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Abstract: Model updating, the process of inferring a model from data, is prone to the adverse effects of modeling error, which is caused by
simplification and idealization assumptions in the mathematical models. In this study, an adaptive recursive Bayesian inference framework is
developed to jointly estimate model parameters and the statistical characteristics of the prediction error that includes the effects of modeling
error and measurement noise. The prediction error is usually modeled as a Gaussian white noise process in a Bayesian model updating frame-
work. In this study, the prediction error is assumed to be a nonstationary Gaussian process with an unknown and time-variant mean vector and
covariance matrix to be estimated. This allows one to better account for the effects of time-variant model uncertainties in the model updating
process. The proposed approach is verified numerically using a 3-story 1-bay nonlinear steel moment frame excited by an earthquake. Com-
parison of the results with those obtained from a classical nonadaptive recursive Bayesian model updating method shows the efficacy of the
proposed approach in the estimation of the prediction error statistics and model parameters. DOI: 10.1061/(ASCE)EM.1943-7889.0002084.
© 2021 American Society of Civil Engineers.
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Introduction

Model updating has emerged as a powerful tool for system iden-
tification, parameter estimation, damage identification, response
reconstruction, and virtual sensing. In the application of model
updating, the unknown model parameters and/or input loads are
estimated by minimizing the mismatch between the measured
and model-predicted responses (Friswell and Mottershead 2013;
Ebrahimian 2015). This mismatch, referred to as the prediction er-
ror, encapsulates the measurement noise and the effects of model
uncertainties, which include model parameter uncertainties and
modeling error (Beck and Yuen 2004; Goller and Schueller 2011;
Soize 2017). Model parameter uncertainties can be reduced through
the model updating process given favorable identifiability conditions
(Ebrahimian et al. 2019). Modeling error is caused by inherent math-
ematical idealizations, approximations, and simplifications in the
numerical model. If not accounted for properly, modeling error can
cause estimation bias resulting in incorrect and/or inaccurate model
updating outcomes. There are different methodologies in the literature
to account for model uncertainties, including parametric (Ghanem
and Pellissetti 2002; Soize and Ghanem 2004) and nonparametric
probabilistic approaches (Desceliers et al. 2004; Soize 2005).

The recursive Bayesian inference framework provides a math-
ematical basis to formulate model updating in the presence of
uncertainties and noise. In this framework, the prediction error
is modeled as a random process characterized by a joint proba-
bility distribution function (PDF). Generally, the prediction error
can be a correlated, nonstationary, nonwhite, and non-Gaussian
random process. However, in the classic nonadaptive recursive
Bayesian model updating formulation, also referred to as nonadap-
tive Bayesian filtering, the prediction error is often assumed to be
an independent Gaussian white noise process (i.e., a stationary,
zero-mean, uncorrelated Gaussian random process) for mathemati-
cal simplicity (Chatzi et al. 2010; Ebrahimian 2015; Ebrahimian
et al. 2015; Erazo and Nagarajaiah 2017; Nabiyan et al. 2020).
This assumption results in a zero-mean Gaussian PDF for the pre-
diction error with a time-invariant covariance matrix. Nevertheless,
this limiting assumption can be violated in real-world conditions,
perhaps most commonly due to the effects of modeling error. Mod-
eling error can be a bias error and not referenced to a zero mean. It
might produce a shifted response that is not necessarily centered on
zero error (Sanayei et al. 2001). Incorrect characterization of the
prediction error statistics will affect model updating performance
and can result in biased estimation or divergence of updating param-
eters (Xu et al. 2019). It can also result in incorrect uncertainty quan-
tification of model parameters, i.e., although the parameters may be
estimated with reasonable accuracy, their uncertainty bounds may
not be realistic (Law and Stuart 2012; Ernst et al. 2015).

To address this issue, Bayesian inference methods for joint
model parameters and noise identification have been proposed in
the literature for structural and mechanical engineering applica-
tions. Yuen and Kuok (2016) proposed a Bayesian method for the
estimation of the diagonal entries of the prediction error covariance
matrix. The estimated covariance matrix is then fed into an ex-
tended Kalman filter (EKF) for joint state-parameter estimation.
Astroza et al. (2019a) proposed a dual adaptive filtering method
to handle the effects of modeling error. The dual filtering method
consists of a Kalman filter to estimate the diagonal entries of the
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prediction error covariance matrix based on a covariance-matching
technique (Mehra 1972) and an unscented Kalman filter (UKF)
(Wu and Smyth 2007) to estimate the unknown model parameters.
The aforementioned studies assume that the prediction error is un-
correlated in space, and therefore, noise identification is limited to
the estimation of the diagonal entries of the prediction error covari-
ance matrix. To remove this limiting assumption, Song et al. (2020)
proposed an adaptive Kalman filter using two types of covariance-
matching methods, i.e., the forgetting factor method (Akhlaghi et al.
2017) and the moving window method (Mehra 1972; Almagbile
et al. 2010), to estimate the full covariance matrix of the prediction
error jointly with the unknown model parameters. They demon-
strated the effectiveness of the approach in the presence of model-
ing error. Amini Tehrani et al. (2020) combined the Kalman filter
method with a covariance-matching method to estimate the full
covariance matrix of the prediction error jointly with the state vector
and unknown model parameters.

Although these methods alleviated some of the limiting assump-
tions for the prediction error (e.g., stationary and uncorrelated in
space), the zero-mean Gaussian assumption still remains. To resolve
this limitation, Kontoroupi and Smyth (2016) developed a Bayesian
method for joint estimation of the mean vector and covariance ma-
trix of the prediction error. In this approach, the mean vector of the
prediction error is assumed to have a Gaussian distribution, while an
inverse-Wishart distribution is considered for the covariance matrix
of the prediction error. First, the distributions are updated based on
Bayesian inference, and then, mean estimates of the updated distri-
butions are used in the UKF algorithm for joint parameter and state
estimation. Their work is capable of estimating a biased (nonzero-
mean) prediction error. However, it considers the mean vector and
covariance matrix of prediction error as time-invariant.

In this paper, a recursive Bayesian inference formulation is de-
veloped to jointly estimate the unknown model parameters and the
statistical characteristics (mean vector and covariance matrix) of the
prediction error. The prediction error is modeled as a nonstationary
Gaussian random process with a time-variant mean vector and
covariance matrix to be estimated iteratively and jointly with the
unknown model parameters. The evolution of unknown model
parameters in time is modeled as a random walk process using a
zero-mean Gaussian process noise. The prior PDF of unknown
model parameters is assumed to be Gaussian. It is also assumed that
the vectors of initial unknown model parameters, the process noise,
and the prediction error at each time step are all mutually indepen-
dent. The estimation problem is solved using a two-step marginal
maximum a posteriori (MAP) estimation approach. The proposed
method is still based on a Gaussian distribution assumption for the
prediction error, which may be violated in the presence of a mod-
eling error. Nevertheless, developing the capability to estimate the
time-variant mean vector and covariance matrix of the prediction
error is an advancement with respect to the state of the art.

