Demanded Abstract Interpretation

Benno Stein Bor-Yuh Evan Chang’ Manu Sridharan
University of Colorado Boulder University of Colorado Boulder University of California, Riverside
USA Amazon USA
benno.stein@colorado.edu USA manu@cs.ucr.edu

evan.chang@colorado.edu

Abstract

We consider the problem of making expressive static ana-
lyzers interactive. Formal static analysis is seeing increas-
ingly widespread adoption as a tool for verification and bug-
finding, but even with powerful cloud infrastructure it can
take minutes or hours to get batch analysis results after a
code change. While existing techniques offer some demand-
driven or incremental aspects for certain classes of analysis,
the fundamental challenge we tackle is doing both for arbi-
trary abstract interpreters.

Our technique, demanded abstract interpretation, lifts pro-
gram syntax and analysis state to a dynamically evolving
graph structure, in which program edits, client-issued queries,
and evaluation of abstract semantics are all treated uniformly.
The key difficulty addressed by our approach is the appli-
cation of general incremental computation techniques to
the complex, cyclic dependency structure induced by ab-
stract interpretation of loops with widening operators. We
prove that desirable abstract interpretation meta-properties,
including soundness and termination, are preserved in our
approach, and that demanded analysis results are equal to
those computed by a batch abstract interpretation. Experi-
mental results suggest promise for a prototype demanded ab-
stract interpretation framework: by combining incremental
and demand-driven techniques, our framework consistently
delivers analysis results at interactive speeds, answering 95%
of queries within 1.2 seconds.

CCS Concepts: - Theory of computation — Program
analysis; « Software and its engineering — Formal soft-
ware verification.

“Bor-Yuh Evan Chang holds concurrent appointments at the University of
Colorado Boulder and as an Amazon Scholar. This paper describes work
performed at CU Boulder and is not associated with Amazon.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

PLDI °21, June 20-25, 2021, Virtual, Canada

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8391-2/21/06.
https://doi.org/10.1145/3453483.3454044

282

Keywords: Abstract interpretation, Incremental computa-
tion, Demand-driven query evaluation, Demanded fixed-
points

ACM Reference Format:

Benno Stein, Bor-Yuh Evan Chang, and Manu Sridharan. 2021. De-
manded Abstract Interpretation. In Proceedings of the 42nd ACM
SIGPLAN International Conference on Programming Language Design
and Implementation (PLDI "21), June 20-25, 2021, Virtual, Canada.
ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/3453483.
3454044

1 Introduction

Static analysis is seeing increasing real-world adoption for
verification and bug finding, particularly as part of continu-
ous integration (CI) and code review processes [9, 36]. How-
ever, a pain point with these deployments is that developers
cannot get quick local analysis results for code they are edit-
ing; ideally, updated results would appear nearly instantly
in their IDE. In this paper, we present an interactive analysis
engine designed to handle local queries and edits efficiently,
which can complement a batch engine that exhaustively an-
alyzes a fixed program, for example by quickly verifying
whether a local change silences an alarm raised in CIL.

The well-known techniques of demand-driven analysis
and incremental analysis help address this challenge. De-
mand-driven analyses compute only those results needed to
answer a set of extrinsicially-provided queries, while incre-
mental analyses speed up re-analysis of an edited program by
re-using as many previously-computed results as possible.

Powerful frameworks for incremental (e.g., [5, 48]) or
demand-driven (e.g., [24]) static analysis do exist, but nearly
all such frameworks target restricted analysis domains (e.g.,
finite or finite-height domains), whereas well-known anal-
yses like octagon and shape analysis require an infinite-
height abstract domain. There are also approaches to adapt
summary-based analyses to offer coarse-grained method-
or file-level incrementality (e.g., [9, 14, 18]). Though these
approaches effectively scale to industrial codebases in CI
pipelines, they are not intended to achieve real-time interac-
tivity during the development process.

In contrast, our aim is to support fine-grained incremental
and demand-driven analysis over arbitrary abstract domains
expressed in general-purpose languages, thus enabling the
reuse of existing optimized abstract domain implementations
at interactive speeds. To our best knowledge, no general


https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3453483.3454044
https://doi.org/10.1145/3453483.3454044
https://doi.org/10.1145/3453483.3454044

PLDI 21, June 20-25, 2021, Virtual, Canada

technique exists to automatically compute a demand-driven
or incremental version of an arbitrary abstract interpretation
with arbitrary widening operators, a key requirement to
ensure termination in more complex analyses.

This paper presents demanded abstract interpretation, an
abstract interpretation framework with first-class support for
both demand-driven and incremental analysis. We build on
abstract interpretation [11], which provides a methodology
for expressing static analyses and guaranteeing their correct-
ness, and take inspiration from work on general incremental
computation using “demanded computation graphs” [22].

Our framework reifies the abstract interpretation (Al) of a
program as a dynamically evolving demanded abstract inter-
pretation graph (DAIG), which explicitly represents program
statements, abstract states, and the dependency structure of
analysis computations. In this representation, program edits,
client-issued queries, and the evaluation of abstract seman-
tics can all be treated uniformly. Cyclic control flow is a key
difficulty for this approach, since cyclic dependencies lead to
unclear evaluation semantics. We define an operational se-
mantics for DAIGs that preserves an acyclic invariant while
modifying and extending the graph on demand, thus soundly
analyzing loops with guaranteed termination, assuming ter-
mination of the underlying abstract interpretation.

The DAIG encoding and evaluation enables efficient ab-
stract interpretation in an interactive mode, analyzing a min-
imal number of statements to respond to queries with maxi-
mal reuse of previously-computed results. In particular, this
paper makes the following key contributions:

e We introduce a framework for demanded abstract interpre-
tation in which program syntax and analysis computation
structure are reified into demanded abstract interpretation
graphs (DAIGs) (Section 4).

e We specify an operational semantics for DAIGs that real-
izes incremental updates and demand-driven evaluation
via demanded unrolling of abstract interpretation fixed-
point computations (Section 5).

e We prove that demanded abstract interpretation preserves
soundness and termination, and that its results are from-
scratch consistent with classical abstract interpretation by
global fixed-point iteration (Section 6).

e We provide evidence for the expressivity and efficacy of
demanded abstract interpretation using a prototype frame-
work instantiated with interval, octagon, and shape do-
mains (Section 7). In our experiments, DAIGs support
context-sensitive interprocedural analysis at interactive
speeds, answering 95% of queries within 1.2 seconds.

2 Overview

Fig. 1 shows a simple imperative program that appends two
linked lists. Given well-formed (i.e., null-terminated and
acyclic) input lists p and g, append must return a well-formed
list and not dereference null in order to be correct. These

283

Benno Stein, Bor-Yuh Evan Chang, and Manu Sridharan

function append(p: List, q: List): List {

' if (p == null) {

4 return q; }

2 var r: List = p;

l3 while (r.next != null) {
ly r = r.next; }

s r.next = q;

I return p;

b}

Figure 1. A procedure to append two linked lists. The labels
¢; mark program locations in its control flow.

properties can be verified using a separation logic, abstract
interpretation-based shape analysis [7, 15, 27], tracking facts
like 1seg(p, null) to represent well-formedness of list p. Our
goal is to enable interactive performance for arbitrary ab-
stract interpretations, including such analyses, in response
to a user’s edits and queries.

In this section, we illustrate our approach to demanded
abstract interpretation by example. We demonstrate how ab-
stract interpretation of forwards control flow is reified in a
DAIG (Section 2.1), and then show how the DAIG supports
both demand-driven and incremental interactions with the
underlying abstract interpretation (Section 2.2). Finally, we
highlight key difficulties introduced by cyclic control flow,
show how analysis thereof can be encoded acyclically, and
demonstrate how our operational semantics evolve the DAIG
on-demand to soundly compute fixed points (Section 2.3).

2.1 Reifying Abstract Interpretation in DAIGs

The append procedure from Fig. 1 may equivalently be rep-
resented as a control-flow graph (CFG) as shown in Fig. 2,
with vertices for program locations and edges labelled by
atomic program statements.! A classical abstract interpreter
analyzes such a program by starting with some initial ab-
stract state at the entry location and applying an abstract
transfer function Hﬁ to interpret statements, a join operator
U at nodes with multiple predecessors, and a widen operator
V at cycles as needed until a fixed point is reached.

The demanded abstract interpretation graph (DAIG) shown
in Fig. 3 reifies the computational structure of such an ab-
stract interpretation of the Fig. 2 CFG. Its vertices are unique-
ly-named mutable reference cells containing program syntax
or abstract state, and its edges fully specify the computations
of an abstract interpretation. Names identify values for reuse
across edits and queries, and hence must uniquely identify
the inputs and intermediate results of the abstract interpreta-
tion. In Fig. 3 and throughout this paper, underlined symbols
denote a name derived from that symbol: hashes, essentially.

! As is standard, we have simply broken down the guard conditions from if
and while into assume guard statements for each side of a branch.



Demanded Abstract Interpretation

assume p != null;

assume
p == null;

assume
r.next != null;

r = r.next;
assume

r.next == null;

Figure 2. The control-flow graph (CFG) of the append pro-
cedure from Fig. 1.

