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Abstract—In this paper, we propose algorithms that leverage a
known community structure to make group testing more efficient.
We consider a population organized in connected communities:
each individual participates in one or more communities, and
the infection probability of each individual depends on the
communities (s)he participates in. Use cases include students
who participate in several classes, and workers who share
common spaces. Group testing reduces the number of tests
needed to identify the infected individuals by pooling diagnostic
samples and testing them together. We show that making testing
algorithms aware of the community structure, can significantly
reduce the number of tests needed both for adaptive and non-
adaptive group testing.

I. INTRODUCTION

A significant challenge to re-open society in the presence

of a pandemic is the need for large scale, reliable testing.

Group testing is a strategy that can help reduce the number of

tests and increase reliability by pooling together diagnostic

samples. Accordingly, it is attracting significant attention:

several countries (India, Germany, US, China) are currently

deploying group testing strategies to help them quickly and

reliably identify infected people [1], [2].

In this paper, we build group testing algorithms around

an idea “whose time has come”: we propose to leverage

a known community structure to make group testing more

efficient. Although traditionally the work in group testing

assumes “independent” infections, we note that today it is

totally feasible to keep track of community structure - several

apps are already doing so [3], [4]. Moreover, our approach is

well aligned with the need for independent grassroots testing

(schools testing their students, companies their workers) where

the community structure is explicit (shared classrooms, shared

common spaces).

We find that taking into account the community structure

can reduce the number of tests we need significantly below

the well known combinatorial bound [5], the best we can hope

for when not taking this structure into account. Moreover, it

enlarges the regime where group testing can offer benefits over

individual testing. Indeed, a limitation of group testing is that

it does not offer benefits when the number of infected people

grows linearly with the size of the population considered [6],

[7]. Taking into account the community structure allows to

identify and remove from the population large groups of

infected members, thus reducing their proportion and con-

verting a linear to a sparse regime identification. However,
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we also find that, although our algorithms do not require

exact knowledge of the infection probabilities, they do need

to correctly know the community structure, and in particular,

the community overlaps: not taking into account the overlaps

(assuming communities are disconnected) can deteriorate the

performance. Our main contributions include:

• We derive a lower bound on the number of tests, that gen-

eralizes the counting bound [5] to overlapping communities.

• We propose a new adaptive algorithm that requires fewer

tests than traditional adaptive algorithms to recover the infec-

tion status of all individuals without error.

• We propose two nonadaptive algorithms that leverage the

community structure to improve reliability over traditional

nonadaptive testing. One leverages the structure at the encoder

side with a novel test design, while the other one accounts for

it at the decoder side with a new decoding algorithm that is

based on loopy belief propagation (LBP) and is generic enough

to work on any structure.

The paper is organized as follows: we give known results

in Section II, our model in Section III, the lower bound in

Section IV, and non-adaptive algorithms in Sections V and VI.

Our numerical evaluation is in Section VII.

II. BACKGROUND

In group testing, a test τ takes as input samples from nτ

individuals, pools them together and outputs a single value:

positive if any one of the samples is infected, and negative if no

one is. More precisely, let Ui = 1 when individual i is infected

and 0 otherwise. Yτ takes a binary value calculated as Yτ =
∨

i∈δτ
Ui, where

∨

stands for the OR operator (disjunction)

and δτ is the group of people participating in the test.

Traditional group testing assumes a population of n mem-

bers out of which some are infected. Two infection models

are considered: (i) in the combinatorial model, there is a fixed

number of infected members k , selected uniformly at random

among all sets of size k ; (ii) in the probabilistic model, each

item is infected independently of all others with probability p,

so that the expected number of infected members is k̄ = np.

Several more detailed setups and various testing algorithms

have been explored in the literature. These include:

• Sparse vs. linear scaling regime: assume k = Θ(nα), we say

we operate in the linear regime if α = 1; in the sparse regime

if 0 ≤ α < 1; in the very sparse regime if k is constant.

• Adaptive vs. non-adaptive testing: In adaptive testing, we use

the outcome of previous tests to decide what tests to perform

next. An example of adaptive testing is binary splitting, which

implements a form of binary search and is known to be





In such a case, assuming that communities become infected

independently seems a simple yet reasonable model to use.