The paper is organized as follows. The formulation of the pro-
posed method is presented first and is followed by a verification
study using a nonlinear model of a steel moment frame structure
under earthquake excitation. Finally, conclusions are summarized
based on the observed results.

Bayesian Inference Formulation for Joint Model and
Noise Identification

Problem Statement

Model updating using input-output measurements can be formu-
lated as a Bayesian filtering problem for parameter-only estimation

as follows (Haykin 2004; Ebrahimian et al. 2015). The filter termi-
nology refers to a stochastic estimator (Besançon 2007), which
means an auxiliary static or dynamic system that often runs in par-
allel to the real system under investigation to estimate desired sys-
tem quantities (Ritter 2020). Following this analogy, a model
updating problem can be regarded as a filtering problem

θk ¼ θk−1 þ γk−1; γk−1 ∼ Nð0;QÞ ð1Þ

yk ¼ hðθk; f1∶kÞ þ ωk; ωk ∼ Nðμk;RkÞ ð2Þ

where θk ∈ Rnθ×1 = unknown model parameter vector modeled as a
random process; yk ∈ Rny×1 = vector of measured responses; and
nθ and ny = number of unknown model parameters and measure-
ment channels, respectively. The hðθk; f1∶kÞ ∈ Rny×1 is the response
function of the numerical model, which in this paper is assumed to
be a finite-element (FE) model, to an input force-time history from
time step 1 to k, f1∶k. In this study, we assume that the input forces
are measurable and known, and for the sake of notation brevity,
hðθk; f1∶kÞ is replaced by hkðθkÞ henceforth. The x ∼ Nðx̄;ΣÞ de-
notes random vector x following a Gaussian (or Normal) distribu-
tion with mean vector x̄ and covariance matrix Σ, and the PDF of
x is shown as pðxÞ ¼ Nðxjx̄;ΣÞ. The terms γk ∈ Rnθ×1 and ωk ∈
Rny×1 denote process noise and prediction error vectors, respec-
tively. The process noise vector is characterized by a zero-mean
Gaussian white noise process with covariance matrix Q, which is
usually one of the filter tuning parameters (Astroza et al. 2019b).
The prediction error accounts for the mismatch between the mea-
sured and FE model-predicted responses of the structure and is
modeled as a nonstationary Gaussian random process with un-
known and time-variant mean vector μk and covariance matrix Rk
to be estimated recursively and jointly with the unknown model
parameter θk. It should be mentioned that the initial unknown
model parameter vector θ0 and the process noise and prediction
error at each time step, fθ0; γ1; γ2; : : : ;ω1;ω2; : : : g, are all as-
sumed to be mutually independent.

To proceed with the Bayesian inference formulation, θk and μk
are modeled as random vectors, and Rk is modeled as a random
matrix. Similar to other recursive filtering approaches, the proposed
framework includes prediction and correction steps at each time
step k (Simon 2006; Krishnan 2015). In the prediction step, the
joint distribution of updating parameters, θk, μk, and Rk, is propa-
gated from the previous to the current time step through a dynamic
model. In the correction step, prior estimates of the updating
parameters, denoted as θ̂−k , μ̂−

k , and R̂−
k , are corrected to posterior

estimates, denoted as θ̂þk , μ̂þ
k , and R̂

þ
k , through the Bayes’ theorem

by absorbing the information in the new measurement yk. The pro-
cess is further described in the following sections.

Bayesian Inference Formulation

Using the Bayes’ theorem, the joint posterior distribution of updat-
ing parameters, θk, μk, andRk, given the measured responses from
time steps 1 to k, y1∶k, can be derived

pðθk;μk;Rkjy1∶kÞ ∝ pðykjθk;μk;Rk; y1∶k−1Þpðθk;μk;Rkjy1∶k−1Þ
ð3Þ

where pðykjθk;μk;Rk; y1∶k−1Þ = likelihood function; and pðθk;
μk;Rkjy1∶k−1Þ = joint prior distribution of θk, μk, and Rk at time
step k. The normalizing (evidence) term is ignored in Eq. (3); there-
fore, the sign ∝ denoting proportional to is used. Because the pro-
posed estimation approach is recursive (Simon 2006), only the new
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data point yk is used for updating parameters at each time step.
Now, we expand the terms on the right-hand side of this equation.

Based on Eq. (2), the likelihood function follows a Gaussian
distribution

pðykjθk;μk;Rk; y1∶k−1Þ ¼ pðωkÞ ¼ Nðωkjμk;RkÞ ð4Þ

The joint prior distribution, pðθk;μk;Rkjy1∶k−1Þ, can be written
in a hierarchical form (Behmanesh et al. 2015; Xu et al. 2019)

pðθk;μk;Rkjy1∶k−1Þ ¼ pðθkjμk;Rk; y1∶k−1Þpðμk;Rkjy1∶k−1Þ ð5Þ

where pðμk;Rkjy1∶k−1Þ is referred to as a hyperprior with hyper-
parameters of μk and Rk (Huang and Beck 2015). By substituting
Eq. (5) into Eq. (3), it can be followed that

pðθk;μk;Rkjy1∶kÞ ∝ pðykjθk;μk;Rk; y1∶k−1Þpðθkjμk;Rk; y1∶k−1Þ
× pðμk;Rkjy1∶k−1Þ ð6Þ

The prior distribution of θk is approximated as Gaussian (Moore
and Anderson 1979); in other words

pðθkjμk;Rk; y1∶k−1Þ ¼ Nðθkjθ̂−k ;P−
θ;kÞ ð7Þ

where mean vector θ̂−k = prior estimate for θk; and P−
θ;k = prior

covariance matrix of θk. Furthermore, the prior distribution of
pðμk;Rkjy1∶k−1Þ is assumed to follow a Normal-Inverse-Wishart
(NIW) distribution. In Bayesian statistics, NIW distribution is often
used as the joint conjugate prior for the mean vector and covariance
matrix of a Gaussian distribution (Murphy 2007). The conjugacy
guarantees the same functional form for the posterior and prior
distributions (O’Hagan and Forster 2004). NIW distribution is
the product of a Normal (or Gaussian) distribution and an Inverse-
Wishart (IW) distribution. Therefore, the prior distribution of pðμk;
Rkjy1∶k−1Þ in Eq. (6) can be expressed