Lt

assume
p == null;

btz

Bk

~ _ _{3-to-fy-to-£3 loop body _ .~

605
Bk

€5 r.next == null;
1'£ret =

T L Gl

’ \ |

(i @)
[1 L
\

Lo liet

Figure 3. A demanded abstract interpretation graph (DAIG)
for the program given in Fig. 1 before any queries are issued.
The elided loop encoding is shown in Fig. 4c.

To encode abstract interpretation computations, DAIG
edges are labelled by a symbol for an abstract interpretation
function and connect cells storing the function inputs to the
cell storing the output, capturing the dependency structure
of the analysis computation.? For example, the computation
of the abstract transfer function over the CFG edge €, — ¢;
is encoded in Fig. 3 as a DAIG edge with input cells £, and
o - {1 (respectively containing the fixed-point state at €,

ZMore precisely, DAIGs have hyper-edges, since they connect multiple
sources (function inputs) to one destination (function output).

284

PLDI ’21, June 20-25, 2021, Virtual, Canada

and the corresponding statement sy: assume(p null)),
labelled by the abstract transfer function symbol [-]¥.

2.2 Demand-Driven and Incremental Analysis

Next, we demonstrate how a DAIG encoding naturally sup-
ports demand-driven and incremental analysis. We use the
aformentioned shape-analysis domain for our example, a sep-
aration logic-based domain with a “list segment” primitive
1seg(x, y) that abstracts the heaplet containing a list segment
from x to y.> This domain is of infinite height, absent a best
abstraction function, and with complex widening operators,
and therefore incompatible with previous frameworks that
restrict the domain form.

In Fig. 4a, we show the result of evaluating a demand
query on our example DAIG. Suppose a client issues a query
for the 1-€,et cell in Fig. 3, the abstract state corresponding to
the retu rn_q statement at ¢; in Fig. 1. Since the 1-£,.¢ cell has
predecessors ¢1-{et and {1, we issue requests for the values
of those cells. Cell £; is empty, but depends on £y-£; and £,
so more requests are issued. Both of those cells hold Value;,
so we can compute and store the value of {;. Now, having
satisfied its dependencies, we can compute the value of 1-£ye,
as shown in Fig. 4a. Note that DAIGs are always acyclic, so
this recursive traversal of dependencies is well-founded.

Crucially, these results are now memoized for future in-
cremental reuse; a subsequent query for £, for example,
will memo match on 1-£,¢ and only need to compute 2- £,
and its dependencies from scratch. This fine-grained reuse of
intermediate abstract interpretation results is a key feature
of the DAIG encoding for demand-driven analysis.

To handle developer edits to code, DAIGs are also natu-
rally incremental, efficiently recomputing and reusing analy-
sis results across multiple program versions, following the
incremental computation with names approach [21].

Consider a program edit which adds a logging statement
print("p is null") just before the return at £; in Fig. 1. Intu-
itively, program behaviors are unchanged at those locations
unreachable from the added statement, so an incremental
analysis should only need to re-analyze the sub-DAIG reach-
able from the new statement.

Fig. 4b illustrates this program edit’s effect on the DAIG.
The green nodes correspond to the added statement cell £;-¢;
and its corresponding abstract state cell £;. Nodes forward-
reachable from the green nodes — those marked in red — are
invalidated (a.k.a. “dirtied”) by our incremental computation
engine. In particular, cells £;-{iet and {e¢ containing abstract
states ¢’ and ¢, respectively, are dirtied.

Crucially, while nodes are dirtied eagerly, they are recom-
puted from up-to-date inputs lazily, only when demanded.
That is, the DAIG encoding allows our analysis to avoid con-
stant recomputation of an analysis as a program is edited,
instead computing results on demand while soundly keeping

3That is, a sequence of iterated next pointer dereferences from x to y.



PLDI 21, June 20-25, 2021, Virtual, Canada

-t
Gt 2] s b
assume _ 1seg(q, null)
p == null; | | ¥0° 1seg(p, null)
Gle ]
1seg(q, null)
A p=null

At
1 1-lret

1seg(ret, null) (Y
A p = null Lret | @

(b) Incremental edit

(a) Demand-driven query

assume
r.next != null;

A

Benno Stein, Bor-Yuh Evan Chang, and Manu Sridharan

(c) Cyclic control flow and demanded fixed points

Figure 4. Demanded abstract interpretation: (a) Demanding a value for 1., recursively triggers demand for its dependencies

and is resolved by computing its value from the statements in £,-¢; and ¢; - €\ and the initial state ¢, in {5. We show only the
relevant subgraph here, but this operation occurs in the full DAIG of Fig.? (b) DAIG from Fig. 3 updated to reflect nodes added
(£1-¢7 and ¢7) and potentially affected (1-¢ret and ¢ret) by the edit in Section 2.2. All other nodes are unchanged. (c) DAIG for
the £3-to-4-to-¢; loop of Fig. 2 after one gmandaunrolling, with the new DAIG region shown in red and the (removed)
pre-unrolling fix edge shown in dotted grey. Note that cells containing program syntax are not duplicated. The DAIG with the
black vertices and edges along with the grey edge (but not the red ones) is the initial sub-DAIG for the dashed ellipse in Fig. 3.

track of which intermediate results — possibly from a previ-
ous program version — are available for reuse. For example,
assuming that ¢; and 2-£,.; were both computed before the
edit, a query for Cret must execute only two transfers and
one join: the red and green edges of Fig. 4b. This represents
a significant savings over recomputing the entire analysis
— including the loop fixed point — as would be necessary
without incremental analysis.

If desired, an auxiliary memoization (memo) table can
also be used to cache computations independent of program
locations to enable further incrementalization, with names
based on the input values (e.g., memoizing [so]#(¢o) in a cell

named [-]* - s, - @). As with batch analysis, it is sound to
drop cached results from the DAIG and/or memo table and
later recompute those results if needed, trading efficiency of
reuse for a lower memory footprint.

2.3 Cyclic Control Flow and Demanded Fixed Points

As shown in Section 2.1, encoding program structure and
analysis data-flow into a dependency graph is relatively
straightforward when the control-flow graph is acyclic. How-
ever, when handling loops or recursion, like lines ¢35 and ¢4
in Fig. 1, an abstract interpreter’s fixed-point computation is
inherently cyclic. Properly handling these cyclic control-flow
and data-flow dependency structures is the crux of realizing
demanded abstract interpretation. For instance, introducing
cyclic dependencies in the DAIG yields an unclear evaluation
semantics. The key insight we leverage is that we can instead
enrich the demand-driven query evaluation and the incre-
mental edit semantics to dynamically evolve DAIGs such
that each step preserves the acyclic dependency structure

285

invariant. To do so, we use a distinguished edge label (fix) to
indicate a dependency on the fixed-point of a given region
of the DAIG, which is then dynamically unrolled on-demand
by query evaluation and rolled by incremental edits.

The details are formalized in Section 5; we proceed here
by example on the demanded abstract interpretation of the
append program of Fig. 2. Consider Fig. 4c, and focus on
the black and grey vertices and edges, ignoring the red for
the moment. Rather than encoding the CFG back edge from
{4 to {3 directly into the DAIG (violating acyclicity in the
process), the {3-to-£4-to-f3 loop is initially encoded with
separate reference cells for the Oth and 1st abstract iterates
at the loop head 5 (named £5 (*) and £5 (! respectively), along
with a fix edge from those two cells to £5’s fixed-point cell £3,
as seen in the grey dotted edge. Crucially, this initial DAIG
is acyclic.

Query Evaluation. For query evaluation, we can com-
pute fixed points on demand by “unrolling” the abstract in-
terpretation of loop bodies in the DAIG one abstract iteration
at a time until a fixed point is reached, preserving the acyclic
DAIG invariant at each step. That is, our key observation is
to unroll at the semantic level of the abstract interpretation
rather than the syntactic level of the control-flow graph.

From the initial DAIG in Fig. 4c, when the fixed-point ¢;
is demanded, its dependencies — the Oth and 1st abstract
iterates — are computed. If their values are equal, then a
fixed-point has been reached and may be written to £3.* If
their values are not equal, then the abstract interpret?tion

4We describe here the widening strategy of applying V every iteration until
a fixed-point is reached for simplicity, but the same general idea applies for
other widening strategies or checking convergence with C instead of =.



Demanded Abstract Interpretation

of the loop body — but not the loop body statements — is
unrolled one step further and the fix edge slides forward to
now depend on the 1st and 2nd abstract iterates, as seen in
the red cells and edges of Fig. 4c. And crucially, this one-step
unrolled DAIG is also acyclic.

From here, the process continues, and termination is guar-
anteed by leveraging the standard argument of abstract in-
terpretation meta-theory: the sequence of abstract iterates
in the cells €3 (0), 03 (1), 03 (2), ... converges because it is pro-
duced by widening a monotonically increasing sequence
of abstract states, so this demanded unrolling of fix occurs
only finitely — but unboundedly — many times. We see that
in essence, the sequence of abstract interpretation iterates
{3 (0), {3 (1), {3 (2), ... are encoded into the DAIG on demand
during query evaluation.

