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A B S T R A C T   

This paper proposes an optimal sensor placement (OSP) framework for parameter estimation, 
virtual sensing, and condition monitoring using information theory. The framework uses a 
Bayesian OSP method combined with modal expansion to minimize the information entropy 
about quantities of interest (QoI), such as strain time histories at critical locations of the structure, 
without the knowledge of input excitation. The proposed optimization framework also accounts 
for variations in sensor installation cost at different locations on the monitored structure. The 
framework is evaluated numerically using a realistic model of an offshore wind turbine on a 
jacket support structure under installation cost assumptions and considering information entropy 
of the QoI. The QoI in this numerical study are considered to be the strain time history at one or 
more locations on the support structure in one problem and the parameters of the structure in the 
other. A correlation length is considered to account for the spatial correlation of data between 
adjacent sensors. Effects of the correlation length and input loads on the OSP results for parameter 
estimation are studied. The considered structural parameters for estimation in this study include 
(1) modulus of elasticity of tower elements (tower stiffness), (2) modulus of elasticity of jacket 
elements (jacket stiffness), and (3) vertical foundation spring (soil stiffness). The effect of a 
subjective weight between the information entropy and sensor configuration cost on the OSP 
results is also investigated. Different optimal designs are achieved for different weight factors, and 
the Pareto solutions for OSP are presented. It is found that the OSP framework is an effective tool 
for decision-makers considering the cost of instrumentation. The presented Pareto optimal so
lutions can give insight into the value of OSP given a limited budget.   

1. Introduction 

The global offshore wind energy (OWE) capacity is projected to expand 15-fold over the next two decades [1]. In light of our 
increasing dependence on this form of renewable energy, offshore wind developers, operators, and investors will benefit from stronger 
assurances of offshore wind turbines’ (OWT) reliability through structural health monitoring (SHM). In addition to lowering invest
ment risk, increased reliability can reduce the cost of maintenance and extend the design life of future wind farms. High-performance 
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SHM consists of systematic monitoring and efficient condition-based maintenance strategies that are based on the right sensors in the 
right places for the right price, known as optimal sensor placement. Moreover, corrosion and fatigue are the most common failure 
mechanisms of an OWT support structure [2,3]. To evaluate the remaining life of such structures, it is necessary to know the level of 
stresses and strains over the life of the structure. 

SHM implements damage identification strategies for engineering structures and estimating their remaining useful life. Damage 
refers to any variation of the mechanical properties of the structure over time. The techniques to estimate a structural system’s me
chanical properties from measurements are referred to as system identification methods. System identification methods can be 

Nomenclature 

b(L) Normalized benefit 
c(L) Normalized cost 
Costref Maximum cost for a specific number of sensors 
D =

{
yk ∈ RNo

}
Sensor measurements 

Ejacket ,Etower Young’s moduli of jacket and tower 
ek(θ) Prediction error between model output and measurements 
f(w, L) Objective function 
H Information entropy 
Hmax Maximum information entropy 
Hmin Minimum information entropy 
Href Minimum information entropy for a specific number of sensors 
Hz,prior Information entropy before measuring data 
I Identity matrix 
kL,kV,kR Lateral, vertical, and rotational stiffness of soil 
L ∈ RNo×Nd Boolean matrix indicating location of measured DOFs 
L* Optimal sensor configuration 
m Number of contributing modes 
Nd Number of total DOFs in the model 
No Number of measured DOFs 
Nz Number of strain estimation location 
Nθ Size of θ 
Q(L|Σt , θ̂) ∈ RNθ×Nθ Fisher Information Matrix 
qmk 

Modal coordinate response at time step k 
qk,Σq Mean and covariance of posterior PDF of qmk 

R(δij) Spatial correlation function 
s2 Variance of sensor noise 
u Measure of OSP effectiveness 
U(L) Expected information gain 
u(L, y) Utility function 
w Weight factor in objective function 
xk(θ) ∈ RNd Vector of predicted response at time step k 
yk ∈ RNo Measured response at time step k 
zk ∈ RNz×1 Vector of predicted strains at time step k 
zk,Σz ∈ RNz×Nz Mean and covariance of posterior PDF of zk 
δij Spatial distance between measured DOFs 
εk Prediction error for strain estimation 
θ̂ Vector of optimal values for parameters 
θ ∈ RNθ Vector of structural parameters to be estimated 
λ Measure of spatial correlation length 
Σ Covariance matrix of modeling error 
Σ Covariance matrix of measurement noise 
Σt ∈ RNo×No Covariance matrix of posterior PDF of ek(θ)

Σpr ∈ Rm×m Covariance matrix of prior PDF of qmk 

Σε ∈ RNz×Nz Covariance matrix of posterior PDF of εk 

Φm(L) ∈ RNo×m Mode shape matrix for m contributing modes 
Ψ ∈ RNz×m Strain mode shape matrix for m contributing modes 
∇θ =

[
∂/∂θ1 ... ∂/∂θNθ

]
Gradient vector with respect to structural parameters  
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classified into output-only methods—where only the system’s response is observed, and input–output methods—where the inputs and 
the response of the system are measured [4]. The objectives of SHM include investigation of uncertainties in structural behavior, 
condition-based maintenance, remaining lifetime prognosis, and optimization of future designs. In a rapidly growing global industry 
like OWE, these methods can help minimize Operation and Management (O&M) costs, protect against catastrophic failures, and 
provide feedback to improve the design of future turbines [5]. SHM methods can employ probabilistic Bayesian frameworks to account 
for uncertainties and errors in the measured data, estimation process, and structural model [6]. The application of Bayesian inference 
for SHM of civil structures was first introduced in 1998 [7]. Several studies include Bayesian inference applications for model updating 
and SHM of large-scale civil structures, which can be found in [8–13]. 

The reliability of an SHM procedure depends on the method’s accuracy and the information available in the measured data. The 
location and type of sensors on the structure determine the level of information about the QoI in the data. SHM includes the exper
imental procedures to estimate a QoI using partially measured data [14]. Moreover, SHM includes virtual sensing, which is the process 
of estimating a QoI using a validated model and partially measured data. The experimental setup in SHM, corresponding to the number 
and location of the sensors, can be optimized to provide cost-effective and informative measurements about the QoIs [15]. This process 
is referred to as optimal sensor placement (OSP). This paper introduces an approach to OSP for estimating the parameters and strain 
history, and hence the fatigue life, of an OWT support structure. OSP methods hold promise for efficient condition-based monitoring at 
scale and could enable precise decision-making for entire OWT fleets regarding support structure maintenance and life extension. 

Information theory-based approaches have been used by a number of researchers for OSP problems. These approaches can account 
for measurement uncertainties as well as modeling errors. Different measures of the information contained in the data were used to 
find the OSP solution. Some researchers have maximized the determinant or trace of the Fisher Information Matrix (FIM) [16–23], 
while others have employed the expected Bayesian loss function [24,25] to minimize the trace of the inverse of the FIM. A Bayesian 
framework for OSP in SHM applications was proposed in [26], where the OSP method optimized a metric related to the probability of 
damage detection of all regions of the structure. Shannon entropy [27], a measure of the uncertainty in model parameter estimation, 
was introduced in [28] for the OSP problem using a Bayesian framework. Shannon entropy is used in OSP for (i) parameter estimation 
when the input excitation is not measured [29], (ii) load identification of linear and nonlinear models [30], and (iii) model class 
selection for damage detection [31]. Shannon entropy depends on the determinant of the FIM for an asymptotically large number of 
data [15]. In [32], the expected information gain [33], which was derived from Kullback-Leibler divergence (KLD) [34], was maxi
mized for finding OSP for response reconstruction. The effect of spatial correlation of the prediction error due to modeling error on the 
OSP problem was investigated in [35]. Estimating strains using virtual sensing is useful for fatigue estimation [40,41]. There are 
several studies in the literature using the modal expansion method for strain estimation of OWT [42–46]. Fatigue hotspots in an OWT 
with a jacket support structure are commonly underwater and difficult to access [47]. 

