
Selectively-Amortized Resource Bounding

Tianhan Lu, Bor-Yuh Evan Chang, Ashutosh Trivedi

University of Colorado Boulder
{tianhan.lu,bec,ashutosh.trivedi}@colorado.edu

Abstract. We consider the problem of automatically proving resource
bounds. That is, we study how to prove that an integer-valued resource
variable is bounded by a given program expression. Automatic resource-
bound analysis has recently received significant attention because of a
number of important applications (e.g., detecting performance bugs, pre-
venting algorithmic-complexity attacks, identifying side-channel vulner-
abilities), where the focus has often been on developing precise amor-
tized reasoning techniques to infer the most exact resource usage. While
such innovations remain critical, we observe that fully precise amortiza-
tion is not always necessary to prove a bound of interest. And in fact,
by amortizing selectively, the needed supporting invariants can be sim-
pler, making the invariant inference task more feasible and predictable.
We present a framework for selectively-amortized analysis that mixes
worst-case and amortized reasoning via a property decomposition and
a program transformation. We show that proving bounds in any such
decomposition yields a sound resource bound in the original program,
and we give an algorithm for selecting a reasonable decomposition.

1 Introduction

In recent years, automatic resource-bound analysis has become an increasingly
specialized area of automated reasoning because of a number of important and
challenging applications, including statically detecting performance bugs, pre-
venting algorithmic-complexity attacks, and identifying side-channel vulnerabil-
ities. In this paper, we consider the specific problem of proving bounds on re-
source usage as follows: given an integer-valued resource variable r that models
resource allocation and deallocation, prove that it is bounded by an expression
eub at any program location—that is, prove assert r ≤ eub anywhere in the pro-
gram. Resource allocations and deallocations can be modeled by (ghost) updates
use r eop to the resource variable r (expressing that resource usage captured by

2 Lu et al.

r increments by e units), and we generically permit updates to be any expres-
sion eop. For example, resource variables can model lengths of dynamically-sized
collections like lists and strings (e.g., List.size() or StringBuilder.length() in
Java), and resource updates capture growing or shrinking such collections (e.g.,
List.add(Object), List.remove(Object), or StringBuilder.append(String)).

There are two natural ways to address this problem, by analogy to amortized
computational complexity [36], for which we give intuition here. The first ap-
proach views the problem as an extension of the loop bounding problem, that is,
inferring an upper bound on the number of times a loop executes [8, 19, 20, 33–
35, 39]. Then to derive upper bounds on resource variables r, multiply the worst-
case, or upper bound, of an update expression eop by an upper bound on the
number of times that update is executed, summed over each resource-use com-
mand use r eop, thereby leveraging the existing machinery of loop bound anal-
ysis [8, 9, 35]. We call this approach worst-case reasoning, as it considers the
worst-case cost of a given resource-use command for each loop iteration. This
worst-case reasoning approach has two potential drawbacks. First, it presupposes
the existence of loop bounds (i.e., assumes terminating programs), whereas we
may wish to prove resource usage remains bounded in non-terminating, reac-
tive programs (e.g., Lu et al. [28]) or simply where loop bounds are particularly
challenging to derive. Second, as the terminology implies, it can be overly pes-
simistic because the value of the resource-use expression eop may vary across
loop iterations.

The second approach to resource bound verification is to directly adopt the
well-established method of finding inductive invariants strong enough to prove
assertions [31]. However, directly applying inductive invariant inference tech-
niques (e.g., Chatterjee et al. [12], Colón et al. [13], Dillig et al. [16], Hrushovski
et al. [24], Kincaid et al. [25, 26, 27], Sharma et al. [32]) to the resource bounding
can be challenging, because the required inductive invariants are often particu-
larly complex (e.g., polynomial) and are thus not always feasible or predictable
to infer automatically [9, 21]. We call this approach fully-amortized reasoning,
as the strongest inductive invariant bounding the resource variable r may con-
sider arbitrary relations to reason about how the resource-use expression eop
may vary across loop iterations, thereby reasoning about amortized costs across
loop iterations.

The key insight of this paper is that the choice is not binary but rather the
above two approaches are extremal instances on a spectrum of selective amortiza-
tion. We can apply amortized reasoning within any sequence of resource updates
and then reason about each sequence’s contribution to the overall resource us-
age with worst-case reasoning. We show that the decomposition of the overall
resource usage into amortized segments can be arbitrary, so it can be flexibly
chosen to simplify inductive invariant inference for amortized reasoning of re-
sources or to leverage loop bound inference where it is possible, easy, and precise.
We then realize this insight through a program transformation that expresses
a particular class of decompositions and enables using off-the-shelf amortized
reasoning engines. In particular, we make the following contributions:

Selectively-Amortized Resource Bounding 3

1. We define a space of amortized reasoning based on decomposing resource
updates in different ways and then amortizing resource usage within the re-
sulting segments (Section 3). Different decompositions select different amor-
tizations, and we prove that any decomposition yields a sound upper bound.

2. We instantiate selective amortization through a program transformation for
a particular class of decompositions and define a notion of non-interfering
amortization segments to suggest a segmentation strategy (Section 4).

3. We implemented a proof-of-concept of selective amortization in a tool Brbo
(for break-and-bound) that selects a decomposition and then delegates to
an off-the-shelf invariant generator for amortized reasoning (Section 5). Our
empirical evaluation provides evidence that selective amortization effectively
leverages both worst-case and amortized reasoning.

Our approach is agnostic to the underlying amortized reasoning engine. Di-
rectly applying a relational inductive invariant generator on resource variables,
as we do in our proof-of-concept (Section 5), corresponds to an aggregate amor-
tized analysis, however this work opens opportunities to consider other engines
based on alternative amortized reasoning (e.g., the potential method [22, 23]).

2 Overview

Fig. 1 shows the core of Java template engine class from the DARPA STAC [15]
benchmarks. The replaceTags method applies a list of templates ts to the input
text using an intermediate StringBuilder resource sb that we wish to bound
globally. In this section, we aim to show that proving such a bound on sb moti-
vates selective amortized reasoning.

At a high-level, the replaceTags method allocates a fresh StringBuilder sb

to copy non-tag text or to replace tags using the input templates ts from the
input text. The inner loop at program point 4 does this copy or tag replace-
ment by walking through the ordered list of tag locations tags to copy the
successive “chunks” of non-tag text text.substring(p, l) and a tag replace-
ment rep at program points 6 and 8, respectively (the assume statement at pro-
gram point 5 captures the ordered list of locations property). Then, the leftover
text text.substring(p, text.length()) after the last tag is copied at program
point 11. The outer loop at program point 2 simply does this template-based
tag replacement, and inserts a separator sep (at program point 12), for each
template t. There are four program points where resources of interest are used
(i.e., sb grows in length)—the sb.append(. . .) call sites mentioned here.

The @Bound assertion shown on line 1

#sb ≤ #ts·(#text+ #tags·ts#rep+ #sep)

follows the structure of the code sketched above. The template-based tag replace-
ment is done #ts number of times where #ts models the size of the template list
ts. Then, the length of the tag-replaced text is bounded by the length of text

(i.e., #text) plus a bound on the length of all tag-replaced text #tags · ts#rep plus

4 Lu et al.

private String text;

private List<Pair<Integer,Integer>> tags = . . .text. . .;
public String replaceTags(List<Templated> ts, String sep) {

1 @Bound(#sb ≤ #ts·(#text+ #tags·ts#rep+ #sep)) StringBuilder

sb = new StringBuilder();

2 for (Templated t : ts) {

3 int p = 0;

4 for (Pair<Integer,Integer> lr : tags) {

5 int l = lr.getLeft(); int r = lr.getRight();

assume(p ≤ l ≤ r ≤ #text);

6 sb.append(text.substring(p, l));

7 String rep = . . .t. . .lr. . .; assume(#rep ≤ ts#rep);

8 sb.append(rep);

9 p = r;

10 }

11 sb.append(text.substring(p, text.length()));

12 sb.append(sep);

13 }

return sb.toString();

}

Fig. 1: Motivating selective worst-case and amortized reasoning to analyze a Java
template engine class (com.cyberpointllc.stac.template.TemplateEngine).
An instance of this class stores some text that may have tags in it to replace
with this engine. The tag locations are stored as an ordered list of pairs of start-
end indexes in the tags field, which is computed from text. Suppose we want to
globally bound the size of the StringBulder sb used by the replaceTags method
to apply a list of templates ts. Let #sb be a resource variable modeling the length
of sb (i.e., ghost state that should be equal to the run-time value of sb.length()).
We express a global bound on #sb to prove with the @Bound annotation—here in
terms of resource variables on the inputs ts, text, tags, and sep.

the length of the separator sep (i.e., #sep). A bound on each tag replacement
rep is modeled with a variable ts#rep (which we name with ts to indicate its
correspondence to a bound on all tag replacements described by input ts) and
the assume(#rep ≤ ts#rep) statement at program point 7. Thus, a bound on the
length of all tag-replaced text is #tags · ts#rep. Note that the coloring here is
intended to ease tracking key variables but having color is not strictly necessary
for following the discussion.