In classical abstract interpretation, a widen V is a join that
enforces convergence during interpretation and thus is only
strictly needed if the abstract domain has infinite height.
Our approach can be seen as an application of this widening
principle to demanded computation. For an abstract domain
of finite height k, it would have been sufficient to encode the
unrolling of fix eagerly into an acyclic DAIG by inlining the
abstract iteration k times to k iterate cells ¢3 (0), ...l (®),
However, many expressive, real-world abstract domains —
including the shape analysis domain of our example and
most numerical domains — are of infinite height.

Incremental Edits. Since the acyclic DAIG invariant is
always preserved, invalidating on incremental edits still only
requires eager dirtying forwards in the DAIG, with some
special semantics for fix edges. When dirtying along a fix
edge, the fix edge is rolled back to a non-dirty cell (i.e., the
0Oth and 1st iterate). In Fig. 4c, if the statement cell ¢4 - 5 is
edited, then dirtying will happen along the red solid fix edge
at which point it will slide back to be the grey dotted one.

Interprocedural Demand. This demanded unrolling of
fix also suggests an approach to interprocedural demanded
analysis parameterized by a context-sensitivity policy. To
analyze a call when evaluating a query, we construct a DAIG
for the callee procedure on demand, indexed by a context
determined opaquely by the context-sensitivity policy.

The “functional approach” to interprocedural analysis of
Sharir and Pnueli [39] could also potentially be adapted
to our framework by constructing disjoint DAIGs for each
phase and inserting dependencies from phase-2 callsites to
corresponding phase-1 summaries.

These techniques both rely on a static call graph, which
can be computed soundly using either abstract interpretation
(which may itself be expressed in a DAIG) or type-/constraint-
based approaches.

286

PLDI ’21, June 20-25, 2021, Virtual, Canada

statements s € Stmt
locations ¢ € Loc
control-flow edges e € Edge == {-spb¢’
programs (L,E,{o) : P(Loc)x P(Edge) X Loc
concrete states ocE (with initial state o)
concrete semantics I : Stmt > X > 3
collecting semantics H?LE @y ¢ Loe— PE)

Figure 5. A generic programming language of control-flow
graphs edge-labelled by an unspecified statement language.

3 Preliminary Definitions

Our technique lifts a program and an abstract interpreter to-
gether into a demanded abstract interpretation graph (DAIG),
a representation that is amenable for sound incremental and
demand-driven program analysis. By design, this construc-
tion is generic in the underlying programming language and
concrete semantics as well as the abstract domain and ab-
stract semantics. In this section, we fix a generic program-
ming language and an abstract interpreter interface that
serve as inputs to DAIG construction, both to define syntax
and to make explicit our assumptions about their seman-
tic properties. Selected instantiations of the framework for
real-world analysis problems are given in Section 7.
Programs under analysis are given as control-flow graphs,
edge-labelled by an unspecified statement language and in-
terpreted by a denotational concrete semantics as shown in
Fig. 5. A program (L, E, {,) is a 3-tuple composed of a set L
of control locations, a set E of directed, statement-labelled
control-flow edges between locations, and an initial location
£y. We say that a program (L, E, {) is well-formed when (1) £,
and all locations in E are drawn from L, and (2) L and E form
a reducible control-flow graph. These conditions ensure that
we avoid degenerate edge cases and only consider control
flow graphs which correspond to realistic programs [4].
Statements are interpreted by the concrete denotational
semantics [-] as partial functions over concrete program
states. As is standard, we can also lift this statement seman-
tics to a collecting [[]]*E L.E. ¢,y ©f full programs, by computing
the transitive closure of the statement semantics over a flow
graph. That is, [£] (L.E.¢y) i the set of all concrete states that
can be witnessed at program location ¢ in a valid program ex-
ecution. We elide the subscript when it is clear from context.
Such a collecting semantics is uncomputable in general, but
is an important tool for reasoning about analysis soundness.
Now, we define the interface of a generic abstract inter-
preter over this control-flow graph language. These defi-
nitions are intended simply to fix notation and minimize
ambiguity and are as standard as possible.
An abstract interpreter is a 6-tuple (=H, ®o, [H]ﬁ, U, V)
composed of:



PLDI 21, June 20-25, 2021, Virtual, Canada

- An abstract domain =* (elements of which are referred to
as abstract states) which forms a semi-lattice under

- a partial order C € P(=# x =#) with a bottom L € =*

- an upper bound (a.k.a. join) U : I RN 3

An initial abstract state g, € 3

An abstract semantics [-]# : Stmt — ¥ — 3 that in-
terprets program statements as monotone functions over
abstract states.

A widening operator V : st — ¥ — =¥ thatis an upper
bound operator (i.e., (¢ U ¢”) E (pV¢’) for all ¢, ¢’) and
enforces convergence (i.e., for all increasing sequences
of abstract states g9 C ¢; £ ¢, C ---, the sequence
©0, V1, (oVe1)Vea, ... converges).

Furthermore, a concretization function y : ¥ — P(3) gives
meaning to abstract states. We say that a concrete state o

models an abstract state ¢ (equivalently, that ¢ abstracts o),
written o |= ¢, when o € y(¢).

Definition 3.1 (Local Abstract Interpreter Soundness). An
abstract interpreter (3, ¢, [[~]]ﬂ, C, U, V) is locally sound if
forall 0, ¢,s,if o |= ¢ and [s]o # L then [s]o |= [s]¥#¢.

Local soundness can be extended to a global soundness
property: if the abstract semantics are locally sound, then the
abstract interpreter computes a sound over-approximation
of the possible concrete states at each location.

Proposition 3.2 (Global Abstract Interpreter Soundness).
If(Zﬁ, ®o, [H]ﬁ, C, U, V) is locally sound and oy |= @q then it
induces an abstract collecting semantics [[]]ﬂ?LE £+ Loc —
5# such that for all o € [[fﬂyzL,E,a))’ o= [[f]]ﬁ@’E’gO).

We elide the abstract collecting semantics [[-]]ﬁ?L, g itis
similarly a transitive closure of the abstract statement seman-
tics over a flow graph. It is a well-known result that global
abstract interpreter soundness is implied by local sound-
ness [11] and that such a global fixed-point is computable
using the chaotic iteration method with widening [8].

4 Demanded Al Graphs

Recall from Section 2 that a demanded abstract interpreta-
tion graph (DAIG) is a directed acyclic hypergraph, whose
vertices are reference cells containing program syntax or in-
termediate analysis results, and whose edges reflect analysis
dataflow relationships among those cells. In Fig. 6, we show
a syntax for DAIGs. A DAIG D = (R, C) is composed of a
set R C Ref of named reference cells connected by computa-
tion edges C € Comp. A computation c: n «— f(ny,...,ng)
is an edge connecting sources {ni,...,ni} to a singleton
destination {n}, labeled by some analysis function f.
Names ¢, f, v and i correspond respectively to locations ¢,
functions f, values v and integers i, supporting memoization
of those syntactic constructs. Name products n; -n; support
the construction of more complicated names, and i-primed

287

Benno Stein, Bor-Yuh Evan Chang, and Manu Sridharan

functions f =[J¥| u | V| fix
values v =S¢
names n € Nm :€|f|i|g|n1n2|n(’)
types T e {Stmt, =}
reference cells r € Ref ==nf[v:7]|nf[e: ]
computations ¢ € Comp :==n <« f(ny,...,ng)
DAIGs D : P(Ref) X P(Comp)

Figure 6. Demanded Abstract Interpretation Graphs, edge-
labelled by analysis functions and connecting named refer-
ence cells storing statements and abstract states.

names n') allow variants of a single name to be distinguished
as loops are unrolled: n®) is the ith unrolled copy of the name
n in a loop. All name equalities are decided structurally.

Values include statements s and abstract states ¢ € S#.
Reference cells bind names to values or the absence thereof
(denoted ¢), while computations specify analysis data-flow
dependencies between reference cells.

We denote by D[n +— o] the DAIG identical to D ex-
cept that the reference cell named n now holds value v.
We also denote DAIG reachability by n ~» g n’ (eliding
the subscript when it is clear from context), and define
helper functions name, srcs, and dest to project out, re-
spectively, the name n of a reference cell n[v, : 7] and the
source names {ny, ..., n} or destination name n of a com-
putation n < f(ny,...,ng). Finally, the typing judgment
R+ n« f(ny,...,nt)holds when n; through n; name ref-
erences in R with the same types as f’s inputs and n names
a reference in R with the same type as f’s output.

Definition 4.1 (DAIG Well-formedness). A DAIG (R, C) is
subject to the following well-formedness constraints.

(1) References are named uniquely:
Vr,r’ € R.name(r) = name(r’) © r=r’
(2) Computations have unique destinations:
Ve,¢' € C.dest(c) =dest(c’) © c=c¢’
(3) Dependencies are acyclic:AA r € R . name(r) ~» name(r)
(4) Computations are well-typed with respect to references:
VeeC.RFc
(5) Empty references have dependencies:
Vnle: 7] €R.3ceC.n=dest(c)

Beyond these basic well-formedness conditions, a DAIG’s
structure must also properly encode an abstract interpre-
tation computation over an underlying program. Given a
program’s CFG and an abstract interpreter interface (as de-
fined in Section 3), there are three general cases shown in
Fig. 7 to consider when examining a corresponding DAIG.
The key property is that demand-driven query evaluation
and incremental edits will evolve the DAIG but preserve the
following consistency conditions:



Demanded Abstract Interpretation

(1) A forward CFG edge ¢’ s}> € to a non-join location is
encoded by a transfer function-labelled DAIG edge, con-
necting reference cells for its abstract pre-state (named n)
and statement label (named {’-{) to a reference cell for its
abstract post-state (named n;).’

