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A B S T R A C T   

This paper presents a Bayesian model updating and model class selection approach based on 
nonlinear normal modes (NNMs). The performance of the proposed approach is demonstrated on 
a conceptually simple wing-engine structure. Control-based continuation is exploited to measure 
experimentally the NNMs of the structure by tracking the phase quadrature condition between the 
structural response and single input excitation. A two-phase Bayesian model updating framework 
is implemented to estimate the joint posterior distribution of unknown model parameters: (1) at 
phase I, the effective Young’s modulus of a detailed linear finite element model and its estimation 
uncertainty are inferred from the data; (2) at phase II, a reduced-order model is obtained from the 
updated linear model using Craig-Bampton method, and coefficient parameters of structural 
nonlinearities are updated using the measured NNMs. Five different model classes representing 
different nonlinear functions are investigated, and their Bayesian evidence are compared to reveal 
the most plausible model. The obtained model is used to predict NNMs by propagating un-
certainties of parameters and error function. Good agreement is observed between model- 
predicted and experimentally identified NNMs, which verifies the effectiveness of the proposed 
approach for nonlinear model updating and model class selection.   

1. Introduction 

Finite element (FE) models are commonly used for structural design, assessment, and response prediction. The accuracy of FE 
models can be improved by inferring model parameters from in-situ measurements through a model updating process where model 
parameters are tuned to minimize the difference between measurements and the corresponding model predictions [1]. The discrep-
ancies between model predictions and measurement data are mainly caused by three sources of uncertainty: (a) measurement noise, 
(b) modeling errors, and (c) model parameter uncertainty. Model updating directly reduces the model parameter uncertainty by 
integrating the model with measurement data. There have been numerous applications of model updating that employ a deterministic 
optimization approach [2–9]. In these applications, a least square problem is solved by minimizing an ‘objective’ or ‘loss’ function 
which consists of the difference between model predictions and measurements. One of the main shortcomings for the optimization 
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approach is that the method does not provide a measure of estimation uncertainty for the updating parameters. Probabilistic model 
updating approaches such as those using Bayesian inference have been developed to overcome this shortcoming. Bayesian model 
updating updates the prior distribution of model parameters to the posterior distribution using the likelihood of observed measure-
ments. The posterior distribution provides the parameter uncertainty and the most likely values of parameters as the maximum-a- 
posteriori (MAP) estimate. This approach can also be applied to locally identifiable or even unidentifiable problems [10] by stochastic 
sampling of the posterior distribution. Several applications of Bayesian model updating exist in the structural dynamic literature 
[11–15]. Ntotsios et al. applied Bayesian damage identification on a numerical study of a highway bridge and a laboratory small-scaled 
bridge section [16]. Lam et al. implemented a Bayesian model updating of a coupled-slab system using field test data and an enhanced 
Markov chain Monte Carlo simulation algorithm [17]. Behmanesh and Moaveni performed probabilistic identification of simulated 
damage (added concrete block on the deck) on the Dowling Hall footbridge through a Bayesian finite element model updating [18]. 
Recently, a hierarchical Bayesian model updating has been proposed to provide realistic parameter uncertainty by estimating the 
distribution parameters as hyper-parameters [19–22]. The hierarchical framework is especially suitable when structural properties 
vary due to changing ambient or environmental conditions. 

Many of the above applications have considered linear dynamic systems. While some studies included material nonlinearity 
[23–27], linear modal properties were still used as data features in model updating. In this paper, features called ‘nonlinear normal 
modes’ (NNMs) are used to update a nonlinear model and estimate the uncertainty of model parameters. NNMs extend the concept of 
linear normal modes to nonlinear systems [28–30]. NNMs have received increased attention in recent years as they provide a rigorous 
theoretical framework for interpreting many nonlinear dynamic phenomena [31–33]. For instance, NNMs can be used to predict the 
amplitude of the response of a nonlinear structure at resonance, i.e., when the risk of structural failure is the greatest. The identification 
of NNMs using broadband excitation was proposed in [34], but phase resonance testing remains so far the most popular approach [35]. 
Phase resonance testing aims to isolate one NNM at a time by reaching a phase quadrature condition between the response and the 
applied excitation. For nonlinear structures, this quadrature condition is difficult to reach due to the presence of bifurcations and the 
propensity of the structure to jump between coexisting stable responses. Several methods such as control-based continuation (CBC) and 
phase-locked loops were proposed to address these issues [36,37]. In this study, CBC is used to find responses that satisfy the phase 
quadrature condition and track their evolution as the excitation amplitude is increased. The so-called backbone curves obtained in this 
way correspond to the NNMs of the underlying conservative system provided that the excitation is appropriately distributed in space 
and frequency [35,38]. 

NNMs identified experimentally can be compared to NNMs calculated from the nonlinear model of the structure. In this paper, the 
harmonic balance method (HBM) [39] is used to compute NNMs, although several other methods exist and could have been used [40]. 
Particular advantage of the HBM is that the number of harmonics used to approximate the response of the structure can be reduced to 
filter out modal interactions and reduce computational load, thereby simplifying the calculation of the error function between 
experimental and theoretical results. 

