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Abstract—In this paper, we propose algorithms that leverage a
known community structure to make group testing more efficient.
We consider a population organized in connected communities:
each individual participates in one or more communities, and
the infection probability of each individual depends on the
communities (s)he participates in. Use cases include students
who participate in several classes, and workers who share
common spaces. Group testing reduces the number of tests
needed to identify the infected individuals by pooling diagnostic
samples and testing them together. We show that making testing
algorithms aware of the community structure, can significantly
reduce the number of tests needed both for adaptive and non-
adaptive group testing.

I. INTRODUCTION

A significant challenge to re-open society in the presence
of a pandemic is the need for large scale, reliable testing.
Group testing is a strategy that can help reduce the number of
tests and increase reliability by pooling together diagnostic
samples. Accordingly, it is attracting significant attention:
several countries (India, Germany, US, China) are currently
deploying group testing strategies to help them quickly and
reliably identify infected people [1], [2].

In this paper, we build group testing algorithms around
an idea “whose time has come”: we propose to leverage
a known community structure to make group testing more
efficient. Although traditionally the work in group testing
assumes “independent” infections, we note that today it is
totally feasible to keep track of community structure - several
apps are already doing so [3], [4]. Moreover, our approach is
well aligned with the need for independent grassroots testing
(schools testing their students, companies their workers) where
the community structure is explicit (shared classrooms, shared
common spaces).

We find that taking into account the community structure
can reduce the number of tests we need significantly below
the well known combinatorial bound [5], the best we can hope
for when not taking this structure into account. Moreover, it
enlarges the regime where group testing can offer benefits over
individual testing. Indeed, a limitation of group testing is that
it does not offer benefits when the number of infected people
grows linearly with the size of the population considered [6],
[7]. Taking into account the community structure allows to
identify and remove from the population large groups of
infected members, thus reducing their proportion and con-
verting a linear to a sparse regime identification. However,
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we also find that, although our algorithms do not require
exact knowledge of the infection probabilities, they do need
to correctly know the community structure, and in particular,
the community overlaps: not taking into account the overlaps
(assuming communities are disconnected) can deteriorate the
performance. Our main contributions include:

e We derive a lower bound on the number of tests, that gen-
eralizes the counting bound [5] to overlapping communities.
e We propose a new adaptive algorithm that requires fewer
tests than traditional adaptive algorithms to recover the infec-
tion status of all individuals without error.

e We propose two nonadaptive algorithms that leverage the
community structure to improve reliability over traditional
nonadaptive testing. One leverages the structure at the encoder
side with a novel test design, while the other one accounts for
it at the decoder side with a new decoding algorithm that is
based on loopy belief propagation (LBP) and is generic enough
to work on any structure.

The paper is organized as follows: we give known results
in Section II, our model in Section III, the lower bound in
Section IV, and non-adaptive algorithms in Sections V and VL.
Our numerical evaluation is in Section VII.

II. BACKGROUND

In group testing, a test 7 takes as input samples from n.
individuals, pools them together and outputs a single value:
positive if any one of the samples is infected, and negative if no
one is. More precisely, let U; = 1 when individual ¢ is infected
and 0 otherwise. Y, takes a binary value calculated as Y, =
Vies. Ui, where \/ stands for the OR operator (disjunction)
and J, is the group of people participating in the test.

Traditional group testing assumes a population of n mem-
bers out of which some are infected. Two infection models
are considered: (i) in the combinatorial model, there is a fixed
number of infected members £, selected uniformly at random
among all sets of size k; (ii) in the probabilistic model, each
item is infected independently of all others with probability p,
so that the expected number of infected members is k = np.

