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Group Testing for Community

Infections

Abstract—Group testing is the technique of pooling together
diagnostic samples in order to increase the efficiency of med-
ical testing. Traditionally, works in group testing assume
that the infections are ii.d. However, contagious diseases
like COVID-19 are governed by community spread and hence
the infections are correlated. This survey presents an over-
view of recent research progress that leverages the commu-
nity structure to further improve the efficiency of group
testing. We show that taking into account the side-informa-
tion provided by the community structure may lead to signif-
icant savings—up to 60% fewer tests compared to
traditional test designs. We review lower bounds and new
approaches to encoding and decoding algorithms that take
into account the community structure and integrate group
testing into epidemiological modeling. Finally, we also dis-
cuss a few important open questions in this space.

Introduction

Our recent experience with COVID-19 has revealed the key
role of epidemiological models and testing in the fight against
pandemics (e.g, [1], [2]). For any new disease or variant of the
existing ones, we will always need the ability to expeditiously
deploy strategies that allow efficient testing of populations
and empower targeted interventions (ideally at an individual
level). This, however, poses several daunting challenges as
follows.

1) We need to test populations at an unprecedented scale.
2) We need to test the same populations not just once but in a

continual manner (potentially on a daily basis).

3)We need to estimate the epidemic state of each individual
in near real time and isolate only the (most probably)
infected ones.

4) Finally, this is to be accomplished with tests that can be
limited in number and variable in speed, cost, and accuracy.
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What is group testing and how can it help? Group testing is
a technique that can identify the infected individuals in a pop-
ulation with fewer tests than the ones needed to test everyone
individually. Instead of testing each person individually,
group testing applies pool tests on the top of groups of diagnos-
tic samples from multiple individuals. When pooling together
these samples, particular care is taken so that the testing mate-
rial is not diluted during the mixing process and that the sensi-
tivity /specificity of the tests used is not altered significantly.
The key insight is that if infections are sparse, then many
group-test outcomes are likely to be negative, and therefore,
all individuals included in them can be deemed healthy. How-
ever, if a group test is positive, then one cannot directly tell
which individual(s) included in the test are infected; addi-
tional testing or careful decoding of other test results is there-
fore necessary. Accordingly, group testing offers significant
benefits for sparse regimes of infection. On the other hand, if
infections follow a linear or mildly sublinear regime, then indi-
vidual testing has been found to be optimal [3], [4].

Group testing has a rich history dating back to Dorfman in
1943, who first introduced the concept during World War II,
when the U.S. military sought to identify soldiers infected with
syphilis, but tests were expensive [5]. Then on, a number of
variations and setups have been examined [6]-[8].

Simply stated, the typical (static) group-testing setup assumes a
population of N individuals out of which a few are infected, and
the goal is to design testing strategies and corresponding decod-
ing algorithms to identify the infections from the test results.
Most works revolve around proposing a particular hand-crafted
test design (e.g, random Bernoulli design) coupled with a decod-
ing strategy (e.g., definite defectives, definite nondefectives), and
guarantees are provided on the number of tests required to
achieve a vanishing probability of error. In addition, order-opti-
mality results have been proved for the asymptotic regime, where
the population size tends to infinity. For example, in a population
of N — co members, if very few people (say k& < N1 21 are
infected, one can identify them with as low as O(klog¥) pool
tests performed in multiple adaptive stages or O(klog N) pool
tests performed in a single, nonadaptive stage [4], [6]."

* O and () notations denote, respectively, the asymptotic upper and
lower bounds, as N tends to infinity.
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Interestingly, group testing is being reinvented nowadays in the
context of the pandemic [9]-[14], and several countries (includ-
ing India, Germany, United States, and China) have already
deployed preliminary group-testing strategies [15], [16]. Also,
companies and schools use pool tests to regularly monitor parts
of their population and then do individual tests once a pool test
comes positive (which is similar to Dorfman’s approach).

Can we do better by incorporating knowledge from a known
community structure and/or epidemic dynamics? Traditional
work in group testing assumes independent infections. How-
ever, viral diseases among humans have an important charac-
teristic: infections are governed by community spread and are
therefore correlated. As a use case, consider an apartment
building consisting of families that have practiced social dis-
tancing; clearly, there is a strong correlation on whether mem-
bers of the same family are infected or not.

In this article, we argue that taking into account the commu-
nity structure may lead to significant savings in terms of the
number of tests required to guarantee a given identification
accuracy in the static case, or to better track the state evolution
in a dynamic epidemiological model. Using entropy arguments,
it is easy to see that taking into account individual correlations
can help: if we represent the state (infected or not) of each
individual as a binary variable, the joint entropy of correlated
variables can be much smaller than the sum of the individual
entropies—which is exactly the penalty we pay, if correlations
are ignored. As an extreme example, assume that in each fam-
ily, either all or no members are infected; then clearly, it is
enough to test a single member from each family.

We also argue that leveraging the community structure can
enlarge the regime, where group testing offers significant bene-
fits over individual testing. Indeed, a limitation of group testing
is that it offers very few or no benefits, when k grows linearly
with N [3], [6], [17]-[19]. However, taking into account the
community structure allows us to identify and remove from the
population large groups of infected members, thus reducing
their proportion and converting a linear to a sparse regime
identification. Essentially, the community structure can guide
us on when to use individual, and when group testing.