Several contributions have considered NNMs for parameter estimation and nonlinear model updating. Peter et al. [41] employed 
optimization to minimize the difference between backbone curves measured using the phase resonance method and their analytical 
counterparts computed using the HBM. The nonlinear stiffness parameters of a single degree-of-freedom (DOF) oscillator were esti-
mated using a similar method in [36]. Hill et al. [42] performed Bayesian model updating of nonlinear structures based on analytical 
models to describe the backbone curves. They derived analytical expression to describe the backbones which only provided an 
approximate solution and was limited to weakly nonlinear systems. Song et al. [43] implemented a numerical case study of Bayesian 
model updating on a nonlinear beam known as the COST Action F3 benchmark [44]. In that study, the NNMs were identified from 
simulated response under broadband excitation. The present paper demonstrates the model updating methodology proposed in [43] 
on a structure with multiple localized nonlinearities and using NNMs identified from experimental data. In addition, the present paper 
further exploits Bayesian inference to perform model class selection and choose the most plausible model (i.e., the model with the 
largest evidence) among a set of candidates. This approach has the benefit to combine nonlinearity characterization and parameter 
estimation - two steps which are usually considered as separate in the identification of nonlinear structures [45]. 

The Bayesian model updating and model class selection methodology proposed here proceeds in two phases to update the linear 
and nonlinear parts of the structural model separately. The proposed method is applied to a conceptually simple wing-engine structure 
with nonlinear connections. Two NNMs of the structure are identified using CBC through phase resonance testing. At phase I, a linear 
FE model is updated using the NNMs identified at the lowest energy level. A reduced-order model (ROM) is created based on the 
updated linear model and then used for nonlinear model updating in Phase II. At phase II, the ROM is combined with five different 
classes of nonlinearity function, and Bayesian model updating and class selection are performed to estimate the posterior distribution 
and evidence for each model class. 

2. Bayesian inference for model updating and model class selection based on NNMs 

2.1. Bayesian model updating 

This section presents the general framework of Bayesian model updating using NNMs. For simple structural models with small 
numbers of DOFs, linear and nonlinear parameters can be updated together to obtain the joint posterior distribution. However, for 
complex structural systems with many DOFs, the updating process may become computationally prohibitive as it entails a large 
number of NNMs computations from the numerical model, which can be a computationally demanding task. To avoid this issue, this 
paper implements a two-phase model updating approach in which the underlying linear system parameters are estimated first, and 
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then a ROM of the updated linear system is generated and used for nonlinear model updating. Since the ROM has fewer DOFs than the 
original model, Bayesian updating of the nonlinear system through stochastic sampling is computationally feasible. This two-phase 
Bayesian updating process has been demonstrated through a numerical application to a nonlinear beam in a previous study [43]. 

2.1.1. Phase I: Updating of the underlying linear model 
Linear modal properties such as natural frequencies and mode shapes have been extensively used for model updating of linear 

structures with reasonable successes [2–9]. When vibration amplitude is sufficiently small, the contribution of nonlinearity is assumed 
to be negligible. As such, the NNMs identified at the lowest vibration level ‘resemble’ the linear modes [29] and can be used to update 
the parameters of the underlying linear system. Note that if this assumption is not verified (due, for instance, to friction nonlinearities), 
additional testing is required to identify the underlying linear modes of the system, or this Phase I should be modified to account for the 
presence of such nonlinearities and the estimation of their parameters. 

The classical Bayes’ theorem can be written as: 

p(θ|d, M) =
p(d|θ, M)p(θ|M)

p(d|M)
(1)  

where θ is the vector of updating model parameters, d refers to the measured data (e.g., NNMs), and M denotes a specific model class or 
model form. Left term in Eq. (1) is the joint posterior probability density function (PDF). p(d|θ, M) is referred to as the ‘likelihood 
function’ which represents the probability of observing measurements d given parameters θ, and p(θ|M) is the prior PDF which reflects 
the prior knowledge or engineering judgement about updating parameters before measurements are taken. p(d|M) is called ‘evidence’ 
or ‘marginal likelihood’ which quantifies the plausibility of model class M in the view of measurements. Higher evidence value in-
dicates higher plausibility given the measurements. The evidence term usually lacks analytical solution and is often computed 
numerically through stochastic sampling or estimated using the approximate approach presented in section 2.2. Currently it is treated 
as an unknown constant whose exact value is not required for evaluating the posterior PDF when Markov chain Monte Carlo (MCMC) 
sampling methods are used. When uninformative prior distribution is assumed, e.g., uniform distribution, then the prior PDF is also a 
constant term. The uniform prior function is selected in this study considering the large modeling errors, missing material specifi-
cations and the unknown properties of nonlinear connections. The uniform distribution bounds the parameter values within a 
reasonable range and prevents it going beyond feasible physics. Combing all constant terms as ̂c, the following formulation is derived: 

p(θ|d, M) = ĉp(d|θ, M) (2) 

The model class M is neglected in the following discussion to save the notation and will be introduced back in section 2.2 for model 
class selection. 

For the evaluation of the likelihood function, an error function is defined to represent the discrepancy between model-predicted 
and experimentally identified data features. In the first phase of model updating where θ represents linear model parameters, the 
error function is defined based on natural frequencies and mode shapes as 

em
λ (θ) = λ̃m − λm(θ), (3)  

em
ϕ (θ) =

Φ̃m

‖Φ̃m‖
− am

ΓΦm(θ)

‖ΓΦm(θ)‖
, (4)  

where em
λ (θ) and em

ϕ (θ) are the error function terms for the natural frequency and the mode shape of mode m. λ̃m and Φ̃m are exper-

imentally identified eigenfrequency ((2πf)
2 in which f is natural frequency in Hz) and mode shape. λm(θ) and Φm(θ) are their 

respective model-predicted counterparts. Γ is a selection matrix which picks corresponding components of Φm(θ) (which usually has 
more components than Φ̃m whose dimension depends on the number of deployed sensors) according to Φ̃m, and consists of only 0 and 1 
terms. am is a scaling factor to ensure the mode shapes are comparable [21,43] and is equal to Φ̃m ⋅ ΓΦm(θ)/(‖Φ̃m‖‖ΓΦm(θ)‖ ). 