Several more detailed setups and various testing algorithms
have been explored in the literature. These include:

e Sparse vs. linear scaling regime: assume k = O(n®), we say
we operate in the linear regime if & = 1; in the sparse regime
if 0 < a < 1; in the very sparse regime if k is constant.

e Adaptive vs. non-adaptive testing: In adaptive testing, we use
the outcome of previous tests to decide what tests to perform
next. An example of adaptive testing is binary splitting, which
implements a form of binary search and is known to be



optimal when the number of infected members is unknown.
Non-adaptive testing constructs, in advance, a test matrix
G € {0,1}T*" where each row corresponds to one test, each
column to one member, and the non-zero elements in each
row determine the set d,. Although adaptive testing generally
requires fewer tests than non-adaptive, non-adaptive testing is
more practical when all tests can be executed in parallel.
Inhere, we reuse the following well-established results (see
[5], [8], [9] and references therein):
e In the combinatorial model, since 7' tests allow to dis-
tinguish among 27 combinations of test outputs, we need
T > log, (}) to identify k randomly infected people out of
n. This is known as the counting bound [5], [8], [9] and
implies that we cannot use less than 7' = O(k log %) tests. In
the probabilistic model, a similar bound has been derived for
the number of tests needed on average: T > nhg (p), where
hg is the binary entropy function.
e Noiseless adaptive testing allows to achieve the counting
bound for k¥ = ©(n®) and 0 < a < 1; for non-adaptive
testing, this is also true of 0 < «a < 0.409, if we allow a
vanishing (with n) error [5], [10], [11].
e In the linear regime (o = 1), group testing offers little ben-
efits over individual testing. In particular, if the infection rate
k/n is more than 38%, group testing does not use fewer tests
than one-to-one (individual) testing unless high identification-
error rates are acceptable [6], [7], [12].

III. MODEL AND NOTATION
A. Community model

Our work extends the above results by assuming an over-
lapping community structure: members may belong to one
or more communities—hence they are infected according to
new combinatorial and probabilistic models that are slightly
different from the traditional ones and depend on how the
communities overlap (Section III-B). Given these new infec-
tion models, new lower bounds can be derived (Section IV)
for both the combinatorial and probabilistic case. Our analysis
shows that these bounds can be significantly lower than the
above-mentioned counting bounds.

More formally, we assume that all members of the entire
population V = {1,2,---,n} are organized in a known
structure, which can be perceived in the form of a hypergraph
G(V,E): each vertex v € V corresponds to an individual, that
we simply call a member, and each edge e € & indicates
which members belong to the same community. Since G is
a hypergraph, an edge may connect any number of vertices;
hence, a member may belong to one or more communities. The
number of communities that a member belongs to is called the
degree of the member. There exist F' communities in total.

The hypergraph G may be decomposed into con-
nected components, where each component C(V¢,E¢) is
a sub-hypergraph. For component C let Do contain the
nonempty subsets of the standard partition of the hy-
peredges in &£¢; in the example of Fig. 1, £¢ con-
sists of 3 hyperedges, and D contains 7 disjoint sets.

For each set d € D¢, let Vy
denote the set of members it
contains. Because of the par-
tition, all members of V; be- ;
long to the same community or
set of communities, which we
denote with &p,—hence, they
all have the same degree. As
described in the next section, these members get infected
according to some common infection principle. We distinguish
2 kinds of sets in D¢: (a) the “outer” sets: D¢ out £
{d € Do : Bb € D¢ s.t. Ey, C Ey,}, and (b) the “inner” sets:
D¢.in = Dc \ D¢ ou- Fig. 1 illustrates the 3 outer (yellow)
and 4 inner (green, blue) sets. Note that the members of inner
sets have always a higher degree than those of the outer sets.

outer O\
sets |

Fig. 1: Standard partition.

