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Abstract

We evaluate the effectiveness of semi-supervised learning

(SSL) on a realistic benchmark where data exhibits con-

siderable class imbalance and contains images from novel

classes. Our benchmark consists of two fine-grained classifi-

cation datasets obtained by sampling classes from the Aves

and Fungi taxonomy. We find that recently proposed SSL

methods provide significant benefits, and can effectively use

out-of-class data to improve performance when deep net-

works are trained from scratch. Yet their performance pales

in comparison to a transfer learning baseline, an alternative

approach for learning from a few examples. Furthermore,

in the transfer setting, while existing SSL methods provide

improvements, the presence of out-of-class is often detri-

mental. In this setting, standard fine-tuning followed by

distillation-based self-training is the most robust. Our work

suggests that semi-supervised learning with experts on re-

alistic datasets may require different strategies than those

currently prevalent in the literature.

1. Introduction

Semi-supervised learning (SSL) aims to exploit unlabeled

data to train models from a few labels, making them practi-

cal for applications where labels are a bottleneck. Yet, the

current literature on SSL with deep networks for image clas-

sification has two main shortcomings. First, most methods

are evaluated on curated datasets such as CIFAR, SVHN,

or ImageNet, where class distribution is or is close to uni-

form and unlabeled data contains no novel classes. This

is implicit in methods that rely on the assumption that the

data is uniformly clustered, use a uniform instead of class-

balanced loss, or categorize unlabeled data into one of the

labeled classes. In practice, however, class distribution can

be highly unbalanced or even unknown, and the unlabeled

data may contain novel classes. How effective is SSL in

these situations?

Second, most literature has focused on training models
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Figure 1. Accuracy of semi-supervised learning (SSL) algorithms

on the Semi-Aves and Semi-Fungi datasets (see Fig. 2) using (i)

different pre-trained models, and (ii) in-class (Uin) and out-of-class

(Uin + Uout) unlabeled data. The performances of the supervised

baseline and supervised oracle are also shown. Transfer learning

from experts is far more effective than SSL from scratch, while

in the transfer setting SSL provides modest gains. Though out-of-

class data (Uout) is valuable when training from scratch, it is not

the case when training from experts (details in Tab. 2 and 3).

from scratch. However, a practical approach for few-shot

learning is to use expert models trained on large labeled

datasets such as ImageNet [36] or iNaturalist [46]. What

gains does SSL provide in this setting, especially since many

SSL methods are based on learning invariances from data

based on transformations which might have already been

learned by the experts during supervised training? Moreover,

is out-of-domain data beneficial when experts are available?

Our paper aims to answer these questions by conduct-

ing a systematic study of SSL techniques (Fig. 1) on two

fine-grained classification datasets that exhibit a long-tailed

distribution of classes and contain a large number of out-

of-class images (Fig. 2). These datasets are obtained by

sampling classes under the Aves (birds) and Fungi taxonomy.

The out-of-class images are other Aves (or Fungi) images

not belonging to the classes within the labeled set. The first

dataset was part of the semi-supervised challenge at FGVC7

workshop [41], while the second one is constructed from
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Figure 2. The proposed benchmark for semi-supervised learning. The benchmark contains two datasets, with classes from the Aves and

Fungi taxa respectively. Each represents a 200-way classification task and the training set contains (i) labeled images from these classes

Lin, (ii) unlabeled images from these classes Uin, and (iii) unlabeled images from related classes Uout, as seen on figures to the right.

Moreover, the classes exhibit a long-tailed distribution with an imbalance ratio of 8 to 10. The benchmark captures conditions observed in

some realistic applications that are not present in existing datasets used to evaluate semi-supervised learning. See § 3 and Tab. 1 for details.

the FGVC fungi challenge [1] following a similar scheme,

details of which are described in § 3. We also provide a

benchmark on the CUB dataset [48] in the supp. material.

On these datasets, we conduct a systematic study of

existing deep-learning-based semi-supervised learning ap-

proaches for image classification. We perform experiments

on SSL methods including Pseudo-Label [25], Curriculum

Pseudo-Label [8], FixMatch [39], self-training using distil-

lation [52], self-supervised learning (MoCo [18]), as well

as their combinations when effective. We investigate strate-

gies for using unlabeled data when models are initialized

from experts. We also evaluate the performance of methods

that use unlabeled data from the same classes as the labeled

dataset (Uin) and a practical setting where the unlabeled data

includes out-of-class images (Uin + Uout). The high-level

summary of the experiments reported in Fig. 1, Tab. 2, 3,

and Fig. 3 are as follows:

• Some of the SSL methods are effective when models are

trained from scratch, especially those with self-supervised

pre-training can significantly benefit from out-of-class

data (long blue whiskers and longer orange whiskers

above the baseline for scratch in Fig. 1). In this setting,

self-supervised learning followed by distillation-based

self-training performs the best (Tab. 2 and 3).