For explanatory purposes, the particular structure of this bound assertion
also suggests a mix of worst-case and amortized reasoning that ultimately leads
to our selectively-amortized reasoning approach that we describe further be-
low. Starting from reasoning about the inner loop, to prove that the copying of
successive “chunks” of text is bounded by #text requires amortized reasoning
because the length of text.substring(p, l) at program point 6 varies on each
loop iteration. In contrast, we bound the length of all tag-replaced text with

Selectively-Amortized Resource Bounding 5

#tags · ts#rep using worst-case reasoning: we assume a worst-case bound on the
length of replacement text rep is ts#rep, so a worst-case bound with #tags num-
ber of tag replacements is #tags · ts#rep. Now thinking about the rest of the
body of the outer loop at program point 11, the leftover text copy is amortized
with the inner loop’s copying of successive “chunks,” so we just add the length
of the separator #sep. Finally, considering the outer loop, we simply consider
this resource usage bound for each loop iteration to bound #sb with #ts·(. . .).

The key observation here is that to prove this overall bound on #sb, even
though we need to amortize the calls to sb.append(text.substring(p, l)) at
program point 6 over the iterations of the inner loop, we do not need to amortize
the calls at this same site across iterations of the outer loop. Next, we translate
this intuition into an approach for selectively-amortized resource bounding.

2.1 Decomposing Resource Updates to Selectively Amortize

The resource-bound reasoning from Fig. 1 may be similarly expressed in a numer-
ical abstraction where all variables are of integer type as shown in Fig. 2a. There,
we write use r eop for tracking eop units of resource use in r and x := ∗ for a havoc
(i.e., a non-deterministic assignment). Note that text.substring(p, l) translates
to (l - p). To express checking the global bound, we write assert(#sb ≤ eub)
after each use update. We also note a pre-condition that simply says that all of
the inputs sizes are non-negative. Crucially, observe to precisely reason about
the resource usage #sb across all of these updates to #sb requires a polynomial
loop invariant, as shown at program point 5 in braces {· · · }.

Yet, our informal reasoning above did not require this level of complexity.
The key idea is that we can conceptually decompose the intermingled resource
updates to #sb in any number of ways—and different decompositions select differ-
ent amortizations. In Fig. 2b, we illustrate a particular decomposition of updates
to #sb. We introduce three resource variables #sb1, #sb2, #sb3 that correspond to
the three parts of the informal argument above (i.e., resource use for the non-tag
text at program points 6 and 11, the tag-replaced text at program point 8, and
the separator at program point 12, respectively). Let us first ignore the reset

and ub commands (described further below), then we see that we are simply
accumulating resource updates to #sb into separate variables or amortization
groups such that #sb = #sb1+ #sb2+ #sb3. But we can now bound #sb1, #sb2,
and #sb3 independently and have the sum of the bounds of these variables be a
bound for the original resource variable #sb.

However, precisely reasoning about the resource usage in #sb1 still requires
a polynomial loop invariant with the loop counters i, input #text, and internal
variable p. Following the observation from above, we want to amortize updates
to #sb1 across iterations of the inner loop but not between iterations of the outer
loop. That is, we want to amortize updates to #sb1 in the sequence of resource
uses within a single iteration of the outer loop and then apply worst-case rea-
soning to the resource bound amortized within this sequence. The amortization
reset reset #sb1 after the initializer of the loop at program point 4 accomplishes
this desired decoupling of the updates to #sb1 between outer-loop iterations by

6 Lu et al.

global bound eub: #ts·(#text+ #tags·ts#rep+ #sep)
pre-condition : {0≤ #text ∧ 0≤ #tags ∧ 0≤ #ts ∧ 0≤ ts#rep ∧ 0≤ #sep}

1#sb := 0;

2for (i := 0; i < #ts; i++) {

3 p := 0;

4 for (j := 0

; j < #tags; j++) {

5 {#sb≤ (i·#text+p)
+ ((i·#tags+j)·ts#rep)

+ (i·#sep)}

l := *; r := *;

assume(p ≤ l ≤ r ≤ #text);

6 use #sb (l - p);

assert(#sb ≤ eub);
7 #rep := *;

assume(0 ≤ #rep ≤ ts#rep);

8

use #sb #rep;

assert(#sb ≤ eub);
9 p := r;

10 }

11 use #sb (#text - p);

assert(#sb ≤ eub);
12

use #sb #sep;

assert(#sb ≤ eub);
13}

(a) A numerical abstraction of the
replaceTags method from Fig. 1.

1

2for (i := 0; i < #ts; i++) {

3 p := 0;

4 for (j := 0,

reset #sb1; j < #tags; j++) {

5 {#sb1] = i ∧ #sb1∗ ≤ #text ∧ #sb1≤ p ∧
#sb2] = i·#tags+j-1 ∧
#sb2∗ ≤ ts#rep ∧ #sb2≤ ts#rep ∧
#sb3] = i-1 ∧
#sb3∗ ≤ #sep ∧ #sb3≤ #sep}

l := *; r := *;

assume(p ≤ l ≤ r ≤ #text);

6 use #sb1 (l - p);

ub #sb1, #sb2, #sb3 eub
7 #rep := *;

assume(0 ≤ #rep ≤ ts#rep);

8 reset #sb2;

use #sb2 #rep;

ub #sb1, #sb2, #sb3 eub
9 p := r;

10 }

11 use #sb1 (#text - p);

ub #sb1, #sb2, #sb3 eub
12 reset #sb3;

use #sb3 #sep;

ub #sb1, #sb2, #sb3 eub
13}

(b) A resource usage decomposition and
amortized segmentation of (a).

Fig. 2: Decomposing resource usage into amortized segments transforms the re-
quired supporting loop invariant at program point 5 needed to prove the global
bound eub from polynomial to linear.

“resetting the amortization” at each outer-loop iteration. Conceptually, execu-
tions of the reset r mark the boundaries of the amortization segments of uses
of resource r.