B. Infection models

We consider the following infection models, that parallel
the ones in the traditional setup of Section II.

e Combinatorial Model (I). k; of the communities have
at least one infected member (we will call these infected
communities). The rest of the communities have no infected
members. Any combination of infected communities has the
same chance of occurring. In each infected community, there
are k¢ infected members, out of which &% are shared with
a subset of infected communities 7 C £. The infected
communities (resp. infected community members) are chosen
uniformly at random out of all communities (resp. members
that belong to the same communities).

e Probabilistic Model (IT). A community e becomes infected
ii.d. with probability ¢. If a member v of an infected com-
munity e belongs only to that community (i.e. has degree 1),
then it becomes infected w.p. p, = p., independently from the
other members (and other communities). Also, if v belongs
to a subset of infected communities Z C &, it is considered
to be infected by either of these communities. So, given all
the infection rates of these communities {p. : e € T}, we say
that v becomes infected w.p.: p, = 1 — [[,cz(1 — p.). Note
that since each member gets infected by either of the infected
communities it belongs to, the product of the RHS term above
becomes smaller as |Z| increases. Last, if v does not belong
to an infected community, then p, = 0.

We make two remarks: First, although the communities
are infected independently, their structure causes a dependent
infection model; in fact, the way communities overlap de-
termines the infection probability of their shared members.
Second, our model captures situations where infection is
determined by participation in a community rather than the
status of community members. Albeit simplistic, we think that
this model can be useful in real pandemics. Since the exact
community structure of the entire population of a country
or a continent can never be known to the test designer, we
expect that graph G only partially describes the reality: there
might be members that do not belong to V, yet interact with
them in unknown ways, or there might be communities that
are simply not captured due to unknown member interactions.



In such a case, assuming that communities become infected
independently seems a simple yet reasonable model to use.
However, once a few communities in G get infected, we expect
that the infection probability of a member will increase with
the number of infected communities it belongs to, which is
captured by our model in the computation of p,.

Non-overlapping communities: A special case of our com-
munity framework is when the communities have no overlap;
this scenario is investigated in our prior work [13], [14], where
algorithms that take into account the non-overlapping structure
are explored. In our experiments, however, these algorithms do
not always perform well when communities overlap (e.g. see
Fig. 3); in fact, there may be cases where they perform worse
than traditional group testing. Also, the idea of using side-
information from a community structure in decoding of group
tests has been identified in [15], [16], independently from this
work. That work is complementary to ours; we focus more
on test designs rather than decoding, for which we use well-
known algorithms such as COMP and LBP.

IV. LOWER BOUND ON THE NUMBER OF TESTS

We compute the minimum number of tests needed to
identify all infected members under the zero-error criterion in
both community models (I) and (II). All proofs can be found
in the Appendix.

Theorem 1 (Community bound for combinatorial model (I)).
Any algorithm that identifies all k infected members without
error requires a number of tests T satisfying:

F Vv
T > log, (kf) + Z Z log, (|k;1di|>’ (D

CeG deDe

where |V4| (resp. kfn) is the number of members (resp.
infected members) of each disjoint set d in D¢.
Observation: Consider a usual epidemic scenario, where
the population is composed of a large number of communities
with members that have close contacts (e.g. relatives, work
colleagues, students who attend the same classes, etc.). In
such a case, one should expect that most all members of each
infect community are infected, even though the number of
infected communities k; and the overall number of infected
members £ may still follow a sparse regime (i.e., kf = O(F)
and £ = ©(n®) for ay,a € [0,1)). Theorem 1 shows
the significant benefit of taking the community structure into
account in the test design: the community bound increases
almost linearly with k;, as opposed to k, which is what
happens with the traditional counting bound (that does not
account for any community structure). This is due to the
second term of Equation (1) tending to 0 and log, (,1; ) ~

kg log, % ~ (1 —ay)kslog, F.
Theorem 2 (Community bound for probabilistic model (I)).

Any algorithm that identifies all infected members without
error requires a number of tests T satisfying:

T > Fha(q) + zn: > a1 =) hy (T - pe))

v=1ZC¢, ecel

F

_ _ NN -9

;(1 C]+Q(1 pe> )h,@ (1_q+q(1_pe)se|)a
(2)

where &, is the set of communities that member v belongs to,
T is the subset of infected communities in &,, S, is the set of
members who only belong to community e.