• The best SSL approach significantly under-performs the

supervised fine-tuning model trained on the labeled por-

tion of the datasets (the baseline performance of Ima-

geNet and iNat is higher than any SSL model trained from

scratch in Fig. 1).

• Picking the right expert provides further gains in this few-

shot setting but not when training using the entire labeled

dataset (oracle performance in Fig. 1).

• When training with experts, FixMatch gives the most im-

provements when having Uin only. However, the presence

of out-of-class unlabeled data often hurts performance.

Self-Training was the most robust to the presence of out-

of-class data (Tab. 2, 3 and Fig. 3).

• Surprisingly, we found that no method was able to reli-

ably use out-of-class data even though the domain shift

is relatively small (the orange group is not higher than

the blue groups for ImageNet and iNat unlike scratch

in Fig. 1), echoing the experience of participants in the

FGVC7 challenge [41].

• The performance of SSL is far below the model trained

using labels of the entire in-class data suggesting that there

is significant room for improvement (oracle performance

in Fig. 1).

In summary, we conduct a systematic evaluation of sev-

eral recently proposed SSL techniques on two challeng-

ing datasets representing a long-tailed distribution of fine-

grained categories. We vary the initialization and the domain

of the unlabeled data and analyze the robustness of vari-

ous SSL approaches. Our experiments indicate that SSL

does not work out-of-the-box in a transfer learning setting,

especially in the presence of out-of-domain data. These

results are in a similar vein to prior work on the evalua-

tion of SSL approaches that have analyzed the robustness of

SSL techniques to the choice of hyper-parameters [30], net-

work architectures [9, 51], and domain shifts [30, 42, 49], etc.

However, the evaluation in a transfer learning setting on the

proposed benchmarks reveals additional insights. We hope

these experiments inspire practical methods that combine

the benefits of supervised learning and task-specific learning

on partially labeled datasets.
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2. Related Works

Semi-supervised learning has a long history in machine

learning. In this section, we describe the trends in recent

techniques based on deep learning and refer the reader to

surveys on SSL for a comprehensive view [31, 45, 56, 57].

Self-Training. These techniques use the model’s predic-

tion to automatically generate labels for the unlabeled

data [27, 38]. Pseudo-Labeling [25] includes confident pre-

dictions, i.e., those greater than a threshold for training. The

pseudo-labels can be added iteratively to induce a “curricu-

lum” [4,8,17]. Alternatively, one can add an entropy penalty

to encourage confident predictions on the unlabeled data [15].

Other methods [9, 52, 53, 58] involve re-training a “student

model” from a “teacher model” using its prediction com-

puted in different ways. For example, adding noise and

using a larger student model [52, 58], selecting k-most con-

fident pseudo-labels [53], or using a distillation loss which

softens the predictions [9, 52]. While these methods have

been shown to be successful in various datasets, the effec-

tiveness of the approach is critically dependent on the initial

performance of the model and the data distribution. Our

experiments show that the presence of out-of-class data neg-

atively impacts some of these methods while using expert

initialization provides a significant benefit.

Consistency-based learning. These methods learn by en-

couraging the consistency of the model’s predictions on the

unlabeled data. These could be across different augmenta-

tions of the data [3, 24, 34, 37], including adversarial ver-

sions [28]. Alternatively, consistency can be enforced across

time, e.g., using moving average of the predictions (temporal

ensembling [24]), using the moving average of model param-

eters (mean teacher [43]), or using a stochastic averaging of

model parameters [2]. A number of methods for data aug-

mentation have been proposed which has generally improved

both supervised and semi-supervised learning. These include

the variety of image augmentations proposed in RandAug-

ment [11], the CutOut scheme [12], linear combinations of

images used in MixUp [55], and even augmentations in the

feature space [23]. These augmentations have been incorpo-

rated in methods such as MixMatch [6], ReMixMatch [5],

FixMatch [39], UDA [51], and ICT [47] in different ways for

consistency-based learning. We choose FixMatch as the can-

didate approach which has shown state-of-the-art results on

existing SSL benchmarks, which we describe in detail in § 4.