The result of this decomposition is the simpler invariant at program point 5 in
the transformed program of Fig. 2b, which use some auxiliary summary variables
like #sb1∗ and #sb1]. For every resource variable r, we consider two summary
variables r∗ and r], corresponding, respectively, to the maximum of r in any seg-
ment and the number of “resetted” r segments so far. Concretely, the semantics
of reset #sb1 is as follows: (1) increment the segment counter variable #sb1] by

Selectively-Amortized Resource Bounding 7

1, thus tracking the number of amortization segments of #sb1 uses; (2) bump
up #sb1∗ if necessary (i.e., set #sb1∗ to max(#sb1∗, #sb1)), tracking the maxi-
mum #sb1 in any segment so far; and finally, (3) resets #sb1 to 0 to start a new
segment. As we see at program point 5 in the original and transformed pro-
grams of Fig. 2, we have decomposed the total non-tag text piece (i·#text+p)
into #sb1] · #sb1∗+ #sb1 where #sb1] = i, #sb1∗ ≤ #text, and #sb1≤ p. Intuitively,
#sb1] ·#sb1∗ upper-bounds the cost of all past iterations of the outer loop, and the
cost of the current iteration is precisely #sb1. Thus, #sb1] · #sb1∗+ #sb1 is globally
and inductively an upper bound for the total non-tag text piece of #sb. The same
decomposition applies to #sb2 and #sb3 where note that #sb3] = i-1, counts past
segments separated from the current segment so that #sb3] · #sb3∗+ #sb3 corre-
sponds to (i·#sep) where both the past and current are summarized together.
Overall, combining the amortization groups and segments, we have the following
global invariant between the original program and the transformed one:

#sb ≤ (#sb1] · #sb1∗+ #sb1) + (#sb2] · #sb2∗+ #sb2) + (#sb3] · #sb3∗+ #sb3)

To verify a given bound in the transformed program, we simply check that
this expression on the right in the above is bounded by the desired bound ex-
pression using any inferred invariants on #sb1], #sb1∗, #sb1, etc. This is realized
by the upper-bound check command at, for instance, program point 6 in Fig. 2b:

ub #sb1, #sb2, #sb3 (#ts·(#text+ #tags·ts#rep+ #sep)) .

Here, ub r e asserts that the sum of amortization groups (internally decomposed
into amortization segments) in the set r is bounded from above by e.

2.2 Finding a Selective-Amortization Decomposition

Fig. 2b shows a decomposition of updates to #sb into groups (i.e., #sb1, #sb2,
and #sb3) and segments (i.e., with resets) that realize a particular selective
amortization. We show that any decomposition into groups and segments is
sound in Section 3, but here, we discuss how we find such a decomposition.

Intuitively, we want to use worst-case reasoning whenever possible, maximiz-
ing decoupling of updates and simplifying invariant inference. But some updates
should be considered together for amortization. Thus, any algorithm to select
a decomposition must attempt to resolve the tension between two conflicting
goals: partitioning use updates in the program into more groups and smaller
segments, but also allowing amortizing costs inside larger segments to avoid pre-
cision loss. For example, it is important to use the same accumulation variable
#sb1 for the two locations that contribute to the non-tag text (program points 6
and 11) to amortize over both use sites. In Section 4, we characterize the poten-
tial imprecision caused by worst-case reasoning over segments with a notion of
amortization segment non-interference, which along with some basic restrictions
motivates the approach we describe here.

In Fig. 3, we show the control-flow graph of the resource-decomposed program
in Fig. 2b without the inserted resets. Node labels correspond to program points

8 Lu et al.

there, except for labels 2∗, 4∗, 13∗ that correspond to unlabeled program points
in the initialization of the for-loops and the procedure exit. Edges are labeled by
a single or a sequence of commands (where we omit keyword assume for brevity
in the figure). Some nodes and edges are elided as . . . that are not relevant for
this discussion. Ignore node colors and the labels below the nodes for now.

Let us consider the class of syntactic selective-amortization transformations
where we can rewrite resource use commands use r e to place uses into separate
amortization groups, and we can insert a reset r′ at a single program location to
partition uses into amortization segments for each group r′. But otherwise, we
make no other program transformation. We then use the notion of segment non-
interference to select a group and segment decomposition under this syntactic
restriction.

Now, the intuition behind amortization segment non-interference is that two
segments for a resource r are non-interfering if under the same “low inputs,” the
resource usage of r is the same in both segments. In Fig. 3, the labels below the
nodes show such low inputs to a particular use site from a particular program
point. For example, under node 4, we show p as a low input for both the use

sites at program points 6 and 11 (ignore the :0s for the moment).

So, an additional parameter in our search space is a partitioning of vari-
ables into “low” and “high” ones (which we note are not distinguished based
on security relevance in the standard use of the non-interference term [1] but
rather on relevance for amortized reasoning). We further fix the low variables in
any segmentation we might use to be the internal variables on which the uses
data-depend. This is based on the intuition that uses that share computation
over internal variables are related for amortization. Because the uses for #sb1

at program points 6 and 11 share p as an input at, for example, node 4, we
place these use sites in the same group. Then, otherwise the other use sites at
program points 8 and 12 are placed in other groups (namely, #sb2 and #sb3, re-
spectively). The set of variables on which use sites data-depend can be computed
by a standard program slicing [37].

2

6 : ()
11 : ()

2∗

6 : ()
11 : ()

13∗

3

6 : ()
11 : ()

4

6 : (p:0)
11 : (p:0)

4∗

6 : (p:0)
11 : (p:0)

11

6 : ()
11 : (p:>)

5

6 : (p:>)
11 : (p:>)

12

6 : ()
11 : ()

. . . 13

6 : ()
11 : ()

6

6 : (l:>, p:>)
11 : (p:>)

7

6 : (r:>)
11 : (r:>)

. . . 10

6 : (p:>)
11 : (p:>)

i:=0 i≥#ts

i<#ts

p:=0 j:=0

j≥#tags

j<#tags

use #sb1 (#text - p)

p≤l≤r≤#text
l:=*; r:=*;

use #sb1 (l - p)

Fig. 3: Inserting a reset #sb1 to select a segmentation for amortization group
#sb1. We show the program from Fig. 2b here as a control-flow graph.

Selectively-Amortized Resource Bounding 9

Finally, we insert a single reset for each group to define amortization seg-
ments. So that all use r e commands for a group r are always after some reset r,
we consider program locations that control-dominate all use sites for r. In Fig. 3,
any of the colored nodes control-dominate the two use sites for #sb1. To make
the amortization segments as small as possible (while minimizing precision loss),
we select the most immediate dominator where the low variables can be proven
constant (i.e., the low inputs to the segments will always the same value). Node
4∗ (colored green) is this dominator for the two use sites for #sb1 because p is
always 0 (shown as p:0) and where we insert reset #sb1. We can derive this
constancy property with any numerical abstract domain (here, we show > for
non-constant values from a standard constant propagation analysis for presen-
tation), and we can pessimistically assume other variables to be low and also try
to prove constancy for them to potentially recover some additional precision in
segmentation.

Note that the analyses being applied here are classical ones. What is interest-
ing here is not the analyses per se but their application to selecting amortization
groups and segments to realize selectively-amortized resource bounding.

3 Decomposing Resource Usage

Our technique considers a resource-usage tracking program and splits a sin-
gle resource variable into an arbitrary number of resource decompositions. By
design, resource-usage tracking updates are generic in allowing updates with
any integer-valued expression, enabling modeling non-monotonic resources like
list additions and removals or memory allocation and deallocation. In this sec-
tion, we define a core imperative language for resource-usage tracking, formalize
selective-amortized analysis as a program transformation that inserts amortiza-
tion resets into decomposed resource-usage tracking variables (Section 3.1), and
show that any transformation is sound with respect to bound checks on resource
usage (Section 3.2). While we focus on upper-bound checks, we will see that the
approach can be easily adapted for lower-bound assertions.

In Fig. 4, we give the core resource-usage tracking language. We consider
an unspecified expression language e, aside from including program variables x
and its value forms v having integers n and booleans b. The command forms
include standard imperative ones like the no-op unit skip, assignment x := e,
and guard condition assume e. The remaining highlighted command forms work
with resources r. In particular, use r e models a resource use where the usage of r
is incremented by the value of e, and ub r e is an upper-bound assertion checking
that the sum of the resources r is upper-bounded by the value of e. We abuse
notation slightly by writing r both for a sequence r1 . . . rn or a set {r1, . . . , rn} of
resources. Selective amortization is realized through resetting resources with the
reset r command that we detail further below. Note that program expressions e
do not contain resources variables r. Finally, programs p are given as control-flow
graphs with edges `−[c]� `′ labeled by commands c between locations `.