Knowing the community structure is not unrealistic. Today, it is
technically feasible to keep track of the community structure—
several applications are already doing so [20]-[22]. So testing
according to the correlations imposed by the structure seems an
approach “whose time has come,” and it has indeed attracted
many researchers’ attention during the past year [23]-[31].
Moreover, it is an idea that is well aligned with the need for inde-
pendent grassroots testing (schools testing their students and
companies their workers) where the community structure is
explicit (shared classrooms and shared common spaces).

Beyond community structure. Leveraging the community struc-
ture can be viewed as an instantiation of a recent trend in the
group-testing literature and of examining variations of group
testing motivated by the “real-world” scenario. For instance,

graph-constrained group testing considers the case where
samples cannot be pooled together arbitrarily in a group test
but must conform to constraints imposed by a graph (see, for
example, [32]-[35]). Sparse group testing considers models
in which individuals may participate in a limited number of
tests, or tests are size constrained and cannot pool more
than a limited number of samples; such constraints can sig-
nificantly affect the scaling laws [36]. Different models for
the test outcomes and the noise have also been considered;
for instance, the work in [37] proposes a test model specif-
ically tailored to COVID testing, where the test outcomes
can provide a rough estimate of the number of infected
samples. Generalized group testing subsumes as special
cases a variety of noiseless and noisy group-testing models
in the literature, and assumes that the test outcome is posi-
tive with some probability f(x), where z is the number of
defectives tested in a pool, and f(-) is an arbitrary mono-
tonically increasing (stochastic) test function [38]. In this
work, we do not further expand on these complementary
and interesting directions.

How is this article organized? Incorporating community struc-
ture in group testing is a topic that is just emerging, and there
are currently more open questions than answers. Accordingly,
our goal in this article is to indicate what are potential benefits,
and describe what are some first ways group testing can lever-
age community knowledge. After giving some background in
Section “Background,” we first consider a static case in see
Section “Static Case,” where we assume community structure
knowledge but no knowledge of prior probabilities and aim to
identify, at a particular moment in time, the infected individu-
als. Then, we consider dynamics in Section “Dynamic Group
Testing” and aim to track the evolution of a disease over time.
The static and dynamic cases are closely interrelated. For
instance, the static case can be viewed as identifying the “initial
state” in the case of dynamic evolution. Moreover, dynamic
tracking can in some cases be reduced to simple forms of the
static case, as shown through an example in Section “Dynamic
Group Testing” Most of our examples herein are from [23]-[25],
[30], [31], that as far as we know were the first works to use
community correlations in group test designsz; yet we also point
out other very interesting works in this area [26]-[29]. Finally,
Section “Conclusions and Open Questions” concludes this article
with discussing open questions.

Background
Traditional (Static) Group Testing

In mathematical terms, a group test indexed by 7 takes as input
samples from n, individuals, pools them together, and outputs
a single value: positive if any one of the samples is infected,
and negative if none is infected. More precisely, let U; =1
when individual 7 is infected, and 0 otherwise. Then, the group

? Independently and in parallel, the work in [26], [27] also pro-
posed incorporating community correlations in group test decoding.
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testing output takes a binary value calculated as Y; = \/,, p. Ui,
where \/ stands for the 0R operator (disjunction) and D; is the
group of people participating in the test.

Group testing typically considers the following three static
models for the infections inside a population of NV people.

(i) A combinatorial priors model, where a fixed number of
infected individuals &, is selected uniformly at random
among all sets of size .

(ii) An iid. probabilistic priors model, where each individual is
i.i.d. infected with probability p.

(iii) A nonidentical probabilistic priors model, where each item
i is infected independently of all others with prior proba-
bility p;, so that the expected number of infected members

isk=>"1" p [39]
Note that (iii) admits (ii) as a special case.

In each model, of critical interest is the minimum number of
group tests 7' = T'(NN) needed to identify the infected members
without error or with high probability. In the combinatorial
model (i), since 7 tests allow to distinguish among 27 combina-
tions of test outputs, we need 7' > log,(}) to identify & ran-
domly infected people out of N. This is known as the counting
bound and implies that in a sparse regime, no algorithm can use
less than 7' = O(klog %) tests to achieve (almost) zero-error
identification [7], [40]. In the probabilistic model (ii), a similar
bound has been derived for the number of tests needed on aver-
age: T' > Nhy(p), where h, is the binary entropy function [6].
By extension, in the probabilistic model (iii), a lower bound
for the number of tests needed can be given by the entropy,
ie, T > Z;L ha(pi). See [39, Appendix A] for a proof.

The usual goal in static group testing is to design a testing
algorithm that is able to identify all infection statuses
U = (U, Us,....,Uy). These algorithms can be adaptive or non-
adaptive. Adaptive testing uses the outcome of previous tests to
decide what tests to perform next. An example of adaptive test-
ing is binary splitting, which implements a form of binary
search. Nonadaptive testing constructs, in advance, a test matrix
G € {0,1}"" where each row corresponds to one test, each
column to one member, and the nonzero elements determine
the set D;. Although adaptive testing uses less tests than non-
adaptive, nonadaptive testing is often more practical as all tests
can be executed in parallel.