While consistency via data-augmentation is effective when

a model is trained from scratch, it is unclear if this is effec-

tive when using a pre-trained model, as invariance to these

transformations may have been acquired during supervised

pre-training.

Self-supervised learning. Another line of work has ex-

plored using self-supervised (or unsupervised) learning ob-

jectives to improve semi-supervised learning. These include

incorporating pre-text tasks such as predicting image rota-

tions [14], the order of patches (jigsaw puzzle task) [29] dur-

ing semi-supervised learning [35, 42, 54]. Alternatively, self-

supervised learning can be used as an initialization before

training with labels. The recent success of self-supervised

learning based on contrastive learning [9, 18, 21, 32, 44] has

been incorporated by several approaches leading to promis-

ing results on ImageNet [9]. We also find that contrastive

learning followed by self-training is the best performing

when trained from scratch on our benchmark. However, the

value of out-of-class data is diminished when using expert

models.

Analysis of semi-supervised learning. The most related

to our work is that of Oliver et al. [30] who provide a

benchmark for comparing deep-learning-based SSL meth-

ods for image classification. While only CIFAR10 and

SVHN datasets were used, the paper pointed out that hyper-

parameters can have a significant impact on performance.

Yet these are hard to tune without access to large amounts

of labeled data, which is precisely the setting in semi-

supervised learning. In our analysis, we pay careful attention

to hyper-parameter optimization (see § 5.1). Their work

also showed that transfer learning from experts can be more

effective, but did not explore if their combination with semi-

supervised learning can be helpful. In addition, they showed

out-of-class unlabeled data may be harmful, but the classes

in Uin and Uout are widely different. Last, their work as well

as most SSL methods have been presented on well-curated

datasets. Our work focuses on the evaluation in a realis-

tic setting and includes an analysis of methods proposed

since Oliver et al.’s paper. These include methods based on

self-training, self-supervised training, and FixMatch which

outperform the consistency-based approach [28] analyzed in

their paper. More comparisons between [30] are provided in

the supplementary material.

3. A Realistic Benchmark

In SSL, we are provided with labeled training data

(xi, yi) ∈ Lin and unlabeled training data (ui, ·) ∈ U . The

unlabeled data can either belong to the same classes as the

labeled data (Uin), or to novel classes (Uout). In a realis-

tic setting, one may expect that the unlabeled data contains

novel classes. In many applications it is easy to acquire

images from related domains through coarse labeling, e.g., it

is easier to label an image as a bird than a “yellow bunting”.

Such images could be potentially used to learn better repre-

sentations. Thus we evaluate SSL methods in two settings,

one when the unlabeled data contains no novel images, and

another when it does, i.e., Uin and Uin + Uout respectively.
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Dataset
Classes Images Unlabeled Image Class Imbalance

Lin / Uin / Uout Lin / Uin / Uout Class Domain Resolution Distribution Ratio

CIFAR-10 10 / 10 / 0 4K / 40K / 0 L = U 32×32 uniform 1

CIFAR-100 100 / 100 / 0 10K / 50K / 0 L = U 32×32 uniform 1

SVHN 10 / 10 / 0 1K / 65K / 0 L = U 32×32 uniform 1

STL-10 10 / 0 / - 5K / 0 / 100K L 6= U 96×96 uniform 1

ImageNet 1000 / 1000 / 0 140K / 1.26M / 0 L = U 224×224 ≈ uniform 1.8

Semi-Aves 200 / 200 / 800 6K / 27K / 122K L = Uin 6= Uout 224×224 long-tailed 7.9

Semi-Fungi 200 / 200 / 1194 4K / 13K / 65K L = Uin 6= Uout 224×224 long-tailed 10.1

Table 1. A comparison of Semi-Aves and Semi-Fungi datasets with existing SSL benchmarks. The Semi-Aves and Semi-Fungi present a

challenge due to the large number of classes, presence of novel images in the unlabeled set, long-tailed distribution of classes as indicated by

the class imbalance ratio (maximum / minimum images per class) in the training set.

We use two datasets by sampling classes from the natural

domains for our benchmark. As shown in Fig. 2, the classes

belong to the Aves and Fungi taxonomy and contain a long-

tailed distribution of classes, as commonly observed in fine-

grained domains. Tab. 1 shows a comparison with other

benchmarks. Larger image sizes, significant class imbalance,

fine-grained categories, and a large number of out-of-class

images allow a more realistic evaluation of SSL techniques.