10 Lu et al.

values v ::= n | b | · · · booleans b ::= true | false expressions e ::= x | v | · · ·

commands c ::= skip | x := e | assume e | use r e | ub r e | reset r
programs p ::= · | p, `−[c]� `′

variables x resources r locations `

stores ρ ::= · | ρ[x 7→ v] | ρ[r 7→ n] | ρ[r∗ 7→ n] | ρ[r] 7→ n]

〈ρ, e〉 ⇓ v 〈ρ, c〉 ⇓ ρ′

E-Use
〈ρ, e〉 ⇓ n

〈ρ, use r e〉 ⇓ ρ[r 7→ ρ(r) + n]

E-UBCheck

〈ρ, e〉 ⇓ n

(∑
r∈r

ρ(r]) · ρ(r∗) + ρ(r)

)
≤ n

〈ρ, ub r e〉 ⇓ ρ

E-Reset
ρ′ = ρ[r] 7→ ρ(r]) + 1][r∗ 7→max(ρ(r∗), ρ(r))][r 7→ 0]

〈ρ, reset r〉 ⇓ ρ′

Fig. 4: A core imperative language for resource-usage analysis. Resources r are
modeled as integer-valued variables that may increase or decrease (via a use

command) and bound-checked (via an ub assertion command). Selective amor-
tization is realized through resource resets.

The states σ of a program are pairs 〈`: ρ〉 of locations ` and stores ρ. Stores
are finite maps, mapping program variables to values x 7→ v, as well as tracking
resources in the remaining highlighted forms. A resource r is a integer-valued
variable r 7→ n. For any resource r, we consider two auxiliary resource-usage
summary variables r∗ and r] used in resource resetting to be described later.

A judgment form for evaluating expressions 〈ρ, e〉 ⇓ v stands for “In store ρ,
expression e evaluates to value v.” Similarly, a judgment form 〈ρ, c〉 ⇓ ρ′ stands
for “In store ρ, command c updates the store to ρ′.” In Fig. 4, we elide the
standard rules for skip, assignment x := e, and guard condition assume e and
focus on the resource-manipulating commands.

The E-Use rule captures that the use r e command says to increment r by
the value of e. Note that we write ρ(r) for looking up the mapping of r in store ρ
and assume that any unmapped r maps to 0. That is, we consider all resources
r initialized to 0. The E-UBCheck describes an upper-bound check ub r e on a
set of resources r. Let us first consider a single resource r and assume that the
auxiliary variable r∗ is 0 in the store. Then, the rule simply checks that r is upper-
bounded by the value of e (i.e., like assert r ≤ e). In the next subsection, we come
back to the more general form of the upper-bound check shown in E-UBCheck,
which captures the essence of selectively-amortized resource bounding through
an interaction with resource decomposition and amortization resets.

Selectively-Amortized Resource Bounding 11

decompositions D ::= · | D, r � r

D ` c � c′

D-Use
r′ ∈ r

D, r � r ` use r e � use r′ e

D-UBCheck

D, r � r ` ub r e � ub r e

D-Reset

D ` skip � reset r

D-Command
c ∈ {skip, x := e, assume e}

D ` c � c

Fig. 5: Decomposing resource usage for selective-amortization analysis is de-
scribed with a transformation that rewrites commands with a resource decom-
position D. Decompositions D define the amortization groups, while inserted
resets determine the amortization segments.

3.1 Selective Amortization By Decomposition

Recall from Section 2 that the essence of selectively-amortized resource bounding
is we want to selectively choose the sequence of resource uses use r e over which
we apply amortized reasoning. To do this, we have two intertwined tools: resource
decomposition r � r into amortization groups and amortization resets reset r
into amortization segments.

A resource decomposition D ::= · | D, r � r is a mapping from a resource r
into a set of decomposed resource-usage tracking variables r. The transformation
takes use r e and rewrites them to use use r′ e for some r′ ∈ r, thus decomposing
all uses of r into separate amortization groups given by r. In Fig. 5, the judgment
form D ` c � c′ says, “Under resource decomposition D, command c can be
resource-decomposed to command c′,” stating valid decomposition transforma-
tions. The D-Use rule states exactly this transformation for use r e commands.

Then, within separate amortization groups, resets reset r define the segments
of execution over which to amortize resource uses while applying worst-case
reasoning around them. To see this, consider the E-Reset rule in Fig. 4 where we
can see reset r as corresponding to the following assignments (abusing notation
slightly with assignments and expressions using resource variables):

r] := r] + 1; r∗ := max(r∗, r); r := 0;

That is, the reset r command increments the number of amortization segments
for r seen so far in r], saves the maximum value of r in any segment so far in
r∗, and resets r to 0 ending the last amortization segment and starting the next
one. So the r∗ resource-usage summary captures the worst-case resource use of r
over all segments, while the r] summary saves the number of such amortization
segments.

These summaries then enables amortized reasoning within segments and
worst-case reasoning around them. To see this, let us consider a one-to-one re-
source decomposition ro � r. Without loss of generality, we assume the original

12 Lu et al.

program using ro does not have any resets (but the transformed program with r
may). Furthermore, we assume all amortization segments are paths of the form
ρ reset r · · · ρ′ reset r with no other reset r in the middle and that there are no
resource uses use r e before an initial reset r (i.e., all executions of use r e are
either in a segment bracketed by two reset rs or after the last reset r). Then
the following selective-amortization assertion between ro and r holds globally
(in all reachable stores):

ro ≤ r] · r∗ + r

Intuitively, up to the last reset r, there have been r] amortization segments
and the worst-case use of r on all prior segments is r∗, so r] · r∗ is an upper
bound on the resource use up to the the last reset r—thereby using worst-case
reasoning on amortized segments. Then we just add r because the remaining uses
use r e since the last reset have accumulated in r. Note that we thus consider all
upper-bound summaries r∗ initialized to 0 and all segment-counter summaries
r] initialized to -1.

Coming back to the E-UBCheck rule describing the upper-bound check ub r e
in Fig. 4 (for a single resource r), the assertion checks the bound e on exactly
this amortized segments expression (i.e., like assert r] · r∗ + r ≤ e). Then,
with respect to amortization groups, a resource decomposition r � r says that
resource uses to r are distributed over uses to r, so we simply sum over the
amortization groups r (i.e., like assert

(∑
r∈r r

] · r∗ + r
)
≤ e).

Thus, the transformation from an upper-bound check ub r e on a resource r
with decomposition r � r yields ub r e as stated in rule D-UBCheck from Fig. 5.
As alluded to above, it is sound to insert resets arbitrarily into the transformed
program corresponding to different amortization segments, which we state with
rule D-Reset. Note that we consider programs p equivalent up to insertions of
skip commands, so we can insert them into the original program as needed.
The remaining non-resource manipulating commands are simply retained as-is
with rule D-Command. For simplicity in presentation, we assume the original
program does not have resets and has only single-resource upper-bound checks
ub r e. Overall, any choice of a resource decomposition D is sound corresponding
to different amortization groups. Again for simplicity, we assume all resources r
in the original program have a mapping in D (e.g., at least have r � r for no
decomposition). We consider soundness in more detail further below.