Theorem 2 extends from zero-error recovery to constant-
probability recovery, if we apply Fano’s inequality in a similar
way to Thm 1 of [17]—in that case the right-hand side of (2)
is multiplied by the desired probability of correctly identifying
all infected members.

V. ALGORITHMS

In this section, we provide group-testing algorithms for the
noiseless case that leverage the community structure. We start
from adaptive algorithms and then proceed to non-adaptive.

A. Adaptive algorithm

Algorithm 1 describes our adaptive algorithm. It is built
on top of traditional adaptive testing,which we will generally
denote as AdaptiveTest(). AdaptiveTest() is an abstraction
of any existing (or future) adaptive algorithm that assumes
independent infections. We distinguish 2 different inputs for

Algorithm 1 Adaptive Community Testing (G (V, £))

U, is the estimated infection state of member v (“4” or “-7).
U, is the estimated infection state of a mixed sample z.
1: for d € D¢ out, VC € G do
2: rq < SelectRepresentatives (Vq)
3: end for
4: ﬁz(Td)} — AdaptiveTest ({z(rq})
5: Set A:=10)
6: for C € G do
7: for d EA DC,out do

8: if U,(,,) = “positive” then
9: Individually test Vy: U, < U,, Yv € Vy.
10: ﬁd A 1/W‘i| ' Zvevd 1{Uv: ’positive’}
11: else
12: A+ AU{v:veV}
13: end if
14: end for
15: for b € D¢ iy (in increasing order of degree) do
16: if 3d € D¢ s.t. &y, C &y, & pa > 0 then
17: Individually test Vy: U, < U,, Vv € V.
18: Po /il - ZveVb 1{U'u: “positive’ }
19: else
20: A—AU{v:veW}
21: end if
22: end for
23: end for

24: {f]v RS A} = AdaptiveTest (A)
25: return [Ul,..., f]n}




AdaptiveTest(): (a) a set of members; or (b) a set of mixed
samples. A mixed sample is created by pooling together
samples from multiple members. For example, mixed sample
z(rq) is an pooled sample of some representative members 74
from disjoint set d. Because we only care whether a mixed
sample is positive or not, we can treat it in the same way as
an individual sample—hence use group testing to identify the
state of mixed samples as we do for individuals.

Part 1: For each component of the graph G, we first identify
the outer sets D¢, 0. Then, from each outer set d, we select
a representative subset of members r4, whose samples are
pooled together into a mixed sample z(74). There can be many
selection methods for SelectRepresentatives(); however, we
typically use uniform (random) sampling without replacement.
Finally, we determine the state of all mixed samples (line 4).
Part 2: We treat (ffz(m) as a rough estimate of the infection
regime inside each set d: if (A]Z(m) is positive, we consider d
to be heavily infected and we individually test its members
(line 9); otherwise, we consider it lightly infected and we
include its members in set A (line 12). For our rough estimate
of the infection regime to be a good one, we choose the
number of representatives based on some prior information
about infection rate of each outer set; for example if p. < 38%
then only one representative is enough, otherwise pooling
together the entire set is one’s best option. Note that the exact
knowledge of p. and a rough prior may be easily acquired. For
example, in realistic scenarios, where the infection rates are
not expected to be very low inside the communities, pooling
together the entire outer set is a good heuristic.

Due to individually testing the heavily-infected outer sets,
we obtain more accurate estimates of their infection rates, pq,
by computing the average proportion of infected members (line
10). We use these estimates to decide how to test the inner
sets of the component: if an outer set d exists whose members
belong to a subset of communities in &y, and its estimated
infection rate py is above a threshold 6, then members of
Vy are tested individually (line 17) and a new estimate py
for the infection rate of that set is computed (line 18). Else,
members of V), are included in set A. Our rationale follows
the infection model described in Section III-B, which implies
that the infection probability of the members of an inner set
b will always be at least equal to the infection probability of
the members (of an outer set d) whose community(ies) are a
subset of &y,. Hence, if an outer set is heavily infected then
a corresponding inner set will be heavily infected, too. In our
experiments, we numerically examine the impact of 6.

