fea-
tures

The results from Table VI show that this approach has an
accuracy of 98% and has a training time of approximately
4 minutes. Even though Meidan et al’s [7] approach has
an approximate learning time of 2 seconds, the developed
approach herein obtained similar performance, i.e., a weighted
average precision of 98% versus an average precision of 99%,
without the need for feature engineering or prior domain
knowledge.

Complexity. To further assess this approach, we study
its complexity by using the Big-O notation. To this end,
we look for the complexities of each separate algorithm
used in this approach, namely, the BernoulliRBM and the
Logistic Regression coupled with the Newton Conjugate
Gradient (CG). Indeed, the BernoulliRBM algorithm has a
time complexity of O(d?), where d is the number of features
used [18]. In addition, both the Newton CG and the Logistic
Regression algorithms have a time complexity of O(nd)
[19, 20], where d is the number of features used and n is
the number of samples used. We also note that the space
complexity of the Logistic Regression algorithm is O(d) [20].
By pipelining the BernouilliRBM and the Logistic Regression
with the Newton CG, the overall time complexity arrives to
O(d?) + O(nd). Since the number of features is constant,
the terms containing d cancel out. Therefore, the overall
time complexity of this approach is O(n) which is a fair result.

Scalability. To further validate our results, we perform
a scalability test which measures the performance of this
approach as the number of flows increases. Due to the lack
of data, we initially duplicate all the flows from [7]. We
then perform several tests on this method, in which we
increase the original data by 300K random flows each time.
We evaluate each experiment according to these performance
metrics: training time, prediction time (flow classification
time), accuracy, and weighted average precision.

Flows (x10°)
1.5 1.8 2.1 24 2.7 3.0
Training Time (sec) 267.143 247.642 265.678 317.702 333.164 359.871
Prediction Time (sec) 0.269 0.328 0.344 0.402 0.425 0.456
Accuracy 0.98 0.93 0.94 0.94 0.94 0.94
Weighted Avg Precision 0.98 0.88 0.93 0.91 0.88 0.88

TABLE VII: Scalability Experimental Results

The results from Table VII show that as the number of
flows increases, the accuracy slightly drops and stabilizes
at 94%. In addition, the weighted average precision also
slightly decreases and fluctuates between 88% and 93%.
Although these results show lower values, they are still
considered good results. Moreover, we plot the training time
and prediction time as shown in Figure 5. Both the training
time and prediction time increase with the number of flows.

3601 —a— Training Time
340
320
300+

280

Seconds

260

240

—*— Prediction Time

0.4+

0.3

0.2
1.5E+05 1.8E+05 2.1 E+05 2.4E+05 2.7E+05 3.0 E+05
Samples

Fig. 5: Scalability Training vs Prediction Results

The training time augments from 267.143 sec (~ 4 min)
to 359.871 sec (~ 6 min) whereas the flow classification
time increases from 0.269 sec to 0.456 sec, which is very
acceptable.

Summary. It is possible to identify IoT devices behind a
NAT by using a semi-supervised machine learning algorithm
that consists of a Logistic Regression model with RBM
features. Such an approach can properly classify IoT and
non-IoT devices behind a NAT with a 98% and a 95%
precision respectively (using this specific dataset). In addition,
the proposed methodology has comparative results with state-
of-the-art [7] without resorting to features’ engineering. We
also find that the time complexity of this algorithm is O(n)
which is a fair result. Further, this approach scales well as
it maintains a high accuracy (94%) and a weighted average
precision (88%-93%).

IV. RELATED WORK

In this section, we elaborate on three related topics that are
relevant to our work herein. First, we discuss recent efforts
pertaining to IoT device fingerprinting. Then, we focus on
unsupervised IoT device classification. Finally, we enumerate
the literature related to device identification behind a NAT.