(2) Forward CFG edges to a join location ¢ are a bit more
complex, introducing intermediate cells to encode the join LI
into the DAIG. For each incoming edge to £ with statement
s;, we introduce a three-cell transfer function construct
similar to case (1), with an output cell i-n, named uniquely
for that edge. Then, a single join edge connects each pre-
join abstract state i-n, to ng, the abstract post-state at ¢.

(3) As described informally in Section 2.3, our framework
analyzes CFG back edges by unrolling the abstract fixed-
point computation to evolve DAIGs on demand, so this
diagram is parameterized by a number k of such unrollings.
Given the CFG back edge ¢’ —{s]— ¢, a transfer function
DAIG edge connects the abstract state after one abstract
iteration (named ¢’ () and s to a pre-widen abstract state
at the loop head £ (named £ ©.£ ™), which is connected
with the previous abstract state at the loop head (£*)) to
the next (£) via a widen edge®. This acyclic structure is
repeated k times in the DAIG (with k = 1 in the initial

SWe write n, for the name of the abstract state at £ throughout this section:
t © jf ¢ belongs to any natural loop and £ otherwise. Loop heads £ are a
special case: ng is £ () (the abstract state at loop entry) when the destination
of a DAIG edge and ¢ (the fixed point at £) otherwise.

(1) Straightline statements

O——(0r

(2) Control-flow joins ( R

PLDI ’21, June 20-25, 2021, Virtual, Canada

construction and further unrollings generated on demand
as decribed in Section 5), thereby encoding the unbounded
fixed-point computation. Lastly, the fix edge — indicating
a dependency on the eventual fixed point — connects the
two greatest abstract iterates to the reference cell (£) for
the fixed-point abstract state at the loop head.

Definition 4.2 (DAIG-CFG Consistency). A DAIG D =
(R, C) is consistent with a program CFG (L, E, {y), written
D = (L,E, ), when it is well-formed and its structure is
consistent with that of the program.

A formal statement of the D = (L, E, {;) relation is given
in the appendix [46], closely following the structure of the
above description and Fig. 7.

The above establishes when the structure of a DAIG is
consistent with the program’s CFG. A DAIG is consistent
with an abstract interpretation of the program when the
partial analysis results stored in the DAIG are consistent with
the partial abstract interpretation, or formally as follows:

Definition 4.3 (DAIG-AI Consistency). ADAIGD = (R,C)
is consistent with an abstract interpreter (¥, gy, [ f.C,u, V),
written D = (=¥, ®o, Hﬁ C, U, V), when all partial analysis
results stored in R are consistent with the computations
encoded by C, such that {o[ ¢y : »#] € Rand
Vnlv:3# eR, ne—f(ny,...,ng) €C.
V=01 =0

v = f(vy,..

if f = fix

{nilviin]ll <i < k}gR/\{ .,vx) otherwise

J

Figure 7. DAIG-CFG Consistency (Definition 4.2) in diagram form, illustrating how different CFG structures are encoded into
DAIG structures. In subfigure (3), we apply some ad-hoc shorthands for the DAIG encoding of the loop body: D contains

all of its statement reference cells, while Z)(zi; contains all of its abstract state reference cells, with iteration counts set to i.
Each dotted line from Dg;y,s thus represents one or more DAIG edges, from each statement to corresponding abstract states.

288



PLDI 21, June 20-25, 2021, Virtual, Canada

Given a program’s CFG and a generic abstract interpre-
tation interface, we can construct an initial DAIG that is
consistent with a classical (batch) abstract interpretation:

Lemma 4.1 (Initial DAIG Construction, Well-Formedness,
CFG-Consistency, and Al-Consistency). There exists a con-
structive procedure Dinix such that for all well-formed pro-
grams (L, E, €y), the initial DAIG

D = Dinit (L, E, &), (=%, 00, [ 1%, 5,10, V))

is well formed and consistent with both the target program
(ie. D = (L,E,{y)) and underlying abstract interpreter (i.e.
D = <2ﬁ’ (p()’ [['ﬂﬁ’ E9 l—" V>)’

Proof sketch. We define such a Diy;; in the appendix [46]
and show that it produces well-formed results consistent
with both the target program and the underlying abstract
interpreter. Its definition tracks closely with the informal
and diagrammatic descriptions above, constructing DAIG

structures that correspond to the input CFG. O

5 Demanded Al by Evaluating DAIGs

In this section, we give an operational semantics for demand-
driven and incremental evaluation of DAIGs. A state in
the operational semantics consists of a DAIG D and also
an auxiliary memoization table M, which can be used to
reuse previously-computed analysis results independent of
program location. Memoization tables are finite maps from
names n to abstract states ¢ € s# and we write M(n) for the
abstract state mapped to by n in M, dom(M) for the set of
names in the domain of M, and M[n +— ¢] for the extension
of M with a new mapping from n to ¢.

The DAIG operational semantics are split into two judg-
ments, corresponding to queries and edits over both analysis
results and program syntax. Both interaction modes are given
in a small-step style, describing the effects of each operation
on the DAIG and auxiliary memo table.

5.1 Query Evaluation Semantics

A query for the value of the reference cell with name n, given
some initial DAIG P and auxiliary memo table M, yields
a value v and (possibly unchanged) DAIG and memo-table
structures D’ and M’. This operation is defined inductively
by the D,M + n = v ;D’, M’ judgment form, whose infer-
ence rules are given in Fig. 8.

There are two potential ways to reuse previously-compu-
ted analysis results: either in DAIG D or the auxiliary memo
table M. The Q-ReUSE rule handles the case where the DAIG
cell named by n already holds a value, returning that value
and leaving the DAIG and memo table unchanged.

The Q-MAtcH and Q-Miss rules handle the case where
n is empty in D. In both cases, queries are issued for the
input cells ny through nj to the computation f that outputs
to n. In Q-MATtcH, the auxiliary memo table is matched: f
has already been computed for the relevant inputs, so the

289

Benno Stein, Bor-Yuh Evan Chang, and Manu Sridharan

DMrn=>v; D' M

Q-REUSE
nlv:r] €R

(RC),M+n=v;(R,C),M

Q-MATcH
Doy =(R,C) nle:r] €R ne— f(ny,...,ng) eC
Di-1,Mj—1 +n; > v; ;D;,M; (forie[1,k])
f@i---y) € domMy) v = M(f-(v1---vg))

Do, Mo + n= My(f-(v1---vk)) s Di[n = My(f-(v1 - - - vp))], M

Q-Miss
Dy = (R,C) nle:r] €R ne f(ny,...,ng)€C
Di-1,Mj—1 +n; > v; ; D;,M;  (fori e [1,k])
j_r-(ﬂ---v_k)qédom(Mk) v=f(v1,...,0%) f # fix

Do, Mo +n = v;Di[n— o], Mi[f (01 vg) = 0]

Q-Loopr-CONVERGE
nle:r] €R n « fix(ny,n2) € C
(RC),Mt+n; =v;D' M DM rn=0v;D0" M’

(R,C),M+n= v;D"[nr v],M”’

Q-Loop-UNROLL
nle: 7] €R c=n« fix({ (k_l),ﬁ(k)) eC
RCOMr*D =0 D M
D/,M, E [(k) = " ;Z)”,M”
unroll(b", oM rn=v;D" M"
(RCO)Mrn=uv;D" M"

’
v

144

v

Figure 8. Operational semantics rules governing queries
for the contents of a DAIG. The judgment form D, M
n=v;PD’',M is read as “Requesting n from DAIG D with
auxiliary memo table M yields value v, updated DAIG D',
and updated memo table M’

result is retrieved from My, the memo table after querying
the input cells, and stored in n (i.e., via Di[n — Mi(f-
(v1 -+ - vr))]). Note that this notation is a low-level mutation
of the reference cell named by n, not an external edit that
would trigger invalidation (which we will describe below in
Section 5.3).

Q-Miss handles memo table misses by computing and
memoizing f(vy,...,vx) before storing the result in both
the DAIG D and the auxiliary memo table M (i.e., at names
nand f-(v; - - - v), respectively).

5.2 Demanded Fixed Points

Demanded unrolling is the process by which we compute
abstract interpretation fixed-points over cyclic control flow
graphs without introducing cyclic dependencies into DAIGs,
as described informally in Section 2 and represented graphi-
cally in Fig. 4c. The semantics are formalized by the Q-Loor-
CoNVERGE and Q-Loop-UNRoLL rules in Fig. 8.



Demanded Abstract Interpretation

Recall that fix is a special function symbol indicating an
analysis fixed-point computation. The destination of a fix
edge is a loop-head cell for storing a fixed-point invariant,
and its sources are the two greatest abstract iterates of said
loop head yet computed. When those abstract iterates have
the same value v, the analysis has reached a fixed point4, and
a query for the fixed point may return v. However, when
they are unequal, a query triggers an unrolling in the DAIG:
the loop body’s abstract state reference cells are unrolled
one more iteration, the fix edge’s sources are shifted forward
one iteration, and then the fixed-point query is reissued.