Solving the optimization problem of an OSP solution using discrete-valued design variables requires an exhaustive search over all 
the possible combinations of sensor types and locations. This is computationally expensive, even for a structure with a small number of 
degrees of freedom (DOFs). Heuristic algorithms such as Forward Sequential Sensor Placement (FSSP) and Backward Sequential Sensor 
Placement (BSSP) were proposed in [15,31], which overcome this computational problem but often provide a suboptimal sensor 
configuration. Genetic Algorithms [36–39] are alternatives for exhaustive search and can be used to complement FSSP and BSSP 
algorithms for improved results [35]; however, they are more computationally demanding than the heuristic algorithms. 

Past OSP studies have not adequately explored the effect of cost on the OSP result. This paper investigates both single-objective 
optimization and multi-objective (Pareto efficiency) optimization to find OSP for the purpose of condition monitoring of an OWT 
for input–output parameter estimation and output-only strain estimation cases. The single-objective formulation minimizes the in
formation entropy of the sensor configuration and does not consider the sensor configuration cost. The multi-objective OSP optimizes 
the cost-benefit objective function defined with different weight factors to balance the ratio of information and cost in the objective 
function. The present study suggests a balanced multi-objective OSP that provides insight into the effect of cost on the optimal sensor 
configuration. 

The defined multi-objective function, Pareto study, and the application of the framework on OWT comprise the novelty of this 
work, where a combination of FSSP and BSSP search methods is used. The proposed method is called the ‘combined sequential sensor 
placement’ or SSP for short. The SSP gives near-optimal results comparable with the exhaustive search. Implementation of the al
gorithm is evaluated on optimal sensor configuration design of a realistic offshore wind turbine model for (1) parameter estimation and 
(2) strain estimation. The Pareto study presented in this paper provides insight to help decision-makers with the OSP design given a 
limited budget. A sensitivity analysis is performed to find the most influential parameters on the dynamical behavior of the structure 
and the selection of updating structural parameters. The study also considers the effect of spatially correlated prediction errors, which 
controls the minimum distance between sensors, as well as the effect of input excitation assumption on OSP results for parameter 
estimation in an input–output formulation. The effectiveness of the OSP algorithm is checked by comparing the best and worst 
configurations. 

2. Methodology 

This section presents the formulation of OSP for (1) parameter estimation and (2) strain estimation. Structural parameters of in
terest can include mass and/or stiffness of different components or substructures of a structure. In this study, the parameters reflecting 
the uncertainties in the model are modulus of elasticity of the tower, Etower, modulus of elasticity of the jacket, Ejacket, and the vertical 
stiffness, kv, of soil springs at the bottom of the jacket. These parameters are chosen based on a sensitivity analysis done on the 
structure. In the first two subsections, the Bayesian inference frameworks for each of these two purposes are briefly reviewed, and OSP 
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formulation using Shannon Entropy and Expected Utility is outlined afterward. 

2.1. Bayesian inference framework for parameter estimation 

The Bayesian inference framework for estimating unknown parameters of a structural model is briefly reviewed here. Assume θ ∈

RNθ be the vector of parameters of interest. Let D =
{

yk ∈ RNo
}

be the vector of measured acceleration response time history sampled 
over N points (k = 1, .., N) by Δt intervals where yk ∈ RNo refer to output data and No is the number of measured DOFs, i.e., number of 
sensors. Let xk(θ) ∈ RNd be the vector of predicted response time history from the Finite Element (FE) model at all DOFs (Nd) of the 
structure at each time step. The difference between the measurements and the model predictions is defined as the prediction error 
ek(θ), which includes the combined effects of modeling error and measurement noise. The relationship between the measured response 
yk and xk(θ) follows Eq. (1): 

yk = Lxk(θ) + ek(θ) (1)  

where L ∈ RNo×Nd is a Boolean matrix consisting of ones at the measured DOFs and zeros elsewhere. It defines the number and location 
of sensors on the structure; therefore, it can be interpreted as the sensor configuration matrix. The prediction error is postulated to 
follow a Gaussian distribution with zero mean and covariance matrix Σt ∈ RNo×No . This assumption is justified by the principle of 
maximum information entropy, which states that the Gaussian distribution provides maximum uncertainty among all distributions 
with a specified mean and covariance. This imposes the least amount of constraint on the choice of distribution. However, other 
distributions can be assumed for the prediction error if there is prior knowledge about its statistical properties. Assuming prediction 
errors at different time steps are independent, the posterior probability density function (PDF) of the structural model parameters 
given the measured data has the following form [7]: 

p(θ|Σt, D)∝
1

(
̅̅̅̅̅
2π

√
)

N ̅̅̅̅̅̅̅̅̅̅̅
detΣt

√ exp[−
NNo

2
J(θ|Σt, D)]p(θ) (2)  

where p(θ) is the prior PDF of updating parameters; and 

J(θ|Σt, D) =
1

NNo

∑N

k=1
[yk − Lxk(θ)]

TΣ−1
t [yk − Lxk(θ)] (3) 

represents the measure of fit between the measured data and corresponding model predictions. This method requires both the input 
and output of the system to evaluate the posterior PDF. 

2.2. Bayesian inference framework for strain estimation 

This section provides a review of the Bayesian inference framework and modal expansion technique for estimating strains at desired 
locations using measured time history structural response without the knowledge of input. Let D =

{
yk ∈ RNo

}
be the vector of 

displacement time history measurements where yk is the output data at No DOFs and ek be the Gaussian measurement error with zero 
mean and covariance matrix Σt ∈ RNo×No . The measured time history responses can be expanded using modal expansion formulation 
as: 

yk = Φm(L)qmk
+ ek (4)  

where Φm(L) ∈ RNo×m is the mode shape matrix of m contributing modes at No DOFs and qmk 
is the modal coordinate vector of m 

contributing modes at time step k. 
Subsequently, Bayesian inference is employed to estimate qmk 

and its uncertainty, i.e., posterior PDF of qmk
. Based on Bayes the

orem, the posterior PDF of qmk 
given the measured time history y(t) is: 

p(qmk

⃒
⃒yk)∝p(yk|qmk

) p(qmk
) (5)  

where p(yk
⃒
⃒qmk

) is the likelihood function. Assuming the prior PDF p(qmk
) to be Gaussian with zero mean and covariance matrix 

Σpr ∈ Rm×m, the posterior PDF of qmk 
is Gaussian with qk mean and Σq covariance [32,48,49] given by 

qk =
[
ΦT

m(L)Σ−1
t (L)Φm(L) + Σ−1

pr

]−1
ΦT

m(L)Σ−1
t (L)yk (6)  

Σq(L) =
[
ΦT

m(L)Σ−1
t (L)Φm(L) + Σ−1

pr

]−1
(7) 

The modal expansion technique is then employed for virtual sensing, i.e., to predict strains at the desired DOFs. This can be done 
using the estimated modal coordinate and assuming a Gaussian prediction error with zero mean and covariance Σε ∈ RNz×Nz : 

zk = Ψqmk
+ εk (8) 
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where zk ∈ RNz×1 is the vector of predicted strains at desired locations (Nz) and Ψ ∈ RNz×m is the strain mode shape matrix of m 
contributing modes. 

By propagating the uncertainty of estimated qmk 
to zk in Eq. (8), zk follows a Gaussian distribution with zk mean and Σz ∈ RNz×Nz 

covariance given by: 

zk = Ψ
[
ΦT

m(L)Σ−1
t (L)Φm(L) + Σ−1

pr

]−1
ΦT

m(L)Σ−1
t (L)yk (9)  

Σz(L) = Ψ
[
ΦT

m(L)Σ−1
t (L)Φm(L) + Σ−1

pr

]−1
ΨT + Σε (10) 

Eq. (10) indicates that the uncertainty in estimated strains does not depend on the measurements yk. Consequently, optimal sensor 
placement for strain estimation, which relies on minimizing a scalar measure of Σz, does not directly require the input or output 
measurements. 