In the next paragraphs, we provide a brief summary of state-of-the-
art algorithms for all three infection models described earlier, as
well as some well-known results on their performance in various
asymptotic regimes. For brevity, we focus only on the noiseless-
testing case, where all group tests are supposed to be accurate, i.e.,
their sensitivity is 100%, although the group-testing literature also
extensively studies the case when test outputs are noisy.

In the combinatorial model (i) and if the number of infected peo-
ple follows a sparse regime (ie, k= ®(N*) and « € [0,1)),

adaptive group testing, and more specifically Hwang’s general-
ized binary splitting algorithm (BSA), is order-optimal w.r.t. the
counting bound. That is, it can identify all infected individuals
without error using the minimum number of tests [6], [41].
The same is also true for nonadaptive group testing whenever
a € [0, 0.409) and if we further allow vanishing (with N) identifi-
cation errors [42]. In particular, there exists a randomized test
design, coupled with a decoding algorithm named spatial infer-
ence vertex cover, which can identify all infected individuals with
high probability, using the minimum number of tests. However, if
a > 0.409, vanishing error probabilities cannot be achieved with
a single nonadaptive testing stage and at least two stages are nec-
essary to match the counting bound [42, Ths. 1.2 and 1.3].

Conversely, classic individual testing has been proved to be
optimal in the linear regime (k = @(N), i.e, @ = 1). In fact, if
the infection rate £/ N is more than 0.38, group testing does not
use fewer tests than one-to-one (individual) testing unless high
identification-error rates are acceptable [3], [17]-[19]. More-
over, individual testing is preferable to nonadaptive group test-
ing the mildly sublinear regime (where k = w(%)) [4].

The above mentioned achievability/converse results for the
combinatorial priors are directly applicable to probabilistic
model (ii) of i.i.d. priors by considering p = k/N. In fact, Theo-
rems 1.7 and 1.8 from [6] imply that any algorithm that attains
a vanishing probability of error on the combinatorial priors,
also attains a vanishing probability of error on the correspond-
ing i.i.d. probabilistic priors.

In the probabilistic model (iii), two well-known algorithms
are the adaptive laminar algorithms that need at most
22;\;1 ha(p;) + 2k tests on average, and the “Coupon colle-
ctor” nonadaptive algorithm (CCA) that needs at most
T < 4e(1 4+ 8)kIn N test to achieve an error probability no
larger than 2N % whenever p; <1 [39], [43].

Evidently, despite the thorough analysis of the static group-testing
problem, prior work has focused on independent infections. This
is probably not by accident, since the problem has been motivated
so far by its interesting mathematical (rather practical) aspects.
Group testing is a form of inference in sparsity regimes, such as
compressed sensing, but with an interesting difference: all opera-
tions are in Boolean (as opposed to real-valued) algebra, which
makes the problem significantly harder. However, we believe that
it is the current challenges in the context of the pandemic (e.g,
scale/cost of testing) and the fact that a viral disease is indeed
spread according to people’s interactions that naturally bring up
the need for achievability and converse results in the case of cor-
related/community-based infections. In Section “Static Case,” we
examine this new problem.

Dynamic Infection Models

To our help, epidemiological models have been developed to
describe the temporal dynamics of epidemics at different lev-
els of detail [44], [45]. Therein, a task of interest is to track and
predict the state evolution both at an individual as well as a
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Figure 1
SIR stochastic network model. Infected nodes can potentially
transmit the disease to neighboring susceptible nodes.

population level. So far, the spread of various viral diseases
(including SARS-COV-2) has been studied and a number of val-
idated models have been proposed [1], [46], [47]. The model
proposed in [2] and [48] is worth mentioning as they made
available an open-source library to simulate disease progres-
sion in a network while incorporating (individual-level) testing
and intervention schemes.

Perhaps the most well-known model is the continuous-time
SIR stochastic network model (see [45]), where individuals are
regarded as the vertices of a graph G and an edge denotes a con-
tact between neighboring vertices. At any given time, each individ-
ual can be in one of three states: susceptible, infected, or
recovered. Infections can be transmitted only across an edge
between a susceptible and an infected individual according to a
continuous-time Markovian process of rate g (also known as
transmissibility of the disease). An infected individual recovers
independently of all others according to another continuous-time
Markovian process of rate y. We refer to Figure 1 for a small illus-
tration of the SIR stochastic network model. Given any graph, this
model can be exactly and efficiently simulated over a time horizon,
for example, via the Gillespie algorithm (see [45, Appendix A.1]).

Static Case

In this section, we introduce community-based infections. We
avoid working with the full contact graph, and prefer starting
from a simplistic (yet practical) infection model to gain useful
insights. This will also allow us to compute new lower bounds
for the number of tests and design community-aware testing
and decoding strategies. We discuss some more complex mod-
els at the end of the section.

Community-based infection model. Suppose that the total popu-
lation N can be decomposed in F' disjoint groups of individu-
als. We call these groups families, even though we do not refer
only to actual families—we use this term to denote any group
of people that happen to interact, so that they get infected
according to some common principle. In addition, suppose that
each family j has M; members, so that N = Zle M;.

The following community-based infection models parallel the
classic ones (Section “Background”).

e Combinatorial model (I). k; of the families is infected—namely
they have at least one infected member. The rest of the families
have no infected members. In each infected family j, there exist
ki infected members, with 0 < k/, < M;. The infected families

(resp. infected family members) are chosen uniformly at random
out of all families (resp. members of the same family).

e Probabilistic model (II). Each family is infected with probabil-
ity ¢ i.i.d. A member of an infected family j is infected, indepen-
dently from the other members (and other families), with
probability p; > 0. If a family j is not infected, then p; = 0. If
k! = p;M;, both models behave similarly.