IoT Fingerprinting. Pour el al. [8] leveraged macroscopic,
passive empirical data provided by network telescopes to
shed light on the IoT evolving threat landscape. The authors
aimed at classifying compromised IoT devices from one way-
network traffic by developing a multi-window convolutional
neural network. By analyzing 3.6 TB of darknet traffic, their
approach effectively uncovered 440,000 compromised IoT
devices and 350 IoT botnets that were still active in the wild.
Meidan et al. [21] developed ProfilloT, a machine learning
approach to accurately identify IoT devices connected to a
network. The authors employed supervised learning in order
to train a multi-stage classifier. The developed -classifier
distinguished between IoT and non-IoT devices by leveraging
HTTP packet properties (user-agents). Differently, Perdisci
et al. [22] developed IoTFinder, an independent system for
large-scale IoT device identification. Indeed, their proposed
approach leveraged distributed passive DNS data which is
comprised of more than 40 million clients. This collected
data was then passed on to a multi-label machine learning-
based classifier that only uses DNS fingerprints to classify
IoT devices. In contrast, Huang et al. [23] developed IoT
Inspector, an open-source tool that allows users to observe
traffic from smart home devices on their own home networks.
In fact, by allowing users to download IoT Inspector, the
authors were able to collect (and analyze) labeled network
traffic from 54,094 smart home devices.

Unsupervised IoT classification. Sivanathan et al. [24]
developed a modular device classification architecture that
is based on an unsupervised one-class clustering method for
each device in order to detect normal network behavior. Their
approach can be used for automatic conflict resolution and
noise filtering. After evaluating their scheme on 10 real IoT
devices, they achieved an overall accuracy of more than 94%.
In addition, Bhatia et al. [25] introduced a network-centric,

behavioral anomaly detection approach that can separate
normal and anomalous traffic. They showed that their method
can be incorporated in a larger system in order to identify
compromised end-points despite IP spoofing. Moreover,
Meidan et al. [26] proposed N-Balot, a network-based
anomaly detection method that extracts behavior snapshots
of the network and feeds them to autoencoders in order
to detect anomalous traffic from compromised IoT devices.
After empirically evaluating their approach with two of the
most widely known IoT-based botnets, Mirai and BASHLITE,
they found that N-Balot can accurately and instantly detect
such attacks. Similarlyy, Nomm and Bahsi [27] presented
an anomaly-based detection of IoT botnets by leveraging
unsupervised learning models with reduced feature set size.
They showed that their approach decreased the required
computational resources and can detect IoT botnets with high
accuracy.

Device Identification behind a NAT. Griffioen and Doerr
[3] leveraged a weakness in the packet generation algorithm
and random number generation of the Mirai IoT malware
in order to detect NAT behavior via IP churn. In fact, they
used a network telescope of 65K IP addresses for a period
of 9 months to quantify and detect IP churn. By doing so,
they found that NAT leads to an underestimation of the
total Mirai spread when solely counting IP addresses, as
multiple infections are located behind the same public IP
address. Additionally, Khatouni et al. [28] proposed a passive
supervised machine learning methodology to detect hosts
behind NAT devices by using flow level statistics without any
application layer information. Indeed, the authors captured a
large dataset and performed an extensive evaluation with four
existing approaches from the literature. Their results showed
that their methodology can identify NAT behaviors and hosts
with high accuracy. Differently, Yang et al. [29] proposed a
methodology to identify NATs for online IoT devices based
on Tri-Net; a semi-supervised deep neural network. Indeed,
Tri-Net learned features on three layers, namely network,
transport, and application layer in a small labeled data set.
After evaluating this approach on a real-world dataset with
more than 8 million online IoT devices, the authors were able
to find 2,511,499 IoT devices connected to the Internet via
NAT with a precision and recall of up to 92%.

This paper contributes to the same line of research, but
focuses instead on the niche problem of IoT fingerprinting of
NATed devices. Further, it explores non-supervised learning
methods while reporting on some (negative) results, or un-
expected outcomes (with an attempt for explainability) while
also demonstrating comparative results to the state-of-the-art.

V. CONCLUDING REMARKS

This work complements current device classification meth-
ods behind a NAT by offering a new unsupervised and semi-
supervised machine learning methodologies without feature
engineering that detects IoT devices behind a home NAT.

This work initially introduces two unsupervised clustering
algorithms, namely K-Means and DBSCAN. As a result, we
found that such algorithms are inefficient in properly detecting
(IoT) devices behind a NAT. Subsequently, we devise two
semi-supervised ML algorithms that encompass a Logistic
Regression classifier with either Autoencoders or RBM. Con-
sequently, the results show that the algorithm that features au-
toencoders has a higher classification rate for non-IoT devices
rather than IoT devices. By relying on an explainability tech-
nique, we find that several features (e.g., L4_SRC_PORT
and PROTOCOL) affect these rates. Moreover, the evalua-
tion of the Logistic Regression with RBM features’ classifier
provides sound fingerprinting of IoT devices behind a NAT
with a state-of-the-art accuracy of 98%.