3.2 Soundness of Group and Segment Decomposition

To consider the soundness of the resource decomposition transformation D `
c � c′, we define program executions or paths π. In Fig. 6, we define paths
π in a slightly non-standard way: they are sequences created by appending a
state π σ or appending a store-command pair π ρ c and are well-formed if they
consist of sequences corresponding to the stores from valid executions of the
commands (as captured by the π ok judgment). Intentionally, we define paths
mostly independent from programs, stripping out locations ` except for the last
state 〈`: ρ〉. In most cases, we do not care about the program from which paths

Selectively-Amortized Resource Bounding 13

states σ ::= 〈`: ρ〉 paths π ∈ Π ::= · | π σ | π ρ c

π ok σ →p σ
′ JpKσ = Π

Ok-Init

σ ok

Ok-Step
π 〈`: ρ〉 ok 〈ρ, c〉 ⇓ ρ′

π ρ c 〈`′: ρ′〉 ok

Step
`−[c]� `′ ∈ p 〈ρ, c〉 ⇓ ρ′

〈`: ρ〉 →p 〈`′: ρ′〉

JpKσ def
= lfpλΠ. {σ} ∪

⋃
π 〈`: ρ〉∈Π

{
π ρ c σ′

∣∣ 〈`: ρ〉 →p σ
′ }

D ` π � π′

D-AppendCommand
D ` π 〈`: ρ〉 � π′ 〈`′: ρ′〉 D ` c � c′

D ` π ρ c � π′ ρ′ c′

D-Step
D ` π � π′ π′ σ′ ok σ 5D σ′

D ` π σ � π′ σ′

D-Init

D ` σ � σ

ρ 5D ρ′ σ 5D σ′

ρo 5D ρ iff ρo(x) = ρ(x) for all x ∈ vars(ρo) = vars(ρ) and

ρo(ro) ≤
∑

r∈D(ro)

ρ(r]) · ρ(r∗) + ρ(r) for all ro ∈ dom(ρo)

〈`: ρ〉 5D 〈`′: ρ′〉 iff ρ 5D ρ′ vars(ρ)
def
= {x | x ∈ dom(ρ) }

D ` p � p′

D-Transition
D ` c � c′

D ` p, `−[c]� `′ � p′, `−[c′]� `′
D-EmptyProgram

D ` · � ·

Fig. 6: A semantic decomposition is captured with a path transformation D `
π � π′ where paths π are sequences of command executions. The path trans-
formation says we can rewrite according to the command transformation until
reaching the same initial state. That is, choosing amortization groups with any
decomposition D and amortization segments with any insertions of resets are
sound. A syntactic decomposition is simply a lifting of the command transfor-
mation to programs D ` p � p′ on the same control-flow structure.

may come from. For example, the path well-formedness judgment π ok ignores
program locations and simply checks that the triples of store ρ, command c, and
store ρ′ are valid executions 〈ρ, c〉 ⇓ ρ′ (rule Ok-Step). Unless otherwise stated,
we assume all paths π are well formed (i.e., π ok holds for any path π).

The only reason paths mention locations is to define the path semantics JpKσ
of a program p with initial state σ. The path semantics JpKσ is given as: (1) the
judgment form σ →p σ′ defines a transition relation saying, “On program p,

14 Lu et al.

state σ steps to state σ′,” and (2) the path semantics JpKσ collects all finite (but
unbounded) prefixes of the transition system from the initial state σ.

The judgment form D ` π � π′ states a selectively-amortized resource
bounding on a path π′ from an original path π. Divorcing paths from programs
emphasizes that semantically, we can choose any amortization grouping with a
choice of the resource decomposition D and select any amortization segmentation
by inserting resets anywhere along the original path π. The D-AppendCommand

rules says that a command along the original path can be rewritten according
to the command transformation D ` c � c′. Note that like with programs, we
consider paths π equivalent up to insertions of skip commands, so we can insert
them into the original path as needed.

To talk about resource-decomposed stores along paths, we define ρ 5D ρ′

to be stores that are equal on program variables vars(ρ) (excluding resource
variables r) and whose resource-usage tracking variables satisfy the selectively-
amortized assertion from Section 3.1 (see Fig. 6 for a detailed definition). Then,
the D-Step rule says that the execution of the last command in π′ must result in a
state σ′ consistent with the semantics of commands (π′ σ′ ok) and with selective
amortization (σ 5D σ′). Finally, the D-Init rule simply says that resource-
decomposed paths should start with the same initial state.

We can then consider a more restricted, syntactic class of selectively-amortized
resource-bounding transformations by simply transforming the commands of a
program p (i.e., the judgment form D ` p � p′ in Fig. 6). To achieve more se-
mantic selective amortizations, one could, of course, first apply richer semantics-
preserving program transformations to the original program (than inserting
skips) before applying the resource-decomposition transformation.

We can now state the following soundness result.

Theorem 1 (Soundness of Selectively-Amortized Resource Bounding).

1. If D ` co � c, 〈ρ, c〉 ⇓ ρ′, and ρo 5D ρ, then 〈ρo, co〉 ⇓ ρ′o with ρ′o 5D ρ′.

2. If D ` πo � π and π ok, then πo ok.

3. If D ` po � p and π ∈ JpKσ, then there is a πo ∈ JpoKσ s.t. D ` πo � π.

The key lemma (part 1) states a preservation property that any command de-
composition preserves the selectively-amortized resource-bounding invariant 5D

(see the extended version [29] for details).

Verifying Bounds with Selective Amortization. Bound verification by selective
amortization follows directly from the soundness theorem given above. In par-
ticular, given a particular resource composition D and a transformed program
p from the original program po such that D ` po � p, simply apply any off-the-
shelf numerical verification or invariant generator to p to try to prove translated
upper-bound assertions ub r e in p.

In Section 4, we describe an approach for selecting a resource decomposition
and inserting amortization resets. However, we note that our key contribution
described here is generically defining the space of selective amortizations.

Selectively-Amortized Resource Bounding 15

Lower Bounds. While we focused on upper-bound checks in this section, we see
that the approach can be adapted to lower-bound assertions in a straightforward
manner by introducing a lower-bound resource-usage summary variable, say r†.
This lower-bound summary is analogously updated on reset r with the minimum
resource-usage so far (i.e., like r† := min(r†, r)). We can then translate lower-
bound assertions lb e r in the analogous manner and extend the selectively-
amortized resource bounding invariant 5D for lower bounds.

4 Selecting a Decomposition

In this section, we describe a way to select amortization groups (i.e., a resource
decomposition D) and amortization segments (i.e., insertions of amortization
resets) to algorithmically realize selectively-amortized resource bounding. As
alluded to in Section 2, there is a tension between creating as many groups
and as short segments as possible to focus amortized reasoning only where it is
needed, simplifying the invariant inference needed to do so, versus not creating
too many groups or too short segments that the needed amortization for precision
is lost. More specifically, the built-in multiplication r] ·r∗ we apply for worst-case
reasoning around segments simplifies the necessary invariants needed to prove
bounds but only if r∗ is sufficiently precise bound on resource usage per segment.

As hinted at in Section 3, the space of possible selective amortizations is
huge. Even with some basic restrictions to make this search more feasible, the
remaining space of selective amortizations is still large. In the remainder of this
section, we first characterize when the resource-usage summary r∗ is precise
based on a notion of non-interfering amortization segments. Then, we describe
the basic restrictions and their motivations to use segment non-interference to
search within this restricted space.

Non-Interfering Amortization Segments. Recall the selective-amortization as-
sertion ro ≤ r] · r∗ + r and the r∗ := max(r∗, r) update for a reset r from
Section 3.1. We can see that the difference between the sides of the inequality
(i.e., (r] · r∗+ r)− ro) comes from a difference between the current upper-bound
summary r∗ and the current resource accumulation in r (i.e., r∗−r) on a reset r.
Thus intuitively, we want to insert amortization resets reset r at locations that
would minimize this difference r∗−r across all such amortization segments. This
observation suggests a definition for segment non-interference:

Definition 1 (Amortization Segment Non-Interference). Consider two
paths π : (ρlo] ρhi) reset r · · · ρ reset r and π′ : (ρlo] ρ′hi) reset r · · · ρ′ reset r
such that dom(ρhi) = dom(ρ′hi). That is, we consider two amortization segments
(i.e., paths that start and end in a reset r) and partition the input into low
variables (i.e., dom(ρlo)) and high variables (i.e., dom(ρhi)). Then, we say seg-
ments π and π′ are non-interfering iff for any (high) stores ρhi and ρ′hi, and for
any (low) store ρlo, we have that ρ(r) = ρ′(r).

16 Lu et al.

We see that if all pairs of amortization segments are non-interfering for a suitable
partition of variables between high and low variables, then the selective amor-
tization is as precise as the fully amortized solution. Then, we want to balance
making amortization segments as small as possible (in order to simplify invariant
inference and maximize worst-case reasoning) with the smallest set of low input
variables (to maximize non-interference).