Based on the principle of maximum entropy, the error function is assumed to follow a zero-mean Gaussian distribution with 
standard deviations for the natural frequency and the mode shape error terms give by [18] 

σλm = wmCoVλλ̃m, (5)  

σϕm =
̅̅̅̅̅
Ns

√
wmCoVλ, (6)  

where wm are weights for different modes which can be determined based on measurement accuracy. In the experimental application 
of this paper, wm is set to be one to provide equal weights for all the considered modes. CoVλ refers to the coefficient-of-variation (ratio 
of standard deviation to mean value) of the experimentally identified eigenfrequency for mode m. Ns is the number of sensors deployed 
in the instrumentation and balances the weights between natural frequency and mode shapes, as it has been done in past studies 
[18,43]. 

The error function components are often assumed to be statistically independent Gaussian distribution. This is a conservative 
assumption and will maximize the uncertainty of posterior PDF based on the principle of maximum entropy. Assuming the error 
functions are independent, the likelihood function is written as 
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p(d|θ) =
∏n

i=1
p(d̃i|θ) =

∏n

i=1

1
̅̅̅̅̅
2π

√
σi

exp(−
1
2

e2
i

σ2
i
)∝exp

(

−
1
2

J(θ, d)

)

, (7)  

J(θ, d) =
∑Nm

m=1

(
em

λ (θ)

σλm

)2

+
∑Nm

m=1

em
ϕ (θ)

T em
ϕ (θ)

σ2
ϕm

, (8)  

where Nm is the number of available modes in dataset d, ei and σi denotes individual error components (including both natural fre-
quencies and mode shapes error functions) and their respective standard deviations. The term J(θ, d) is similar to the ‘objective 
function’ used in model updating with an optimization approach, which consists of the discrepancy between model-predicted and 
identified modal properties. It is easy to see that the minimization of J(θ, d) is equivalently to the maximization of the likelihood 
function and the posterior PDF (proportional to the likelihood function as shown in Eq. (2)). Therefore, in this case the optimization 
approach and Bayesian approach provide the same solution for optimal (for optimization) or MAP (for Bayesian) parameter values, 
while the Bayesian approach also provides estimation uncertainty of updating parameters as well as model evidence. 

In the case that multiple sets of measurements from different tests are available, they can be fused together to provide the joint 
posterior PDF by assuming all datasets are independent: 

p(D |θ) = ĉexp

(
∑N

n=1
−

1
2

J(θ, dn)

)

(9)  

where D collects all the datasets D = [d1 ... dN]. During the dynamic tests, different modes can be excited and identified each time, 
therefore, different datasets may contain different modes, or even different number of sensors. However, the fusion of multiple datasets 
follows the same procedure as in Eq. (9). Different MCMC sampling methods can be used to evaluate the posterior PDF such as the 
Metropolis-Hastings (MH) [46], the adaptive MH [47], or the Transitional MCMC [48]. 

2.1.2. Phase II: Updating of the nonlinearities 
The updating of structural nonlinearity requires the whole NNM curves, as larger amplitude response contains richer information 

about the nonlinear behavior. Similar error functions for natural frequencies and mode shapes are defined here by considering NNMs at 
different energy levels: 

em
λ,j(θnl) = λ̃m,j − λm,j(θnl) + rm (10)  

em
ϕ,j(θnl) =

Φ̃m,j
⃦
⃦Φ̃m,j

⃦
⃦

− am,j
ΓΦm,j(θnl)

⃦
⃦ΓΦm,j(θnl)

⃦
⃦

(11)  

in which θnl denotes the vector of coefficient parameters of the nonlinearity function, and the subscript j denotes the vibration am-
plitudes (energy levels) of the NNMs. rm refers to the linear natural frequency residual at Phase I and is defined as rm = λm(θ̂) −λ̃m,1, 
where θ̂ denotes the MAP value of θ and ̃λm,1 is the corresponding eigenfrequency of identified NNMs at the smallest amplitude. This 
term is introduced here to eliminate propagation of errors from the linear model. 

The error function terms em
λ,j(θnl) and em

ϕ,j(θnl) refer to specific points on the NNM curves, and different tests may retain different total 
number of points on the curves. To account for this imbalance, the error functions in Eqs. (10) and (11) are averaged by the number of 
points on the NNMs. Therefore, a similar term as Eq. (8) is derived for nonlinear model updating at phase II: 

J(θnl, d) =
∑Nm

m=1

[
1

Nm
p

∑Nm
p

j=1

(
em

λ,j(θnl)

σλm,j

) ]2

+
∑Nm

m=1

[
1

Nm
p

∑Nm
p

j=1

em
ϕ,j(θnl)

T em
ϕ,j(θnl)

σ2
ϕm

]

(12)  

where Nm
p denotes the number of points on the mth NNM in each test. σλm,j is defined similar to σλm as σλm,j = wmCoVλλ̃m,j and CoVλ here is 

averaged among different energy levels. The fusion of multiple datasets from different tests follow the same procedure as the linear 
model updating case. 