This procedure differs from concrete/syntactic loop un-
rolling — e.g. as applied by an optimizing compiler or bounded
model checker — in that it applies to the DAIG’s reified
abstract interpretation computation, including joins and
widens, not to the concrete syntax of the program under
analysis. That is, the k-th demanded unrolling corresponds
to the k-th application of the loop body’s abstract semantics
(i.e. the k-th abstract iteration) rather than the k-th concrete
execution of the loop. As a result, it is sound with respect to
the concrete semantics of the program under analysis and is
guaranteed to converge.

As the name suggests, Q-Loor-CONVERGE applies when
the abstract interpretation has reached a fixed point. Since
the dependencies of the fix edge, n; and n;, are consecutive
abstract iterates at the head of the corresponding loop, their
evaluation to the same value v indicates that loop analysis
has converged, so v may be stored in the DAIG and returned.

On the other hand, Q-Loor-UNROLL applies when the
abstract interpretation has not yet reached a fixed point, since
the two most recent abstract iterates are unequal. In this case,
the loop is unrolled once by the unroll helper function and
the query for the fixed point is reissued. The unroll helper
function used in Q-Loor-UNRoLL takes a DAIG D and a fix
edge and unrolls the loop corresponding to the fix edge by
one iteration in D. It is defined as follows:

unroll ((R,C), ¢ = £  fix(¢ &1, £ ) £ (R,C"), where
R =RU {incr(n)[e : ] | LD wﬁ(k)} and
¢’ =C/{c}u {g « fix (§<k>,g<’<+l>
U {incr-c(c) | £ ¥7V v dest(c)w £ P}

where incr and incr-c increment the iteration counts of names.
Intuitively, unroll takes the region of the DAIG forwards-
reachable from the k—1*" abstract iterate £ =) and backwards-
reachable from the k** abstract iterate £ ¥) and duplicates it
while incrementing all name’s iterations counts from k—1 to

k, then shifts the fix edge forward one iteration. Crucially,
this operation preserves the DAIG acyclicity invariant.

5.3 Incremental Edit Semantics

An edit to a DAIG D occurs when a value v is written to
some reference cell named n in D by an external mutator.
This edit must both update n and also clear the value of (or

290

PLDI ’21, June 20-25, 2021, Virtual, Canada

Dirnesv ;D

E-CommIT
VceC.nesrcs(c) = dest(c)[e: 7] €R

L—fix(D ¢y ec = ¢We:r]eR
ve=¢ = dceC.n=dest(c)
Ve#ée = dn[_:71]€R.v.:T

(R,C) Fn <= v, ;{R,C)[n— v,

E-PROPAGATE
nwz)n' Drn ;D D'vrnev ;D

Drnesuv. ;D"

E-Loop
L—fixtFV ehec RAHYreW <D’
¢’ =c/{e — fixe * 0, e} U fe — fixe @, e )

(R,C) I—£<k) =e;D

Figure 9. Operational semantics rules governing edits to the
contents of a DAIG. The judgment D + n < v, ; D’ is read
as “Editing reference cell n of DAIG D with value v, yields
updated DAIG D’ where v, ranges over values v and the
“empty” symbol ¢.

“dirty”) any reference cell that (transitively) depends on n.
Here we give a full definition of the edit operation, using the
D+ n &< v, ;D' judgment given in Fig. 9.

As described informally in Section 2, invalidation proceeds
by dirtying forwards in the acyclic DAIG, except that the
implicit cyclic dependency from fix edges must be accounted
for, by rolling back to a non-dirty source cell.

The E-ComwmiT rule is a base case: if the edited cell’s down-
stream dependencies are all empty, then the edit may be
performed directly. Its second premise accounts for the im-
plicit dependency of abstract iterate cells £ ¥ for i > 0 on
the fixed point cell £ (corresponding to the loop back edge
in the control-flow graph); it suffices to check that the 1st
abstract iterate cell has been emptied, as all abstract iterates
¢ for i > 1 are reachable from £ ). The third and fourth
premises ensure that DAIG well-formedness is preserved,
by preventing emptying of source nodes and ill-typed edits
respectively.

The E-PROPAGATE rule recursively empties reference cells
that depend on the edited cell, eventually bottoming out
when no such cells are non-empty and E-CommIT can be
used to derive the D’ + n < v, ; D" premise. Note that there
is no recomputation here in E-PROPAGATE, only emptying.

The E-Loop rule applies when the final abstract iterate
of a loop is dirtied. The sources of its fix edge are reset
to its Oth and 1st abstract iterates and dirtying continues
from the 1st abstract iterate. This handling is slightly more
conservative than necessary in the case that an intermediate
abstract iterate (i.e., with k > 1) is edited since results from
some previous iterations (up to that k) may not need to be



PLDI 21, June 20-25, 2021, Virtual, Canada

discarded, but it simplifies the presentation and handles all
program edits with maximal reuse.

6 Soundness, Termination, and
From-Scratch Consistency

In this section, we state two key properties of demanded ab-
stract interpretation graphs: from-scratch consistency, which
guarantees that DAIG query results are identical to the anal-
ysis results computed by the underlying abstract interpreter
at a global fixed-point, and query termination, which guar-
antees termination of the DAIG query semantics even in the
presence of unbounded abstract loop unrolling. The proofs
are deferred to the appendix [46] due to space constraints.

Both theorems rely on the preservation of DAIG well-
formedness (Definition 4.1), DAIG-CFG consistency (Defi-
nition 4.2), and DAIG-AI consistency (Definition 4.3) under
queries and program edits.

Lemma 6.1 (DAIG Well-Formedness Preservation).
If D is well-formed and either D,M + n = v ; D', M’ or
Drn<uv ;D then D’ is well-formed.

Lemma 6.2 (DAIG-CFG Consistency Preservation).
IfD = (L,E,{,) then:

SifDMrn=v;D' M then D' = (L,E, {);
-ifDrn&es; D then D' = (L, E', ), where E' isE
with the edit applied (see appendix [46] for details).

Lemma 6.3 (DAIG-AI Consistency Preservation).
IfD = (Zﬁ, ®o, Hﬁ, C,U, V)yandeitherD,M+n= v; D', M
orDrnes; D, then D' = (3%, o, []*.C, L, V).

With these preservation results, we can now prove that
DAIG query results for abstract states at program locations
are from-scratch consistent with the global fixed-point in-
variant map of the DAIG’s underlying abstract interpreter.

Theorem 6.1 (DAIG From-Scratch Consistency). For all
sound M and well-formed D such that D = (L,E,{y) and
D= o [JHLCL YY), if DM - £ = v; D', M then

v= [[fﬂﬂ(L,E,&,)'
Corollary 6.2. Query results are sound.

Since the global invariant map [-]** of the underlying
abstract interpreter (=, 00, ['] #.C, U, V) is sound (by Global
Abstract Interpreter Soundness (Proposition 3.2)) and a DAIG
query for the abstract state at a location £ returns [£]#*, DAIG
query results themselves are sound.

Theorem 6.3 (DAIG Query Termination). For all M and well
formed D such that D = (L, E, £,) and D = (=¥, o, []*,C
,U, V), ifn is in the namespace of D then there existv, D', M’
suchthat D,Mn=v; D' M.

291

Benno Stein, Bor-Yuh Evan Chang, and Manu Sridharan

7 Implementation and Evaluation

Here, we describe a prototype implementation and evalua-
tion of demanded abstract interpretation via our DAIG frame-
work. Our evaluation studied two research questions:

e Expressivity: Does the DAIG framework allow for clean
and straightforward implementations of rich analysis do-
mains that cannot be handled by existing incremental
and/or demand-driven frameworks?

e Scalability: For these rich analysis domains, what de-
gree of performance improvement can be obtained by
performing incremental and/or demand-driven analysis,
as compared to batch analysis?

7.1 Implementation

Our DAIG framework is implemented in approximately 2,500
lines of OCaml code [44, 45]. Incremental and demand-driven
analysis logic, including demanded unrolling, operates over
an explicit graph representation of DAIGs, but per-function
memoization (i.e., the auxiliary memo table M in the Fig. 8
semantics) is provided via adapton.ocaml, an open-source
implementation of the technique of Hammer et al. [21].

Our implementation is parametric in an abstract domain,
and the effort required to instantiate the framework to a new
abstract domain is comparable to the effort required to do so
in a classical abstract interpreter framework. The required
module signature is essentially the abstract interpreter sig-
nature (3%, ¢, [[-ﬂﬂ, C, U, V), extended with some standard
utilities which can often be automatically derived.

Interprocedurality. Although the formalism is defined
over control-flow graphs for clarity and brevity, our im-
plementation supports context-sensitive analysis of non-
recursive programs with static calling semantics (i.e., no
virtual dispatch or higher-order functions).