Below we describe each dataset.

Semi-Aves. We use the dataset from the semi-supervised

challenge at the FGVC7 workshop at CVPR 2020 [41]. The

dataset includes a subset of bird species from the Aves king-

dom of iNaturalist 2018 dataset [46]. However, there are no

overlapping images since the images were collected from

recent years. There are 200 in-class and 800 out-of-class

categories. The training and validation set has a total of 5959

labeled images, 26,640 and 122,208 in-class and out-of-class

unlabeled images, and 8000 test images. The training data in

Lin, Uin, and Uout is long-tail distributed, specifically Lin

has 15 to 53 images and Uin has 16 to 229 images per class.

The test data has a uniform distribution with 40 images per

class.

Semi-Fungi. We create a Semi-Fungi dataset following

the similar strategy of the Semi-Aves dataset. We use the

train-val set of images from the FGVCx Fungi challenge

at the FGVC5 workshop at CVPR 2018 [1]. The dataset

was collected from the “Svampe Atlas”1 website, thus the

image domain is different from iNaturalist. The original

dataset has 1394 fungi species with a long-tailed distribution.

We first sort the classes by frequency and randomly select

200 of the top 600 classes as in-class categories. We then

select 20 images per class as the test set, and randomly select

4141 images as labeled data and the rest 13,166 images as

in-class unlabeled data. The rest 1194 species are used as

1https://svampe.databasen.org

out-of-class unlabeled images, which has a total of 64,871

images. In Semi-Fungi, there are 6 to 78 images per class in

Lin, and 16 to 276 images in Uin. The test set is uniformly

distributed with 20 images per class.

4. Methods

In this section, we describe the details of the SSL methods

we compared in our benchmark.

(1) Supervised baseline / oracle: We train the model only

using labeled data Lin with a cross-entropy loss. For the

oracle, we include the ground-truth labels of Uin for training.

(2) Pseudo-Labeling [25]: The approach uses a base

model’s confident predictions on unlabeled images as la-

bels. Concretely, if the maximum probability of a class is

greater than a threshold τ , we then take the class as the target

label. Following the implementation of Oliver et al. [30],

we sample half of the batch from Lin and half from unla-

beled data U during training. Denote (xi, yi) as a labeled

sample, the predictions on unlabeled data ui of the model f
as qi = f(ui), pseudo-label as q̂i = argmax(qi), and cross-

entropy function as H(p, q) = −
∑

r p(r) log q(r). Then,

the objective for each batch is:

L =
n
∑

j=1

H(yi, f(xi)) +
n
∑

i=1

1
[

max(qi) ≥ τ
]

H(q̂i, qi).

(1)

(3) Curriculum Pseudo-Labeling [8]: Unlike pseudo-

labeling where labels are generated in an online manner,

curriculum labeling generates pseudo-labels after the train-

ing is finished on the current labeled set before retraining.

We first train a supervised model on labeled data Lin, then

select images with the highest predictions from all the unla-

beled data u ∈ U , and add them with their pseudo-labels to

the labeled dataset. In the next iteration, we retrain a model

from scratch using the new set of labeled data. We repeat
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this process 5 times and select {20, 40, 60, 80, 100}% of the

unlabeled data from the original pool of unlabeled data U .

The steps are as the following:

(i) Initialize L = Lin, β = 20.

(ii) Supervised training on L .

(iii) Generate predictions q = fθ(x) for every u ∈ U .

(iv) From U select β% examples with highest prediction

scores and their pseudo-labels as Ltop.

(v) Add selected unlabeled data with their pseudo-labels

to the labeled dataset L = Lin ∪ Ltop.

(vi) If β <100, β = β+20 and repeat from step (ii) .

(4) FixMatch: FixMatch combines pseudo-labeling and

consistency regularization. For each unlabeled image, it min-

imizes the cross-entropy between the pseudo-label (thresh-

olded prediction) of the weakly-augmented image and the

predictions of the strong-augmented image. For labeled data,

only weak augmentations are applied. Specifically, let α be

a weak augmentation (image flipping in our case) and A be

a strong augmentation (RandAugment [11] in our case). Let

the predictions under strong and weak augmentations are

Qi = f(A(ui)), qi = f(α(ui)). The total loss for labeled

and unlabeled data is

L =

m
∑

j=1

H(yj , f(α(xj)))+

km
∑

i=1

1
[

max(qi) ≥ τ
]

H(q̂i, Qi).