2.2. Bayesian model class selection 

One of the important advantages of Bayesian inference for model updating is model class selection to identify the most plausible 
model. The selection criterion is simply the evidence of model M given measurement data D , p(D |M). The evidence term usually lacks 
an analytical solution, and sampling approaches such as MCMC are often employed to provide numerical estimation, e.g., MH algo-
rithm [49] or TMCMC which provides the evidence as a by-product [48]. In this study, class selection is focused on selecting the most 
probable nonlinearity function. Linear mode class selection follows exactly the same procedure presented in this section; however, it is 
not considered herein. The Bayes’ theorem is presented below for nonlinear coefficient parameters: 
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p(θnl|D , M) =
p(D |θnl, M)p(θnl|M)

p(D |M)
(13) 

The following is readily available by rearranging the terms: 

p(D |M) =
p(D |θnl, M)p(θnl|M)

p(θnl|D , M)
(14) 

The only uncertain term on the right is the posterior PDF p(θnl|D ,M). In the literature, the posterior distribution is often assumed to 
be a Gaussian distribution, which is usually a good approximation when the parameters are globally identifiable [10]. In the appli-
cations of wing-engine structure presented in later sections, the posterior PDF is also observed to resemble a Gaussian distribution. 
Substituting the posterior PDF with the Gaussian PDF N

(
θnl|μθnl , Σθnl

)
, the following is derived: 

p(D |M) =
p(D |θnl, M)p(θnl|M)

N(θnl|μθnl , Σθnl )
(15) 

In Eq. (14), θnl can be any value with non-zero posterior PDF. However, the MAP (same as mean value for Gaussian PDF) of pa-

rameters θ̂
nl 

is used in this study. After substituting the likelihood function and prior PDF and taking the logarithm of both sides, the 
computation of evidence is shown below: 

log(p(D |M)) = log
(

p(D |θ̂
nl

, M)
)

+ log
(

p(θ̂
nl

|M)
)

− log
(

N(θ̂
nl

|μθnl , Σθnl )
)

(16)  

log
(

p(D |θ̂
nl

, M)
)

= −
ND

2
log(2π) −

∑ND

i
log(σi)+

∑N

n=1

(

−
1
2

J(θ, dn)

)

(17)  

where ND refers to the total number of error function components in the likelihood. 

2.3. Probabilistic prediction of NNMs 

After the joint posterior PDF of parameters are estimated, both parameter uncertainty and error function uncertainty can be 
propagated into probabilistic response predictions. By rearranging the terms in the definition of the error function in Eq. (10), the 
following frequency prediction of NNMs is obtained: 

λprediction
m,j = λm,j(θnl) + em

λ,j − rm (18)  

In Eq. (18), both parameters θnl and error function em
λ,j follow Gaussian distributions θnl ∼ N

(
θnl|μθnl , Σθnl

)
and em

λ,j ∼ N
(

em
λ,j|0,σ2

λm,j

)
. 

Monte Carlo simulations can be performed to obtain adequate number of NNMs simulations by generating independent samples of θnl 

and em
λ,j, and then response confidence intervals can be produced from these simulations. 

3. Application to a conceptually simple wing-engine structure 

3.1. Structure description and instrumentation 

The tested structure represents a conceptually simple wing-engine system as shown in Fig. 1 [50]. The scaled structure consists of a 
rectangular aluminum wing plate on the top (size of 1000mm × 220mm and thickness of 6 mm), and two steel pylons (Fig. 1(b)). Each 

Spring

Curved surface Modeling Assumption

)b()a(
Fig. 1. Wing-engine structure and instrumentation (a) and detailed view of nonlinear connection and modeling assumption (b). Only the left shaker 
shown in (a) was used for exciting the structure during the experiment. 
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of the two pylons have two thin steel plates (referred to as ‘springs’) which are clamped by two supporting aluminum blocks at the 
bottom of the wing plate. Nonlinear behavior is observed at the clamping connections of the steel springs due to the curved inner 
surfaces of the two supporting aluminum blocks, as illustrated in Fig. 1(b). The restoring forces of the steel springs are a nonlinear 
function of the pylon displacement because the effective lengths of the springs change with vibration amplitude, which introduces 
nonlinear stiffness. The whole structure is hanging by 12 soft springs located at the four corners of the wing plate. The wing-engine 
structure is instrumented with 14 accelerometers and one single point excitation shaker. Eight accelerometers are mounted on the 
top of the wing plate measuring vertical acceleration (Fig. 2(a)), and three accelerometers are mounted on each of the two pylons 
measuring horizontal acceleration (Fig. 2(b)). The single point shaker is located under the structure with excitation force applied at the 
same location as sensor 7. 

3.2. FE model and ROM 

A linear FE model of the wing-engine structure is created in Abaqus [51]. It includes 639 linear quadrilateral elements of type S4R, 
and 440 linear hexahedral elements of type C3D8R, and has a total of 6876 DOFs. The discretization of the FE model is selected such 
that, within the frequency range of interest, the dynamic characteristics of the structure have converged. The local nonlinearities at the 
connections of the pylons are not considered in this linear model, and the connections of the steel springs with aluminum blocks are 
assumed to be perfect (Fig. 1(b)). The first two mode shapes of the FE model are shown in Fig. 3. Significant displacements at the pylons 
are observed which are influenced by the nonlinearities. 