Finally, we test all members of set A that are not tested
individually (because infection probability is presumably low)
using traditional group testing (line 23).

B. Non-adaptive algorithms

For simplicity, we describe our non-adaptive algorithm
using the symmetric case.

Test Matrix: We divide the (73 + T2) x n matrix G into
two sub-matrices G and Go of sizes 77 X n and T5 X n.

> The sub-matrix G; identifies the non-infected outer sets
using one mixed sample for each outer set (Section III-A). If
the number of tests available is large, we set 77 to be the
number of outer sets, i.e., we use one test for each outer
set; otherwise, in sparse k; regimes, 7 can be closer to
O(ky log kEf)

> Assume that 75 = %, for some constant ¢. The sub-matrix
G of size T x n has one “1” in each column (each of the n
member participates in one test) and ¢ “1”’s in each row (each
test pools together ¢ members); equivalently, G is a concate-
nation of ¢ identity matrices I, i.e., Go = [I1, Ip, - - Ip,].
For ¢ = 1, this reduces to individual testing. The design of Go
amounts to deciding which members are placed in the same
test. We propose that no two members from the same outer set
are placed in the same test and that members from the same
inner set are placed in the same test (¢ members in each test).

Decoding: We use the test outcomes of G to identify the
non-infected outer sets and proceed to remove the correspond-
ing columns from Gs. We next use the remaining columns of
G2 and combinatorial orthogonal matching pursuit (COMP)
to identify the infected members, namely: (i) A member is
identified as non-infected if it is included in at least one
negative test in Go. (i4) All other members, that are only
included in positive tests in Go, are identified as infected.

Intuition: Suppose infected communities have a large per-
centage (say > 40%) of infected members. The idea is that
pooling together multiple highly correlated items in the same
test (such as people in the same outer/inner set) enables COMP
to mark all these items as non-defective in case of a negative
result.

Example: We here illustrate for a special case our proposed
design for matrix Go and the resulting error rate our algorithm
achieves. Assume that we have F' communities, where 2F,
communities pairwise overlap (each community overlaps with
exactly one other community) and the remaining F' — 2F,
communities do not overlap with any other community. As-
sume each community has M members, and overlapping
communities share M, members. We construct the sub-matrix
G, of size T5 x n as in the following example that uses ' = 6,
Fo=2,M=3 M,=1:

13 13
L I
L L
I I
F—2F,
C

G2=

This matrix starts with b; = block-rows that
each contains c identity matrices s, one corresponding to
each non-overlapping community. We then have b, = %
block-rows each containing ¢ identity matrices Iopr—ps,, One
for each pair of overlapping communities. Each Iaps—pz,
matrix contains three matrices Ips_pr, Ip,, and Ipns_pg,
corresponding to the members that belong only in one of
the communities, or in both. Note that F' = (b; + 2b3)c and
To =0 M + b2(2M — MO).

Error Rate: Note that our decoding strategy leads to zero
FN errors. The following lemma provides an analysis of the
error (FP) rate for the design of Gy in the example which is
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Fig. 2: (a). Error rate for Bernoulli design vs G1 G2 design for
the example. (b). An example of factor graph.

defined as: R(error) £ 1/n - |[{v : U, # U,}|. We provide the
expected error rate for only the probabilistic model (II) for
the purpose of comparison with traditional Bernoulli design
in Fig. 2(a).

Lemma 1. For Gy as in the example, the error rate is
calculated for the probability model (Il) as:

Ryy(error) = %[(1 -—(1- pq)c_l) - Ny

+ (1 -(1- pq)Q(cfl)) 'Nz}v )

where N1 and No are the expected number of non-overlapped
and overlapped members in infected communities that are non-
infected, respectively, and can be obtained as

Ny = (F —2F,)q(1 = p)M +2Foq(1 — p)(M — M,)
Ny =F,(1—(1-¢)*) (1 -p)M,.