As for future work, we will be attempting to infer IoT
devices behind a NAT on a much larger scope. To this end,
we will leverage network telescopes as well as the data sets
provided by Huang et al. [23] to identify IoT devices behind
a NAT on an Internet-scale perspective. We will continue
to explore the notions behind explainable Al as applied on
network traffic analysis. Moreover, with the rise of the ZHtrap
[30] botnet, which uses Tor for communications, it would be
interesting to examine if a flavor of our developed methods
could be applied to the Tor network in order to detect IoT
devices behind Tor proxies. Finally, the notion of concept drift
poses challenges to the deployed machine learning models
[31]. Therefore, we plan on testing the robustness of our
developed approach against concept drift on various security
application, including the fingerprinting of NATed compro-
mised IoT devices and exploring the problem of IoT device
identification.

ACKNOWLEDGMENT

We thank the reviewers in advance for their constructive
feedback. This work was supported by a grant from the
National Science Foundation, Office of Advanced CyberIn-
frastructure #1907821.

REFERENCES

[1] R. Li, H. Zhu, Y. Xin, Y. Yang, and C. Wang, “Remote
nat detect algorithm based on support vector machine,”
in 2009 International Conference on Information Engi-
neering and Computer Science. 1EEE, 2009, pp. 1-4.

[2] Y. Gokcen, V. A. Foroushani, and A. N. Z. Heywood,
“Can we identify nat behavior by analyzing traffic
flows?” in 2014 IEEE Security and Privacy Workshops.
IEEE, 2014, pp. 132-139.

[3] H. Griffioen and C. Doerr, “Quantifying autonomous
system ip churn using attack traffic of botnets,” in
Proceedings of the 15th International Conference on
Availability, Reliability and Security, 2020, pp. 1-10.

[4] X.Feng, Q. Li, H. Wang, and L. Sun, “Acquisitional rule-
based engine for discovering internet-of-things devices,”
in 27th {USENIX} Security Symposium ({USENIX} Se-
curity 18), 2018, pp. 327-341.

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

F. Shaikh, E. Bou-Harb, N. Neshenko, A. P. Wright,
and N. Ghani, “Internet of malicious things: Correlating
active and passive measurements for inferring and char-
acterizing internet-scale unsolicited iot devices,” IEEE
Communications Magazine, vol. 56, no. 9, pp. 170-177,
2018.

E. Cozzi, P-A. Vervier, M. Dell’Amico, Y. Shen,
L. Bilge, and D. Balzarotti, “The tangled genealogy of
iot malware,” in Annual Computer Security Applications
Conference, 2020, pp. 1-16.

Y. Meidan, V. Sachidananda, H. Peng, R. Sagron,
Y. Elovici, and A. Shabtai, “A novel approach for de-
tecting vulnerable iot devices connected behind a home
nat,” Computers & Security, vol. 97, p. 101968, 2020.
M. S. Pour, A. Mangino, K. Friday, M. Rathbun, E. Bou-
Harb, F. Igbal, K. Shaban, and A. Erradi, “Data-driven
curation, learning and analysis for inferring evolving
iot botnets in the wild,” in Proceedings of the I14th
International Conference on Availability, Reliability and
Security, 2019, pp. 1-10.

C. J. Dietrich, C. Rossow, and N. Pohlmann, “Cocospot:
Clustering and recognizing botnet command and control
channels using traffic analysis,” Computer Networks,
vol. 57, no. 2, pp. 475-486, 2013.

G. Gu, R. Perdisci, J. Zhang, and W. Lee, “Botminer:
Clustering analysis of network traffic for protocol-and
structure-independent botnet detection,” 2008.

E. Bou-Harb, M. Debbabi, and C. Assi, “A systematic
approach for detecting and clustering distributed cyber
scanning,” Computer Networks, vol. 57, no. 18, pp.
3826-3839, 2013.

——, “A statistical approach for fingerprinting probing
activities,” in 2013 International Conference on Avail-
ability, Reliability and Security. 1EEE, 2013, pp. 21-30.
D. E. Rumelhart, G. E. Hinton, and R. J. Williams,
“Learning internal representations by error propagation,”’
California Univ San Diego La Jolla Inst for Cognitive
Science, Tech. Rep., 1985.