Note that both these models allow families to have quite differ-
ent infection levels from each other (e.g, very different infec-
tion probabilities); this is important, as, if we view the static
case as a snapshot of infection evolving over time, these mod-
els enable to capture many different paths and ways to arrive
at the current snapshot state.

One can remark that in model II, it seems possible that a family j
is labeled “infected” without having infected members; the prob-
ability of this, however, is negligible for reasonably high infection
probabilities p; and actual values of M. For the purposes of this
article, we will tone down this peculiarity, although the results
presented further below do address it as well.

Given such community infection models, our goal is to examine
whether there can be any benefits from taking the community
structure into account. Some questions of interest are as fol-
lows. Is there a new lower bound on the number of tests
needed for error-less identification or is the counting bound
still valid? Can we design community-aware testing algorithms
that are more efficient than traditional group testing, in the
sense that they can achieve the same identification accuracy
using significantly fewer tests? If yes, are these designs optimal
and in which regimes?

Lower bounds on the number of tests. For each of the two mod-
els I and II described previously, we can compute the mini-
mum required number of the tests using similar combinatorial
and entropy arguments as in the traditional static case. We
next state the lower bounds without proof; these can be found
in [23, Ths. 1 and 2].

Combinatorial Community Bound

Under model I, any algorithm that identifies all % infected
members without error requires a number of tests 7" satisfying

,7\.
F / M;
T > log, (kf> + § 10g2<kjj). )
J=1

m

We can make two observations regarding the combinatorial
community bound, in the case where the number of infected
family members follows a “strongly” linear regime (k,, ~ 1)
and the number of infected families % follows a sparse regime
(ie, ky = O(F*) for oy € [0,1)).
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(a) The bound increases almost linearly with k; (the number
of infected families), as opposed to k (the overall number of
infected members). This is because, if the infection regime
about families is sparse, the following asymptotic equiva-
lence holds: log2(€> ~ ky logZ% ~ (1 —ay)kslog,F.

(b) In addition to the sparse regime about families, an overall
sparse regime (k= ©O(N”) for o € [0,1)) holds, then the
community bound may be significantly lower than the count-
ing bound that does not take into account the community
structure. Consider, for example, the symmetric case, where
kI, = k. The asymptotic behavior of the counting bound in
the sparse regime is log,(}) ~ klog, 4 ~ kyky, log oL,
where the latter is because k,,, =~ M. So the ratio of the count-
ing bound to the combinatorial one scales (as F' gets large) as

log (f) kfkm log, %

~

logz(k_F) +kf10g2<kf,‘i) ky 1082@

= km- (2)

Although simplistic, observation (b) is important for practical
reasons. Many times, the population is composed of a large
number of families with members that have close contacts
(e.g., relatives, work colleagues, students who attend the same
classes, etc.). In such cases, we do expect that almost all mem-
bers of infected families are infected (ie. k, =~ M;), even
though the overall infection regime may still be sparse. Equa-
tion (2) shows the benefits of taking the community structure
into account in the test design, in such a case.

Probabilistic Community Bound

In model 1II, any algorithm that identifies all k£ infected mem-
bers without error requires a number of tests 7" satisfying

F
1—
T > Fha(q) + ) aMshs(p;) — wjh2< q> -
j=1 wj
where w; =1 — ¢+ ¢(1 — p,)".

Here, we make another two observations as follows.

(a) If for each family j, p;, and M; are such that ¢(1 — p;)™ — 0
(i.e., the probability of the peculiar event, where a family is
labeled “infected” and yet has no infected members, is negli-
gible), the combinatorial and probabilistic bounds are
asymptotically equivalent. In particular, using the standard
estimates of the binomial coefficient [49, Sec. 4.7], the combi-
natorial bound u} (1) is asymptotically equivalent
to Fhy(ks/F)+ 3L, Mjhy(k], /M;), which matches the
probabilistic bound in (3):

with ky = ks 4 o(1) and kJ, = k/, + o(1) in place of their

m

expected values k; = Fgand ¥/,

m

(b) The probabilistic lower bound extends from zero-error
recovery to constant-probability recovery by applying
Fano’s inequality (as in [39, Th. 1]), and in doing so, the
right-hand side (RHS) of (3) gets multiplied by the desired
probability of success P(suc).

The above mentioned results are promising, but are only possi-
bility results. In the following, we provide example group test-
ing algorithms that incorporate the community structure at
either the encoder or decoder side.

Community structure in the test design. Our algorithm
from [23], which we will simply call herein CA-adapt, is a fully
adaptive community-aware test design that achieves lower
bounds (1) and (3) in certain regimes.

CA-adapt consists of two parts.

The goal of the first part is to detect the infection regime inside
each family j, so that, in the second part, the family is tested
accordingly, i.e, using group testing, if j is “lightly” infected, or
individual testing, otherwise. To estimate the infection regime
with only a single test, the algorithm selects a random subset of
representatives per each family j, r;, it then creates a mixed sam-
ple® from each subset, and finally, it applies traditional adaptive
group testing on the top of all mixed samples. At the end of this
step, the infection status of each mixed sample is identified.