pðμk;Rkjy1∶k−1Þ ¼ NIWðμk;Rkjμ̂−
k ;λ

−
k ; v

−
k ;V

−
k Þ

¼ N

�
μkjμ̂−

k ;
Rk

λ−k

�
× IWðRkjv−k ;V−

k Þ ð8Þ

where μ̂−
k ∈ Rny×1 = prior mean vector of μk (also considered as

prior estimate for μk); λ−k > 0 is the confidence parameter; v−k >
ny − 1 is the degree of freedom parameter; andV−

k ∈ Rny×ny = sym-
metric positive definite scale matrix (Xu et al. 2019). Considering
that pðμk;Rkjy1∶k−1Þ ¼ pðμkjRk; y1∶k−1Þ× pðRkjy1∶k−1Þ, the right-
hand side of Eq. (8) can be separated as follows

pðμkjRk; y1∶k−1Þ ¼ N

�
μkjμ̂−

k ;
Rk

λ−
k

�
ð9aÞ

pðRkjy1∶k−1Þ ¼ IWðRkjv−k ;V−
k Þ ð9bÞ

The Normal and IW distributions in Eq. (9) are defined sub-
sequently, ignoring normalizing terms (Gelman et al. 2013)

Nðxjμ;ΣÞ ∝ jΣj−1=2 exp
�
− 1

2
ðx − μÞTΣ−1ðx − μÞ

�
ð10aÞ

IWðΣjv;VÞ ∝ jΣj−ðvþnyþ1Þ=2 exp
�
− 1

2
trðVΣ−1Þ

�
ð10bÞ

The terms j:j and trð:Þ in these equations denote matrix deter-
minant and matrix trace, respectively.

Dynamic Models

The evolution of updating parameters θk, μk, andRk from time step
k-1 to k are characterized by a series of dynamic models discussed
in this study. Following the random walk model considered for the
unknown model parameter vector θk in Eq. (1), its mean vector and
covariance matrix are transferred from each estimation time step to
the next as follows

θ̂−k ¼ θ̂þk−1 ð11aÞ

P−
θ;k ¼ Pþ

θ;k−1 þQ ð11bÞ

Although the unknown model parameter vector θ is considered
to be time-invariant in this study, and thus, Q can be set to zero,
a small process noise has been shown to improve the parameter
estimation process (Song et al. 2020).

An explicit presentation of a dynamic model for the covari-
ance matrix of the prediction error, Rk, is difficult (Sarkka and
Nummenmaa 2009). Therefore, the following two dynamic models
for the statistical parameters of the prior IW distribution are used in
this study based on the heuristic model proposed by Sarkka (Sarkka
and Hartikainen 2013)

v−k ¼ ρðvþk−1 þ ny þ 1Þ − ny − 1 ð12aÞ

V−
k ¼ ρVþ

k−1 ð12bÞ
where ρ ∈ ð0; 1� = forgetting factor. If ρ ¼ 1, Eq. (12) results in a
stationary prediction error covariance matrix, while smaller values
for ρ allow for larger time variations in statistical properties of the
covariance matrix (Sarkka and Hartikainen 2013). The mode (most
probable) value of the prior IW distribution, considered as a prior
estimate forRk, is defined as R̂

−
k ¼ ½V−

k =ðv−k þ ny þ 1Þ�, while the
posterior estimate for Rk−1 is defined as R̂þ

k−1 ¼ ½Vþ
k−1=ðvþk−1 þ

ny þ 1Þ� (O’Hagan and Forster 2004). Based on the dynamic mod-

els defined in Eq. (12), it can be concluded that R̂−
k ¼ R̂þ

k−1.
Similar to the dynamic model considered for Rk, a heuristic

model is considered for propagating the uncertainties of the μk
through time

μ̂−
k ¼ μ̂þ

k−1 ð13aÞ

λ−
k ¼ ρ 0λþ

k−1 ð13bÞ
where ρ 0 ∈ ð0; 1� = another forgetting factor. Similar to the case
presented for ρ, ρ 0 ¼ 1 represents a stationary μk, while smaller
values for ρ 0 results in larger time variations in statistical properties
of the prediction error mean.

Two-Step Marginal MAP Estimation

This section outlines an approach to find posterior estimates of up-
dating parameters θk, μk, and Rk using a MAP estimation method.
The objective is to maximize the joint posterior distribution pðθk;
μk;Rkjy1∶kÞ to find MAP estimates as follows

fθ̂þk ; μ̂þ
k ; R̂

þ
k g ¼ argmax

θk;μk;Rk

pðθk;μk;Rkjy1∶kÞ ð14Þ

The joint posterior distribution pðθk;μk;Rkjy1∶kÞ can be fac-
tored into two marginal distributions as follows using the product
rule (Schum 2001)

pðθk;μk;Rkjy1∶kÞ ¼ pðθkjμk;Rk; y1∶kÞpðμk;Rkjy1∶kÞ ð15Þ

© ASCE 04021165-3 J. Eng. Mech.
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Based on the marginal MAP estimation method (Haykin 2004),
the two terms on the right-hand side of Eq. (15) are maximized
separately to find the MAP estimates, in other words

fθ̂þk g ¼ argmax
θk

pðθkjμk;Rk; y1∶kÞ ð16Þ

fμ̂þ
k ; R̂

þ
k g ¼ argmax

μk;Rk

pðμk;Rkjy1∶kÞ ð17Þ

Therefore, the correction step in the Bayesian inference formu-
lation is divided into two separate MAP estimation problems that
should be solved iteratively to converge to the MAP estimates of
the joint posterior distribution pðθk;μk;Rkjy1∶kÞ. For this purpose,
first, the MAP estimate of pðθkjμk;Rk; y1∶kÞ is derived given the
μ̂þ
k and R̂þ

k obtained from the previous iteration; then, the MAP

estimate of pðμk;Rkjy1∶kÞ is obtained based on the estimated θ̂þk ,
and this process is repeated iteratively until convergence. The so-
lutions to these separate MAP estimation problems are provided in
the following sections.