Computed Input-Independent Groups and Single Location-Based Segments. Def-
inition 1 suggests an approach to selecting amortization groups and segments
if we fix some basic restrictions: (1) First, we consider syntactic decomposition
transformations D ` po � p from the original program po. (2) Second, we con-
sider a single insertion of reset r into the transformed program p that control-
dominates all uses use r e for every resource r. Picking a control-dominating
location ` ensures we do not have any use r e before a reset r, and performing
single insertion means we only need to consider segments that start and end at
single location ` (where `−[reset r]� `′ ∈ p). (3) Third, we fix the low variables
in any segmentation we consider to be the internal variables on which the uses
data-depends, leaving any remaining variables at the segment start location ` to
be high, including the inputs to the entry location of the original program po.
Intuitively, we assume that uses that share computation over internal, low vari-
ables are related for amortization. However, there is still significant flexibility in
choosing the resource decomposition D that defines the amortization groups and
the uses-dominating location ` for each resource r in the transformed program
p—it does not have to be the immediate dominator of the uses.

As we want to create more groups to simplify invariant inference, let us first
consider the resource decomposition D such that each syntactic use r e in po is
translated to a unique resource variable and thus placed in a distinct group (i.e.,
such that |D(r)| = | { (`, e, `′) | `−[use r e]� `′ ∈ po } |). However, to find cases
where distinct groups are potentially insufficient, we consider possibly merging
use sites pairwise (i.e., `1−[use r1 e1]� `′1 and `2−[use r2 e2]� `′2 in the trans-
formed program p). Suppose we were to merge groups r1 and r2, then let us
consider the immediate dominator ` of locations `1 and `2, which defines the
possible amortization segments starting from and ending at location `. Consid-
ering this potential segmentation and the shared low input variables that may
affect the value of both r1 and r2 and if the values of these low input variables
may change in the segment, then we want to merge these groups based on restric-
tion (3) above (otherwise, they are computed input independent). We can then
approximate this criteria with standard, backwards data-dependency slices [37]
from the uses use r1 e1 and use r2 e2.

Once we have fixed a resource decomposition D defining amortization groups,
selecting a location ` to insert each reset r for each r in the transformed program
p is fairly straightforward. Following segment non-interference, for any use sites
sharing the same resource r (i.e., L = { ` | `−[use r e]� `′ ∈ p }), find the most
immediate dominator of L where we can prove that the low input variables are
constant (i.e., call this use-dominating location `, then we have that ρ(xlo) = n
for some n, for all low input variables xlo, in all reachable states 〈`: ρ〉). If we

Selectively-Amortized Resource Bounding 17

can prove that the low input variables are constant in the program up to the
amortization segment entry location `, then we satisfy segment non-interference
(up to non-determinism within segments).

Note that because of the tension between precision from simplifying invari-
ant inference versus from amortization, selecting a decomposition is necessarily
heuristic. Section 3 shows that picking any decomposition is sound, and Sect. 5
offers evidence that the principled heuristic described here provides a benefit.

5 Empirical Evaluation

Selective amortization represents a large space of possible approaches between
worst-case and fully amortized reasoning. Here we attempt to provide evidence
that selective amortization provides a benefit when compared with the two
extremes, even with simply the heuristic decomposition strategy described in
Sect. 4. It is this specific selective amortization strategy that we consider here
in our experiments. We consider the following research question on Effective-
ness : Can selective amortization improve the number of verified programs when
compared with the worst-case and fully-amortized extremes?

Effectiveness. In Table 1, we summarize the comparison between selective amor-
tization and the two extremes with the most precise configuration in each cat-
egory bolded. For each category, we list the number of programs (num) and
the total lines of code (loc). To test the effect of slightly weaker bound asser-
tions, we consider two sets of assertions: for the most precise bounds and by
relaxing the constant coefficients from the most precise bounds. For each con-
figuration, we applied the same verification tools after transformation with our
tool Brbo [30] implemented in 6,000 lines of Scala, using Z3 [14] for SMT solv-
ing and ICRA [27] as an off-the-shelf invariant generator. For the two sets of

Table 1: Verifying with worst-case (Wor), fully-amortized (Ful), and selectively-
amortized (Sel) with two sets of assertions: the most precise bounds and
constant-weakened ones. For each configuration, we give the number of assertions
proven (n) and the total verification time in seconds (s).

Most Precise Bounds Constant-Weakened Bounds

Wor Ful Sel Wor Ful Sel

category num loc (n) (s) (n) (s) (n) (s) (n) (s) (n) (s) (n) (s)

lang3 20 667 12 175.7 8 44.2 12 249.5 14 302.7 14 89.0 14 252.0
stringutils 10 390 2 12.9 4 196.5 4 176.2 4 101.3 5 209.0 6 264.3
guava 3 90 0 0 1 7.6 0 0 2 18.3 3 30.0 3 73.3
stac 3 122 2 118.6 2 23 3 101.1 2 126.6 2 22.5 3 105.2
generated 200 3633 139 1510.2 43 198.3 175 1779.5 140 1567.8 69 325.3 180 1852.2

total 236 4902 155 1817.4 58 469.6 194 2306.3 162 2116.7 93 675.8 206 2547.0

18 Lu et al.

bound assertions, 194 and 206 programs, respectively, were verified for the se-
lective amortization configuration—more than the number with either extreme.
The improvement over worst-case reasoning comes from amortizing the costs
over multiple commands, while the improvement over fully-amortized reason-
ing comes from amortizing the costs over subprograms that are smaller than the
whole program, so that inferring invariants becomes more manageable for ICRA.

The verification time in Table 1 consists of selecting amortizations, realiz-
ing amortizations via program transformations, and verifying bound assertions
on the transformed programs, which include invariant generation. We observed
that selecting amortizations and realizing them via program transformations
consumed negligible amounts of time; invariant generation took up more than
95% of the total time. Selecting amortizations based on the approach described
in Sect. 4 is fast because the selection only requires simple data- and control-
dependency analysis.

As noted above, these experiments consider the specific decomposition strat-
egy described in Sect. 4 on the original benchmarks, even though we show in
Sect. 3 that picking any decomposition is sound. But as alluded to in Sect. 3,
programs can be transformed in semantics-preserving ways that then expose
different possible decompositions (to either the strategy described in Sect. 4 or
even some other one). Others have made similar observations; for example, se-
mantic program transformations that split a loop into multiple phases [32] may
simplify the invariant generation by reducing the need for disjunctive invariants.
Indeed, it may strike the best balance between scalability and precision if we can
effectively perform different semantic transformations based on the precision we
need for proving some desired bounds.

Benchmarks. We developed this benchmark suite specifically for the resource
bounding problem (as it differs from, for example, the loop bounding problem).
In particular, we collected code from 36 real-world programs (from 4 libraries
or suites) that use StringBuilder. Furthermore, we created a suite of 200 syn-
thetic programs generated by randomly nesting and sequencing two common
loop idioms that are extracted from actual Java programs.

6 Related Work

Loop Bound Analysis and Worst-Case Reasoning. A large body of work has
addressed bounding the number of loop iterations in imperative numeric pro-
grams [8, 10, 11, 19–21, 33, 35, 39]. These techniques rely on ranking functions
to quantitatively track the changes in the rankings of states. The loop bounding
problem can be seen as a special case of the resource bounding problem where
the resource of interest is loop iteration, and the cost of each “use” (i.e., iter-
ation) is a constant 1. Or in other words, the loop bounding problem can be
extended to address the resource bounding problem, if one adopts what we call
worst-case reasoning to fix a constant upper bound for each resource use. There
are works that essentially take this perspective to apply loop bound analysis for
invariant inference [8, 9, 35].

Selectively-Amortized Resource Bounding 19

Worst-case execution time (WCET) analysis [38] is an area of study that
attempts to automatically infer time bounds for machine code, considering pre-
cise models of hardware architectures. It can be seen as another instance of
worst-case reasoning, focusing on defining precise worst-case bound models for
instructions but generally assuming loop bounds are given or easy to derive.