The strain mode shape matrix is a property of the structure and can be calculated utilizing the displacement mode shape matrix and 
shape functions used in the FE model (for example, Hermitian shape function for beam-column element). 

2.3. Spatial correlation of prediction error 

In this study, the effect of spatial correlation of prediction errors between neighboring DOFs is considered. The covariance of total 
prediction error should accord with the errors and correlations inhere in the measurements and the model. However, no measurements 
are available during the sensor design stage. In [35], the authors used a measure of spatial correlation length and assumed an 
exponential correlation function to consider the effect of spatially correlated prediction error. This procedure is briefly introduced 
here. Considering independency between measurement noise and modeling error, the total prediction error matrix Σt takes the form: 

Σt = Σ + Σ (11)  

where Σ and Σ are the covariance matrices of the measurement noise and modeling error, respectively. As measurement noise is 
independent of the location of the sensors, Σ = s2I is considered as a diagonal matrix where I is the identity matrix and s2 denotes the 
variance of sensor noise. However, due to the correlation between neighboring locations because of modeling error, the covariance 
matrix Σ can have non-zero off-diagonal terms. The correlation between the prediction errors at DOFs i and j is assumed to be: 

Σij =
̅̅̅̅̅̅̅̅̅̅̅
ΣiiΣjj

√
R(δij) (12)  

where R is a function of δij, which is the spatial distance between the DOFs. The same correlation function as [35] is used in this study: 

R(δij) = exp[−δij/λ] (13)  

where λ is a measure of the spatial correlation length, and a larger value λ assigns a stronger correlation to distant DOFs. The cor
relation length λ should be chosen such that the covariance matrix in Eq. (12) be consistent with the actual errors and correlations as 
observed from measurements. However, no such measurements are available in the design phase. The correlation length is recom
mended to be significantly smaller than the “wavelength” of the highest contributing mode. In [35], it is shown that for up to the 
characteristic length of the highest contributing mode of the structure, the spatial correlation between prediction errors forces the 
minimum distance between sensors to be of the order of the correlation length. 

2.4. Optimal sensor placement formulation 

The information entropy method has been used in this study for OSP. For parameter estimation, the formulation is derived using the 
definition of information entropy and asymptotic approximation. For strain estimation, KLD, expected information gain and infor
mation entropy are used. In general, information entropy is a scalar measure of uncertainty associated with a QoI, and information gain 
is the reduction in uncertainty about the QoI after measuring data. Optimizing either measure would lead to the same optimal 
experimental setup. 

2.4.1. OSP framework for parameter estimation 
For the purpose of parameter estimation, the information entropy H is defined as: 

H(L|Σt, D) = Eθ( − lnp(θ|Σt, D ) ) = −

∫

lnp(θ|Σt, D )p(θ|Σt, D )dθ (14)  

which depends on measured data D and sensor configuration L. Eθ(...) denotes mathematical expectation with respect to vector θ. 
Minimizing the entropy would result in OSP. For uninformative (i.e., uniform) prior PDF of the model parameters, the information 
entropy can be asymptotically approximated when a large amount of data is available [15]: 
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H(L|Σt, D) =
1
2

Nθln(2π) −
1
2
ln[detQ(L|Σt, θ̂)] (15)  

where θ̂ is the vector of optimal values for the parameters and Q(L|Σt , θ̂) ∈ RNθ×Nθ is the FIM which contains information about the 
uncertainty of estimated parameters, given by: 

Q(L|Σt, θ̂) =
∑N

k=1
(L∇θxk(θ̂) )T(

LΣtLT)
−1(L∇θxk(θ̂) ) (16)  

in which ∇θ =
[

∂/∂θ1 ... ∂/∂θNθ

]
is the gradient vector with respect to the parameter vector θ. The FIM in Eq. (16) is created using 

the sensitivities of response in sensor locations with respect to the model parameters to be inferred. The logarithm of the determinant of 
FIM which is present in Eq. (15) is an overall scalar measure of this sensitivity. In the absence of experimental data, the optimal value ̂θ 
of the model parameter set is not available. To proceed with the optimal design, the value of ̂θ is assigned a nominal value. The nominal 
value of the parameters is considered as the true value of model parameters to represent the actual structural system. The uncertainty 
in the nominal value θ̂ can be considered by using the expected information entropy over all possible values θ̂ quantified by the prior 
probability distribution p(θ̂). 

2.4.2. OSP framework for strain estimation 
Optimal sensor placement for strain estimation is formulated using the expected information gain U(L) [50]: 

U(L) =

∫

Υ
u(L, y)p(y|L )dy (17)  

where u(L, y) is the utility function using the KLD between the prior and posterior probability distribution of the response QoI zk 
introduced in Eq. (8). KLD measures the amount of information added to the prior after measuring the data. This scalar value shows the 
usefulness of the experimental design. Maximizing this measure would result in the OSP. In [50], it is shown that Eq. (17) can be 
rewritten in terms of the change in information entropy after measuring the data by: 

U(L) = Hz,prior −

∫

Υ
Hz(L, y|D )p(y|L )dy (18)  

where Hz,prior is the information entropy before measuring data and Hz(L, y|D ) is information entropy after measuring data. Following 
the fact that the QoI zk is Gaussian distributed with covariance matrix Σz(L) in Eq. (10) that does not depend on the data y, the in
formation entropy for the response QoI zk takes the form [32]: 

Hz(L, y|D ) = Hz(L|D ) =
1
2
Nz[ln(2π) + 1 ] +

1
2
ln(det(Σz(L)) ) (19)  

which is independent of the data y. Using this independence of the posterior information entropy Hz(L, y|D ) = Hz(L|D ) on the data y, 
the integral in (18) simplifies to U(L) = Hz,prior −Hz(L|D ). Considering that the prior information entropy Hz,prior is constant and in
dependent of the sensor configuration, minimizing posterior information entropy Hz(L|D ) is the mathematical counterpart of maxi
mizing information gain. This study’s objective is to find a sensor configuration L that minimizes the posterior information entropy 
Hz(L|D ) for predicting strains at desired hotspot locations. 

The optimal sensor configuration assures that no other setup could result in a more informative observation. It is worth noting that 
the information entropy presented in Eq. (15) for parameter estimation and Eq. (19) for strain estimation do not directly depend on the 
sensor measurements (yk) but sensor locations (L). This is ideal for the instrumentation design phase, where no measurements are yet 
available. 

The following metric is also defined to measure the effectiveness of the OSP 

u =
Hmax − Hmin

Hmin
(20)  

where Hmax and Hmin are maximum and minimum information entropies corresponding to the worst and best sensors configurations. A 
small value of u (close to zero) indicates that the best and worst sensor configurations provide a similar level of information; thus, an 
OSP process is not beneficial for the problem, and the higher this measure, the more beneficial the OSP algorithm. 

2.5. Consideration of sensor configuration cost 

The cost of sensor configuration is considered using an objective function with a weight factor to balance the benefit of minimizing 
the information entropy and the cost of sensor configuration. The cost and information entropy values are not in the same order of 
magnitude, and therefore their values are normalized in the objective function. Two reference terms Href and Costref are defined as the 
minimum information entropy and maximum cost obtained by assuming a certain number of sensors (e.g., eight sensors in this study). 
The benefit term for each sensor configuration H(L) is normalized by Href and the cost term Cost(L) is normalized by Costref . The 
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information entropy is a decreasing function of the number of the sensors, and the normalized benefit could be controlled by Href which 
refers to the minimum entropy for a reference number of sensors. This normalization will not affect the results and only makes the 
values of the weight factors more reasonable. H(L) is used for notation brevity for posterior information entropy instead of H(L|Σt , D)

for parameter estimation and Hz(L|D ) for strain estimation. It should be noted that cost value is always between zero and one, and 
benefit values are always positive. 