(2)

In the original implementation, each batch uses m labeled

and km unlabeled data with a total batch size n = (k+1)m,

where the sampling ratio k is a hyper-parameter.

(5) Self-Training: While the term of “Self-Training” is gen-

eral, we use this to refer to the following procedure using

distillation [20]. We first train a supervised model f t on

the labeled data which we call the teacher model, then train

a student model fs with scaled cross-entropy loss on the

unlabeled data and cross-entropy loss on labeled data. Dis-

tillation was originally used for model compression [7], but

has been shown to improve the performance when training

the student model with the same architecture [13] or across

different modalities [16, 40, 44]. Given unlabeled data (u, ·),
let the logits from teacher and student model as zt and zs,

and the prediction of labeled data (x, y) from the student

model is ys. The objective includes the cross-entropy loss

for labeled data (x, y), and the distillation loss for unlabeled

data:

L = (1−λ)
n
∑

j=1

H(yj , y
s
j )+λ

n
∑

i=1

H

(

σ

(

zti
T

)

, σ

(

zsi
T

))

,

(3)

where λ is the weight between supervised and distillation

losses, σ is the softmax function, and T is a temperature

(scaling) parameter.

(6) Self-Supervised Learning (MoCo [18]): We use mo-

mentum contrastive (MoCo) learning as a strong baseline

for self-supervised training. MoCo learns an image encoder

f(x) that maps the image x to a representation q = f(x)
and uses a contrastive objective that requires positive pairs

to be closer than negative pairs in the representation space.

The positive pairs are sampled from two geometric or pho-

tometric augmented views of a same images while negative

images are augmentations from different images. MoCo

adapts the InfoNCE [32] loss as the objective function. The

loss for each encoded query q is:

Lq = − log
exp (q · k+/T )

exp(q · k+/T ) +
∑K

i exp(q · k−i /T )
, (4)

where T is the temperature, k+ and k− are the positive and

negative sample of the query q. The number of negative

samples K is limited by the mini-batch size. In order to

stabilize the training, MoCo uses the memory bank [50] to

store the negative samples and updates the encoder of the

keys in the memory bank based on momentum. After the

self-supervised pre-training, we remove the MLP layers after

the global average pooling layer, add a linear classifier (a

fully convolutional layer followed by softmax), and train

the entire network with supervised cross-entropy loss. We

found that freezing the pre-trained backbone gives worse

performance than fine-tuning the entire network.

(7) MoCo + Self-Training: Here we initialize the model

using MoCo learning on the unlabeled data before semi-

supervised learning using Self-Training. A recent work by

Chen et al. [9] has shown this to be a strong semi-supervised

learning baseline. The procedure is as follows:

(i) Pre-train the model using MoCo on Lin and U .

(ii) Fine-tune the model on Lin with a cross-entropy loss.

Call this the teacher model f t.

(iii) Train a student model fs initialized from step (i) with

distillation loss (Eq. 3) using the teacher model f t.

5. Experiments

5.1. Implementation details

Network architecture and pre-training. For a fair com-

parison, we use a ResNet-50 network [19] on 224×224

images for all our experiments. For transfer learning, we use

pre-trained models on ImageNet [36] and iNaturalist 2018

(iNat) [46] dataset, which contains 8142 species including

1248 Aves and 321 Fungi species. Note that there are no

overlapping images between iNat’s training set and Semi-

Aves, though there are overlapping categories. The images

for Semi-Fungi images do not overlap with iNaturalist, but

we do not know how many overlapping classes there are as

species names were not provided in the original dataset [1]
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Method
from scratch from ImageNet from iNat

Top1 Top5 Top1 Top5 Top1 Top5

Supervised baseline 20.6±0.4 41.7±0.7 52.7±0.2 78.1±0.1 65.4±0.4 86.6±0.2

Supervised oracle 57.4±0.3 79.2±0.1 68.5±1.4 88.5±0.4 69.9±0.5 89.8±0.7

U
in

Pseudo-Label [25] 16.7±0.2 36.5±0.8 54.4±0.3 78.8±0.3 65.8±0.2 86.5±0.2

Curriculum Pseudo-Label [8] 20.5±0.5 41.7±0.5 53.4±0.8 78.3±0.5 69.1±0.3 87.8±0.1