However, once a few communities in G get infected, we expect

that the infection probability of a member will increase with

the number of infected communities it belongs to, which is

captured by our model in the computation of pv .

Non-overlapping communities: A special case of our com-

munity framework is when the communities have no overlap;

this scenario is investigated in our prior work [13], [14], where

algorithms that take into account the non-overlapping structure

are explored. In our experiments, however, these algorithms do

not always perform well when communities overlap (e.g. see

Fig. 3); in fact, there may be cases where they perform worse

than traditional group testing. Also, the idea of using side-

information from a community structure in decoding of group

tests has been identified in [15], [16], independently from this

work. That work is complementary to ours; we focus more

on test designs rather than decoding, for which we use well-

known algorithms such as COMP and LBP.

IV. LOWER BOUND ON THE NUMBER OF TESTS

We compute the minimum number of tests needed to

identify all infected members under the zero-error criterion in

both community models (I) and (II). All proofs can be found

in the Appendix.

Theorem 1 (Community bound for combinatorial model (I)).

Any algorithm that identifies all k infected members without

error requires a number of tests T satisfying:

T ≥ log2

(

F

kf

)

+
∑

C∈G

∑

d∈DC

log2

(

|Vd |

kdm

)

, (1)

where |Vd | (resp. kdm) is the number of members (resp.

infected members) of each disjoint set d in DC .

Observation: Consider a usual epidemic scenario, where

the population is composed of a large number of communities

with members that have close contacts (e.g. relatives, work

colleagues, students who attend the same classes, etc.). In

such a case, one should expect that most all members of each

infect community are infected, even though the number of

infected communities kf and the overall number of infected

members k may still follow a sparse regime (i.e., kf = Θ(Fαf )
and k = Θ(nα) for αf , α ∈ [0, 1)). Theorem 1 shows

the significant benefit of taking the community structure into

account in the test design: the community bound increases

almost linearly with kf , as opposed to k , which is what

happens with the traditional counting bound (that does not

account for any community structure). This is due to the

second term of Equation (1) tending to 0 and log2
(

F
kf

)

∼

kf log2
F
kf
∼ (1− αf )kf log2 F .

Theorem 2 (Community bound for probabilistic model (II)).

Any algorithm that identifies all infected members without

error requires a number of tests T satisfying:

T ≥ Fh2 (q) +

n
∑

v=1

∑

I⊆Ev

q |I|(1− q)|Ev |−|I|h2 (
∏

e∈I

(1− pe))

−
F
∑

e=1

(1− q + q(1− pe)
|Se|)h2

(

1− q

1− q + q(1− pe)|Se|

)

,

(2)

where Ev is the set of communities that member v belongs to,

I is the subset of infected communities in Ev , Se is the set of

members who only belong to community e .

Theorem 2 extends from zero-error recovery to constant-

probability recovery, if we apply Fano’s inequality in a similar

way to Thm 1 of [17]—in that case the right-hand side of (2)

is multiplied by the desired probability of correctly identifying

all infected members.

V. ALGORITHMS

In this section, we provide group-testing algorithms for the

noiseless case that leverage the community structure. We start

from adaptive algorithms and then proceed to non-adaptive.

A. Adaptive algorithm

Algorithm 1 describes our adaptive algorithm. It is built

on top of traditional adaptive testing,which we will generally

denote as AdaptiveTest(). AdaptiveTest() is an abstraction

of any existing (or future) adaptive algorithm that assumes

independent infections. We distinguish 2 different inputs for

Algorithm 1 Adaptive Community Testing (G (V, E))

Ûv is the estimated infection state of member v (“+” or “-”).

Ûz is the estimated infection state of a mixed sample z .

1: for d ∈ DC ,out , ∀C ∈ G do

2: rd ← SelectRepresentatives (Vd)
3: end for

4:

{

Ûz(rd )

}

← AdaptiveTest ({z (rd})

5: Set A := ∅
6: for C ∈ G do

7: for d ∈ DC ,out do

8: if Ûz(rd ) = “positive” then

9: Individually test Vd : Ûv ← Uv , ∀v ∈ Vd .

10: p̂d ← 1/|Vd | ·
∑

v∈Vd
1{Ûv= ’positive’}

11: else

12: A← A ∪ {v : v ∈ Vd}
13: end if

14: end for

15: for b ∈ DC ,in (in increasing order of degree) do

16: if ∃d ∈ DC s.t. EVd
⊂ EVb

& p̂d > θ then

17: Individually test Vb : Ûv ← Uv , ∀v ∈ Vb .