{
b(L) =

(
H(L) − Href

)/
Href

c(L) = Cost(L)
/

Costref
(21)  

where sensor configuration cost is defined by a cost function, including sensor cost, which is constant, and installation costs which is 
variable for different locations, a non-uniform installation cost is considered for different locations, as is the case for OWTs. The cost- 
benefit objective function is defined in Eq. (22). The weight factor w in this equation defines the relative importance of information 
entropy versus cost. 

{
f(w, L) = w × b(L) + (1 − w) × c(L)

L* = argmin
L

[f (w, L) ] (22) 

A Pareto front study is performed considering varying weights between cost and information entropy. An advantage of the pro
posed formulation is that it offers the ability to use approximate numerical methods over an expensive exhaustive search. A simplified 
diagram for the OSP framework is presented in Fig. 1. 

2.6. Computational algorithm for OSP 

Consider a structure with Nd DOFs that is going to be instrumented with No sensors. The total number of sensor configurations on 
this structure is 

(
Nd
No

)

=
Nd!

No!(Nd − No)!
(23)  

which for practical cases is a considerably large number. Finding the optimal sensor configuration among this set requires an 
exhaustive search, which is computationally expensive. There are two computationally efficient approximate alternative approaches 
to solve this problem, namely the FSSP and the BSSP algorithms, which provide near-optimal solutions. In the FSSP approach, the 
sensors’ position is chosen sequentially by placing one sensor in the location that results in the highest decrease in information entropy. 
Specifically, given that i-1 sensors have been placed on the structure, the position for the ith sensor is determined among Nd −i +1 
possible locations. Starting with i = 1, this process continues until the total number of desired sensors is reached. This approach can 
also be used in a backward manner (BSSP). In the application of BSSP, the algorithm starts with Nd sensors placed at all of the 
structure’s DOFs, and then sensors are removed one by one from the location resulting in the smallest increase of the information 
entropy until the desired number of sensors is achieved. It is worth noting that the FSSP and BSSP only provide the optimal solution 

Fig. 1. The OSP procedure framework.  
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when the optimal sensor configuration for an i-sensor configuration is a subset of an i + 1-sensor configuration. However, the resultant 
information entropy using these algorithms is demonstrated to be close to the absolute optimal sensor configuration [35]. The FSSP 
approach needs 

∑No
i=1(Nd − i + 1) optimization iterations, and BSSP needs 

∑Nd−No+1
i=1 (Nd − i + 1) optimization iterations, which are 

much smaller than the number required by the exhaustive search. 
In this paper, a combined SSP approach is used for OSP. In this approach, for a given number of sensors, a simultaneous FSSP and 

BSSP search is done. Later, the information entropies for the resultant configurations are compared, and the configuration with lower 
information entropy is chosen as the optimal configuration. The combined SSP approach is found to perform better than FSSP or BSSP 
and provides very accurate results which are close to those obtained by exhaustive search. 

3. Description of the OWT model 

The case study structure in this paper is a numerical model of an offshore wind turbine on a jacket support structure based on a real 
offshore wind turbine. A linear elastic FE model of this wind turbine was created using the structural analysis software OpenSees [51]. 
The tower was modeled using 32 beam elements with varying cross-sections, and an assumed concentrated mass of 500 tons at the top 
representing the rotor-nacelle assembly (RNA). The masses of tower and jacket elements were lumped at their end nodes. The modulus 
of elasticity was assumed to be 200 GPa for the steel material, which was used for all elements. A rotational mass of 1.8 × 107 kg-m2 

was assigned at the top of the tower for RNA mass moment of inertia about X and Y axes (see Fig. 2 for axis orientations). The soil- 
structure interaction was modeled using three linear springs at the bottom of the four jacket legs, i.e., kL, kV, and kR. The lateral 
stiffness of soil constraint (kL) was assumed to be the same in X and Y directions, and the vertical stiffness (kV) and rotational constraint 
(kR) are assumed to be the same for four legs. 

The presented OSP framework is applied on a realistic but simple numerical model to demonstrate the OSP process on an OWT. In 
the simplification of the model, the following OWT complexities are not considered: asymmetry of RNA, the effect of the rotor on 
dynamics of the structure, distributed wind load along the height of the structure, wave loads, and wave/wind misalignment. However, 
the framework can be applied to a more detailed model and loading conditions. 

Fig. 2 shows the natural frequencies and mode shapes of the OWT. Due to the symmetry of the structure, modes 1 & 2 and 4 & 5 
have the same natural frequencies and similar mode shapes in X and Y directions, respectively, while the third mode is torsional. All 
mode shapes except for mode 3 have relatively large deformations at mid-height of the tower. 

In the application of OSP for parameter estimation, the following considerations have been taken into account for the selection of 
updating model parameters: (1) the number of updating parameters should not get too large, so the inverse updating problem is 
observable, (2) model parameters with considerable prior uncertainty such as foundation stiffness should be considered, (3) 

Fig. 2. The contributing modes of the structure.  
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parameters should have sensitivity to measurements, and (4) selected updating parameters must be able to compensate for unmodeled 
components and modeling errors. 

A sensitivity analysis is performed on the three foundation springs (kL, kV, and kR) to study their influence on dynamic properties 
(natural frequencies) of the OWT. Fig. 3 shows the sensitivity of natural frequencies of modes 1, 3, 5, and 6 with respect to the soil 
springs. The values of springs have been normalized to their initial values, which are 42.66 GN/m for kL & kV and 136.04 GN-m/rad for 
kR. These initial values are based on soil constraints used for an offshore wind turbine in the North Sea [40]. It can be observed that 
only the higher modes (fifth and sixth) natural frequencies are affected by the vertical spring kV, while kL and kR have little effect on 
any of the vibration modes considered. Therefore, only vertical spring stiffness for the foundation is considered as an updating 
parameter. 

Furthermore, the OWT structure is divided into two substructures with two updating parameters representing their moduli of 
elasticity: Ejacket for all elements in the jacket and Etower for the tower. The moduli of elasticity are influential on the dynamic response 
and can potentially compensate for modeling errors at different parts of the structure. Therefore, the final updating parameters are θ =

[Ejacket , Etower, kv]
T. 

4. OSP results for parameter estimation 

This section describes the results of OSP for parameter estimation for the considered OWT and studies the effects of data corre
lation, input loads, and numerical optimization algorithms on OSP results. Due to the symmetry of the structure, only X-direction DOFs 
are considered as possible sensor measurements. This assumption reduces the computational cost, especially for the exhaustive search. 

4.1. Effects of data correlation 

In this section, the importance of considering the spatial correlation between measurements caused by prediction errors on the OSP 
result is studied. Results of OSP are presented and compared for two cases where data correlation is considered or not. The prior 
distribution of updating parameters is assumed to be uniform. 

The OSP is performed for estimating θ = [Ejacket , Etower, kv]
T considering up to ten sensors. Due to the computational efficiency of SSP 

and its accuracy, this numerical approach is used to solve the optimization problem iteratively. The sensors’ order is an indicator of 
their relative importance in gaining information and reducing uncertainty about the updating parameters. Fig. 4a shows the OSP result 
for the case when no data correlation is considered. The results show that 4 out of 5 sensors are clustered in the middle of the tower, 
which is justified considering the structure’s dominant mode shapes have larger amplitudes in the middle of the tower, as shown in 
Fig. 2. However, sensors placed at adjacent nodes of the finite element mesh may provide redundant information. This approach 
clearly ignores the correlation between the data acquired in neighboring locations, which is not a realistic assumption. 

In order to address this issue, a spatial correlation length of prediction errors may be considered. The spatial correlation length can 

Fig. 3. Sensitivity analysis results with respect to the stiffness of soil constraints.  
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be accounted for in the covariance matrix of the total prediction error, as shown in Eq. (13). To investigate the effect of correlation 
length, given the number of No = 5 sensors, OSP analysis is performed for λ = 2,5,10. The correlation length controls the correlation 
among neighboring DOFs, and a larger correlation length indicates a correlation between farther DOFs, and therefore, the optimal 
sensors’ locations would be more spread out. The results for λ = 2, 5, 10 are shown in Fig. 4b–d, respectively. The red arrows in all the 
corresponding figures in this paper are an indicator of the location and direction of the measurements. It can be seen that the optimal 

Fig. 4. OSP results: (a) no correlation is considered; (b) λ = 2; (c) λ = 5; and (d) λ = 10.  