In the second part, the algorithm treats the infection status of a
mixed sample as an indicator of infection regime inside the
corresponding family: if the mixed sample is positive, then the
family is considered heavily infected (i.e., &/, /M; or p; > 0.38),
otherwise lightly infected (ie, &/ /M; or p; < 0.38). Since
group testing performs better than individual testing only in
the latter case (see Section “Background”), individual testing is
applied to each heavily infected family member, and traditional
adaptive group testing to all others.

To showcase the benefits of CA-adapt over traditional
group testing, we consider the symmetric case, where M; = M,
ki = k,, (combinatorial case) or p; = p (probabilistic case), and
|7;| = R for all families. Furthermore, we assume that the family
representatives are selected uniformly at random without
replacement, and we consider two different choices for the clas-
sic adaptive group testing used in the two parts of the algorithm:
(i) Hwang'’s generalized binary splitting algorithm (HGBSA) [41],
which is optimal if the number of infections in the tested group is
known in advance; and (ii), traditional BSA [50], which performs
well, even if little is known about the number of infected

F
_ members.
Fhy(q) + ¢ Mha(p;) =Fha(ky/F)
j=1
z
+ Z M;ho (K., | M;) * A mixed sample of a family pools together the diagnostic samples
J=1 from all its representatives.
400,
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Then, in the combinatorial model I, the above mentioned com-
munity-aware algorithm succeeds using a maximum expected
number of tests

F
T(,) < kf¢,(10ng+ 1+ M)
N — kMg,
+EQ1 ¢J<bg2kui¢J +1) (4)
Tiiy < kipo(logoF + 1+ M)
+ k(1 — ¢,)(logy (N — kyMe,) +1) (5)

where the inequalities are because of the worst-case perfor-
mance of HGBSA and BSA, and ¢, is the expected fraction of
infected families whose mixed sample is positive

0, if R=0

M—ky,
¢, = 17((55)), it Re (1, M— ky]
R
1, if Re (M — ky, M].

One can find analytical computations in [23], along with a simi-
lar analysis for the probabilistic infection model II. Herein, we
prefer focusing on three interesting observations.

1) If heavily/lightly infected families are detected without errors
in Part 1, CA-adapt can asymptotically achieve (up to a con-
stant) the lower combinatorial community bound in particular
cases. For example, consider a sparse regime for families (i.e.,
ky = O(F“f) for ay € [0,1)) and a moderately linear regime
within each family (i.e., &, /M ~ 0.5).In this case,

F
g, ) ~ bty
M
log » (k ) ~ Mhy(ky /M) ~ M

and the bound in (1) becomes k¢ (log,F/ks + M). If R is
chosen such that all infected families (which are also heavily
infected as k,,,/M > 0.38) are detected without errors (e.g.,
if R > M — k), then ¢, = 1; thus, the RHS of (4) becomes
almost equal (up to constant k) to the lower bound (1).

2) The upper bound in (5) shows that CA-adapt may achieve
significant benefits compared to classic BSA in practical sce-
narios. If the infected families are heavily infected (as usu-
ally happens in reality) and R is chosen such that ¢, =1
(eg. R > M—k,), then Ty <ks(logoF +1+M)<
klog N + k, where the latter is the relevant expected per-
formance of BSA [6], [51]. Conversely, CA-adapt achieves
the same performance as BSA when families are lightly
infected and R is chosen such that ¢, = 0 (e.g., R = 0). This
is because T'(;;) < klog,N + k.

3) In the most favorable regime for such community-aware group
testing, where very few families have almost all their members

——— CA-adapt
~—— CA-nonadapt
——BSA

Counting bnd
Lowerbad

Average # of tests
[N~}
e
o

Figure 2

Tests needed by various test designs.

infected (ie, ky = O(L“f) foras € [0,1) and k,, = M), even if
R is chosen optimally such that ¢, = 1, the ratio of the expected
number of tests needed by CA-adapt [see (4)] and HGBSA can-
not be less than 1/ log (N /k), which upper bounds the benefits
one may get. Of course, one may come up with optimized ver-
sions of CA-adapt that improve upon the gain of 1/ log (N /k)
(see, for example, [23, Appendix B.2]).

Two remarks from the above mentioned observations are as
follows. First, incorporating the community structure is more
beneficial when families are heavily infected; otherwise, tradi-
tional group testing performs equally well. In fact, our experi-
ments showed that benefits exist if the average infection rate
within a family is p > 0.15, and increase with p. Second, a
rough estimate of the families’ infection rate p; has to be
known a priori in order to optimally choose R. As shown
numerically in [23], this is unavoidable, if only a single mixed
sample per family is used at the first part of CA-adapt.

In addition to adaptive community-aware group testing, there
exist two-stage and nonadaptive designs [23], [27]. For example,
a two-stage algorithm can be easily derived from CA-adapt, by
simply replacing the adaptive algorithms (HGBSA/BSA) in both
parts of the algorithm with well-known nonadaptive counter-
parts from the group-testing literature, such as CCW or Bernoulli
designs. Following the discussion in Section “Background,” such
a two-stage algorithm can operate, in some regimes, with the
same (order) number of tests as the adaptive algorithm, at a cost
of a vanishing error probability.