In order to analyze such programs, we initially construct
a DAIG only for the “main” procedure in the initial context.
Then, when a query is issued for the abstract state after a
call, we construct a DAIG for its callee in the proper context.
When a query is issued at a location/context for which no
DAIG has yet been constructed, we construct the DAIG for
its containing function and analyze dataflow to its entry.

These operations are parametric in a context-sensitivity
policy for choosing a context in which to analyze a callee
at a call site. Our implementation includes functors that
implement context-insensitivity and also 1- and 2-call-site-
sensitivity [39].

7.2 Expressivity

To demonstrate the expressivity of our DAIG framework, we
have instantiated it with three existing well-known abstract
interpretation techniques — interval, octagon and shape anal-
ysis — all of which are inexpressible using existing incre-
mental and/or demand-driven analysis frameworks. Here, we
describe our experience applying the DAIG-based interval



Demanded Abstract Interpretation

and shape analyses to a small set of programs. In Section 7.3,
we use the octagon domain to investigate the scalability of
demanded analysis on synthetic benchmarks.

Together, these analysis implementations provide evidence
for our approach’s agnosticity to the underlying abstract do-
main, including domains with black-box external dependen-
cies and/or complicated non-monotone abstract operations.

Interval Analysis. The interval abstract domain is a text-
book example of an infinite-height lattice, requiring widen-
ing to guarantee analysis convergence. An interval [/, u] ab-
stracts the set of numbers between lower bound ! and upper
bound u. Join and widen operations and abstract states are
defined in the standard way [11]. Abstract interpretation in
this domain is known as interval analysis and is commonly
used, e.g., to verify the safety of array accesses. Interval
analysis has been applied at industrial scale, for example by
Cousot et al. [12].

In practice, it is common to use an optimized off-the-shelf
interval abstract domain such as that of APRON [25] or
Elina [40]. We have implemented an APRON-backed interval
analysis for JavaScript programs in the DAIG framework. As
an indication of the flexibity of our framework, we were able
to use the APRON library without modification.

In order to validate our implementation, we analyzed
23 array-manipulating programs — with functions such as
contains, equals, swap, and indexof — from the test suite
of Buckets.JS, a JavaScript data structure library [38].

Using the 2-call-string-sensitive context policy, our anal-
ysis verified the safety of all 85 array accesses in the pro-
grams; with 1-call-string-sensitivity, it verified 71/74 (96%),
and with context-insensitive analysis it verified 4/18 (22%).
These figures show that standard numerical analyses on
DAIGs behave as they would in a batch analysis engine.

Shape Analysis. Precise analysis of recursive data struc-
tures such as linked lists is essential in many domains. Such
analysis relies on complex abstract domains that cannot
be expressed in existing frameworks for incremental and
demand-driven analysis. We have implemented a DAIG-
based demanded shape analysis for singly-linked lists. An
abstract state in this shape domain is a triple consisting of

- A separation logic formula over points-to (a.f +— a’)

and list-segment (1seg(a, a’)) atomic propositions, stat-

ing respectively that the f field of the object at symbolic

address a points to «” and that there exists a sequence of

next pointer dereferences from « to a’ [34],

- A collection of pure constraints: equalities and disequali-

ties over memory addresses, and

- An environment mapping variables to memory addresses.
Join, widen, and implication all rely on a collection of rewrite
rules over such states from Chang et al. [10] (specialized to
a fixed inductive definition for list segments). All told, the

292

PLDI ’21, June 20-25, 2021, Virtual, Canada

implementation of this shape domain requires approximately
500 lines of OCaml code.

We have applied this DAIG-based shape analysis to suc-
cessfully verify the correctness and memory-safety of the
list append procedure of Fig. 2, along with several linked list
utilities from the aforementioned Buckets.js library includ-
ing foreach and indexof [38]. Analysis of the £3-to-f4-to-{3
loop of the list append procedure converges in one demanded
unrolling with a precise result.

7.3 Scalability

To study scalability, we conducted an initial investigation
of what performance improvements are possible with de-
manded analysis variants in our framework. We compared
the performance of analysis with and without incrementality
and demand on interleaved sequences of program edits and
queries. Throughout this section, our framework is instan-
tiated with a context-insensitive APRON-backed octagon
domain: a relational numerical domain representing invari-
ants of the form +x + y < y, widely used in practice due to
its balance of expressivity and efficiency [29].

To exercise the analyses, we created synthetic workloads
consisting of 3,000 random edits to an initially-empty pro-
gram. Programs are generated in a JavaScript subset with
assignment, arrays, conditional branching, while loops, and
(non-recursive) function calls of the form x = f(y). An “edit”
is an insertion of a randomly generated statement, if-then-
else conditional, or while loop at a randomly-sampled pro-
gram location, with 85%, 10%, and 5% probability respectively,
and statements and expressions are generated probabilisti-
cally from their respective grammars.

We evaluate four analysis configurations on this workload:

(1) Batch analysis: Classical whole-program abstract inter-
pretation, fully re-analyzing the entire program from scratch
in response to each edit.

(2) Incremental analysis: An incremental-only configuration
which applies the edit semantics to dirty as few previously-
computed analysis results as possible, but eagerly recom-
putes all dirtied cells.

(3) Demand-driven analysis: A demand-driven-only config-
uration which dirties the full DAIG after each edit, but
applies the query semantics to avoid computing analysis
results that aren’t demanded.

(4) Incremental & demand-driven analysis: The full demanded
abstract interpretation technique, which applies both the
edit and query semantics to maximize reuse and minimize
redundant computation.

In the demand-driven configurations, queries are issued at
five randomly-sampled program locations between each edit.
Note that since the first three configurations were imple-
mented atop our DAIG framework, which is designed to
support both incremental and demand-driven analysis, they
may not be as tuned as specialized implementations.



PLDI 21, June 20-25, 2021, Virtual, Canada

Benno Stein, Bor-Yuh Evan Chang, and Manu Sridharan

30 30 1.0
Batch Incremental
B} ) 0.9
2 1 2
% ..,' QE-’ 0.8
= g2 =
= & =
< < 0.6
0 2 = 0 05
0 Cumulative Program Edits 3000 0 Cumulative Program Edits 3000 0 Analysis Latency (sec) 10
30 30
Demand-Driven Incremental & Demand-Driven R
= = Analysis Time (sec)
Z Z mean p50 p9%0 p95 P99
(] (]
k= k= Batch 9.0 1.4 189 36.2 173.6
< < Incr. 17 06 36 63 166
é « é DD 1.5 0.1 3.7 7.9 16.7
z 7 z 1&DD 03 01 07 12 30
< £ <
04 st = ‘—. 0 i o i A
0 Cumulative Program Edits 3000 0 Cumulative Program Edits 3000

Figure 10. Performance of octagon analysis on the synthetic workload of interleaved program edits and analysis queries
described in Section 7.3. The four scatter plots show the scaling of each configuration as the program size is increased by edits,
and their color-coding serves as a legend to the fifth figure: a cumulative distribution plot showing the fraction of analysis
runs (y axis) completed by each configuration within some time interval (x axis). Lastly, the table shows summary statistics for
each configuration, including the mean, median, 90th, 95th, and 99th percentile analysis latency.

Each plot includes data points from 9 separate trials, with
fixed random seeds such that the same edits (and, in the
two demand-driven configurations, queries) are issued to
each configuration. In total, this data set includes 27,000
analysis executions in each exhaustive configuration and
135,000 queries in each demand-driven configuration.

The results, as shown in Fig. 10, indicate that while in-
cremental and demand-driven analysis each significantly
improve analysis latencies with respect to the batch analysis
baseline, combining the two provides an additional large
reduction in latency. This effect is most apparent in the tail
of the distribution, since edits that dirty large regions of the
program are costly for incremental analysis, and queries that
depend on large regions of the graph are costly for demand-
driven analysis. By combining incremental dirtying with
demand-driven evaluation, demanded abstract interpreta-
tion mitigates these worst-case scenarios and consistently
keeps analysis costs low even as the program grows.

In particular, at the 95" percentile, the 1.2s latency of
incremental demand-driven analysis is more than five times
lower than the next best configuration, and potentially low
enough to support interactive use. Fig. 10 gives a cumulative
distribution of analysis latencies, again showing the large
advantage of the incremental demand-driven analysis over
other configurations.

293

8 Related Work

Incremental Computation. Techniques for the efficient
caching and reuse of computation results, particularly those
based on memoization of pure functions [1, 20, 30] and de-
pendency graphs [13, 32], have been the subject of a great
deal of research and seen widespread practical application.
More recently, dependency graph-based approaches to in-
cremental computation have improved on generic memoiza-
tion and graph-based techniques, allowing for fine-grained
automatic caching and reuse even in the presence of changes
to inputs or an underlying data store [2, 3]. Building on
these graph-based techniques for self-adjusting computa-
tion, some recent work has focused on support for interac-
tive and demand-driven computations [21, 22]. Although
this approach yields a general and powerful system for incre-
mental computation, its low-level primitives make it difficult
to express the complex fixed-point computation over cyclic
control-flow graphs in arbitrary abstract interpretations. We
take inspiration from demanded computation graphs but in-
stead specialize the language of demanded computations to
demanded abstract interpretations, both with syntactic struc-
tures and with a query/edit semantics which dynamically
modifies the dependency graph to model such computations.