Fig. 5. Relative information entropy comparison.  
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sensor locations get farther away from each other by increasing the correlation length measure. While the correlation between sensors 
exists, a large correlation length may also be unrealistic. In the lack of measurement correlation consideration, OSP results depend on 
the finite element discretization as the sensors would be placed in adjacent nodes. 

Fig. 5 shows the information entropy versus the number of sensors for different spatial correlation lengths. It can be seen that more 
than 80 percent of the information entropy reduction can be obtained by optimally placing six sensors, and the reduction becomes less 
significant as the number of sensors increases. Moreover, increasing the spatial correlation length results in higher information en
tropy. This increase in entropy is reasonable since the correlation length adds a constraint in sensor placement and reduces the total 
amount of information by implying that some measurements are correlated. 

4.2. Effects of input loads 

OSP for parameter estimation in this paper is formulated assuming known input excitation. The input load is required to simulate 
the model-predicted response (xk) in Eq. (16). In this section, the sensitivity of OSP results to different input load assumptions is 
demonstrated. Two different loading conditions on the OWT are considered: (1) only lateral load and (2) a combination of lateral and 
torsional loads. Both loads are assumed as resultant point loads and applied at the top of the structure (nacelle level). The Kaimal 
spectrum [52] is used as an approximation of the wind power spectrum. Fig. 6 shows the Kaimal spectrum with a mean wind speed of 
10 m/s and a standard deviation of 4. The simulated wind load time history is depicted in Fig. 7. The torsional load is also assumed to 
follow the same Kaimal spectrum, and its time history is simulated using the lateral load time history multiplied by a factor of 4. 

The analysis is performed assuming No = 10 (number of sensors) and λ = 5 (correlation length). The results are shown in Fig. 8. It 
can be observed that the input loads can significantly affect the optimal sensor configurations. More sensors are placed on the jacket 
when the torsional load is present, which is reasonable as the torsional response of the structure is mainly represented by the torsional 
movement of the jacket (see mode shape 3 in Fig. 2). Moreover, in this case study, the tower is modeled as a cantilever beam, and thus 

Fig. 6. The Kaimal spectrum.  

Fig. 7. Time history of the lateral wind load.  
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the sensor on the tower cannot capture torsional motion. The location of the first couple of sensors which are the most informative 
ones, varies for different input loads. This means that input loads directly affect the OSP results. 

4.3. Comparing SSP and exhaustive search 

There are several search algorithms available to find the OSP configuration, including FSSP, BSSP, and the exhaustive search. Only 
the exhaustive search method guarantees the optimal solution as all combinations of sensor configurations are considered and 
compared. However, this method is computationally expensive. The alternative search method which is used in this study is the SSP 
method which combines the results of FSSP and BSSP methods at each iteration. In this section, results of OSP using SSP and exhaustive 
search are compared under the combined torsional and lateral input loads for 1-sensor to 5-sensor configurations. A spatial correlation 
length of λ = 5 is assumed. Fig. 9 depicts the sorted information entropy of all configurations using the exhaustive search for a total of 
4.613029 × 106 configurations along the X-axis. The red dots in Fig. 9 show the information entropy of the optimal configuration for all 
the configurations of 1–5 sensors. In this plot, it can be observed that entropy can be drastically reduced by changing sensor locations 
and thus highlighting the value of OSP. Increasing the number of sensors results in lower optimal information entropy, which is ex
pected. However, the information entropy for optimal configuration of 3, 4, and 5 sensors are very close. Fig. 10 presents the OSP 
results for parameter estimation for 1–5 sensor configurations. The results show that the information provided by only lateral 

Fig. 8. OSP results considering (a) lateral load; (b) a combination of lateral and torsional load.  
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measurements is adequate for estimating the three parameters of interest. This would not be the case if only torsional motion provided 
unique information about a parameter of interest. For example, if the estimation of the soil spring under only one leg or the stiffness of 
a single diagonal truss member of the jacket was sought after. Fig. 11 compares the accuracy of the SSP method to the exhaustive 

Fig. 9. Sorted information entropy for 1–5 sensor configurations.  

Fig. 10. Optimal sensor configuration results corresponding to each specific sensor number.  
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search. In Fig. 11, the information entropy for the best and worst configurations and for the 1–5 sensor configurations are compared 
using two search methods. The results are almost identical, confirming the accuracy of the SSP method. 

Results of the OSP for parameter estimation are also compared with three cases of naïve/common-sense sensor placements. The 
three commonsense cases include: (c1) uniform along the whole structure, (c2) uniform along the height of the tower, and (c3) lo
cations obtained by Kammer’s method [20] which maximizes the linear independence of mode shapes. The first 8 modes of the 
structure are considered in the application of Kammer’s method. The entropy values for these three cases are compared with the OSP 
results for parameter estimation in Fig. 12. It can be observed that the entropy from case c2 (uniform along the tower) is close to OSP 
results but cases c1 and c3 provide inferior results. 

4.4. Cost consideration 

The previous section provided OSP results for parameter estimation without consideration of cost, where sensor locations were 
provided sequentially for a known number of sensors. This section provides the OSP results where sensor installation cost can be 
drastically different at different locations such as offshore wind turbine structures. Using Eq. (21), the cost and benefit of this case are 
calculated. The reference minimum information entropy (Href ) is calculated by assuming 8 sensors. The reason behind this choice is the 
tradeoff between information entropy and cost. Assuming a higher number of sensors would force the weight factor for balancing cost 
and benefit to be infinitesimal. In this section, the cost-benefit objective function (Eq. (22)) is minimized with a weight factor of w =

0.55. The weight factor value is chosen such that it gives a balanced result. The SSP method is implemented, and its results are 
compared with those from the exhaustive search. The OSP analysis is performed assuming a spatial correlation length of λ = 5 under 
both lateral and torsional loads. 

The installation cost for one sensor is assumed to be $10,000 at underwater locations, $5000 within the splash zone, and linearly 
increasing from $1000 to $2000 along the tower height. The sensor installation cost is shown in Fig. 13. Furthermore, the price of each 
sensor is assumed to be $500, which is constant and is added to the installation cost. Fig. 14 shows the cost-benefit objective function of 

Fig. 11. Comparing information entropy of optimal configurations using SSP and exhaustive search methods.  

Fig. 12. Information entropy of the best and the worst configurations compared for SSP and exhaustive search.  
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all 4.613029 × 106 candidate sensor configurations using exhaustive search, where the results are grouped based on the number of the 
sensors in each candidate configuration and sorted in ascending order based on the value of the objective function. It can be seen that 
the objective function (f) of Eq. (22) within each group of sensors can be reduced drastically by optimal sensor placement, which 
highlights the importance and value of OSP. The red dots represent the best configuration within each group of sensors. The best 
configuration for the considered weight of w = 0.55 is when 2 sensors are used, which provides the lowest value of the objective 
function. It is worth noting that the results are sensitive to the weight between cost and benefit, w, in the objective function. Fig. 15 
shows the optimum sensor configurations for each number of sensors. It can be observed that cost consideration slightly moves the 
optimal locations closer to the bottom of the tower where the installation cost is low. A smaller weight factor would reduce the weight 
on information entropy and increase the weight on cost, which results in sensors being pulled down until all of them are placed in the 
minimum cost locations for the extreme case of w = 0. The accuracy of the OSP results from SSP and the exhaustive search is compared 
in Fig. 16. The results confirm the previous conclusion about the accuracy and efficiency of SSP for the case of using an objective 
function with cost consideration. 