D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” arXiv preprint arXiv:1412.6980, 2014.

C. M. Bishop, Pattern recognition and machine learning.
springer, 2006.

M. T. Ribeiro, S. Singh, and C. Guestrin, “”’ why should
i trust you?” explaining the predictions of any classifier,”
in Proceedings of the 22nd ACM SIGKDD international
conference on knowledge discovery and data mining,
2016, pp. 1135-1144.

G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learn-
ing algorithm for deep belief nets,” Neural computation,
vol. 18, no. 7, pp. 1527-1554, 2006.

[Online]. Available: https://scikit-learn.org/
stable/modules/generated/sklearn.neural_network.
BernoulliRBM.html

T. P. Minka, “A comparison of numerical optimizers for
logistic regression,” Unpublished draft, pp. 1-18, 2003.
P. Kumar, “Time complexity of ml models,” 2019. [On-

[23]

[24]

[31]

line]. Available: https://medium.com/analytics-vidhya/
time-complexity-of-ml-models-4ec39fad2770

Y. Meidan, M. Bohadana, A. Shabtai, J. D. Guarnizo,
M. Ochoa, N. O. Tippenhauer, and Y. Elovici, “Profiliot:
a machine learning approach for iot device identification
based on network traffic analysis,” in Proceedings of the
symposium on applied computing, 2017, pp. 506-509.
R. Perdisci, T. Papastergiou, O. Alrawi, and M. An-
tonakakis, “lotfinder: Efficient large-scale identification
of iot devices via passive dns traffic analysis,” in 2020
IEEE European Symposium on Security and Privacy
(EuroS&P). 1EEE, 2020, pp. 474-489.

D. Y. Huang, N. Apthorpe, F. Li, G. Acar, and N. Feam-
ster, “Iot inspector: Crowdsourcing labeled network traf-
fic from smart home devices at scale,” Proceedings of the
ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies, vol. 4, no. 2, pp. 1-21, 2020.

A. Sivanathan, H. H. Gharakheili, and V. Sivaraman,
“Inferring iot device types from network behavior using
unsupervised clustering,” in 2019 IEEE 44th Conference
on Local Computer Networks (LCN). 1EEE, 2019, pp.
230-233.

R. Bhatia, S. Benno, J. Esteban, T. Lakshman, and J. Gro-
gan, “Unsupervised machine learning for network-centric
anomaly detection in iot,” in Proceedings of the 3rd
acm conext workshop on big data, machine learning and
artificial intelligence for data communication networks,
2019, pp. 42-48.

Y. Meidan, M. Bohadana, Y. Mathov, Y. Mirsky, A. Shab-
tai, D. Breitenbacher, and Y. Elovici, ‘“N-baiot—network-
based detection of iot botnet attacks using deep autoen-
coders,” IEEE Pervasive Computing, vol. 17, no. 3, pp.
12-22, 2018.

S. Nomm and H. Bahsi, “Unsupervised anomaly based
botnet detection in iot networks,” in 2018 17th IEEE
international conference on machine learning and ap-
plications (ICMLA). IEEE, 2018, pp. 1048-1053.

A. S. Khatouni, L. Zhang, K. Aziz, 1. Zincir, and
N. Zincir-Heywood, “Exploring nat detection and host
identification using machine learning,” in 2019 15th
International Conference on Network and Service Man-
agement (CNSM). 1EEE, 2019, pp. 1-8.

Z. Yan, N. Yu, H. Wen, Z. Li, H. Zhu, and L. Sun,
“Detecting internet-scale nats for iot devices based on tri-
net,” in International Conference on Wireless Algorithms,
Systems, and Applications. Springer, 2020, pp. 602-614.
R. Lakshmanan, “New mirai variant and zhtrap botnet
malware emerge in the wild,” Mar 2021. [Online].
Available: https://amp.thehackernews.com/thn/2021/03/
new-mirai-variant-and-zhtrap-botnet.html

“CADE: Detecting and explaining concept drift
samples for security applications,” in 30th
USENIX Security Symposium (USENIX Security 21).
Vancouver, B.C.: USENIX Association, Aug. 2021.
[Online]. Available: https://www.usenix.org/conference/
usenixsecurity21/presentation/yang

https://www.researchgate.net/publication/353588726