The error rate of traditional group testing using Bernoulli
design (with parameter %) and COMP decoding has an error
rate of Ryadition(error) = 1/n-(n—k) (1 — 1/k(1 — 1/k)*) T
Fig. 2(a) depicts R(error) for parameters F' = 150, F, = 60,
M =10, M, =2, ¢ =0.2, and p = 0.2.

VI. LOOPY BELIEF PROPAGATION DECODER

Apart from COMP, we also use loopy belief propogation
(LBP [18]) to infer the infection status of the individual (and
communities). LBP forms an estimate of the posterior prob-
ability that an individual (or a community) is infected, given
the test results. This estimate is exact when the underlying
factor graph describing the joint distribution is a tree, however
this is rarely the case. Nevertheless, it is an algorithm of
practical importance and has achieved success on a variety
of applications. Also, LBP offers soft information (posterior
distributions), which is more useful than hard decisions in the
context of disease-spread management.

We use LBP for our probabilistic model, because it is
fast and can be easily configured to take into account the
community structure. Many inference algorithms exist that
estimate the posterior marginals, some of which have also
been employed for group testing. For example, GAMP [15]
and Monte-Carlo sampling [19] yield more accurate decoders.
The main focus of this work is to examine whether benefits
from accounting for the community structure (both at the test

design and the decoder) exist; hence we think that considering
a simple (possibly sub-optimal) decoder based on LBP is a
good first step; we defer more complex designs to future work.
We next describe the factor graph and the belief propagation
update rules for our probabilistic model (II). Let the infection
status of each community e be X, ~ Ber(¢). Moreover, let
S, denote the set of communities that U, belongs to. Then:

P(X1,..., Xp, Uy ooy Up, Y1,..,Y7) =
F n T
[Texo) ] P(UuIXs,) [ PO Us,). @
e=1 v=1 =1

where 9§, is the group of people included in test 7. Equation (4)
can be represented by a factor graph, where the variable nodes
correspond to the variables X., U,, Y, and the factor nodes
correspond to P(X.),P(U,|Xs, ), P(Y;| Us,); Fig. 2(b) shows
an example of 2 communities, 4 members and 2 tests.

Given the result of each test is y., i.e., Y. = y,, LBP
estimates the marginals P(X. = v|Y; = y1,...,Yr = yr) and
P(U, = u|Y1 = y1,..., Y = yr), by iteratively exchanging
messages across the variable and factor nodes. The messages
are viewed as beliefs about that variable or distributions (a
local estimate of P(variable|observations)). Since all random
variables are binary, each message is a 2-dimensional vector.

We use the factor graph framework from [18] to compute the
messages: Variable nodes Y, continually transmit the message
[0,1] if y, = 1 and [1,0] if y, = 0 on its incident edge, at
every iteration. Each other variable node (X. and U,) uses
the following rule: for incident edge €, the node computes the
elementwise product of the messages from every other incident
edge and transmits this along e. For the factor node messages,
we derive closed-form expressions for the sum-product update
rules (akin to equation (6) in [18]). The exact messages are
described in the Appendix of our extended version [20].

VII. NUMERICAL EVALUATION

In this section, we evaluate the benefit of accounting for the
community structure, in terms of error rate and number of tests
required, using 100 random structures, each having n = 3000
members participating in about 200 overlapping communities.
Experimental setup. We generate each structure using the
following rules: the size of each community is selected uni-
formly at random from the range [15,25], and each member
is randomly allocated in at most 4 communities (according to
a geometric distribution). Then, the members become infected
according to the probabilistic model (II): each community e
gets infected w.p. ¢ = 0.05; and if infected, then its infection
rate p. is randomly chosen from the interval [0.3,0.9]. We
remark that our experimental setup yields a linear infection
regime; the fraction of infected members about 5% overall.
We preferred such a setup in order to stress the performance
of our algorithms, as we know that group testing generally
shows less benefits in linear regimes.