Table 1 compares the effectiveness of the OSP when estimating parameters using 1-sensor to 5-sensor configurations. SSP search 
method results are used for comparison. A u value that is more than zero shows that using this framework is beneficial. 

Fig. 13. Comparing three common-sense configurations with SSP results for parameter estimation.  

Fig. 14. Sensor installation cost.  
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Fig. 15. Sorted objective function f for 1–5 sensor configurations.  

Fig. 16. Optimal sensor configuration results for different number of sensors with the consideration of installation cost.  

Table 1 
Comparing the measure of effectiveness for parameter estimation for different number of sensors.   

1-sensor 2-sensor 3-sensor 4-sensor 5-sensor 

u   0.88  0.96  1.00  1.01  0.73  
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Fig. 17. Strain estimation locations.  

Fig. 18. Comparing OSP results for strain estimation at a single hotspot using SSP and exhaustive methods.  
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5. OSP results for strain estimation 

Two OSP problems are studied in this section, as shown in Fig. 17, for estimating the axial strain at different fatigue hotspots, 
namely (1) one location at the bottom of the jacket just above the support, since lower joints are more prone to fatigue and (2) at twelve 
locations, middle of eight diagonal members and four elements at the bottom of the jacket. Both problems are solved with and without 
cost consideration. The first five vibration modes of the structure, as shown in Fig. 2, are considered in this study. The prior knowledge 
about the modal coordinate in Eq. (10) is assumed to be Gaussian with a large Σpr = 1013, which implies unknown prior knowledge 
similar to the assumption of uniform distribution. The covariance of strain prediction error is postulated as Σε = 10−1 at all locations. 

5.1. OSP for estimating strains at one location 

Case 1: No cost consideration 

Using the formulation presented in Sections 2.2, 2.3, and 2.4.2 of this paper, OSP is found using the SSP algorithm and the 
exhaustive search for a 5-sensor configuration. Prediction error correlation is considered using a correlation length of λ = 5. Fig. 18 
depicts OSP results together with the worst sensor placements for 5-sensor configurations. The information entropy of OSP results for 
strain estimation using SSP and exhaustive search are compared in Fig. 19 for the best and worst sensor configurations. 

This investigation confirms the previous observation about the accuracy of the SSP method, which states that SSP provides near- 
optimal solutions for the OSP problem. It is worth noting that the order of placing sensors is available only when using the SSP and can 
be interpreted as the relative importance of each sensor. The exhaustive search does not automatically provide such ordering. In 
Fig. 19, it is seen that adding the fifth sensor provides little information compared to the first four sensors. Fig. 19 shows the accuracy of 
the SSP method, as well as the usefulness of the OSP algorithm by comparing the information entropy of the best and worst 

Fig. 19. The information entropy of OSP results for strain estimation at a single hotspot using SSP and exhaustive methods for a) the best con
figurations; b) the worst configurations. 

Fig. 20. The objective function of OSP results for strain estimation at a single hotspot using the SSP method for the best configurations.  
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Fig. 21. The difference in information entropy of OSP results for strain estimation at a single hotspot with and without cost consideration.  

Fig. 22. Comparing results of OSP for strain estimation at 12 hotspots using SSP and exhaustive methods.  
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configurations. Although Fig. 18b shows that SSP and exhaustive search provide different worst sensor configurations, Fig. 19b shows 
that the resultant information entropies are generally similar. 

Case 2: OSP with cost consideration 

To account for the cost in the OSP, a multi-objective optimization is employed by varying the weight factor between the infor
mation entropy and cost in Eq. (22). Similar to section 4.4, the reference minimum information entropy (Href ) is calculated by assuming 
8 sensors. Weight w = 0 indicates the case where the OSP result is dominated by the cost and w = 1 is the other extreme where in
formation entropy dominates the solution. Three weight factors of 0.01, 0.1, and 0.99 are used. These weight values are chosen to show 
two extreme and one balanced scenarios. Note that w = 0.55 was a balanced case for parameter estimation. However, for strain 
estimation, based on the value of information entropy and cost, w = 0.1 is found to be more balanced. In this case, 1-sensor to 8-sensor 
configurations are investigated. The SSP algorithm is used, and prediction error correlation is considered using a correlation length of 
λ = 5. The values of objective functions are displayed in Fig. 20 for different sensor numbers, and the three considered weights. As 
shown in Fig. 20a, the best setup that minimizes the objective function for w = 0.01 is a 1-sensor configuration, and the objective 
function is monotonically increasing by adding more sensors. This is due to the high weight of the cost component compared to the 
normalized benefit. For the case of w = 0.1, the objective function is not monotonically increasing or decreasing and has a minimum at 
5 sensors due to the balance between the values of cost and information, as shown in Fig. 20b. Therefore, the OSP, which minimizes the 
objective function, has 5 sensors. The last scenario with w = 0.99 shows control of the information entropy over the OSP results. The 
objective function, in this case, is monotonically decreasing like the case where cost is not considered. The best sensor setup is an 8- 
sensor configuration where the objective function is minimum. Fig. 21 shows the corresponding information entropy of the OSP 
designs for different sensor setups with the three considered weights of 0.01, 0.1, and 0.99 together with the case when the cost is not 
considered. In this figure, the dashed line provides a visual measure to show the difference between information entropy when the cost 
is considered and when it is not. It can be seen that this difference is the largest for w = 0.01 while it becomes negligible for w = 0.99. 
Furthermore, in Fig. 21(a), where the weight of information entropy is very low, it remains almost constant by adding sensors. This is 
because the sensors are added in locations with the minimum cost, which in this particular structure coincide with the least informative 
locations (See Fig. 18b using exhaustive search). However, adding more sensors would result in a decrease in information entropy 
eventually. By increasing the weight of information entropy in the objective function, the discrepancy between cost and no-cost cases 
diminishes. The weight factor should be chosen to maintain a balance between cost and information entropy and such that not much 
information is lost when the cost is considered. It is worth mentioning that for the case w = 0.1, the results in Fig. 21(b) suggest that the 
information gained by adding more than 5 sensors at their optimal locations is not significant to justify the cost from the additional 
sensors. 

Fig. 23. The information entropy of OSP results for strain estimation at 12 hotspots using SSP and exhaustive methods for a) the best configurations; 
b) the worst configurations. 

Table 2 
Comparing the measure of effectiveness for estimating strains at one and twelve locations.   

1-sensor 2-sensor 3-sensor 4-sensor 5-sensor 

1 location  0.15  1.06  1.34  6.20  7.42 
12 locations  0.23  0.41  0.91  1.61  2.96  
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Fig. 24. The difference in information entropy of OSP results for strain estimation at 12 hotspots with and without cost consideration.  

Fig. 25. Comparing three common-sense configurations with SSP results for strain estimation.  

Fig. 26. The objective function of OSP results for strain estimation at 12 hotspots using the SSP method for the best configurations.  
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5.2. OSP for estimating strains in twelve hotspot locations 

Previous studies have shown that X joints are more susceptible to fatigue compared to K joints [47]. Thus, the X joints located at the 
middle of eight lower members, as well as the bottom of the four jacket legs, are chosen as fatigue hotspots for strain estimation, as 
shown in Fig. 17b. OSP is performed with and without cost constraint, assuming a λ = 5 correlation length and utilizing both SSP and 
exhaustive search algorithms. 

Case 1: OSP without cost consideration 

The same framework as that of Section 5.1 is used here. Fig. 22 illustrates the best and worst configurations for a 5-sensor 
configuration. There are some discrepancies in the location of sensors for both the best and the worst cases using the two search 
methods. However, the information entropy values shown in Fig. 23 are very similar. It can be seen that the differences between the 

Fig. 27. Pareto plot (cost vs information entropy) for 1–8 sensor configurations.  
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two methods are minor in all cases, and the SSP is preferred due to its lower computational cost. 
Table 2 compares the effectiveness of the OSP when estimating strains at one location and 12 locations using 1-sensor to 5-sensor 

configurations. SSP search method results are used for comparison. Table 2 shows that by increasing the number of strain estimation 
locations, the effectiveness of OSP decreases, especially for the cases with a higher number of sensors. This shows the importance of 
using OSP when the number of strain estimation locations is small. An intuitive explanation for this observation is that when more QoIs 
are estimated, every DOFs of the structure potentially contains more information on some of the QoIs, and the relative importance 
between DOFs decreases, i.e., the effectiveness of OSP decreases. 