The evaluation of the posterior PDF using MCMC techniques requires large number of computations of NNMs from the numerical 
model, therefore, it is computationally demanding to directly include nonlinearity in the detailed Abaqus model for this task. A 
simplified model with less DOFs is needed to include the nonlinearities and reduce the computation burden. The Craig-Bampton 
method is employed to obtain a ROM of the linear model [52]. All the DOFs associated with the sensor locations are treated as 
boundary points and the corresponding static constraint modes are retained in the ROM. Only the translational DOFs corresponding to 
the measured directions are included, i.e., the DOFs in the Z direction for sensors 1–8, and the DOFs in the X direction for sensors 9–14. 
To model the nonlinearities at the pylons, nonlinear restoring forces that depend on the relative displacements between corresponding 
DOFs are added to the ROM, i.e., between sensor 9–10, 9–11, 12–13 and 12–14. The ROM is then used to compute theoretical NNMs 
which are compared with the experimental results for model updating. Note that the two-phase model updating approach proposed 
here is in principle not restricted to a particular model reduction method and could also work without it (albeit at a much higher 
computational cost). 

In this study, the HBM is used to directly compute NNMs for response amplitudes that correspond to the amplitudes measured 
experimentally. These responses are the only ones required to evaluate the error functions defined in Eqs. (10) and (11). It is worth 
noting that damping properties do not have to be included in the ROM for the computation of NNMs. Effective damping ratios can be 
estimated from the measured backbone curves [53] and directly incorporated in the ROM after updating. To include the damping 
parameters in the model updating, the backbone curves measured experimentally should be compared directly with the backbone 
curves computed from forced and damped simulations [38] instead of the NNMs. 

3.3. Experimental results 

The NNMs of the wing-engine structure are identified using CBC through phase resonance testing. CBC is a model-free method that 
relies on feedback control to explore the dynamic behavior of nonlinear systems directly during experimental tests [54]. CBC has been 
used to extract important nonlinear dynamic features such as backbone curves [36], nonlinear frequency response curves [55] and 
limit-point bifurcation curves [56,57], on a range of harmonically forced mechanical structures, including nonlinear energy harvesters 
[55,56], a bilinear oscillator[58] and a nonlinear beam with harmonically coupled modes [57,59]. To identify backbone curves, CBC 
adjusts the frequency of excitation such that the response and excitation are in phase quadrature. The evolution of the excitation 
frequency and structure response is then captured by maintaining quadrature for increasing excitation amplitudes. So far, CBC has 
been applied to conceptually simple structures with at most a couple of degrees of freedom. In this paper, we show that CBC is 
applicable to more complex, multi-degree-of-freedom systems. 

The backbone curves identified for the first and second modes of the wing-engine structure are shown in Fig. 4 and Fig. 5, 
respectively. For conciseness, the structure response is shown only at sensors 9–14. The response amplitude at sensors 10, 11, 13 and 
14 is observed to be one order of magnitude larger than the response measured at sensors 9 and 12. This is because the former sensors 
are located at the bottom of pylons (Fig. 2(b)). 

2

1
3

4

5

6

7
8

9

11 10

1314

12

(a) (b)

Fig. 2. Layout of accelerometers and FE model in Abaqus.  
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Fig. 3. Mode 1 (a) and mode 2 (b) of the Abaqus model.  

Fig. 4. Identified backbones of NNM 1.  

Fig. 5. Identified backbones of NNM 2.  
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Fig. 4 and Fig. 5 show several backbone curves, each of which was obtained by measuring the phase quadrature condition between 
the excitation and a particular sensor. For the first mode, this leads to 14 different curves - one for every accelerometer on the structure. 
From a theoretical perspective, different backbone curves represent the same NNM and should therefore overlap each other [38]. 
However, due to the single-point nature of the applied excitation, the energy provided by the external force is not perfectly distributed 
across the whole structure and the response of the structure is not monophase. However, the qualitative agreement and the relatively 
small errors between different backbone curves suggest that phase differences that exist between different sensors are acceptable, and 
that the NNM of the underlying conservative structure is close to the identified backbone curves. For mode 2, backbone curves were 
identified for only 5 sensors. For the other 9 sensors, the quadrature condition could not be reached with the desired accuracy tolerance 
of 5 × 10−3 rad (or 0.29◦ ). It is thought that this issue is solely due to the inappropriate distribution of the excitation as no issue with 
the controller was observed. 

When considering all 7 measured harmonics, the response amplitude for the first NNM shows a peak at about 15.3 Hz (Fig. 4). This 
peak is due to the presence of a modal interaction between the first and a higher-frequency mode. Modal interactions usually lead to 
the presence of loops in the frequency-amplitude curve of the NNM. These loops pose issues for computing the error functions used in 
model updating (Eqs. (10) and (11)) as the curve can no longer be uniquely parameterized by the frequency or response amplitude, i.e., 
multiple response amplitudes are possible for a given frequency and multiple frequencies are possible for a given response amplitude. 
Note that only parts of the loop were measured experimentally, which explains the greater variability observed in the results around 
the 15.3 Hz peak (Fig. 4). Based on the available experimental data, it is not possible to systematically identify which one of those 
multiple responses has been measured and hence to correctly pair experimental data and model prediction points in the modal 
interaction region. To overcome this issue in theoretical calculations, modal interactions were filtered out by reducing the number of 
harmonics used in the HBM to only one. Similarly, only the first harmonic of the responses measured experimentally was used. The 
differences in response amplitudes resulting from the use of one and seven harmonics are shown in Fig. 4 and Fig. 5. 