18: p̂b ← 1/|Vb | ·
∑

v∈Vb
1{Ûv= ’positive’}

19: else

20: A← A ∪ {v : v ∈ Vb}
21: end if

22: end for

23: end for

24:

{

Ûv : v ∈ A
}

= AdaptiveTest (A)

25: return
[

Û1, . . . , Ûn

]
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Fig. 3: Average number of tests compar-

ison of various adaptive algorithms and

combinatorial bound. Here n = 3000,

F ∼ Uniform[15, 25], q = 0.05, pe ∼
Uniform[0.3, 0.9].
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Fig. 4: FN rate comparison of various

non-adaptive test designs with corre-

sponding decoding algorithms. Here n =
3000, F ∼ Uniform[15, 25], q = 0.05,

pe ∼ Uniform[0.3, 0.9].
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Fig. 5: FP rate comparison of various

non-adaptive test designs with corre-

sponding decoding algorithms. Here n =
3000, F ∼ Uniform[15, 25], q = 0.05,

pe ∼ Uniform[0.3, 0.9].

algorithm proposed in [13] that considers communities but no

overlap; and Alg. 1 with BSA in the place of AdaptiveTest().

For the non-adaptive test matrix designs, we compare:

G1G2, our proposed test design in Section V-B; and CCW,

constant-column-weight algorithms, where each item is in-

cluded in a fixed number w of tests selected uniformly at

random. w is assumed to be of the form w = αT
k

, where k is

an estimate of the number of defectives in the population. We

exhaustively search to find the best value of α ∈ [0, 1].

We also compare LBP and COMP decoding: C-LBP is our

proposed algorithm in section VI, that takes into account the

community structure. NC-LBP, does not take into account

the community structure, i.e., assumes that each individual is

i.i.d infected with the same probability piid. COMP, described

in [5], has a zero FN probability by design.

Results.

(i) Adaptive test designs. For each community structure, we

measured the number of tests needed by each algorithm to

achieve zero-error identification. Since Alg. 1 depends on θ,

the threshold used at line 16, we evaluated its performance for

various values of θ. Figure 3 depicts the average performance

of our algorithm (for each θ, we average over 100 randomly

generated structures). Alg. 1 was proved resilient to the choice

of θ and needed on average > 55% fewer tests than the other

algorithms. Its performance was also better than the counting

bound, which is our best hope with traditional group testing.

Our findings were similar for sparser infection regimes (see

results in extended version [20]), and there were cases where

our algorithm performed closer to the community bound (1).

(ii) Non adaptive test designs. In our experiments, we mea-

sured the FN/FP rates achieved by the non-adaptive test

designs and the corresponding decoders. Fig. 4 and Fig. 5

depict FN and FP rates as a function of T ∈ [300, 2100],
respectively. The key takeaways are as follows:

• C-LBP with CCW attains zero FP and FN at 1200 tests

while COMP and NC-LBP with CCW (which are agnostic to

the community structure) attain zero FP and FN only at 1800
and 2100 tests respectively. This illustrates potential benefits

of making the decoder aware of the community structure.

• If we desire a zero FN rate (or if we would like to use a

simple decoder) and we are constrained to use less than 1000
tests, the G1G2 test design with COMP gives the lowest FP

rates. This illustrates the benefit of designing tests matrices

that take into account the community structure.

VIII. CONCLUSION

This work attempted to relax the “independent-infections”

assumption (that is traditionally made) in group testing,

by introducing correlated infections through an overlapping

community structure. In our proposed infection model, an

individual belongs to one or more communities, and the

infection probability depends on the infected communities

(s)he participates in—a model that is suitable for universities

or schools, where students join various classrooms. Given

this model, we derived new lower bounds for the number

of tests needed in order to perfectly identify the status of

each individual, and we provided adaptive and non-adaptive

testing algorithms that incorporate the community structure

in their test designs or decoding. Our algorithms are not

always optimal w.r.t. the lower bounds, but perform signifi-

cantly better than community-agnostic group testing; per our

experiments, they need 30%-65% fewer tests (on average)

to achieve the same identification accuracy. In our opinion,

this result illustrates the important savings that community

structure may offer and shows that it is worth investigating

more sophisticated models and/or algorithms in the future.
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APPENDIX

A. Proof of Theorem 1

Proof. There exist
(

F
kf

)

·
∏

C∈G

∏

d∈DC

(|Vd |
kd
m

)

possible com-

binations of infected members. This is because there are
(

F
kf

)

combinations of infected communities, each of which has the

same chance of occurring, and is associated with a structure

of connected components. In each disjoint set d ∈ DC of

every connected component C ∈ G , there are
(|Vd |
kd
m

)

possible

combinations of infected members, each of which has the same

chance of occurring1.