In the case of OSP for strain estimation, the entropy from OSP is compared with the same three cases of naïve/common-sense sensor 
placements, i.e., (c1) uniform along the whole structure, (c2) uniform along the height of the tower, and (c3) locations obtained by 
Kammer’s method [20] considering the first 8 modes. The entropy values for these three cases are compared with the OSP results for 
strain estimation (1 location and 12 locations) in Fig. 24. It can be observed that in general, the commonsense cases are non-optimal 
while there are instances (e.g., 5 sensor setup) that c3 sensor configuration gets close to the optimal solution. 

Case 2: OSP with cost consideration 

In this case, OSP for strain estimation is performed considering sensor configuration cost. Similar to sections 4.4 and 5.1, the 
reference minimum information entropy (Href ) is calculated by assuming 8 sensors. Three weight factors of 0.01, 0.2, and 0.99 are 
considered in the cost-benefit objective function of Eq. (22). The balanced weight factor (w = 0.2) is chosen to give a balanced result, 
and it is different compared to section 5.1 (w = 0.1) as the information entropy, and accordingly, the normalized benefit of config
urations are different. Due to the high computational cost of exhaustive search and the confirmed accuracy of SSP, only the SSP method 
is implemented in this section. Fig. 25 shows the objective function (for OSP results) as a function of different number of sensors under 
three considered weight factors. Similar to Section 5.1, the best configuration for w = 0.01 is a 1-sensor configuration, for w = 0.2 is a 
5-sensor configuration, and for w = 0.99 is an 8-sensor configuration. Fig. 26 illustrates the difference between information entropy 
when the cost is considered and when the cost is not considered. As expected, the differences between the entropy of with/out cost are 
the most when w is small and become negligible for w = 0.99. 

To further investigate the effects of weight factors, a Pareto front study is performed, and the OSP is repeated considering 50 
different weight factors ranging from 0 to 1 with intervals of 0.0204 and 1-sensor to 8-sensor configurations, i.e., a total of 50 × 8 =
400 OSP optimizations. Fig. 27 shows the Pareto front plots of OSP results for each number of sensors. The Pareto front plot includes 
solutions that are optimal, and no objective can be improved without sacrificing at least one other objective. This study is a multi- 
objective optimization with information entropy and cost as its objectives. The black circles correspond to OSP results using the 
considered 51 different weight factors. The blue line provides the values of cost and information entropy for different OSP and shows 
the tradeoff between them as their weight in the objective function varies. There are exactly 50 black circles in each plot; however, the 

Fig. 28. Pareto plot (cost vs. information entropy) for all sensor configurations.  

Table 3 
Pareto solutions at different levels of information entropy.  

Information entropy H > 18 16 < H < 18 12 < H < 14 10 < H < 12 6 < H < 8 4 < H < 6 

# of Sensors 1 sensor 2 sensors 2 sensors 3 sensors 4 sensors 5 sensors 
Cost $1500 $3031 $7000 $8562 $14,218 $24,843  
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information entropy and cost of some of the configurations with different weight factors are the same resulting in the black circles 
being overlapped. Fig. 27 shows that by increasing the number of the sensors, as more configurations are available, there are more 
Pareto front solutions at different levels of entropy. For example, for 1-sensor configuration 50 different weight factors resulted in only 
three levels of information entropy, one high, one balanced, and one low. For 8 sensors, 8 levels are achieved. By means of these plots, 
the decision-maker can consider the required cost to achieve a certain level of information entropy or determine the amount of ac
curacy that can be achieved for a specific budget. 

The information of the eight subplots in Fig. 27 is presented and condensed in a Pareto plot as Fig. 28. This plot can help to optimize 
the number of sensors as well as optimize the weight factor. The black circles are clustered in different levels of information entropy. In 
each cluster, there are configurations with different numbers of sensors and different weight factors overlapping but, there is only one 
configuration with minimum cost. This configuration is interpreted as the Pareto optimal configuration. For example, at the entropy 
level of ~12, there are 12 different configurations fitted (with 6 distinct circles visible). The configurations include 3 to 8 sensors, and 
with weights varying between 0.0612 and 0.1837, and the Pareto solution (least cost at a constant entropy level) is the one with 3 
sensors and w = 0.1837. The Pareto solutions are connected with the red line. Every point on this line denotes the best configuration 
under the corresponding cost constraint, i.e., the information entropy cannot be decreased further without increasing the budget. The 
Pareto solutions are listed in Table 3. Fig. 28 and Table 3 could help the decision-makers with the OSP design, including the number of 
sensors given a budget, without a need to concern with the weight factor in the objective function. 

6. Conclusion 

This paper has formulated and evaluated an information theory-based OSP framework for parameter estimation and strain esti
mation considering sensor configuration cost. The OSP framework for parameter estimation requires the input information, while the 
OSP framework for strain estimation is an output-only method. The approach is evaluated numerically when applied to a realistic 
model of an offshore wind turbine. A computationally efficient approach, the SSP method, which is a combination of FSSP and BSSP 
methods, is employed to solve the OSP problem and is compared with the exhaustive search approach. The results are analogous to 
optimal configurations from the exhaustive search. The proposed optimization framework accounts for the sensor configuration cost 
on the structure. The sensor configuration cost is the summation of sensor installation cost, which is defined unevenly based on the 
location and sensor cost, which is constant. A cost-benefit objective function is defined and has been used in this study to account for 
both information entropy and cost constraint. In the objective function, a weight factor is used to balance the importance of infor
mation entropy versus cost. The OSP results are found to be sensitive to the weight factor, and thus, a Pareto front study is performed 
for different weight factors and different numbers of sensors. The Pareto plots can help the decision-makers to quantify the required 
cost to achieve a certain level of information entropy or alternatively determine the amount of accuracy/entropy that can be achieved 
for a specific budget. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper. 

Acknowledgments 

The authors acknowledge partial support of this study by the National Science Foundation grant 1903972, Bureau of Safety and 
Environmental Enforcement (BSEE), U.S. Department of the Interior, Washington, D.C., under Contract 140E0119C0003, and Mas
sachusetts Clean Energy Center under AmplifyMass program. The opinions, findings, and conclusions expressed in this paper are those 
of the authors and do not necessarily represent the views of the sponsors and organizations involved in this project. 

References 

[1] IEA. Offshore Wind Outlook 2019: International Energy Agency; 2019. Available from: <https://www.iea.org/reports/offshore-wind-outlook-2019>. 
[2] O. Adedipe, F. Brennan, A. Kolios, Corrosion fatigue load frequency sensitivity analysis, Mar. Struct. 42 (2015) 115–136. 
[3] F. Brennan, I. Tavares, Fatigue design of offshore steel mono-pile wind substructures, Proc. Inst. Civil Eng.-Energy 167 (4) (2014) 196–202. 
[4] B. Moaveni, System and damage identification of civil structures: UC San Diego, 2007. 
[5] Guidelines for Structural Health Monitoring for Offshore Wind Turbine Towers & Foundations, 2017. Report No.: 16-1036. 
[6] I. Behmanesh, B. Moaveni, Probabilistic identification of simulated damage on the Dowling Hall footbridge through Bayesian finite element model updating, 

Struct. Control Health Monit. 22 (3) (2015) 463–483. 
[7] J.L. Beck, L.S. Katafygiotis, Updating models and their uncertainties. I: Bayesian statistical framework, J. Eng. Mech. 124 (4) (1998) 455–461. 
[8] J.L. Beck, S.-K. Au, Bayesian updating of structural models and reliability using Markov chain Monte Carlo simulation, J. Eng. Mech. 128 (4) (2002) 380–391. 
[9] J.L. Beck, K.-V. Yuen, Model selection using response measurements: Bayesian probabilistic approach, J. Eng. Mech. 130 (2) (2004) 192–203. 