Marginal MAP Estimate of θk

The MAP estimation problem in Eq. (16) is familiar and seen in the
nonadaptive Bayesian model updating formulations (Ebrahimian
et al. 2015). Based on the Bayes’ theorem, it can be observed that

pðθkjμk;Rk; y1∶kÞ ∝ pðykjθk;μk;Rk; y1∶k−1Þpðθkjμk;Rk; y1∶k−1Þ
ð18Þ

Because both the likelihood and the prior distributions for θk
are Gaussian according to Eqs. (4) and (7), respectively, the pos-
terior distribution will also be Gaussian (Ebrahimian et al. 2018),
i.e., pðθkjμk;Rk; y1∶kÞ ¼ Nðθkjθ̂þk ;Pþ

θ;kÞ, in which the mean vector

θ̂þk (considered the same as the MAP estimate for θk) and the
covariance matrix Pþ

θ;k can be obtained as follows—derivation
details are provided in Appendix I

θ̂þk ¼ θ̂−k þKkðyk − hkðθ̂−k Þ − μ̂þ
k ÞÞ ð19Þ

Pþ
θ;k ¼ P−

θ;k −KkPyy;kKT
k ð20Þ

where Kk ¼ Pθy;kðPyy;kÞ−1; Pθy;k ¼ P−
θ;kðC−

k ÞT ; and Pyy;k ¼
C−

k P
−
θ;kðC−

k ÞT þ R̂þ
k . The term C−

k ¼ f½∂hkðθkÞ�=∂θkgjθk¼θ̂−k
is the

model response sensitivity matrix with respect to θk at θk ¼ θ̂−k .
The terms μ̂þ

k and R̂þ
k are the MAP estimates of the mean vector

and covariance matrix of the prediction error at time step k; they
will be estimated by solving Eq. (17), as will be outlined in the next
section. It should be noted that Eqs. (19) and (20) are similar to the
equations used in the nonadaptive Bayesian model updating meth-
ods with the exception of μ̂þ

k , which is now present in Eq. (19) to
account for the nonzero-mean prediction error.

Marginal MAP Estimates of μk and Rk

Now, we proceed with the second MAP problem in Eq. (17). The
term pðμk;Rkjy1∶kÞ can be written using the Bayes’ rule

pðμk;Rkjy1∶kÞ ∝ pðykjμk;Rk; y1∶k−1Þpðμk;Rkjy1∶k−1Þ ð21Þ
According to Eq. (8), the prior distribution pðμk;Rkjy1∶k−1Þ has

a NIW distribution, which is a conjugate prior for the Gaussian like-
lihood. Therefore, the posterior is also NIW, i.e., pðμk;Rkjy1∶kÞ ¼
NIWðμk;Rkjμ̂þ

k ;λ
þ
k ; v

þ
k ;V

þ
k Þ, with updated parameters μ̂þ

k ;λ
þ
k ;

vþk ;V
þ
k . By substituting Eqs. (4) and (8) into Eq. (21), the following

updating equations can be derived—refer to Appendix II for
derivation details

μ̂þ
k ¼ λ−k

1þ λ−k
μ̂−
k þ 1

1þ λ−k
ðyk − hkðθ̂þk ÞÞ ð22aÞ

λþ
k ¼ 1þ λ−

k ð22bÞ

vþk ¼ 1þ v−k ð22cÞ

Vþ
k ¼ V−

k þ λ−k
1þ λ−k

ðyk − hkðθ̂þk Þ − μ̂−
k Þðyk − hkðθ̂þk Þ − μ̂−

k ÞT

ð22dÞ

R̂þ
k ¼ Vþ

k

vþk þ ny þ 1
ð22eÞ

In this solution, the mode of the posterior NIW distribution is
selected as the MAP estimates for μk and Rk, i.e., μ̂þ

k and R̂þ
k , as

shown in Eqs. (22a) and (22e).
The solution of the MAP estimation problem in Eq. (14) will

result in solving the coupled Eqs. (19), (22a), and (22e) simulta-
neously. The coupled nonlinear equations cannot be solved analyti-
cally; therefore, a fixed-point iteration algorithm (Hoffman and
Frankel 2018) is used in this study. First, θ̂þk is estimated using
Eq. (19) given the μ̂þ

k and R̂þ
k obtained from the previous iteration;

then, μ̂þ
k and R̂þ

k are updated using Eqs. (22a) and (22e) based on

the estimated θ̂þk , and this process is repeated iteratively until con-
vergence. It should be mentioned that to avoid estimating non-
physical values for unknown model parameters, a constraint
correction method based on PDF truncation, similar to one imple-
mented by Ebrahimian et al. (2018), can be used in this study. Three
convergence criteria are considered based on the relative L2 norm
of the difference between two consecutive estimations of θ̂þk , μ̂þ

k ,

and R̂þ
k . A convergence tolerance of 0.01 is considered in this

study. This value can be adjusted by balancing accuracy versus
the computational cost. Note that the L2 norm of a matrix is equal
to its largest singular value (Golub and Van Loan 1996). Fig. 1
provides the flowchart of the proposed two-step marginal MAP
estimation approach.

Verification Study: 3-story 1-bay Steel Moment
Frame

Model Description and Data Simulation

In this section, the performance of the proposed Bayesian inference
framework for joint estimation of model parameters and noise
(noise or prediction error = modeling error + measurement noise)
is evaluated with a nonlinear model of a 3-story 1-bay steel moment
frame under earthquake excitation, as shown in Fig. 2(a). A two-
dimensional (2D) nonlinear FE model of the structure is developed
in the open-source FE analysis platformOpenSees (McKenna 2000).
Columns are made of A992 steel with a W14 × 311 cross-section,
and beams are made of A36 steel with a W24 × 68 cross-section.
Nodal mass of 80 metric tons is considered at beam-column nodes
shown by black circles in Fig. 2(a). Columns and beams are modeled
using force-based beam-column elements with fiber sections. Seven
integration points are considered for numerical integration along
the length of each element using the Gauss-Lobatto quadrature rule.
Column and beam webs are discretized into 10 fibers along the
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height and one fiber across the width. Their flanges are also dis-
cretized into one fiber along the height and 3 fibers along the width.
The uniaxial material model for steel fibers is based on the Giuffre-
Menegotto-Pinto (GMP) constitutive model (Filippou et al. 1983).
Rayleigh damping is considered to model the structural damping
assuming a 2% damping ratio for the first two modes. The Newmark
average acceleration method (Chopra 2017) is used to integrate the
equations of motion using a time step size of Δt ¼ 0.02 obtained
using a convergence study.

The 1989 Loma Prieta earthquake (0° component at Los Gatos
station) is selected as the base excitation, as illustrated in Fig. 2(b).

The horizontal absolute acceleration response time histories at each
floor (referred to as true/nominal responses and denoted by ytrue)
are simulated and contaminated with measurement noise to re-
present the sensor measurements (denoted by y). The measurement
locations are shown by black boxes in Fig. 2(a). The measurement
noise is considered as a nonstationary Gaussian random process
with a time-variant mean vector and covariance matrix denoted by
μtrue
k and Rtrue

k , respectively. The measurement noises are assumed
statistically uncorrelated; therefore, the off-diagonal entries ofRtrue

k
at each time step k are equal to zero. Sine functions are considered
to model a variation of μtrue

k and the diagonal entries ofRtrue
k in time

Fig. 1. Two-step marginal MAP estimation approach for joint model and noise identification.