For the adaptive algorithms, we compare: the binary split-
ting algorithm (BSA) [5], which is the best traditional alter-
native when the number of infected members is unknown; the
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Fig. 3: Average number of tests compar-
ison of various adaptive algorithms and
combinatorial bound. Here n = 3000,
F ~ Uniform[15,25], ¢ = 0.05, p. ~
Uniform[0.3, 0.9].

algorithm proposed in [13] that considers communities but no
overlap; and Alg. 1 with BSA in the place of AdaptiveTest().
For the non-adaptive test matrix designs, we compare:
G1G4, our proposed test design in Section V-B; and CCW,
constant-column-weight algorithms, where each item is in-
cluded in a fixed number w of tests selected uniformly at
random. w is assumed to be of the form w = a%, where k is
an estimate of the number of defectives in the population. We
exhaustively search to find the best value of a € [0, 1].

We also compare LBP and COMP decoding: C-LBP is our
proposed algorithm in section VI, that takes into account the
community structure. NC-LBP, does not take into account
the community structure, i.e., assumes that each individual is
i.i.d infected with the same probability p;;q. COMP, described
in [5], has a zero FN probability by design.

Results.

(i) Adaptive test designs. For each community structure, we
measured the number of tests needed by each algorithm to
achieve zero-error identification. Since Alg. 1 depends on 6,
the threshold used at line 16, we evaluated its performance for
various values of . Figure 3 depicts the average performance
of our algorithm (for each 6, we average over 100 randomly
generated structures). Alg. 1 was proved resilient to the choice
of 6§ and needed on average > 55% fewer tests than the other
algorithms. Its performance was also better than the counting
bound, which is our best hope with traditional group testing.
Our findings were similar for sparser infection regimes (see
results in extended version [20]), and there were cases where
our algorithm performed closer to the community bound (1).

(i) Non adaptive test designs. In our experiments, we mea-
sured the FN/FP rates achieved by the non-adaptive test
designs and the corresponding decoders. Fig. 4 and Fig. 5
depict FN and FP rates as a function of T' € [300,2100],
respectively. The key takeaways are as follows:

e C-LBP with CCW attains zero FP and FN at 1200 tests
while COMP and NC-LBP with CCW (which are agnostic to
the community structure) attain zero FP and FN only at 1800
and 2100 tests respectively. This illustrates potential benefits
of making the decoder aware of the community structure.

e If we desire a zero FN rate (or if we would like to use a

Fig. 4: FN rate comparison of various
non-adaptive test designs with corre-
sponding decoding algorithms. Here n =
3000, F' ~ Uniform[15,25], ¢ = 0.05,
Pe ~ Uniform[0.3, 0.9].

Fig. 5: FP rate comparison of various
non-adaptive test designs with corre-
sponding decoding algorithms. Here n =
3000, F' ~ Uniform[15,25], ¢ = 0.05,
pe ~ Uniform|[0.3,0.9].

simple decoder) and we are constrained to use less than 1000
tests, the GG1 G2 test design with COMP gives the lowest FP
rates. This illustrates the benefit of designing tests matrices
that take into account the community structure.

VIII. CONCLUSION

This work attempted to relax the “independent-infections”
assumption (that is traditionally made) in group testing,
by introducing correlated infections through an overlapping
community structure. In our proposed infection model, an
individual belongs to one or more communities, and the
infection probability depends on the infected communities
(s)he participates in—a model that is suitable for universities
or schools, where students join various classrooms. Given
this model, we derived new lower bounds for the number
of tests needed in order to perfectly identify the status of
each individual, and we provided adaptive and non-adaptive
testing algorithms that incorporate the community structure
in their test designs or decoding. Our algorithms are not
always optimal w.r.t. the lower bounds, but perform signifi-
cantly better than community-agnostic group testing; per our
experiments, they need 30%-65% fewer tests (on average)
to achieve the same identification accuracy. In our opinion,
this result illustrates the important savings that community
structure may offer and shows that it is worth investigating
more sophisticated models and/or algorithms in the future.
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APPENDIX
A. Proof of Theorem 1
Proof. There exist ( ) [leealicn, (|V ‘) possible com-