[10] I. Behmanesh, B. Moaveni, C. Papadimitriou, Probabilistic damage identification of a designed 9-story building using modal data in the presence of modeling 
errors, Eng. Struct. 131 (2017) 542–552. 

[11] H. Sohn, K.H. Law, A Bayesian probabilistic approach for structure damage detection, Earthquake Eng. Struct. Dyn. 26 (12) (1997) 1259–1281. 
[12] M. Song, S. Yousefianmoghadam, M.-E. Mohammadi, B. Moaveni, A. Stavridis, R.L. Wood, An application of finite element model updating for damage 

assessment of a two-story reinforced concrete building and comparison with lidar, Struct. Health Monit. 17 (5) (2018) 1129–1150. 
[13] K.-V. Yuen, J.L. Beck, S.K. Au, Structural damage detection and assessment by adaptive Markov chain Monte Carlo simulation, Struct. Control Health Monit. 11 

(4) (2004) 327–347. 
[14] G. Capellari, Optimal design of sensor networks for structural health monitoring: Politecnico Di Milano, 2018. 

A. Mehrjoo et al.                                                                                                                                                                                                       

https://www.iea.org/reports/offshore-wind-outlook-2019
http://refhub.elsevier.com/S0888-3270(21)01099-2/h0010
http://refhub.elsevier.com/S0888-3270(21)01099-2/h0015
http://refhub.elsevier.com/S0888-3270(21)01099-2/h0030
http://refhub.elsevier.com/S0888-3270(21)01099-2/h0030
http://refhub.elsevier.com/S0888-3270(21)01099-2/h0035
http://refhub.elsevier.com/S0888-3270(21)01099-2/h0040
http://refhub.elsevier.com/S0888-3270(21)01099-2/h0045
http://refhub.elsevier.com/S0888-3270(21)01099-2/h0050
http://refhub.elsevier.com/S0888-3270(21)01099-2/h0050
http://refhub.elsevier.com/S0888-3270(21)01099-2/h0055
http://refhub.elsevier.com/S0888-3270(21)01099-2/h0060
http://refhub.elsevier.com/S0888-3270(21)01099-2/h0060
http://refhub.elsevier.com/S0888-3270(21)01099-2/h0065
http://refhub.elsevier.com/S0888-3270(21)01099-2/h0065


Mechanical Systems and Signal Processing 169 (2022) 108787

25

[15] C. Papadimitriou, Optimal sensor placement methodology for parametric identification of structural systems, J. Sound Vib. 278 (4-5) (2004) 923–947. 
[16] G. Heo, J. Jeon, An experimental study of structural identification of bridges using the kinetic energy optimization technique and the direct matrix updating 

method, Shock Vib. 2016 (2016) 1–13. 
[17] G. Heo, M.L. Wang, D. Satpathi, Optimal transducer placement for health monitoring of long span bridge, Soil Dyn. Earthquake Eng. 16 (7-8) (1997) 495–502. 
[18] N. Imamovic, Model validation of large finite element model using test data, 1998. 
[19] D.C. Kammer, Sensor placement for on-orbit modal identification and correlation of large space structures, J. Guid., Control, Dyn. 14 (2) (1991) 251–259. 
[20] D.C. Kammer, Optimal sensor placement for modal identification using system-realization methods, Jo. Guid., Control, Dyn. 19 (3) (1996) 729–731. 
[21] P.H. Kirkegaard, R. Brincker, On the optimal location of sensors for parametric identification of linear structural systems, Mech. Syst. Sig. Process. 8 (6) (1994) 

639–647. 
[22] F.E. Udwadia, Methodology for optimum sensor locations for parameter identification in dynamic systems, J. Eng. Mech. 120 (2) (1994) 368–390. 
[23] C. Yang, ZiXing Lu, An interval effective independence method for optimal sensor placement based on non-probabilistic approach, Sci. China Technol. Sci. 60 

(2) (2017) 186–198. 
[24] E. Heredia-Zavoni, L. Esteva, Optimal instrumentation of uncertain structural systems subject to earthquake ground motions, Earthquake Eng. Struct. Dyn. 27 

(4) (1998) 343–362. 
[25] E. Heredia-Zavoni, R. Montes-Iturrizaga, L. Esteva, Optimal instrumentation of structures on flexible base for system identification, Earthquake Eng. Struct. Dyn. 

28 (12) (1999) 1471–1482. 
[26] E.B. Flynn, M.D. Todd, A Bayesian approach to optimal sensor placement for structural health monitoring with application to active sensing, Mech. Syst. Sig. 

Process. 24 (4) (2010) 891–903. 
[27] C.E. Shannon, A mathematical theory of communication, Bell Syst. Tech. J. 27 (3) (1948) 379–423. 
[28] C. Papadimitriou, J.L. Beck, S.-K. Au, Entropy-based optimal sensor location for structural model updating, J. Vib. Control 6 (5) (2000) 781–800. 
[29] K.-V. Yuen, L.S. Katafygiotis, C. Papadimitriou, N.C. Mickleborough, Optimal sensor placement methodology for identification with unmeasured excitation, 

J Dyn Sys, Meas, Control 123 (4) (2001) 677–686. 
[30] P. Metallidis, G. Verros, S. Natsiavas, C. Papadimitriou, Fault detection and optimal sensor location in vehicle suspensions, J. Vib. Control 9 (3-4) (2003) 

337–359. 
[31] C. Papadimitriou, Pareto optimal sensor locations for structural identification, Comput. Methods Appl. Mech. Eng. 194 (12-16) (2005) 1655–1673. 
[32] C. Papadimitriou, in: Optimal Sensor Placement for Response Reconstruction in Structural Dynamics. Model Validation and Uncertainty Quantification, 

Springer, 2020, pp. 205–210. 
[33] D.V. Lindley, On a measure of the information provided by an experiment, Ann. Math. Stat. 27 (4) (1956) 986–1005. 
[34] S. Kullback, R.A. Leibler, On information and sufficiency, Ann. Math. Stat. 22 (1) (1951) 79–86. 
[35] C. Papadimitriou, G. Lombaert, The effect of prediction error correlation on optimal sensor placement in structural dynamics, Mech. Syst. Sig. Process. 28 (2012) 

105–127. 
[36] M.M. Abdullah, A. Richardson, J. Hanif, Placement of sensors/actuators on civil structures using genetic algorithms, Earthquake Eng. Struct. Dyn. 30 (8) (2001) 

1167–1184. 
[37] H. Bedrossian, S. Masri, in: Optimal Placement of Sensors and Shakers for Modal Identification. Computational Stochastic Mechanics, Millpress, Rotterdam, 

2003, p. 5357. 
[38] C. Papadimitriou, edi., Applications of genetic algorithms in structural health monitoring, in: Proc 5th World Congress on Computational Mechanics, Vienna, 

Austria, 2002. 
[39] L. Yao, W.A. Sethares, D.C. Kammer, Sensor placement for on-orbit modal identification via a genetic algorithm, AIAA J. 31 (10) (1993) 1922–1928. 
[40] M.-S. Nabiyan, F. Khoshnoudian, B. Moaveni, H. Ebrahimian, Mechanics-based model updating for identification and virtual sensing of an offshore wind turbine 

using sparse measurements, Struct. Control Health Monit. 28 (2) (2021), https://doi.org/10.1002/stc.v28.210.1002/stc.2647. 
[41] C. Papadimitriou, C.-P. Fritzen, P. Kraemer, E. Ntotsios, Fatigue predictions in entire body of metallic structures from a limited number of vibration sensors 

using Kalman filtering, Struct. Control Health Monitor. 18 (5) (2011) 554–573. 
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