Our approach is partly inspired by Gulwani et al. [21] that describes a loop
bound analysis because we also rely on a program transformation to simplify the
forms of the needed inductive invariants. At the same time, we improve on this
work by first generalizing the reasoning of loop iterations to general resources,
which can change in a non-trivial (i.e., non-monotonic and non-constant) way,
and then introduce selective amortization that mixes in amortized reasoning
from the next category of papers to address these challenges.

(Fully-)Amortized Reasoning. Several lines of work employ a number of dif-
ferent techniques to precisely reason about resource usage over full executions
(i.e., attempt to perform fully-amortized reasoning). The COSTA project [2–6],
which adopts the recurrence relation approach, reasons about resource usage
by first abstracting program semantics into a set of recurrence relations and
then finding closed-form solutions to these recurrence relations. The RAML
project [22, 23] analyzes the resource usage of functional programs with the
potential method. This approach encodes the changes of a potential with lin-
ear programming constraints over the unknown coefficients of pre-determined
bound templates. Carbonneaux et al. [10, 11] adapts this approach to numerical
imperative programs. Atkey [7] (and improvements [17, 18]) develop expressive
program logics that extend type-based amortized resource analysis with resource
reasoning over heap data structures. The above approaches can be viewed as in-
stances of fully-amortized reasoning, because it is in an amortized manner that
they encode the sum of the resource usage into systems of constraints [2–6, 10, 11]
or perform deductive proofs that amortize costs [7, 17, 18]. The key challenge in
fully-amortized reasoning is to infer complex inductive invariants, which are the
solutions of the constraint systems in, for example, COSTA and RAML. Instead,
our approach may simplify the forms of the required invariants by decompos-
ing the resource usage into groups and segments of amortized costs. Since our
approach is agnostic to the underlying amortized reasoning engine, any fully-
amortized reasoning approach, such as the above ones, can potentially be used
in place of the relational inductive invariant generator applied in this paper.

7 Conclusion

In this paper we address the problem of automatically proving resource bounds,
where resource usage is expressed via an integer-typed variable. We present a
framework for selectively-amortized reasoning that mixes worst-case and fully
amortized reasoning via a property decomposition and a program transforma-
tion. We show that proving bounds in any such decomposition yields a sound
resource bound in the original program, and we give an algorithm for selecting an

20 Lu et al.

effective decomposition. Our empirical evaluation provides evidence that selec-
tive amortization effectively leverages both worst-case and amortized reasoning.

Acknowledgements We thank Pavol Černý for his valuable contributions in
the early stages of this research. We also thank the anonymous reviewers and
members of the CUPLV lab for their helpful reviews and suggestions. This re-
search was supported in part by the Defense Advanced Research Projects Agency
under grant FA8750-15-2-0096, and also by the National Science Foundation un-
der grant CCF-2008369.

References

1. Mart́ın Abadi, Anindya Banerjee, Nevin Heintze, and Jon G. Riecke. A core cal-
culus of dependency. In Principles of Programming Languages (POPL), pages
147–160, 1999. URL https://doi.org/10.1145/292540.292555.

2. Elvira Albert, Puri Arenas, Samir Genaim, Germán Puebla, and Damiano Zanar-
dini. Cost analysis of Java bytecode. In European Symposium on Programming
(ESOP), volume 4421, pages 157–172, 2007. URL https://doi.org/10.1007/

978-3-540-71316-6_12.
3. Elvira Albert, Samir Genaim, and Miguel Gómez-Zamalloa. Heap space analysis

for Java bytecode. In International Symposium on Memory Management (ISMM),
pages 105–116, 2007. URL https://doi.org/10.1145/1296907.1296922.

4. Elvira Albert, Samir Genaim, and Miguel Gómez-Zamalloa. Live heap space anal-
ysis for languages with garbage collection. In International Symposium on Mem-
ory Management (ISMM), pages 129–138, 2009. URL https://doi.org/10.1145/

1542431.1542450.
5. Elvira Albert, Samir Genaim, and Abu Naser Masud. More precise yet widely

applicable cost analysis. In Verification, Model Checking, and Abstract Interpreta-
tion (VMCAI), volume 6538, pages 38–53, 2011. URL https://doi.org/10.1007/

978-3-642-18275-4_5.
6. Diego Esteban Alonso-Blas and Samir Genaim. On the limits of the classical

approach to cost analysis. In Static Analysis (SAS), volume 7460, pages 405–421,
2012. URL https://doi.org/10.1007/978-3-642-33125-1_27.

7. Robert Atkey. Amortised resource analysis with separation logic. In European
Symposium on Programming (ESOP), volume 6012, pages 85–103, 2010. URL
https://doi.org/10.1007/978-3-642-11957-6_6.

8. Marc Brockschmidt, Fabian Emmes, Stephan Falke, Carsten Fuhs, and Jürgen
Giesl. Alternating runtime and size complexity analysis of integer pro-
grams. In Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), volume 8413, pages 140–155, 2014. URL https://doi.org/10.1007/

978-3-642-54862-8_10.
9. Pavel Cadek, Clemens Danninger, Moritz Sinn, and Florian Zuleger. Using loop

bound analysis for invariant generation. In Formal Methods in Computer Aided De-
sign (FMCAD), pages 1–9, 2018. URL https://doi.org/10.23919/FMCAD.2018.

8603005.
10. Quentin Carbonneaux, Jan Hoffmann, and Zhong Shao. Compositional certified

resource bounds. In Programming Language Design and Implementation (PLDI),
pages 467–478, 2015. URL https://doi.org/10.1145/2737924.2737955.

https://doi.org/10.1145/292540.292555
https://doi.org/10.1007/978-3-540-71316-6_12
https://doi.org/10.1007/978-3-540-71316-6_12
https://doi.org/10.1145/1296907.1296922
https://doi.org/10.1145/1542431.1542450
https://doi.org/10.1145/1542431.1542450
https://doi.org/10.1007/978-3-642-18275-4_5
https://doi.org/10.1007/978-3-642-18275-4_5
https://doi.org/10.1007/978-3-642-33125-1_27
https://doi.org/10.1007/978-3-642-11957-6_6
https://doi.org/10.1007/978-3-642-54862-8_10
https://doi.org/10.1007/978-3-642-54862-8_10
https://doi.org/10.23919/FMCAD.2018.8603005
https://doi.org/10.23919/FMCAD.2018.8603005
https://doi.org/10.1145/2737924.2737955

Selectively-Amortized Resource Bounding 21

11. Quentin Carbonneaux, Jan Hoffmann, Thomas W. Reps, and Zhong Shao. Au-
tomated resource analysis with Coq proof objects. In Computer-Aided Verifica-
tion (CAV), volume 10427, pages 64–85, 2017. URL https://doi.org/10.1007/

978-3-319-63390-9_4.
12. Krishnendu Chatterjee, Hongfei Fu, Amir Kafshdar Goharshady, and Ehsan Kaf-

shdar Goharshady. Polynomial invariant generation for non-deterministic recursive
programs. In Programming Language Design and Implementation (PLDI), pages
672–687, 2020. URL https://doi.org/10.1145/3385412.3385969.

13. Michael Colón, Sriram Sankaranarayanan, and Henny Sipma. Linear invariant
generation using non-linear constraint solving. In Computer-Aided Verification
(CAV), volume 2725, pages 420–432, 2003. URL https://doi.org/10.1007/

978-3-540-45069-6_39.
14. Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: an efficient SMT

solver. In Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), volume 4963, pages 337–340, 2008. URL https://doi.org/10.1007/

978-3-540-78800-3_24.
15. Defense Advanced Research Projects Agency (DARPA). Space/time analy-

sis for cybersecurity (STAC), 2019. URL https://www.darpa.mil/program/

space-time-analysis-for-cybersecurity.
16. Isil Dillig, Thomas Dillig, Boyang Li, and Kenneth L. McMillan. Inductive

invariant generation via abductive inference. In Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA), pages 443–456, 2013. URL
https://doi.org/10.1145/2509136.2509511.

17. Armaël Guéneau, Arthur Charguéraud, and François Pottier. A fistful of dol-
lars: Formalizing asymptotic complexity claims via deductive program verification.
In European Symposium on Programming (ESOP), volume 10801, pages 533–560,
2018. URL https://doi.org/10.1007/978-3-319-89884-1_19.