Figure 2 depicts numerical evidence of how beneficial community-
aware testing can be in a use case scenario of a university depart-
ment with F' = 20 classes of M = 50 students each, where overall
infections are sparse and p € [0.4,0.8]. Two different versions of
CA-adapt, one with R =1 and one with R = M, are compared
against BSA and the counting/community lower bounds. Results
are averaged over 500 random communities of the same size,
where infections follow model IL Interestingly, when R = M,
CA-adapt performs close to the lower bound in most realistic sce-
narios p € [0.5,0.8] (as also stated earlier). Moreover, the average
overall improvement compared to traditional BSA seems to vary
from 55% to 75% (fewer tests). The orange line shows a commu-
nity-aware nonadaptive algorithm; even that performs better than
BSA whenever p > 0.55 and small errors can be tolerated.
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Community structure in the decoder. Consider the probabilistic
model II and suppose we are interested in decoding infection
status of the individuals (and families). This can be accom-
plished by estimating the posterior probability of the corre-
sponding individual (or family) being infected via loopy belief
propagation (LBP). LBP computes the posterior marginals
exactly when the underlying factor graph describing the joint
distribution is a tree (which is rarely the case) [52]. But, it is an
algorithm of practical importance and has achieved success in a
variety of applications. Also, LBP offers soft information (poste-
rior distributions), which can be proved more useful than hard
decisions in the context of disease-spread management.

We now briefly describe the factor graph and the belief
propagation update rules for the probabilistic model (II).
More details and exact messages can be found in [23]. Let the
infection status of each family j be V; ~ Ber(g). Moreover, let
V(U;) denote the family that U; belongs to

P(Vy,... Ve, Ur, ... Un, Y1, ... Y7)

F T
=[[»w; HIPUW N [[P<lUs,)
j=1

=1

where §; is the group of people participating in the test. The
joint distribution can be represented by a factor graph, where
variable nodes correspond to each random variable V;, U;,
and Y, and factor nodes correspond to P(V;),P(U;|V(U;)),
and P(Y,|Us,), respectively.

Given the result of each test is y,, LBP computes the marginals
P(Vj:U‘leyl,...,YT:yT) and ]P( '—U‘Yl—yl,...,
Y = yr), by iteratively exchanging messages across the vari-
able and factor nodes. The messages are viewed as beliefs
about that variable or distributions (a local estimate of
P(variable|observations)). Since all random variables are binary,
each message is a 2-D vector.

We use the factor graph framework from [52] to compute the
messages: variable nodes Y, continually transmit the message
[0,1] if Yz = 1 and [1, 0] if Y; = O on its incident edge, at every
iteration. Each other variable node (V; and U;) uses the follow-
ing rule: for incident each edge e, the node computes the
elementwise product of the messages from every other incident
edge ¢ and transmits this along e. For the factor node messages,
we derive closed-form expressions for the sum-product update
rules (akin to [52, eq. (6)])-

To showcase the benefits of community-aware decoders, we
used a simple (possibly suboptimal) decoder, which is fast and
can be easily configured to account for the community struc-
ture. Our LBP decoder is generic enough to accommodate any
community structure and can be combined with any test
design (encoder) to achieve low error rates. However, we
acknowledge that many inference algorithms exist, some of
which have already been employed for group testing. For
example, GAMP [26], [27] and Monte Carlo sampling [53] may
yield more accurate decoders.

Other community infection models. The community infection
model described so far was a very simple structure with lim-
ited applications. Other works have examined more sophisti-
cated correlations. For example, the work in [24] examines
overlapping families and proposes lower bounds as well as
testing and decoding strategies, based on the same principles
of the two-step adaptive design and LBP decoder mentioned
earlier. Numerical results indicate similar benefits; commu-
nity-aware group testing needed 30%-65% fewer tests (on
average) to achieve the same identification accuracy as BSA.
An interesting finding was that partial knowledge of the com-
munity (e.g., knowing the families but without knowing the
overlapping members) results in smaller benefits, even though
it is enough to outperform community-agnostic group testing.

An even more sophisticated community model has been exam-
ined in [28], where a stochastic block model is used to describe
correlated infections among families/groups.

Another approach is the linear mixing model of [27]. Contrary
to the traditional Boolean formulation of the problem, that
paper proposes a linear formulation with a main difference:
the pooling matrix applies linear mixing to the infection sta-
tuses of the individuals, instead of disjunction operations.
Because of that, the authors are able to reuse prior work on
estimation with linear mixing and compressed sensing, such as
the GAMP algorithm and LASSO estimator.

Dynamic Group Testing

From static to dynamic testing. So far, we considered an extension
of the group testing problem that accounts for the correlated
nature of infections and proposed how to modify and adapt exist-
ing techniques given the knowledge of the nature of such correla-
tions. Taking a step back, one could further examine the problem
at the source of these correlations, which is the dynamic nature
of a disease. For a communicable disease, such as COVID-19, cor-
relations are mostly induced because individuals transmit the
disease continually, through direct and indirect contact. Given
this fact, the assumption of a static infection model breaks down;
a single round of testing is not sufficient to contain the disease—
the disease continually proliferates during the testing period
because of many reasons, such as inaccuracies in tests, delay in
test results becoming available, insufficient testing resources,
missed infections, etc. Hence, there is a need to study group test-
ing in a nonstatic setting where one takes into account the under-
lying dynamics of disease progression to design tests every day,
perhaps under constraints of test resources. The testing results
or a summary thereof could then be used to inform individual-
level decisions, such as isolation and population-scale decisions,
such as a lockdown. In this section, we summarize recent prog-
ress made in this direction. The dynamic group testing problem
is summarized in Figure 3 at a very high level.