© ASCE 04021165-5 J. Eng. Mech.

 J. Eng. Mech., 2022, 148(3): 04021165 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

Tu
fts

 U
ni

ve
rs

ity
 o

n 
01

/2
1/

22
. C

op
yr

ig
ht

 A
SC

E.
 F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

rig
ht

s r
es

er
ve

d.



μtrue
k ¼ ~μnoise sin

�
4π
N

k

�
ð23Þ

diagðRtrue
k Þ ¼ ~rnoise

�
sin

�
π
N
k

�
þ 1

�
2

ð24Þ

where N = number of time steps; and ~μnoise and ~rnoise = constant-
coefficient vectors and defined as follows

~μnoise ¼ 50 ×meanðytrueÞ ¼ ½1.97; 5.41; 7.50�T × 10−2g ð25Þ

~rnoise ¼ ð0.1 × RMSðytrueÞÞ2 ¼ ½1.66; 2.88; 7.65�T × 10−4g2 ð26Þ

Three parameters of the GMP model for beams and columns are
considered as the unknown (updating) model parameters, including
Young’s modulus E, yield stress σy, and strain-hardening ratio b.
The parameters are specified by subscripts b and c for beams and
columns, respectively. The nominal (or true) values of these param-
eters used for simulation are reported in Table 1. The mass and
stiffness proportional components of Rayleigh damping, i.e., α
and β, respectively, are also considered as the unknown model
parameters to be estimated. Their true or nominal values are con-
sidered as αtrue ¼ 0.1718 s−1 and βtrue ¼ 0.0014 s. Therefore, the
unknown model parameter vector θ includes eight parameters, and
each one is normalized by its true value, in other words

θ ¼ ½Ec=Etrue
c ; σyc=σtrue

yc ; bc=btruec ;Eb=Etrue
b ; σyb=σtrue

yb ; bb=btrueb ;α=αtrue; β=βtrue�T

Identification Results

The proposed method is applied to estimate the unknown model
parameter vector θ together with the mean vector and covariance

matrix of the prediction error. The initial value of θ is selected θ̂þ0 ¼
½0.7; 0.7; 1.2; 0.8; 1.3; 0.8; 1.2; 0.7�T as with the initial covariance

matrix Pþ
θ;0 ¼ diagð0.2θ̂þ0 Þ2, i.e., a 20% initial coefficient of varia-

tion (COV) is considered to characterize the prior covariance
matrix. The process noise covariance matrix is assumed as Q ¼
diagð10−4θ̂þ0 Þ2, and the forgetting factor parameters are selected
as ρ ¼ 0.95 and ρ 0 ¼ 0.95. Based on our study, the parameter es-
timation results are acceptable for 0.8 ≤ ρ < 1 and 0.7 ≤ ρ 0 < 1.

However, choosing lower values for ρ and ρ 0 may deteriorate the
performance of the model updating process. In this example, a
finite-difference method is used to calculate the sensitivity ma-
trix C at each time step. The initial mean vector and covariance
matrix of the prediction error is assumed as μ̂þ

0 ¼ 0 and R̂þ
0 ¼

diagð~rnoiseÞ=100, respectively, where ~rnoise vector is defined in
Eq. (26). Other initial parameters considered for the NIW distribu-
tion are λþ0 ¼ 1, vþ0 ¼ 4.1, and Vþ

0 ¼ ðvþ0 þ ny þ 1ÞR̂þ
0 , with

ny ¼ 3. In this verification study, the results of the proposed joint
model and noise identification method are compared with a classic
nonadaptive recursive Bayesian method (Ebrahimian et al. 2015),
in which the prediction error ωk is assumed to be a zero-mean
Gaussian white noise with a time-invariant diagonal covariance
matrix, i.e., ωk ∼ Nð0;Rk ¼ R̂þ

0 Þ.
The estimated model parameters are shown in Fig. 3. As can be

seen, the parameters Eb and Ec start to update and converge to their
true values much earlier than the other two material model param-
eters because the structural responses are sensitive to the stiffness-
related material parameter from the beginning of the excitation.

Fig. 2. (a) 3-story 1-bay steel moment frame; and (b) ground acceleration time history of 1989 Loma Prieta earthquake recorded at Los Gatos station
in the 0° component.

Table 1. True/nominal values of the three parameters of the GMP model
for columns and beams used for measurement simulations

Frame member Etrue (GPa) σtrue
y (MPa) btrue

Columns 200 350 0.08
Beams 200 250 0.05

© ASCE 04021165-6 J. Eng. Mech.
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Upon entering the strong-motion part of the excitation, the response
of the beams and then the columns enter the nonlinear region, and
thus, structural responses become sensitive to the yield strength, σy,
and strain hardening ratio, b (Ebrahimian et al. 2015). There is also
small response sensitivity with respect to the Rayleigh damping
coefficients from the beginning of the excitation, which results to
slow convergence of these two parameters. Fig. 3 also compares the
estimation results with those obtained by a nonadaptive Bayesian
model updating method. As can be seen, model parameter estimates
are biased or incorrect for the nonadaptive Bayesian model updating

method. The nonadaptive Bayesian model updating method can
even result in divergence of the model updating process or produc-
ing nonphysical model parameter estimates, e.g., zero estimated
values for Eb. Fig. 4 and Fig. 5 show the estimated mean and covari-
ance of the prediction error, respectively, at each time step. It can be
seen that the proposed method accurately tracks the trend of the true
mean vector and covariance matrix in time.

The estimated absolute acceleration responses at each floor—
using the final estimated model parameters—are compared with the
true/nominal counterparts in Fig. 6. The noticeable discrepancies

Fig. 3. Estimated model parameters using the proposed and nonadaptive Bayesian model updating methods.

Fig. 4. Estimated components of the prediction error mean vector using the proposed Bayesian model updating method. The mean vector of the
prediction error is not estimated and thus remains constant in the nonadaptive Bayesian model updating method. Note that μ ¼ ½μ1;μ2;μ3�T .
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between the estimated and nominal responses for the nonadaptive
Bayesian model updating method, which is due to the biased model
parameter estimates, clearly show the incapability of the nonadap-
tive Bayesian model updating method to perform in the presence
of a time-variant prediction error. The acceleration responses pre-
dicted using the proposed joint model and noise identification
method match the nominal responses well.

Finally, the moment-curvature response at the base section of
the left column—Section 1-1 in Fig. 2(a)—and the stress-strain re-
sponse of the top flange of the first-floor beam at the plastic hinge
location—Section 2-2 in Fig. 2(a)—are estimated from the updated

models using the nonadaptive and proposed model updating meth-
ods and presented in Fig. 7. The figure clearly shows the detrimen-
tal effects of the time-variant noise in the response prediction and
virtual sensing capability of the nonadaptive Bayesian model up-
dating. This is why the proposed method can handle the time-
variant noise effects and provide accurate virtual sensing capability.