Demanded Abstract Interpretation

Incremental Analysis. The application of incremental
computation to program analysis is similarly well-studied,
going back at least to the development of incremental data-
flow analyses to support responsive continuous compila-
tion [35, 49]. Recent work has contributed incremental ver-
sions of several classes of program analysis, including IFD-
S/IDE dataflow analyses [5, 16] and analyses based on ex-
tensions to Datalog [47, 48]. These specialized approaches
offer effective solutions for certain classes of program analy-
sis, but place restrictions on abstract domains that rule out
arbitrary abstract interpretations in infinite-height domains.

Compositional program analysis, in which summaries are
computed for individual files or compilation units rather
than a whole program, naturally supports incrementality in
the sense that results need only be recomputed for changed
files. This has shown to be very effective for scaling program
analyses to massive codebases in CI/CD systems [9, 14, 18],
but it operates at a much coarser granularity than both the
aforementioned approaches and our own, since it is designed
to scale up to massive programs rather than to minimize
analysis latencies at development-time.

Leino and Wiistholz [26] propose a fine-grained incremen-
tal verification technique for the Boogie language, which ver-
ifies user-provided specifications of imperative procedures.
These specifications include loop invariants, allowing their
algorithm to ignore cyclic dependencies altogether.

Demand-Driven Analysis. Demand-driven techniques
for dataflow analysis are also well-studied. The intra-pro-
cedural problem was studied by Babich and Jazayeri [6].
Several extensions to inter-procedural analysis have been
presented, for example, by Reps [33], Duesterwald et al. [17],
and Sagiv et al. [37]. In nearly all cases previous work has
been focused on finite domains. The work of Sagiv et al.
[37] allows for infinite domains of finite height, but does not
consider infinite-height domains like intervals.

Any static analysis expressible as a context-free-language
reachability (CFL-reachability) problem can be computed in
a demand-driven fashion as a “single-source” problem [31].
As such, a number of papers have presented demand-driven
algorithms for flow-insensitive pointer analysis [23, 42, 43].

Reference attribute grammars (RAGs) are declarative spec-
ifications of properties over ASTs (including potentially-
cyclic flow analyses) which can be evaluated incrementally
and on-demand [28, 41]. Termination of RAG evaluation re-
quires that all cyclic computations converge to a fixed-point
in finitely-many iterations [19, 28]; this convergence prop-
erty holds for finite domains with monotone operators but
may also be achieved through other means (e.g. widening).

Improving on prior work, our framework comes with
proofs of termination and from-scratch consistency, and
specifies the exact conditions required to ensure termination
in infinite-height domains with non-monotone widening
operators.

294

PLDI ’21, June 20-25, 2021, Virtual, Canada

9 Conclusion

We have presented a novel framework for demanded abstract
interpretation, in which an arbitrary abstract interpretation
can be made both incremental and demand-driven. Unlike
previous frameworks, ours supports arbitrary lattices and
widening operators. The framework is based on a novel de-
manded abstract interpretation graph (DAIG) representation
of the analysis problem, where careful handling of loops
ensures the DAIG remains acyclic. We have proved vari-
ous key properties of the framework, including soundness,
termination, and from-scratch consistency. Our implementa-
tion shows that complex analyses can be easily implemented
with our framework, with the potential for significant per-
formance wins in incremental and demand-driven scenarios.

Acknowledgments

We thank Matthew A. Hammer and Jared Wright for their
valuable contributions in the early stages of this research.
We also thank the anonymous reviewers and members of
the CUPLV lab for their helpful reviews and suggestions.
This research was supported in part by the National Science
Foundation under grants CCF-1619282, CCF-2008369, and
CCF-2007024, and also by a gift from Oracle Labs.

References

[1] Martin Abadi, Butler W. Lampson, and Jean-Jacques Lévy. 1996. Anal-
ysis and Caching of Dependencies. In International Conference on
Functional Programming (ICFP). https://doi.org/10.1145/232627.232638
Umut A. Acar, Amal Ahmed, and Matthias Blume. 2008. Imperative
self-adjusting computation. In Principles of Programming Languages
(POPL). https://doi.org/10.1145/1328438.1328476
Umut A. Acar, Guy E. Blelloch, and Robert Harper. 2002. Adaptive func-
tional programming. In Principles of Programming Languages (POPL).
https://doi.org/10.1145/1186634
Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. 2006.
Compilers: Principles, Techniques, and Tools (2nd Edition).
Steven Arzt and Eric Bodden. 2014. Reviser: efficiently updating IDE-
/IFDS-based data-flow analyses in response to incremental program
changes. In International Conference on Software Engineering (ICSE).
https://doi.org/10.1145/2568225.2568243
Wayne A. Babich and Mehdi Jazayeri. 1978. The Method of Attributes
for Data Flow Analysis: Part II. Demand analysis. Acta Informatica 3
(1978). https://doi.org/10.1007/BF00264320
[7] Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. 2005. Small-
foot: Modular Automatic Assertion Checking with Separation Logic.
In Formal Methods for Components and Objects (FMCO).  https:
//doi.org/10.1007/11804192_6
[8] Francois Bourdoncle. 1993. Efficient chaotic iteration strategies with
widenings. In Formal Methods in Programming and Their Applications.
https://doi.org/10.1007/BFb0039704
[9] Cristiano Calcagno and Dino Distefano. 2011. Infer: An Automatic
Program Verifier for Memory Safety of C Programs. In NASA Formal
Methods (NEM). https://doi.org/10.1007/978-3-642-20398-5_33
[10] Bor-Yuh Evan Chang, Xavier Rival, and George C. Necula. 2007. Shape
Analysis with Structural Invariant Checkers. In Static Analysis (SAS).
https://doi.org/10.1007/978-3-540-74061-2_24
[11] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A
Unified Lattice Model for Static Analysis of Programs by Construction

[2

—

E

—

[4

flaa)

5

—

[6

—


https://doi.org/10.1145/232627.232638
https://doi.org/10.1145/1328438.1328476
https://doi.org/10.1145/1186634
https://doi.org/10.1145/2568225.2568243
https://doi.org/10.1007/BF00264320
https://doi.org/10.1007/11804192_6
https://doi.org/10.1007/11804192_6
https://doi.org/10.1007/BFb0039704
https://doi.org/10.1007/978-3-642-20398-5_33
https://doi.org/10.1007/978-3-540-74061-2_24

—

=

—

—

[t

[

—

—

—

—

—

—

PLDI 21, June 20-25, 2021, Virtual, Canada

or Approximation of Fixpoints. In Principles of Programming Languages
(POPL). https://doi.org/10.1145/512950.512973

Patrick Cousot, Radhia Cousot, Jérome Feret, Laurent Mauborgne,
Antoine Miné, David Monniaux, and Xavier Rival. 2005. The ASTREE
Analyzer. In European Symposium on Programming (ESOP). https:
//doi.org/10.1007/978-3-540-31987-0_3

Alan J. Demers, Thomas W. Reps, and Tim Teitelbaum. 1981. Incremen-
tal Evaluation for Attribute Grammars with Application to Syntax-
Directed Editors. In Principles of Programming Languages (POPL).
https://doi.org/10.1145/567532.567544

Dino Distefano, Manuel Fahndrich, Francesco Logozzo, and Peter W.
O’Hearn. 2019. Scaling static analyses at Facebook. Commun. ACM 8
(2019). https://doi.org/10.1145/3338112

Dino Distefano, Peter W. O’Hearn, and Hongseok Yang. 2006. A Local
Shape Analysis Based on Separation Logic. In Tools and Algorithms for
the Construction and Analysis of Systems (TACAS). https://doi.org/10.
1007/11691372_19

Lisa Nguyen Quang Do, Karim Ali, Benjamin Livshits, Eric Bodden,
Justin Smith, and Emerson R. Murphy-Hill. 2017. Just-in-time Static
Analysis. In Software Testing and Analysis (ISSTA). https://doi.org/10.
1145/3092703.3092705

Evelyn Duesterwald, Rajiv Gupta, and Mary Lou Soffa. 1995. Demand-
Driven Computation of Interprocedural Data Flow. In Principles of Pro-
gramming Languages (POPL). https://doi.org/10.1145/199448.199461
Manuel Fiahndrich and Francesco Logozzo. 2010. Static Contract
Checking with Abstract Interpretation. In Formal Verification of Object-
Oriented Software (FoVeOOS). https://doi.org/10.1007/978-3-642-18070-
52

Rodney Farrow. 1986. Automatic generation of fixed-point-finding
evaluators for circular, but well-defined, attribute grammars. In Com-
piler Construction (CC). https://doi.org/10.1145/12276.13320

John Field and Tim Teitelbaum. 1990. Incremental Reduction in the
lambda Calculus. In LISP and Functional Programming. https://doi.
org/10.1145/91556.91679

Matthew A. Hammer, Jana Dunfield, Kyle Headley, Nicholas Labich,
Jeffrey S. Foster, Michael W. Hicks, and David Van Horn. 2015. In-
cremental computation with names. In Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA). https://doi.org/10.
1145/2814270.2814305

Matthew A. Hammer, Yit Phang Khoo, Michael Hicks, and Jeffrey S.
Foster. 2014. Adapton: composable, demand-driven incremental com-
putation. In Programming Language Design and Implementation (PLDI).
https://doi.org/10.1145/2594291.2594324

Nevin Heintze and Olivier Tardieu. 2001. Demand-Driven Pointer
Analysis. In Programming Language Design and Implementation (PLDI).
https://doi.org/10.1145/378795.378802

Susan Horwitz, Thomas W. Reps, and Shmuel Sagiv. 1995. Demand
Interprocedural Dataflow Analysis. In Foundations of Software Engi-
neering (FSE). https://doi.org/10.1145/222124.222146

Bertrand Jeannet and Antoine Miné. 2009. Apron: A Library of Nu-
merical Abstract Domains for Static Analysis. In Computer-Aided Veri-
fication (CAV). https://doi.org/10.1007/978-3-642-02658-4_52

K. Rustan M. Leino and Valentin Wiistholz. 2015. Fine-Grained Caching
of Verification Results. In Computer-Aided Verification (CAV). https:
//doi.org/10.1007/978-3-319-21690-4_22

Stephen Magill, Aleksandar Nanevski, Edmund Clarke, and Peter Lee.
2006. Inferring invariants in separation logic for imperative list-
processing programs. In Semantics, Program Analysis, and Computing
Environments for Memory Management (SPACE).