Recent works have identified the significance of proactive testing
and individual-level intervention for the control of the disease
spread (e.g, [1], [2]). However, these solutions rely on the idea of
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Dynamic testing problem with daily interventions. Test results are available 24 hours after the tests are administered. One has the flexibility
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Simulated disease progression on a population of 1000
individuals [31]: Without any testing a large fraction of the
population gets infected. Even with complete testing with
delayed results (where everyone is tested individually every day,
test results come out the next day, and positive cases are
isolated) some infections can be missed, but “the curve is almost
flattened.” So the goal of dynamic group testing is to achieve
complete-testing performance using much fewer tests.

“testing everyone individually,” which can be inefficient for two
reasons: on the one hand, using cheap rapid testing usually
results in many people (false positives) ending up in isolation
without reason and at nonnegligible societal cost; on the other
hand, using accurate tests like PCR can be forbiddingly expensive.
As a result, these works need to either neglect the cost of the for-
mer or alleviate the cost of the latter by scheduling tests on a (bi)
weekly or monthly basis. A potential solution to the above men-
tioned problem is to use a small number of PCR tests every day,
and exploit the power of group testing along with information
from the dynamics of disease progression to inform efficient
intervention schemes.

As motivated earlier, the goal of dynamic group testing is
not to find all the infected individuals at a given time—in
fact, this may be impossible if test resources are con-
strained or if test results are not instantaneous—but to
contain the prevalence of the disease under the given con-
straints. For instance, given a fixed number of available
testing resources for a week, one could intelligently choose
how many tests to use and whom to test each day. Quickly
identifying likely infections and isolating those individuals
slows the spread of the disease (see Figure 4), which in

to design intervention and testing modules.

turn ensures that the health infrastructure is not over-
loaded and can operate under capacity.

Introducing pooled testing into epidemiological models. Acc-
ordingly, as a first step, the work in [30] introduces testing into
epidemiological modeling and proposed dynamic testing strate-
gies for testing every day; we summarize the ideas from this work
in the next few paragraphs. We examine a simple instance of the
continuous-time SIR stochastic network model (see Figure 1),
where the contact G is a clique, namely a fully connected network.
The focus is on a clique because of the following two reasons.
First, the clique is the simplest network that one needs to under-
stand before delving into more sophisticated ones. Second, the cli-
que is a good model for well-mixed and closely knit communities,
such as university or school classes. Our goal is to track the every-
day state evolution of all individuals with the help of temporal
dynamics and test results, and under the assumption that testing
can happen once per day (e.g., in the morning) while its results
become available only after 24 h. Further, we assume that the
total number of available tests (7}.t.1) over the time horizon of L
days is fixed; these 7}, tests must be distributed intelligently
over these L days. For now, we ignore interventions and purely
focus on state estimation. Moreover, to fix ideas, we stick to
pooled testing with nonoverlapping pools.

The high-level approach to the dynamic group testing problem
can be delineated as follows: steps i)-iv) repeat every day.

(i) Obtain the test results of the previous day.
(i) Fix the number of tests 7) to be used for the day.

(iii) Combine the test results and the dynamics of disease pro-
gression to estimate the marginal state probabilities of
each individual. This is done via estimating the posterior
distribution for each individual using belief propagation
and then further updating these distributions using [45,
eg. (3.30)].

(iv) Based on the estimated marginals, decide which individual
goes into which test for the day.

The exact procedure for steps (ii) and (iv) is described next.

We use an entropy reduction approach to decide how many
tests to use each day and to decide which individual goes into
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Uncertainty in the infection statuses of the population (F(U®))
with different strategies. For comparison, we also plot the
uncertainty when no tests are used and with complete testing,
where everyone is individually tested every day.

which test. This is a common strategy employed by many
adaptive algorithms in the group-testing literature to minimize
the number of tests. The high-level idea in our setup is to
observe that one needs more tests if the uncertainty
about the state of the population is higher, and that the
pools should be such that they convey maximal information
about the state of the population. More precisely, suppose
X0 = (x\" x0 . xU) be the vector of SIR states of
individuals at time instant ¢, i.e., Xf” € {S, I, R}. Further, let
Ut =W, 0, ..., U be the vector of infection statuses of
the individuals at time instant ¢, i.e, Uft) = 1 iff Xf") =1 and
0 otherwise.

In order to distribute the total number of tests T}, over the
L testing days, we do the following. On day ¢, say we are testing
at time instant ¢;. We compute H(U")|X"~1)) for each day i,
i.e, we compute the uncertainty in the infection statuses of the
population given perfect knowledge of the state of the popula-
tion at the previous testing time instant. We then use this
uncertainty as a guidance to decide which days needs more
tests and which days need fewer tests, i.e., the number of tests
used on a given day [ is

H(UM ‘x(fH))
ZiLzl H(U) Xty

T(l) = :Ftotal

Next, we use a greedy strategy to determine the testing pools,
i.e,, individuals are pooled together into 7' tests, such that the
sum of their marginals is approximately £ —we do this heuris-
tically by first placing the 7 individuals whose probability of
being infected are closest to ; in the tests, and then adding
other individuals, if this moves the probability of the test result
being positive closer to 3.