FixMatch [39] 28.1±0.1 51.8±0.6 57.4±0.8 78.5±0.5 70.2±0.6 87.0±0.1

Self-Training 22.4±0.4 44.1±0.1 55.5±0.1 79.8±0.1 67.7±0.2 87.5±0.2

MoCo [18] 28.2±0.3 53.0±0.1 52.7±0.1 78.7±0.2 68.6±0.1 87.7±0.1

MoCo + Self-Training 31.9±0.1 56.8±0.1 55.9±0.2 80.3±0.1 70.1±0.2 88.1±0.1

U
in

+
U
o
u
t

Pseudo-Label [25] 12.2±0.8 31.9±1.6 52.8±0.5 77.8±0.1 66.3±0.3 86.4±0.2

Curriculum Pseudo-Label [8] 20.2±0.5 41.0±0.9 52.8±0.5 77.8±0.1 69.1±0.1 87.6±0.1

FixMatch [39] 19.2±0.2 42.6±0.6 49.7±0.2 72.8±0.5 64.2±0.2 84.5±0.1

Self-Training 22.0±0.5 43.3±0.2 55.5±0.3 79.7±0.2 67.6±0.2 87.6±0.1

MoCo [18] 38.9±0.4 65.4±0.3 51.5±0.4 77.9±0.2 67.6±0.1 87.3±0.2

MoCo + Self-Training 41.2±0.2 65.9±0.3 53.9±0.2 79.4±0.3 68.4±0.2 87.6±0.2

Table 2. Results on Semi-Aves benchmark. We experiment with six different SSL methods as well as supervised baselines under different

settings: (1) using Uin or Uin + Uout as the unlabeled dataset, (2) training from scratch, or using ImageNet or iNat pre-trained model. We

show that when training from scratch with Uin, MoCo + Self-Training performs the best. When having expert models, transfer learning is a

strong baseline, and FixMatch and Self-Training can still give improvements. When adding unlabeled data from Uout, the performance

pales except for the self-supervised method when training from scratch. The best results and those within the variance are marked in teal.

Method
from scratch from ImageNet from iNat

Top1 Top5 Top1 Top5 Top1 Top5

Supervised baseline 31.0±0.4 54.7±0.8 53.8±0.4 80.0±0.4 52.4±0.6 79.5±0.5

Supervised oracle 60.2±0.8 83.3±0.9 73.3±0.1 92.5±0.3 73.8±0.3 92.4±0.3

U
in

Pseudo-Label [25] 19.4±0.4 43.2±1.5 51.5±1.2 81.2±0.2 49.5±0.4 78.5±0.2

Curriculum Pseudo-Label [8] 31.4±0.6 55.0±0.6 53.7±0.2 80.2±0.1 53.3±0.5 80.0±0.5

FixMatch [39] 32.2±1.0 57.0±1.2 56.3±0.5 80.4±0.5 58.7±0.7 81.7±0.2

Self-Training 32.7±0.2 56.9±0.2 56.9±0.3 81.7±0.2 55.7±0.3 82.3±0.2

MoCo [18] 33.6±0.2 59.4±0.3 55.2±0.2 82.9±0.2 52.5±0.4 79.5±0.2

MoCo + Self-Training 39.4±0.3 64.4±0.5 58.2±0.5 84.4±0.2 55.2±0.5 82.9±0.2

U
in

+
U
o
u
t

Pseudo-Label [25] 15.2±1.0 40.6±1.2 52.4±0.2 80.4±0.5 49.9±0.2 78.5±0.3

Curriculum Pseudo-Label [8] 30.8±0.1 54.4±0.3 54.2±0.2 79.9±0.2 53.6±0.3 79.9±0.2

FixMatch [39] 25.2±0.3 50.2±0.8 51.2±0.6 77.6±0.3 53.1±0.8 79.9±0.1

Self-Training 32.5±0.5 56.3±0.3 55.7±0.3 81.0±0.2 55.2±0.2 82.0±0.3

MoCo [18] 44.6±0.4 72.6±0.5 52.9±0.3 81.2±0.1 51.0±0.2 78.5±0.3

MoCo + Self-Training 48.6±0.3 74.7±0.2 55.9±0.1 82.9±0.2 54.0±0.2 81.3±0.3

Table 3. Results on Semi-Fungi benchmark. We experiment on Semi-Fungi using the same hyper-parameters from Semi-Aves in Table 2.