Eva Magnusson and Gérel Hedin. 2007. Circular reference attributed
grammars - their evaluation and applications. Sci. Comput. Program. 1
(2007). https://doi.org/10.1016/j.scic0.2005.06.005

Antoine Miné. 2006. The octagon abstract domain. High. Order Symb.
Comput. 1 (2006). https://doi.org/10.1007/s10990-006-8609- 1

Benno Stein, Bor-Yuh Evan Chang, and Manu Sridharan

[30] William Pugh and Tim Teitelbaum. 1989. Incremental Computation
via Function Caching. In Principles of Programming Languages (POPL).
https://doi.org/10.1145/75277.75305

[31] Thomas Reps. 1998. Program analysis via graph reachability. Infor-
mation and Software Technology 11-12 (1998). https://doi.org/10.1016/
S0950-5849(98)00093-7

[32] Thomas W. Reps. 1982. Optimal-Time Incremental Semantic Analysis
for Syntax-Directed Editors. In Principles of Programming Languages
(POPL). https://doi.org/10.1145/582153.582172

[33] Thomas W. Reps. 1994. Solving Demand Versions of Interprocedural
Analysis Problems. In Compiler Construction (CC). https://doi.org/10.
1007/3-540-57877-3_26

[34] John C. Reynolds. 2002. Separation Logic: A Logic for Shared Mutable
Data Structures. In Logic in Computer Science (LICS). https://doi.org/
10.1109/L1CS.2002.1029817

[35] Barbara G. Ryder. 1983. Incremental Data Flow Analysis. In Principles
of Programming Languages (POPL). https://doi.org/10.1145/567067.
567084

[36] Caitlin Sadowski, Edward Aftandilian, Alex Eagle, Liam Miller-Cushon,
and Ciera Jaspan. 2018. Lessons from building static analysis tools at
Google. Commun. ACM 4 (2018). https://doi.org/10.1145/3188720

[37] Shmuel Sagiv, Thomas W. Reps, and Susan Horwitz. 1996. Precise
Interprocedural Dataflow Analysis with Applications to Constant Prop-
agation. Theor. Comput. Sci. 1&2 (1996). https://doi.org/10.1016/0304-
3975(96)00072-2

[38] Mauricio Santos. 2016. Buckets-JS: A JavaScript Data Structure Library.
https://github.com/mauriciosantos/Buckets-}S.

[39] Micha Sharir and Amir Pnueli. 1981. Two Approaches to Interpro-
cedural Data Flow Analysis. In Program Flow Analysis: Theory and
Applications.

[40] Gagandeep Singh, Markus Piischel, and Martin T. Vechev. 2017. Fast
polyhedra abstract domain. In Principles of Programming Languages
(POPL). https://doi.org/10.1145/3093333.3009885

[41] Emma Séderberg and Gorel Hedin. 2012. Incremental Evaluation of
Reference Attribute Grammars using Dynamic Dependency Tracking.
LU-CS-TR:2012-249 (2012).

[42] Johannes Spath, Lisa Nguyen Quang Do, Karim Ali, and Eric Bod-
den. 2016. Boomerang: Demand-Driven Flow- and Context-Sensitive
Pointer Analysis for Java. In Object-Oriented Programming (ECOOP).
https://doi.org/10.4230/DARTS.2.1.12

[43] Manu Sridharan, Denis Gopan, Lexin Shan, and Rastislav Bodik. 2005.
Demand-Driven Points-To Analysis for Java. In Object-Oriented Pro-
gramming Systems, Languages, and Applications (OOPSLA).  https:
//doi.org/10.1145/1094811.1094817

[44] Benno Stein, Bor-Yuh Evan Chang, and Manu Sridharan. 2021. DAI:
Demanded Abstract Interpretation. https://github.com/cuplv/dai.

[45] Benno Stein, Bor-Yuh Evan Chang, and Manu Sridharan. 2021. De-
manded Abstract Interpretation (artifact). https://doi.org/10.5281/
zen0do.4663292.

[46] Benno Stein, Bor-Yuh Evan Chang, and Manu Sridharan. 2021. De-
manded Abstract Interpretation (Extended Version). https://doi.org/10.
1145/3453483.3454044

[47] Tamas Szabd, Gabor Bergmann, Sebastian Erdweg, and Markus Voelter.
2018. Incrementalizing lattice-based program analyses in Datalog. In
Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA). https://doi.org/10.1145/3276509

[48] Tamas Szabo, Sebastian Erdweg, and Markus Voelter. 2016. IncA: a
DSL for the definition of incremental program analyses. In Automated
Software Engineering (ASE). https://doi.org/10.1145/2970276.2970298

[49] F.Kenneth Zadeck. 1984. Incremental data flow analysis in a structured
program editor. In Compiler Construction (CC). https://doi.org/10.1145/
502874.502888


https://doi.org/10.1145/512950.512973
https://doi.org/10.1007/978-3-540-31987-0_3
https://doi.org/10.1007/978-3-540-31987-0_3
https://doi.org/10.1145/567532.567544
https://doi.org/10.1145/3338112
https://doi.org/10.1007/11691372_19
https://doi.org/10.1007/11691372_19
https://doi.org/10.1145/3092703.3092705
https://doi.org/10.1145/3092703.3092705
https://doi.org/10.1145/199448.199461
https://doi.org/10.1007/978-3-642-18070-5_2
https://doi.org/10.1007/978-3-642-18070-5_2
https://doi.org/10.1145/12276.13320
https://doi.org/10.1145/91556.91679
https://doi.org/10.1145/91556.91679
https://doi.org/10.1145/2814270.2814305
https://doi.org/10.1145/2814270.2814305
https://doi.org/10.1145/2594291.2594324
https://doi.org/10.1145/378795.378802
https://doi.org/10.1145/222124.222146
https://doi.org/10.1007/978-3-642-02658-4_52
https://doi.org/10.1007/978-3-319-21690-4_22
https://doi.org/10.1007/978-3-319-21690-4_22
https://doi.org/10.1016/j.scico.2005.06.005
https://doi.org/10.1007/s10990-006-8609-1
https://doi.org/10.1145/75277.75305
https://doi.org/10.1016/S0950-5849(98)00093-7
https://doi.org/10.1016/S0950-5849(98)00093-7
https://doi.org/10.1145/582153.582172
https://doi.org/10.1007/3-540-57877-3_26
https://doi.org/10.1007/3-540-57877-3_26
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1145/567067.567084
https://doi.org/10.1145/567067.567084
https://doi.org/10.1145/3188720
https://doi.org/10.1016/0304-3975(96)00072-2
https://doi.org/10.1016/0304-3975(96)00072-2
https://github.com/mauriciosantos/Buckets-JS
https://doi.org/10.1145/3093333.3009885
https://doi.org/10.4230/DARTS.2.1.12
https://doi.org/10.1145/1094811.1094817
https://doi.org/10.1145/1094811.1094817
https://github.com/cuplv/dai
https://doi.org/10.5281/zenodo.4663292
https://doi.org/10.5281/zenodo.4663292
https://doi.org/10.1145/3453483.3454044
https://doi.org/10.1145/3453483.3454044
https://doi.org/10.1145/3276509
https://doi.org/10.1145/2970276.2970298
https://doi.org/10.1145/502874.502888
https://doi.org/10.1145/502874.502888

	Abstract
	1 Introduction
	2 Overview
	2.1 Reifying Abstract Interpretation in DAIGs
	2.2 Demand-Driven and Incremental Analysis
	2.3 Cyclic Control Flow and Demanded Fixed Points

	3 Preliminary Definitions
	4 Demanded AI Graphs
	5 Demanded AI by Evaluating DAIGs
	5.1 Query Evaluation Semantics
	5.2 Demanded Fixed Points
	5.3 Incremental Edit Semantics

	6 Soundness, Termination, and From-Scratch Consistency
	7 Implementation and Evaluation
	7.1 Implementation
	7.2 Expressivity
	7.3 Scalability

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