18. Armaël Guéneau, Jacques-Henri Jourdan, Arthur Charguéraud, and François Pot-
tier. Formal proof and analysis of an incremental cycle detection algorithm. In
Interactive Theorem Proving (ITP), volume 141, pages 18:1–18:20, 2019. URL
https://doi.org/10.4230/LIPIcs.ITP.2019.18.

19. Sumit Gulwani and Florian Zuleger. The reachability-bound problem. In Program-
ming Language Design and Implementation (PLDI), pages 292–304, 2010. URL
https://doi.org/10.1145/1806596.1806630.

20. Sumit Gulwani, Sagar Jain, and Eric Koskinen. Control-flow refinement and
progress invariants for bound analysis. In Programming Language Design and
Implementation (PLDI), pages 375–385, 2009. URL https://doi.org/10.1145/

1542476.1542518.
21. Sumit Gulwani, Krishna K. Mehra, and Trishul M. Chilimbi. SPEED: precise and

efficient static estimation of program computational complexity. In Principles of
Programming Languages (POPL), pages 127–139, 2009. URL https://doi.org/

10.1145/1480881.1480898.
22. Jan Hoffmann, Klaus Aehlig, and Martin Hofmann. Multivariate amortized re-

source analysis. In Principles of Programming Languages (POPL), pages 357–370,
2011. URL https://doi.org/10.1145/1926385.1926427.

23. Jan Hoffmann, Ankush Das, and Shu-Chun Weng. Towards automatic resource
bound analysis for OCaml. In Principles of Programming Languages (POPL),
pages 359–373, 2017. URL https://doi.org/10.1145/3009837.3009842.

24. Ehud Hrushovski, Joël Ouaknine, Amaury Pouly, and James Worrell. Polynomial
invariants for affine programs. In Logic in Computer Science (LICS), pages 530–
539, 2018. URL https://doi.org/10.1145/3209108.3209142.

https://doi.org/10.1007/978-3-319-63390-9_4
https://doi.org/10.1007/978-3-319-63390-9_4
https://doi.org/10.1145/3385412.3385969
https://doi.org/10.1007/978-3-540-45069-6_39
https://doi.org/10.1007/978-3-540-45069-6_39
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://www.darpa.mil/program/space-time-analysis-for-cybersecurity
https://www.darpa.mil/program/space-time-analysis-for-cybersecurity
https://doi.org/10.1145/2509136.2509511
https://doi.org/10.1007/978-3-319-89884-1_19
https://doi.org/10.4230/LIPIcs.ITP.2019.18
https://doi.org/10.1145/1806596.1806630
https://doi.org/10.1145/1542476.1542518
https://doi.org/10.1145/1542476.1542518
https://doi.org/10.1145/1480881.1480898
https://doi.org/10.1145/1480881.1480898
https://doi.org/10.1145/1926385.1926427
https://doi.org/10.1145/3009837.3009842
https://doi.org/10.1145/3209108.3209142

22 Lu et al.

25. Zachary Kincaid, Jason Breck, Ashkan Forouhi Boroujeni, and Thomas W. Reps.
Compositional recurrence analysis revisited. In Programming Language Design and
Implementation (PLDI), pages 248–262, 2017. URL https://doi.org/10.1145/

3062341.3062373.
26. Zachary Kincaid, John Cyphert, Jason Breck, and Thomas W. Reps. Non-linear

reasoning for invariant synthesis. Proc. ACM Program. Lang., 2(POPL):54:1–54:33,
2018. URL https://doi.org/10.1145/3158142.

27. Zachary Kincaid, Jason Breck, John Cyphert, and Thomas W. Reps. Closed forms
for numerical loops. Proc. ACM Program. Lang., 3(POPL):55:1–55:29, 2019. URL
https://doi.org/10.1145/3290368.

28. Tianhan Lu, Pavol Cerný, Bor-Yuh Evan Chang, and Ashutosh Trivedi. Type-
directed bounding of collections in reactive programs. In Verification, Model Check-
ing, and Abstract Interpretation (VMCAI), volume 11388, pages 275–296, 2019.
URL https://doi.org/10.1007/978-3-030-11245-5_13.

29. Tianhan Lu, Bor-Yuh Evan Chang, and Ashutosh Trivedi. Selectively-amortized
resource bounding (extended version), 2021. URL https://arxiv.org/abs/2108.

08263.
30. Tianhan Lu, Bor-Yuh Evan Chang, and Ashutosh Trivedi. Selectively-amortized

resource bounding (artifact), 2021. URL https://zenodo.org/record/5140586.
31. Zohar Manna and Amir Pnueli. Completing the temporal picture. Theor. Com-

put. Sci., 83(1):91–130, 1991. URL https://doi.org/10.1016/0304-3975(91)

90041-Y.
32. Rahul Sharma, Isil Dillig, Thomas Dillig, and Alex Aiken. Simplifying loop

invariant generation using splitter predicates. In Computer-Aided Verification
(CAV), volume 6806, pages 703–719, 2011. URL https://doi.org/10.1007/

978-3-642-22110-1_57.
33. Moritz Sinn, Florian Zuleger, and Helmut Veith. A simple and scalable static

analysis for bound analysis and amortized complexity analysis. In Computer-Aided
Verification (CAV), volume 8559, pages 745–761, 2014. URL https://doi.org/

10.1007/978-3-319-08867-9_50.
34. Moritz Sinn, Florian Zuleger, and Helmut Veith. Difference constraints: An ad-

equate abstraction for complexity analysis of imperative programs. In Formal
Methods in Computer Aided Design (FMCAD), pages 144–151, 2015.

35. Moritz Sinn, Florian Zuleger, and Helmut Veith. Complexity and resource bound
analysis of imperative programs using difference constraints. J. Autom. Reason.,
59(1):3–45, 2017. URL https://doi.org/10.1007/s10817-016-9402-4.

36. Robert Endre Tarjan. Amortized computational complexity. SIAM Journal on
Algebraic Discrete Methods, 6(2):306–318, 1985.

37. Mark Weiser. Program slicing. IEEE Trans. Software Eng., 10(4):352–357, 1984.
URL https://doi.org/10.1109/TSE.1984.5010248.

38. Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan
Thesing, David B. Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heck-
mann, Tulika Mitra, Frank Mueller, Isabelle Puaut, Peter P. Puschner, Jan
Staschulat, and Per Stenström. The worst-case execution-time problem - overview
of methods and survey of tools. ACM Trans. Embed. Comput. Syst., 7(3):36:1–
36:53, 2008. URL https://doi.org/10.1145/1347375.1347389.

39. Florian Zuleger, Sumit Gulwani, Moritz Sinn, and Helmut Veith. Bound anal-
ysis of imperative programs with the size-change abstraction. In Static Analy-
sis (SAS), volume 6887, pages 280–297, 2011. URL https://doi.org/10.1007/

978-3-642-23702-7_22.

https://doi.org/10.1145/3062341.3062373
https://doi.org/10.1145/3062341.3062373
https://doi.org/10.1145/3158142
https://doi.org/10.1145/3290368
https://doi.org/10.1007/978-3-030-11245-5_13
https://arxiv.org/abs/2108.08263
https://arxiv.org/abs/2108.08263
https://zenodo.org/record/5140586
https://doi.org/10.1016/0304-3975(91)90041-Y
https://doi.org/10.1016/0304-3975(91)90041-Y
https://doi.org/10.1007/978-3-642-22110-1_57
https://doi.org/10.1007/978-3-642-22110-1_57
https://doi.org/10.1007/978-3-319-08867-9_50
https://doi.org/10.1007/978-3-319-08867-9_50
https://doi.org/10.1007/s10817-016-9402-4
https://doi.org/10.1109/TSE.1984.5010248
https://doi.org/10.1145/1347375.1347389
https://doi.org/10.1007/978-3-642-23702-7_22
https://doi.org/10.1007/978-3-642-23702-7_22

	Selectively-Amortized Resource Bounding