We can see similar conclusions: When training from scratch, MoCo + Self-Training performs the best and adding Uout can give an extra

performance boost. With expert models, FixMatch and Self-Training (with or without MoCo) is often the best performing one, but the latter

is more robust to the out-of-class data.

from which it was constructed. However, this is less of a

concern as we find that iNat pre-trained model performs

worse than an ImageNet pre-trained model on Semi-Fungi,

suggesting the class overlap is likely small if any. To obtain

an iNat pre-trained model, we train the model using SGD

with momentum with a learning rate of 0.0045 and a batch

size of 64 for 75 epochs which matches the reported 60%
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Top-1 accuracy2. We use the ImageNet pre-trained model

from torchvision [33].

Data augmentation. For the Semi-Fungi dataset, we first

pre-process the images to have a maximum of 300 pixels

for each side, while Semi-Aves has a maximum of 500 pix-

els. We use random-resize-crop to the size of 224×224 and

random-flipping for data augmentation, for all the methods

except for MoCo and FixMatch. MoCo additionally uses

Gaussian blur, color jittering, and random grayscale conver-

sion, while FixMatch uses RandAugment [11].

Hyperparameter search. We found the SSL methods to

be sensitive to hyper-parameters such as learning rates,

weight decay, etc. As noted in [30], a small validation set

poses a risk of picking sub-optimal hyper-parameters. More-

over, labeled data is best used as a source of supervision.

While k-fold cross-validation is an alternative, it is expen-

sive. Hence, we use the combined training and validation

set for training SSL methods in our experiments and report

performance on the test set which is sufficiently large. In

particular, hyperparameters for all methods were based on

the performance on the Semi-Aves dataset and kept fixed for

the Semi-Fungi dataset (Tab. 3). Thus the results in Tab. 2

should be seen as a validation set performance, while those

in Tab. 3 represent a novel test set. However, the high-level

conclusions are identical across the two benchmarks.

Semi-supervised training. For SSL methods except for

FixMatch, we use SGD with a momentum of 0.9 and a co-

sine learning rate decay schedule [26] following [22, 39] for

optimization. Learning rate and weight decay were picked

from a range of [0.03, 0.0001]. We use a batch size of 64

during training. When there is unlabeled data, we select half

of the batch from labeled and another half from unlabeled

data (32 each). We train models for 10k and 50k iterations

for training from expert models and from scratch. Other

hyper-parameters include threshold τ for Pseudo-Labeling,

which we select from {0.80, 0.85, 0.90, 0.95}. When train-

ing from scratch, we use τ=0.85 and 0.8 for with and without

Uout; when training from experts we use τ=0.95. For Self-

Training, we set T=1 and λ=0.7 for all the experiments. For

FixMatch [39], we are able to train the model up to a batch

size of 192 (32 labeled and 160 unlabeled images) on 4

GPUs. We find the performance drops significantly with

small batch size (e.g. 48), however, we are unable to use

the same batch size as original paper (i.e. 6144) due to lim-

ited resources. We use a learning rate of 0.01 and threshold

τ=0.80 to train FixMatch for 500 epochs when training from

scratch and 250 epochs with pre-trained models. We report

the results from the last training epoch for all the methods.

2https://github.com/macaodha/inat_comp_2018

We also notice that FixMatch has more overfitting and the

results could be further improved. More details are provided

in the supplementary material.

Self-supervised training. We adopt the default settings

of MoCo-v2 [10], including MLP projector, 800 training

epochs, etc., but adapt the number of negative samples and

learning rate to our task. We use a batch size of 256 and

2048 negative samples in all experiments. We find that using

a large number of negative samples (e.g. 65,536) hurts the

performance. When training the MoCo from scratch, we use

the default learning rate of 0.03; when training MoCo from

ImageNet or iNaturalist pre-trained model, we use a smaller

learning rate (0.0003) and fewer training epochs (200) to

avoid the potential forgetting problem. In the end, we train a

classifier on the global average pooling features of ResNet-

50 without freezing the backbone. We find that freezing

the feature encoder always leads to worse performance than

fine-tuning the entire network.

5.2. Results

Our experimental results on Semi-Aves and Semi-Fungi

are shown in Tab. 2 and 3, respectively. To better visualize

the results, we plot the relative gain of each SSL method, i.e.

the differences between supervised baseline in raw accuracy,

on both datasets in Fig. 3. We discuss the results of each

setting in the following.