Summary and Conclusion

This paper presented an adaptive recursive Bayesian inference
framework for joint model and noise identification using a two-step

Fig. 5. Estimated components of the prediction error covariance matrix using the proposed Bayesian model updating method. The covariance matrix
of the prediction error is not estimated and thus remains constant in the nonadaptive Bayesian model updating method.

Fig. 6. Comparison of the true and estimated absolute acceleration responses using the proposed and nonadaptive Bayesian model updating methods.
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marginal maximum a posteriori (MAP) estimation approach. Noise
or prediction error can include the measurement noise and the ef-
fects of modeling error. This approach results in two separate MAP
estimation problems that should be solved iteratively: one to esti-
mate the unknown model parameters and the other to estimate the
mean vector and covariance matrix of the prediction error. The pro-
posed approach was verified using numerically simulated data ob-
tained from a nonlinear steel moment frame model subjected to
earthquake excitation. The absolute acceleration responses at each
floor were simulated and polluted by a nonstationary Gaussian
noise with a time-variant mean vector and covariance matrix. Eight
model parameters, including six parameters characterizing the con-
stitutive models of the beams and columns steel material, and two
Rayleigh damping coefficients were considered as unknown and
estimated using the proposed approach and a nonadaptive recursive
Bayesian model updating approach for comparison. The verification
study demonstrated the detrimental effects of time-variant noise on
the nonadaptive Bayesian model updating results, in which the es-
timated model parameters were significantly biased. However, the
proposed Bayesian inference framework for joint model and noise
identification was able to estimate the model parameters correctly
due to its capability to estimate the time-variant mean and covari-
ance of the prediction error. Considering the statistical character-
istics of prediction error as unknowns to be estimated provides
additional degrees of freedom in the recursive Bayesian model up-
dating approach and can alleviate the biased or incorrect model
parameter estimation results. Therefore, the proposed framework
can provide a step forward to account for the effects of modeling
error in finite-element model updating. Further efforts are under-
way to validate the proposed framework through real-world case
studies.

Appendix I. Derivation of MAP Estimates of
Unknown Model Parameters

This appendix presents the derivation of the MAP estimate of the
unknown model parameter, θk, given μ̂þ

k , and R̂þ
k . By substituting

Eqs. (4) and (7) into Eq. (18), it can be followed that

pðθkjμk;Rk; y1∶kÞ ∝ Nðωkjμ̂þ
k ; R̂

þ
k Þ × Nðθkjθ̂−k ;P−

θ;kÞ ð27Þ

Following Lemma 1 of Appendix III, distribution Nðθkjθ̂−k ;P−
θ;kÞ

can be written in the canonical form

Nðθkjθ̂−k ;P−
θ;kÞ ¼ exp

�
− 1

2
θTkΛ1θk þ ηT

1 θk þ ξ1

�
ð28Þ

where Λ1 ¼ ðP−
θ;kÞ−1; η1 ¼ ðP−

θ;kÞ−1θ̂−k ; and ξ1 ¼ − 1
2
ðnθ lnð2πÞ þ

ln jP−
θ;kj þ ðθ̂−k ÞTðP−

θ;kÞ−1θ̂−k Þ. Also, the term Nðωkjμ̂þ
k ; R̂

þ
k Þ in

Eq. (28) can be expanded

Nðωkjμ̂þ
k ; R̂

þ
k Þ

¼ 1

ð2πÞny=2jR̂þ
k j1=2

exp

�
− 1

2
ðωk − μ̂þ

k ÞTðR̂þ
k Þ−1ðωk − μ̂þ

k Þ
�

ð29Þ

Following Eq. (2), it is clear that ωk ¼ yk − hkðθkÞ. The term
hkðθkÞ, which is the model response function can be linearized
using a first-order Taylor expansion about θ̂−k , i.e., hkðθkÞ ≃
hkðθ̂−k Þ þC−

k ðθk − θ̂−k Þ in which C−
k ¼ f½∂hkðθkÞ�=∂θkgjθk¼θ̂−k

.

Therefore, it can be followed that

ωk − μ̂þ
k ¼ yk − hkðθkÞ − μ̂þ

k

¼ yk − hkðθ̂−k Þ − C−
k ðθk − θ̂−k Þ − μ̂þ

k

¼ δk − C−
k θk ð30Þ

where

δk ¼ yk − hkðθ̂−k Þ þ C−
k θ̂

−
k − μ̂þ

k ð31Þ

By substituting Eq. (30) into Eq. (29), the following canonical
form can be derived

Nðωkjμ̂þ
k ; R̂

þ
k Þ ¼ exp

�
− 1

2
θTkΛ2θk þ ηT

2θk þ ξ2

�
ð32Þ

Fig. 7. Comparison of the true and estimated (a) moment-curvature response at the base section of the left column shown in Fig. 2(a); and
(b) stress-strain response of the top flange of the first-floor beam at the plastic hinge location shown in Fig. 2(a). The responses are obtained from
the updated models from the proposed and nonadaptive Bayesian model updating methods.
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where Λ2 ¼ ðC−
k ÞTðR̂þ

k Þ−1C−
k ; η2 ¼ ðC−

k ÞTðR̂þ
k Þ−1δk; and ξ2 ¼

− 1
2
ðny lnð2πÞ þ ln jR̂þ

k j þ δTk ðR̂þ
k Þ−1δkÞ. Based on Lemma 2 of

Appendix III, the product of two Gaussian distributions on the
right-hand side of Eq. (27) is a Gaussian, i.e., pðθkjμk;Rk; y1∶kÞ ¼
Nðθkjθ̂þk ;Pþ

θ;kÞ, and its mean vector and covariance matrix can be
derived as follows

θ̂þk ¼ ðΛ1 þ Λ2Þ−1ðη1 þ η2Þ ¼ ððP−
θ;kÞ−1 þ ðC−

k ÞTðR̂þ
k Þ−1C−

k Þ−1

× ððP−
θ;kÞ−1θ̂−k þ ðC−

k ÞTðR̂þ
k Þ−1δkÞ ð33aÞ

Pþ
θ;k ¼ ðΛ1 þ Λ2Þ−1 ¼ ððP−

θ;kÞ−1 þ ðC−
k ÞTðR̂þ

k Þ−1C−
k Þ−1 ð33bÞ

By substituting Eq. (31) into Eq. (33a) and defining the
Kalman gain matrix as Kk ¼ ððP−

θ;kÞ−1 þ ðC−
k ÞTðR̂þ

k Þ−1C−
k Þ−1

ðC−
k ÞTðR̂þ

k Þ−1, Eq. (33a) results in

θ̂þk ¼ θ̂−k þKkðyk − hkðθ̂−k Þ − μ̂þ
k ÞÞ ð34Þ

Alternatively, it can be shown that the Kalman gain can be
derived as follows (Simon 2006)

Kk ¼ Pθy;kðPyy;kÞ−1 ð35Þ

The posterior covariance matrix can be derived (Simon 2006)

Pþ
θ;k ¼ P−

θ;k −KkPyy;kKT
k ð36Þ

where Pθy;k ¼ P−
θ;kðC−

k ÞT ; and Pyy;k ¼ C−
k P

−
θ;kðC−

k ÞT þ R̂þ
k .