binations of infected members This is because there are (F )
combinations of infected communities, each of which has the
same chance of occurring, and is associated with a structure
of connected components. In each disjoint set d € Do of
every connected component C' € G, there are ('V" |) possible
combinations of 1nfected members, each of which has the same
chance of occurring'.

To achieve zero-error identification, each combination of
infected members must give a different set of test results.
Given that there are only 27 possible results, we need: 27 >

(r ) Meec aep. (‘:d ‘) which completes the proof. [
B. Proof of Theorem 2

Proof. Let X be the indicator random vector for the infection
status of all communities. By rephrasing [17, Theorem 1], any
probabilistic group testing algorithm using 7' noiseless tests
can achieve a zero-error reconstruction of U if:

T > H(U) = H(X)+ H(UX) - H(X|U). %)
The first term is: H(X) = Zle H(X.) = Fha(q).
The second term is calculated as:
HUX)? S HU,[Xe,)
v=1

Note that the product is over all disjoint sets instead of only the infected

v
ones, because (‘kd‘il) = 1, whenever ki, = 0.
m

n
> 2
v=1xc{0,1}&vl

® Z Z qm

P(Xe, = x)H(U,|Xg, = x)

‘£w|_‘IlH(U |XI =1 XSU\I - )

v=11CE&,
= Z Z ¢ - q)'gv‘_mhg(H(l —p.)),
v=11CE, c€T

where in (a), &, refers to the set of communities member v
belongs to, and in (b) the subset Z is the subset of infected
communities in &,.

Finally, we upper bound the third term as:

F F
H(X[U) <> H(X.|U)=> H(X.|Us,)
F B B
=Y P(Us, = 0)hs(P(X, = 0|Us, = 0))

o
Il
-

I
E

(1—q+q(1—pe)he (1 - q+1q(_1q_p )|se> ’

where S, is the set of members who only belong to community
e. Combining all the 3 terms concludes the proof. O

e=1

C. Proof of Lemma 1

For a non-overlapped non-infected member v that belongs
to only one community, the probability that v is misidentified
as infected is 1 — (1 —pq)°~L. For an overlapped non-infected
member v that belongs to more than one communities, the
probability that v is misidentified as infected is 1 — (1 —
pq)%(¢=1 . Note that we assume the decoding of G has no er-
rors, i.e., it identifies all non-infected outer sets correctly. Then
for the pairwise overlap structure in the example, the infection
status of all non-overlapped communities and non-overlapped
parts are identified correctly. The COMP decoding of Go has
no FNs. The expected total number of FPs /Ny can be obtained
as No < (1= (1= pg)°1) - Ny + (1 — (1 — pg)2c=1)) - N,
where the inequality is because the RHS have not used the
testing resluts of G, Ny and N are the expected number of
non-overlapped and overlapped members in infected commu-
nities, respectively. We can calculate N; as follows,

Ny = (F —2F,)q(1 —p)M +2F,q(1 — p)(M — M,), (6)

where (F' — 2F,)q is the expected number of infected non-
overlapped communities, (1 —p)M is the expected number of
non-infected members in each infected non-overlapped com-
munity, 2F,q is the expected number of infected overlapped
communities, and (1—p)(M — M,) is the expected number of
non-infected members in each infected overlapped community.
Similarly, Ny can be calculated as

Ny =F,(1—-(1-9)) (1—p)M,, (7)

where F, (1 — (1 — ¢)?) is the expected number of overlaps,
and (1 — p)M, is the expected number of non-infected mem-
bers in each overlapped part.