4. Model updating results 

4.1. Linear model updating results 

The wing-engine structure is made of two materials: aluminum and steel. The Young’s modulus of these two materials are chosen as 
the linear updating parameters, i.e., θ = [ EAluminum ESteel ]

T. The values of updating parameters are normalized to their initial values: 
EInitial

Aluminum = 68.9 GPa and EInitial
Steel = 200 GPa. The proposed Bayesian updating framework is implemented to update the selected 

Young’s modulus based on the linear modes which are estimated as the identified NNMs 1 and 2 at their lowest energy levels. 
Therefore, 14 sets of mode 1 and 5 sets of mode 2 are used in the updating process. MH algorithm is used to generate 3500 samples of 
the joint posterior PDF, and then the first 500 samples are removed as burning-in strategy to eliminate the effects of transitional 
samples. The sample acceptance rate is adjusted to be in the range recommended in [60]. The evolution histories of sample mean and 
standard deviation are shown in Fig. 6(b). It can be seen that the sample mean and standard deviation have converged and 3500 
samples are sufficient for evaluating the posterior PDF. The sample distribution after burning-in is shown in Fig. 6(a). The contour plots 
are from a Gaussian distribution with its mean and covariance the same as the sample statistics. It is seen that the sample scatter follows 
the Gaussian contours well, implying that the posterior PDF resembles the Gaussian distribution. 

The sample mean and standard deviation are reported in Table 1. It is observed that ESteel has been reduced significantly (around 
70%) in the updating process. This large reduction is attributed to an error in the modeling of the boundary conditions of the springs 

(a) (b) 
Fig. 6. (a) MH samples of linear model updating and contour plot of approximated Gaussian distribution; (b) evolution time histories of sample 
mean and standard deviation. 
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which are the only components made out of steel. In reality, the inner surfaces of the aluminum blocks are curved to introduce the 
nonlinear restoring force (Fig. 1(b)). However, the linear FE model assumes that the aluminum blocks are straight and that the 
clamping is perfect (Fig. 1(b)). As a result, the length of the steel springs is underestimated. In the model updating, the Young’s 
modulus of steel is drastically reduced to compensate for this modeling error. The modal properties of the calibrated model match the 
identified counterparts very well (see Table 2). A validated model with more accurate representation of the geometry would overcome 
the modeling error. Note that the modeling error cannot be corrected by the large reduction of parameter value but is compensated to 
provide accurate modal properties in this study. The current Abaqus model is created based on the best knowledge of the authors as the 
portions of the aluminum blocks that are in contact with the steel springs are not precisely known and appear to be different at the front 
and at the back of the pylons. The mesh size of the steel springs has been verified to have converged and has negligible effects on the 
model updating. A good tutorial about model updating process and modeling errors can be found in [61]. Another possible reason is 
that the initial Young’s modulus of steel and aluminum are overestimated compared to their true values since the precise material 
compositions of the structure are not available. 

The estimated standard deviations of the parameters are very small indicating negligible uncertainty in the underlying linear 
system. Therefore, the ROM of the linear model is generated only based on the MAP values of the updating parameters. The natural 
frequencies and mode shapes of the linear model before and after updating are compared with their identified counterparts in Table 2. 
The post-updating values are from the FE model using the MAP values of parameters and are much closer to the identified values. The 
identified natural frequencies are reported as the mean values over several tests. The modal assurance criteria (MAC) values are 
computed between model-predicted and identified mode shapes and the mean values for different tests are reported in Table 2. It is 
observed that the MAC values are also improved significantly after model updating, especially for mode 1. 

4.2. Nonlinear model updating and model class selection 

As mentioned before, the estimated parameter uncertainty in the linear model is negligible and thus the ROM is generated only 
based on the MAP values of the linear parameters. The first 15 internal mode shapes of the linear model (6 rigid-body-like modes 
caused by the hanging springs and the first 9 vibration modes) and 14 static constraint modes associated with the measured DOFs are 
retained in the ROM which comprises a total of 29 DOFs. The natural frequencies of the ROM are compared with those of the full model 
in Fig. 7(a), and the relative frequency errors and MAC values of the corresponding mode shapes are shown in Fig. 7(b). The ROM 
agrees very well with the full model for the first 9 modes. However, the accuracy of the ROM deteriorates significantly for higher 
modes (> 9) since they are not included in the Craig-Bampton model reduction. 

The nonlinearity identification process usually consists of three steps: (1) localization, (2) characterization and (3) parameter 
identification. The localization step is trivial given that the nonlinearities were implemented deliberately. The characterization step 
requires identifying the optimal functional form describing the nonlinearities, and parameter identification entails estimating coef-
ficient parameters. Steps (2) and (3) are here jointly carried out through a Bayesian model class selection and updating process. In this 
study, five model classes with different nonlinear functions are considered to represent the nonlinear force–displacement relationship 
of the pylon connections. The considered functions are all polynomials as the analysis of the experimental data collected for sine sweep 
excitation around the first two modes shows that the nonlinearity is smooth. The five nonlinear functions considered are summarized 
in Table 3. The five nonlinearity forms in Table 3 are selected after an extensive screening process of reasonable polynomial functions, 
where different orders of polynomials, and combinations of them have been investigated. The selected five nonlinearities provide the 
most reasonable NNM predictions compared to the measurements with relatively simple polynomial forms. More polynomials can be 
included in the functions, but it is found that additional higher order polynomials are not providing meaningful improvements on NNM 
predictions. Only odd functions are selected in this study because the measured backbone curves only show hardening effect as 
observed in Figs. 4 and 5, and no softening effect exists. The authors have examined the performance of even nonlinearity functions in 
the first stage of screening candidate functions, but they are eventually excluded. It is worth noting that asymmetrical effects of the 
backbones were observed in earlier studies on the structure [62,63], however, the structure was modified since then, especially the 
steel springs clamping connection. The nonlinearity is found to be sensitive to the connection conditions. Based on the measured 

Table 1 
Sample mean and standard deviation of linear model updating.   