Appendix II. Derivation of MAP Estimates of Mean
Vector and Covariance Matrix of Prediction Error

This appendix provides the derivation of MAP estimates of the
mean vector and covariance matrix of prediction error, i.e., μk and
Rk, given θ̂þk . By substituting Eqs. (4) and (8) into Eq. (21), it can
be followed that

pðμk;Rkjy1∶kÞ ∝ Nðωkjμk;RkÞ × NIWðμk;Rkjμ̂−
k ; λ

−
k ; v

−
k ;V

−
k Þ

∝ Nðωkjμk;RkÞ × N

�
μkjμ̂−

k ;
Rk

λ−
k

�

× IWðRkjv−k ;V−
k Þ ð37Þ

Based on the conjugacy property of NIW distribution with re-
spect to the Normal likelihood function, the posterior has the same
distribution as the prior. Therefore, the posterior is also NIW, in
other words

pðμk;Rkjy1∶kÞ ¼ NIWðμk;Rkjμ̂þ
k ;λ

þ
k ; v

þ
k ;V

þ
k Þ

¼ N

�
μkjμ̂þ

k ;
Rk

λþk

�
× IWðRkjvþk ;Vþ

k Þ ð38Þ

Combining Eqs. (37) and (38) results in
�
μkjμ̂þ

k ;
Rk

λþk

�
× IWðRkjvþk ;Vþ

k Þ

∝ Nðωkjμk;RkÞ × N

�
μkjμ̂−

k ;
Rk

λ−k

�
× IWðRkjv−k ;V−

k Þ ð39Þ

The Gaussian distribution Nðωkjμk;RkÞ in Eq. (39) can be
expanded

Nðωkjμk;RkÞ

¼ 1

ð2πÞny=2jRkj1=2
exp

�
− 1

2
ðωk − μkÞTR−1

k ðωk − μkÞ
�

ð40Þ

Considering that ωk ¼ yk − hkðθ̂þk Þ, Eq. (40) can be written in a
canonical form for μk using Lemma 1 of Appendix III as follows

Nðωkjμk;RkÞ ¼ exp

�
− 1

2
μT
kΛ1μk þ ηT

1μk þ ξ1

�
ð41Þ

where

Λ1 ¼ R−1
k ð42aÞ

η1 ¼ R−1
k ðyk − hkðθ̂þk ÞÞ ð42bÞ

ξ1 ¼ − 1

2
ðny lnð2Þ þ ln jRkj þ ðyk − hkðθ̂þk ÞÞTR−1

k ðyk − hkðθ̂þk ÞÞÞ
ð42cÞ

The Gaussian distribution Nðμkjμ̂−
k ;

Rk
λ−k
Þ on the right-hand side

of Eq. (39) can also be written in a canonical form

N

�
μkjμ̂−

k ;
Rk

λ−k

�
¼ exp

�
− 1

2
μT
kΛ2μk þ ηT

2μk þ ξ2

�
ð43Þ

where

Λ2 ¼
�
Rk

λ−k

�−1
ð44aÞ

η2 ¼
�
Rk

λ−k

�−1
μ̂−
k ð44bÞ

ξ2 ¼ − 1

2

�
ny lnð2πÞ þ ln

����Rk

λ−
k

����þ ðμ̂−
k ÞT

�
Rk

λ−k

�−1
μ̂−
k

�
ð44cÞ

The Inverse-Wishart (IW) distribution IWðRkjv−k ;V−
k Þ on the

right-hand side of Eq. (39) can be expanded

IWðRkjv−k ;V−
k Þ ¼ c1jRkj−ðv−k þnyþ1Þ=2 exp

�
− 1

2
trðV−

k R
−1
k Þ

�
ð45Þ

where c1 = constant term.
Using Lemma 2 of Appendix III, the product of two Gaussian

distributions Nðωkjμk;RkÞ and Nðμkjμ̂−
k ;

Rk
λ−k
Þ on the right-hand

side of Eq. (39) is also Gaussian and can be written in the canonical
form for μk. Following Eqs. (41) and (43), it can be observed that

Nðωkjμk;RkÞ × N

�
μkjμ̂−

k ;
Rk

λ−k

�

¼ exp

�
− 1

2
μT
kΛμk þ ηTμk þ ξ

�
× expðξ1 þ ξ2 − ξÞ ð46Þ

where Λ, η, and ξ can be calculated using Lemma 2 of Appendix III
and Eqs. (42) and (44) as follows

Λ ¼ Λ1 þ Λ2 ¼ R−1
k þ

�
Rk

λ−
k

�−1
¼ ð1þ λ−k ÞR−1

k ð47aÞ
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η ¼ η1 þ η2 ¼ R−1
k ðyk − hkðθ̂þk ÞÞ þ

�
Rk

λ−k

�−1
μ̂−
k

¼ R−1
k ðyk − hkðθ̂þk Þ þ λ−

k μ̂−
k Þ ð47bÞ

ξ ¼ − 1

2
ðny lnð2πÞ þ ln jΛ−1j þ ηTΛ−1ηÞ

¼ − 1

2

�
ny lnð2πÞ þ ln

���� Rk

1þ λ−
k

����þ ðyk − hkðθ̂þk Þ þ λ−k μ̂−
k ÞT

×
R−1

k

1þ λ−k
ðyk − hkðθ̂þk Þ þ λ−k μ̂−

k Þ
�

ð47cÞ

The expression ξ1 þ ξ2 − ξ in Eq. (46) can be expanded as
follows

ξ1 þ ξ2 − ξ ¼ − 1

2

�
ln jRkj þ ðyk − hkðθ̂þk ÞÞTR−1

k ðyk − hkðθ̂þk ÞÞ

þ ðμ̂−
k ÞT

�
Rk

λ−k

�−1
μ̂−
k − ðyk − hkðθ̂þk Þ þ λ−k μ̂−

k ÞT

×
R−1

k

1þ λ−k
ðyk − hkðθ̂þk Þ þ λ−k μ̂−

k Þ
�
þ c2

¼ − 1

2

�
ln jRkj þ

λ−
k

1þ λ−
k
ðyk − hkðθ̂þk Þ − μ̂−

k ÞT

×R−1
k ðyk − hkðθ̂þk Þ − μ̂−

k Þ
�
þ c2 ð48Þ

where c2 = constant term; and trð:Þ = matrix trace. Therefore, the
term expðξ1 þ ξ2 − ξÞ on the right-hand side of Eq. (46) can be
expressed as follows considering Lemma 3 of Appendix III