Training from scratch. We first discuss the results of

training from scratch using only Uin on both datasets. Com-

paring to supervised baseline, Curriculum Pseudo-Label

does not give improvements and Pseudo-Label even under-

performs the baseline. This is possibly due to the low initial

accuracy of the model which gets amplified during pseudo

labeling. FixMatch and Self-Training both result in im-

provements. Self-supervised learning (MoCo) gives a good

initialization and the improvements are similar or even more

than using FixMatch. Finally, Self-Training using MoCo

pre-trained model as the teacher model results in a further

2-3% improvement.

Using expert models. We then consider using an Ima-

geNet or iNat pre-trained model for transfer learning with

Uin only. The transfer learning baseline from either expert

model outperforms the best SSL method (MoCo + Self-

Training) trained from scratch by a large margin, show-

ing that transfer learning is more powerful in our realis-

tic datasets. This observation echos Oliver et al. [30] who

showed transferring from ImageNet to CIFAR10 performs

better than SSL methods. Next, we can see that most of

the SSL methods, as well as MoCo pre-training, provide

improvements over the baselines. The only exception is
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Figure 3. Relative gains of SSL methods on Semi-Aves and Semi-Fungi. Left: trained from scratch. Right: using expert models. For

each SSL method, we plot the relative gain, i.e. the difference between the supervised baseline in raw accuracy, from the results in both

Tab. 2 and 3. This shows that (1) the presence of out-of-class data Uout often hurts the performance, and (2) Self-Training is often the best

method when using pre-trained models.

Pseudo-Label on Semi-Fungi. Among SSL methods, Fix-

Match and MoCo + Self-Training perform the best.

Effect of out-of-class unlabeled data. Now we consider

the setting where the unlabeled data contains both in-class

and out-of-class data (Uin + Uout). This is the trade-off

between more unlabeled data at the cost of a distribution

shift. This effect can be seen in the orange vs. blue plot

in Fig. 3. When training from scratch, the performances

of Pseudo-Label and FixMatch drop by 4-9%, while Cur-

riculum Pseudo-Label and Self-Training only drop by less

than 1%, showing that they are more robust to the domain

shift of unlabeled data. On the other hand, self-supervised

pre-training (MoCo) can benefit significantly from Uout,

providing around 11% improvement over using Uin only on

both Aves and Fungi datasets. Combining with Self-Training

gives another 3-6% improvement, making the gap between

transfer learning baseline smaller.

Finally, we consider having Uin + Uout with expert mod-

els. In Fig. 3 we can see the performance often drops in

the presence of Uout. Curriculum Pseudo-Label and Self-

Training are more robust and yield less than 1% decrease

in most cases, while FixMatch is less robust whose perfor-

mance drops by around 6%. The performances of MoCo

also drops around 1-3% and are sometimes worse than the

supervised baseline. Adding Self-Training however provides

a 1-3% boost in performance. Overall, Self-Training from

either a supervised or a self-supervised model is the most

robust one.

Robustness to hyper-parameters and trends. We found

Pseudo-Label to be sensitive to the threshold τ . When us-

ing experts higher thresholds worked better. Increasing the

threshold also increased the robustness in the presence of

novel classes. Curriculum Pseudo-Label was found to be

more robust in our benchmark, even when adding Uout. Self-

Training was the most robust to hyper-parameters, we chose

the same temperature T and weight λ for all the experiments

and it consistently improved results regardless of using an

expert model or using out-of-domain data.

6. Conclusion

There has been a significant interest in self-supervised and

semi-supervised learning towards the goal of learning from

a few examples. However, these methods should be studied

in the broader context of approaches for transfer learning,

model selection, active learning, and hyperparameter opti-

mization for it to have an impact on realistic applications.

Our benchmark is a step in this direction where we find the

strong performance on benchmarks like CIFAR and Ima-

geNet does not always translate to other datasets that violate

assumptions implicit in the learning methods.

Self-supervised learning followed by Self-Training is a

strong baseline in the absence of experts. Of surprise is the

marginal gains some SSL methods provide when experts are

available. Of encouragement is that the simple baseline of

Self-Training from experts is robust to out-of-domain data.

Moreover, no method was able to reliably use a large number

of out-of-class examples in either domain despite our exten-

sive search over model hyper-parameters and small domain

shifts. Yet, the performances of these methods are far from

saturated as indicated by the supervised oracle leaving much

room for improvement. We hope our proposed benchmarks

and results lead to new innovations in SSL.
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