EAluminum  ESteel  

Mean  0.88  0.31 
Std ( × 10−3)   3.93  0.39  

Table 2 
Linear modes comparison before and after linear model updating.   

Frequency (Hz) MAC 

Initial Updated Identified Initial Updated 

Mode 1  22.78  14.75  14.65  0.788  0.999 
Mode 2  30.91  17.50  17.71  0.968  0.985  
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backbones in this study, the nonlinearity has changed and is different from previous observations. A static test on the studied wing- 
engine structure was performed by Delli Carri et al. [50] and showed that the nonlinear form was an odd polynomial function, 
which is consistent with this study. Cubic splines could have been considered to provide more flexibility to our model [34]; however, 
this was considered outside the scope of this work. The coefficients cj

i denotes the updating parameters in each model class, with one 
updating coefficient for classes 1–3, and two updating coefficients for classes 4 and 5. These updating parameters have been 
normalized to their initial values in each class (e.g., 0.216 in class 1), which are determined through a preliminary trial and error 
tuning process to provide a reasonable starting point for the updating process. This process is not required but is recommended as 

Mode 
Relative 

frequency 
error (%) 

MAC 

1 0.00 1.000 
2 0.00 1.000 
3 0.13 1.000 
4 0.02 1.000 
5 0.15 1.000 
6 0.15 1.000 
7 1.09 1.000 
8 0.41 0.990 
9 0.52 0.956 

(a) (b) 

Fig. 7. Natural frequency comparison between full FE model and ROM (a) and relative frequency errors and MAC (b).  

Table 3 
Model classes of nonlinearity function and the estimated evidence.  

Model classes Nonlinearity function Evidence:log(p(D |M) )

Class 1 fnl(x) = c1 × 0.216sign(x)x2   452.9 

Class 2 fnl(x) = c2 × 0.068x3   619.2 

Class 3 fnl(x) = c3 × 0.03sign(x)x4   476.8 

Class 4 fnl(x) = c4
1 × 0.0884x3 −c4

2 × 0.0027sign(x)x4   617.2 

Class 5 fnl(x) = c5
1 × 0.0748x3 −c5

2 × 0.00084x5   617.1  

(a) (b) 
Fig. 8. (a) Sample histograms and approximated Gaussian PDF of model classes 1; (b) Evolution histories of sample mean and standard deviation.  
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otherwise more samples are needed for MCMC to converge to higher probability area. The nonlinearities at the four locations are 
assumed to be the same as no obvious difference is observed in the identified NNMs at these locations (Fig. 4 and Fig. 5). The authors 
have verified that introducing different nonlinearities at two pylons does not improve the model updating results but increases the 
number of updating parameters and computation efforts significantly. 

The proposed Bayesian model updating approach is applied to estimate the posterior PDF of the coefficient parameters and the 
evidence of each model class. The prior distributions of all parameters are assumed to be uniform but with different ranges, i.e., U(0,

10) is assumed for classes 1–3 (c1, c2 and c3) and the first polynomial coefficient in classes 4–5 (c4
1 and c5

1), and U( −10, 10) is assumed 
for the second coefficient in classes 4–5 (c4

2 and c5
2). These assumptions are made to represent lack of prior knowledge about these 

parameters, especially for parameters c4
2 and c5

2. The first coefficient is constrained to be positive as a hardening effect is observed from 
the identified backbones. A total of 5500 samples of the posterior PDF are generated using the MH algorithm, with the first 500 burned 
in. The evolution of sample mean and standard deviation for model class 1 are plotted in Fig. 8(b) showing the convergence of these 
statistics, which verifies that the current number of samples is adequate. The sample histograms for classes 1–3, and sample distri-
bution for classes 4–5 are shown in Figs. 8–10. The PDF (classes 1–3) and contour lines of the approximated Gaussian distribution 
(classes 4–5) are also shown, with their means and covariances computed from the samples. The Gaussian PDFs in Figs. 8–9 have been 
normalized to have peak values the same as the highest bins of histograms. It is seen that for all model classes the samples generally 
follow the approximated Gaussian distribution, which verifies the Gaussian assumption in the proposed evidence computation in 
section 2.2. Strong correlations between c4

1 and c4
2, as well as c5

1 and c5
2, are observed from Fig. 10(a) and (b), which is caused by their 

compensation effects since c4
2 and c5

2 have negative signs. The sample mean and standard deviation for all classes are reported in 
Table 4. It is seen that the estimated parameter uncertainties for classes 1–3 are similar, while classes 4–5 have significantly larger 
uncertainties, especially for parameters c4

2 and c5
2 which represent the high order polynomial terms. The strong compensation effects 

between the first positive cubic terms (c4
1 and c5

1) and the second negative terms (c4
2 and c5

2) can be the cause of the large parameter 
uncertainties. The significant uncertainties in c4