Figure 5 illustrates the benefit of the entropy reduction princi-
ple compared to a static group test design CCW. With CCW, the
total number of tests T, was equally distributed over the
testing horizon. The SIR time dynamics were simulated over a
period of 50 days on a population of size 50. We observe that
using the epidemic dynamics to design tests significantly
reduces the uncertainty.

Introducing group testing and interventions into epidemiological
models. Building on the previous idea, our work in [31] takes a
theoretical approach to the dynamic group testing problem,
while also incorporating interventions. Here, we are interested
in the following direction: recall from Figure 4 that new infec-
tions occur daily even with complete testing; still, this is the
best performance one could hope for, both in terms of contain-
ing infections and alleviating the societal impact of “false” quar-
antines; therefore, the question is how many tests are really
needed to replicate the performance of complete testing?

We consider a discrete-time version of the SIR stochastic
network model. We also consider a slightly more general graph
structure than a clique—this model is termed as the discrete-
time SIR stochastic block model as the infection model resembles
a discrete-time stochastic process over a stochastic block model.
More precisely, on each day each infected individual transmits
the infection to a member in the same community with probabil-
ity g1 and to every other members at a lower probability g.
Discrete-time models fit more naturally with testing and inter-
vention (which happen at discrete-time intervals), and are more
amenable to analysis, enabling methods to derive guarantees on
the number of tests needed to achieve close-to-complete-testing
accuracy. The key idea is to observe that given perfect knowledge
of the state of each individual the previous day, the problem
reduces to that of static group testing with independent, non-
identical priors.*

Given the above mentioned observation, we now derive the
following alternate lower bound for static group testing with
independent, nonidentical priors p = (p1, ps, . . ., py)—the num-
ber of tests needed to identify all infections is at least
Q(Npmin log N) where py;, is the minimum value among all p;s.
In words, this makes precise the intuition that fewer tests are
necessary when infections are sparser. Moreover, if the minimum
and maximum entries in p are of the same order, existing
designs, such as CCA and CCW also require O( Np,,;, log V) tests,
and as a result, these test designs turn out to be order-optimal.
We next state the conditions under which the maximum and min-
imum probabilities of infection: Note that if ¢; = ¢, (if the net-
work is a clique), by symmetry all entries in p are identical and
order-optimality follows. Otherwise, one could show that when
q1 and ¢, are of same order, then py,. and p.,;, are also of same
order and order-optimality of designs, such as CCA and CCW fol-
lows. As a result, for relatively “well-mixed” populations, existing
static testing strategies turn out to be order-optimal.

Simulation results show that indeed, under the above men-
tioned conditions on ¢; and ¢, one could achieve the perfor-
mance of complete individual testing using a much smaller
number of tests via existing designs, such as CCW and CCA;
for example, over a period of 50 days, group testing needs
an average of around 100 tests per day for a population of
1000 individuals (see Figure 6).

* Given perfect knowledge of the states 2 days prior, the problem
resembles the one considered in [28].
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For the discrete-time SIR stochastic block model defined in
Section “Dynamic Group Testing,” we plot the average number of
tests required to identify all infected individuals every day. For
comparison, we plot the entropy lower bound as well as the
number of tests used by complete individual testing.

Conclusions and Open Questions

In this article, we made the case (through examples) that
leveraging community structure and epidemic dynamics can
enable more efficient and effective testing. But, this research
direction is still largely unexplored and there exist a number
of natural and important open questions, which are as follows.

Benefits. Can we gain an information-theoretic understanding
over which community structures, beyond the examples we
discussed, we can gain benefits, and how large these can be?
A related question is, what are low complexity test and
decoder designs that enable to realize such benefits. In particu-
lar, can we jointly design encoders and decoders that leverage
the community structure?

Limited community structure knowledge. Limited information due
to technological limitations, privacy issues, or fast-changing
structures may lead to performance deterioration. This raises
questions that include the following. What are “sufficient statis-
tics” in terms of community structure information? How do com-
munity model inaccuracies affect the epidemic dynamics? How
can we take into account such inaccuracies in the test designs?

Tradeoffs. In designing group testing and intervention strategies,
especially over approximate dynamical models, there exist sev-
eral important tradeoffs to explore, that can enable a variety of
operation points. Such tradeoffs include number of tests, number
of false positives (that result in unneeded isolations), number of
false negatives (that can result in further disease spread), compu-
tational complexity, distributed versus centralized processing of
test results, and frequency of testing.

Spectrum of tests used. Although we here focused on binary
tests that are noiseless, there exists significant work on noisy
testing [6], [38] as well as more involved test models [37].
Moreover, we may want to combine the use of tests that have
different reliability and cost. How to optimize over a spectrum
of available tests, and how the bounds and test designs would
change is an open question.

Practical constraints. Deploying at large scale (e.g, over a
university, or an army camp) such techniques may require us
to adapt the algorithms to satisfy practical constraints; for
instance, startups currently offering group testing upper limit
the size of the group tested to a few tens of samples [54],
which is exactly the setup examined in sparse group test-
ing [36]. Combining constraints, such as the ones in [32], [36]
with community correlations is also an open question.
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