To achieve zero-error identification, each combination of

infected members must give a different set of test results.

Given that there are only 2T possible results, we need: 2T ≥
(

F
kf

)

·
∏

C∈G

∏

d∈DC

(|Vd |
kd
m

)

, which completes the proof.

B. Proof of Theorem 2

Proof. Let X be the indicator random vector for the infection

status of all communities. By rephrasing [17, Theorem 1], any

probabilistic group testing algorithm using T noiseless tests

can achieve a zero-error reconstruction of U if:

T ≥ H (U) = H (X) + H (U|X)− H (X|U). (5)

The first term is: H (X) =
∑F

e=1 H (Xe) = Fh2 (q).
The second term is calculated as:

H (U|X)
(a)
=

n
∑

v=1

H (Uv|XEv
)

1Note that the product is over all disjoint sets instead of only the infected

ones, because
(|Vd |

kd
m

)

= 1, whenever kdm = 0.

=

n
∑

v=1

∑

x∈{0,1}|Ev |

P(XEv
= x)H (Uv|XEv

= x)

(b)
=

n
∑

v=1

∑

I⊆Ev

q |I|(1− q)|Ev |−|I|H (Uv|XI = 1,XEv\I = 0)

=
n
∑

v=1

∑

I⊆Ev

q |I|(1− q)|Ev |−|I|h2 (
∏

e∈I

(1− pe)),

where in (a), Ev refers to the set of communities member v

belongs to, and in (b) the subset I is the subset of infected

communities in Ev .

Finally, we upper bound the third term as:

H (X|U) ≤
F
∑

e=1

H (Xe |U) =
F
∑

e=1

H (Xe |USe
)

=

F
∑

e=1

P(USe
= 0)h2 (P(Xe = 0|USe

= 0))

=

F
∑

e=1

(1− q + q(1− pe)
|Se|)h2

(

1− q

1− q + q(1− pe)|Se|

)

,

where Se is the set of members who only belong to community

e . Combining all the 3 terms concludes the proof.

C. Proof of Lemma 1

For a non-overlapped non-infected member v that belongs

to only one community, the probability that v is misidentified

as infected is 1− (1−pq)c−1. For an overlapped non-infected

member v that belongs to more than one communities, the

probability that v is misidentified as infected is 1 − (1 −
pq)2(c−1). Note that we assume the decoding of G1 has no er-

rors, i.e., it identifies all non-infected outer sets correctly. Then

for the pairwise overlap structure in the example, the infection

status of all non-overlapped communities and non-overlapped

parts are identified correctly. The COMP decoding of G2 has

no FNs. The expected total number of FPs N0 can be obtained

as N0 ≤
(

1− (1− pq)c−1
)

·N1 +
(

1− (1− pq)2(c−1)
)

·N2,

where the inequality is because the RHS have not used the

testing resluts of G1, N1 and N2 are the expected number of

non-overlapped and overlapped members in infected commu-

nities, respectively. We can calculate N1 as follows,

N1 = (F − 2Fo)q(1− p)M + 2Foq(1− p)(M −Mo), (6)

where (F − 2Fo)q is the expected number of infected non-

overlapped communities, (1−p)M is the expected number of

non-infected members in each infected non-overlapped com-

munity, 2Foq is the expected number of infected overlapped

communities, and (1−p)(M −Mo) is the expected number of

non-infected members in each infected overlapped community.

Similarly, N2 can be calculated as

N2 = Fo

(

1− (1− q)2
)

(1− p)Mo, (7)

where Fo

(

1− (1− q)2
)

is the expected number of overlaps,

and (1− p)Mo is the expected number of non-infected mem-

bers in each overlapped part.