2 and c5
2 suggest their low sensitivities to the NNMs, which implies that they can be 

redundant in the nonlinearity function. This is verified by model class selection results presented below. 
The value of evidence for each of the five considered model classes is computed using the proposed evidence estimation approach 

and reported in the last column of Table 3. It can be seen that class 2 has the largest evidence value, while classes 4 and 5 have 
comparable but slightly smaller evidence, and classes 1 and 3 have much smaller values. Compared to class 2 with only cubic poly-
nomial, classes 4 and 5 also include higher order terms, therefore, they have more flexibility in their nonlinearities than class 2 (i.e., the 
likelihood functions of classes 4 and 5 are larger or equal to that of class 2). However, the inclusion of extra parameters (c4

2 and c5
2) 

reduces the value of prior PDF log
(

p(θ̂
nl⃒⃒

⃒M)
)

in Eq. Eq. (16). According to the assumed uniform distributions, p(θ̂
nl⃒⃒

⃒M2) = 1/10 while 

p(θ̂
nl⃒⃒

⃒M4) = p(θ̂
nl⃒⃒

⃒M5) = 1/200. The prior distribution here is similar to the Occam’s razor, as it assigns penalty to extra parameters. 

The Bayesian class selection will choose the model with less complexity (smaller number of parameters) unless the improvement from 
addition of extra parameters outweighs the penalty (from prior distribution). In this study, higher order polynomials are not 
considered as they have lower evidence. Therefore, Bayesian class selection algorithm automatically enforces the principle of parsi-
monious model with the largest prediction capability. 

(a) (b) 
Fig. 9. Sample histograms and approximated Gaussian PDFs of model classes 2 (a) and 3 (b).  
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4.3. Bayesian prediction of NNMs 

Model class 2 is selected as the best model in the view of identified NNMs because of its largest evidence. This model is used for 
probabilistic NNM predictions using the proposed approach in section 2.3. The parameter uncertainty (assumed to have Gaussian 
distribution) and the error function uncertainty (assumed to have zero-mean Gaussian distribution with standard deviation estimated 
from the identified NNMs) are propagated into the predictions. A total of 200 Monte Carlo simulations are performed using inde-
pendent samples from the posterior PDF and the error function distribution. Then a 95% quantile interval is generated by sorting the 
200 model-predicted NNMs at different amplitudes and then selecting the 6th and 195th sorted values as the lower and upper bounds. 
The estimated quantile intervals and the identified NNMs are shown in Fig. 11 and Fig. 12. It can be seen that the identified NNMs 
generally fall within the estimated confidence intervals. Furthermore, intervals of mode 2 have larger bounds than that of mode 1 due 
to the larger standard deviation of error function for mode 2 (the identified NNM 2 has greater variability shown in Fig. 5). The 
identified backbones of mode 1 at sensors 9 and 13 slightly fall out of the confidence bounds, due to modeling errors and NNMs 
identification error. 

5. Conclusions 

This paper presents a two-phase Bayesian model updating and class selection method for nonlinear structures that uses experi-
mentally identified NNMs. The proposed method is applied to a conceptually simple wing-engine system with nonlinear connections. 
Two NNMs of the system are identified using CBC for phase resonance testing. At phase I, the linear FE model is updated to represent 
the underlying linear system of the structure using NNMs at the lowest energy level. Then a ROM is generated from the updated FE 
model using the MAP values of the parameters. The linear model uncertainty is not considered because the parameter uncertainty is 
negligible. At phase II, the ROM is combined with nonlinearity functions to represent the nonlinear connections. Five model classes 
with different polynomial functions are considered, and the proposed Bayesian nonlinear model updating is performed to estimate the 
posterior PDF and evidence for each model class. The Bayesian class selection approach automatically enforces the principle of 
parsimonious model and rejects classes 4 and 5 although they have higher order polynomial terms. The model class 2 with a cubic 
nonlinearity is selected as the most plausible model and is used to perform probabilistic prediction of NNMs by propagating the 
estimated parameter uncertainty and error function uncertainty. The identified NNMs generally fall within the 95% confidence in-
terval of predictions. 

The application considered demonstrates the effectiveness of the proposed Bayesian model updating and class selection 

(a) (b) 
Fig. 10. Sample distribution and contour plots of approximated Gaussian PDFs of model classes 4 (a) and 5 (b).  

Table 4 
Sample mean and standard deviation of nonlinear model updating.  

Model classes Parameters Mean Std 

Class 1 c1  1.63 0.017 

Class 2 c2  1.58 0.016 

Class 3 c3  1.09 0.012 

Class 4 c4
1, c4

2  1.34, 1.26 0.046, 0.443 

Class 5 c5
1, c5

2  1.49, 0.51 0.049, 0.391  
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methodology for nonlinear structures which are assumed to exhibit elastic deformations and to return to the same unique equilibrium 
position when at rest. Behaviors like buckling, wear, tear, and material nonlinearity are not considered. The proposed method is 
particularly appropriate for structures with localized stiffness nonlinearities that manifest themselves for sufficiently large vibration 
amplitudes. The proposed method also has the potential to be applied to structures where nonlinear effects occur for small vibration 
amplitudes (such as with friction) if phase I of the model updating is modified to include and estimate the parameters of those 
nonlinearities. 

Fig. 11. Confidence intervals of NNM 1 and the identified counterparts.  

Fig. 12. Confidence intervals of NNM 2 and the identified counterparts.  
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