expðξ1 þ ξ2 − ξÞ

¼ c3jRkj−1
2 × exp

�
− 1

2
tr

�
λ−k

1þ λ−k
ðyk − hkðθ̂þk Þ − μ̂−

k Þ

× ðyk − hkðθ̂þk Þ − μ̂−
k ÞTR−1

k

��
ð49Þ

where c3 = constant term. Therefore, the right-hand side of Eq. (39)
can be obtained using Eqs. (45) and (46) as follows

Nðωkjμk;RkÞ × N

�
μkjμ̂−

k ;
Rk

λ−k

�
× IWðRkjv−k ;V−

k Þ

¼ exp

�
− 1

2
μT
kΛμk þ ηTμk þ ξ

�
× expðξ1 þ ξ2 − ξÞ

× c1jRkj−ðv−k þnyþ1Þ=2 exp
�
− 1

2
trðV−

k R
−1
k Þ

�
ð50Þ

Comparing Eqs. (39) and (50), and considering that the term
expðξ1 þ ξ2 − ξÞ is a function of Rk based on Eq. (49), it can
be observed that

N

�
μkjμ̂þ

k ;
Rk

λþ
k

�
¼ exp

�
− 1

2
μT
kΛμk þ ηTμk þ ξ

�
ð51aÞ

IWðRkjvþk ;Vþ
k Þ

¼ expðξ1 þ ξ2 − ξÞ × c1jRkj−ðv−k þnyþ1Þ=2 exp
�
− 1

2
trðV−

k R
−1
k Þ

�

ð51bÞ

where the updated mean vector μ̂þ
k and covariance matrix Rk=λ

þ
k

can be obtained using Lemma 1 of Appendix III as follows

μ̂þ
k ¼ Λ−1η ¼ Rk

1þ λ−
k
ðR−1

k ðyk − hkðθ̂þk Þ þ λ−k μ̂−
k ÞÞ ð52aÞ

Rk

λþk
¼ Λ−1 ¼ Rk

1þ λ−k
ð52bÞ

These equations can be simplified as follows

μ̂þ
k ¼ λ−k

1þ λ−k
μ̂−
k þ 1

1þ λ−k
ðyk − hkðθ̂þk ÞÞ ð53aÞ

λþ
k ¼ 1þ λ−

k ð53bÞ

The updated parameters of IW distribution are obtained by
matching the terms on the left- and right-hand side of Eq. (51b)
as follows

vþk ¼ 1þ v−k ð54aÞ

Vþ
k ¼ V−

k þ λ−k
1þ λ−k

ðyk − hkðθ̂þk Þ − μ̂−
k Þðyk − hkðθ̂þk Þ − μ̂−

k ÞT

ð54bÞ

Appendix III. Three Useful Lemmas

This appendix presents three Lemmas that are used in Appendices I
and II.

Lemma 1: Canonical representation of a multivariate Gaussian
distribution function

The multivariate Gaussian distribution of a random vector x ∈
Rnx×1 with a distribution function of x ∼ Nðx̄;ΣÞ can be written in
the canonical form (Wu 2005)

pðxÞ ¼ exp

�
− 1

2
xTΛxþ ηTxþ ξ

�
ð55Þ

where Λ¼ Σ−1; η¼ Σ−1x̄, ξ ¼ − 1
2
ðnx lnð2πÞ þ ln jΣj þ x̄TΣ−1x̄Þ

or ξ ¼ − 1
2
ðnx lnð2πÞ þ ln jΛ−1j þ ηTΛ−1ηÞ; and j:j presents the

determinant operator.
Lemma 2: Product of two multivariate Gaussian distribution

functions
Consider two independent random vectors of size nx with

Gaussian distributions as x1 ∼ Nðx̄1;Σ1Þ and x2 ∼ Nðx̄2;Σ2Þ. Using
the canonical form presented in Lemma 1, it can be followed that

p1ðxÞ ¼ exp

�
− 1

2
xTΛ1xþ ηT

1xþ ξ1

�

p2ðxÞ ¼ exp

�
− 1

2
xTΛ2xþ ηT

2xþ ξ2

�
ð56Þ

Therefore, the product of two distribution functions p1ðxÞ and
p2ðxÞ can be derived

p1ðxÞ × p2ðxÞ

¼ exp

�
− 1

2
xTðΛ1 þ Λ2Þxþ ðη1 þ η2ÞTxþ ðξ1 þ ξ2Þ

�
ð57Þ

By defining the following new terms

Λ ¼ Λ1 þ Λ2

η ¼ η1 þ η2

ξ ¼ − 1

2
ðnx lnð2πÞ þ ln jΛ−1j þ ηTΛ−1ηÞ ð58Þ

it can be followed that
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p1ðxÞ × p2ðxÞ ¼ exp

�
− 1

2
xTΛxþ ηTxþ ξ

�
× expðξ1 þ ξ2 − ξÞ

ð59Þ

By comparing Eqs. (55) and (59), the product of the two Gaussian
distributions will be a scaled Gaussian distribution x ∼ Nðx̄;ΣÞ
with the scale factor of expðξ1 þ ξ2 − ξÞ. The mean vector and the
covariance matrix of the resulting Gaussian distribution can be
defined as follows (Deisenroth et al. 2020)

x̄ ¼ Λ−1η ¼ ðΛ1 þ Λ2Þ−1ðη1 þ η2Þ
¼ ðΣ−1

1 þ Σ−1
2 Þ−1ðΣ−1

1 x̄1 þ Σ−1
2 x̄2Þ

Σ ¼ Λ−1 ¼ ðΛ1 þ Λ2Þ−1 ¼ ðΣ−1
1 þ Σ−1

2 Þ−1 ð60Þ

Lemma 3: Trace of a quadratic form
If x ∈ Rnx×1 is a vector, andA ∈ Rnx×nx is a matrix, then (Kollo

and von Rosen 2006)

xTAx ¼ trðAxxTÞ ¼ trðxxTAÞ ð61Þ
where trð:Þ denotes a matrix trace.
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