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lIB String Theory and Sequestered Inflation

Renata Kallosh, Andrei Linde, Timm Wrase, and Yusuke Yamada™*

We develop sequestered inflation models, where inflation occurs along flat

directions in supergravity models derived from type IIB string theory. It is
6

compactified on a —— orientifold with generalized fluxes and

ZyXZ,
03/07-planes. At Step |, we use flux potentials which 1) satisfy tadpole

cancellation conditions and 2) have supersymmetric Minkowski vacua with
flat direction(s). The 7 moduli are split into heavy and massless Goldstone
multiplets. At Step 1l we add a nilpotent multiplet and uplift the flat
direction(s) of the type IIB string theory to phenomenological inflationary
plateau potentials: a-attractors with 7 discrete values 3a = 1,2, 3, ..., 7. Their
cosmological predictions are determined by the hyperbolic geometry inherited
from string theory. The masses of the heavy fields and the volume of the extra
dimensions change during inflation, but this does not affect the

several different valleys separated from
each other by extremely high barriers.
At Step II, we will introduce a nilpotent
field and uplift these flat directions,
transforming them into plateau infla-
tionary potentials. The height of these
plateau potentials can be many orders of
magnitude smaller than the height of the
barriers stabilizing the flat directions. We
find that under certain conditions speci-
fied in [2], the superheavy fields involved
in the stabilization of the Minkowski
vacua in string theory do not interfere
with inflation.

The choice of inflationary potentials at

inflationary dynamics.

1. Introduction

Our main goal in this paper is to construct the models where in-
flation can peacefully coexist with steep string theory potentials.
To achieve this goal, we will try to find string theory potentials
with supersymmetric Minkowski flat directions, and then gently
uplift them. Models of this type were introduced in the context
of M-theory compactified on twisted 7-tori with G,-holonomy.!!
The general structure of sequestered inflation is explained in our
recent paper,?! which also contains several simple examples illus-
trating our scenario. In this paper we will apply these methods to
IIB string theory.

The method consists of two steps. At Step I, we will try to
find supersymmetric Minkowski vacua with flat directions orig-
inating from IIB string theory. The goal is to find either a sin-
gle flat direction looking like a bottom of a mountain gorge, or
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Step II is phenomenological, we do not
derive them from string theory. However,
as we will see, the resulting inflation-
ary models belong to the general class of
a-attractors.[>*] An important property of a-attractors is stability
of their predictions with respect to the choice of inflationary
potentials. Most important observational consequences of these
models are determined not by their potentials, but by the hy-
perbolic geometry of the moduli space inherited from string
theory.
The main predictions of these models matching the observa-
tional data are the spectral index n, and the tensor to scalar ratio
r for a given number of e-foldings N,:

_12a

n=1- —F
e

2
s N (1.1)
These predictions are shown in Figure 1 for two classes
of a attractors, T-models, with the inflaton potential V =
V, tanh’(¢p/ \/@), and E-models, with the inflaton potential V =
V,(1 — eV2/329)2 [7] We explain the relation between these mod-
els in section 3.2.

In N =1 supergravity, parameter a can take any value. The
corresponding predictions are shown by the area bounded by two
thick yellow lines for T-models, and by two thick red lines for E-
models. However, in some supergravity models originating from
M-theory or string theory, the parameter 3« is expected to take
one of the 7 integer values, 3a =1,2,3,4,5,6,7,51% with pre-
dictions shown by 7 parallel lines in each of the two panels in
Figure 1. The upper line corresponds to 3a = 7 with r ~ 1072, It
will be the first one of this family of models to be tested by cos-
mological observations.

The discrete B-mode targets in the left panel of Figure 1
are related to Poincaré disks with V = V,ZZ = V, tanh’(¢/ \/@)
potential. They originate from the Kihler potential defining
Poincaré disk geometry
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Figure 1. a-attractor benchmarks for T-models (left panel) and E-models (right panel). The predictions are shown for the number of e-foldings in the
range 50 < N, < 60. Dark pink area corresponds to n; and r favored by Planck2018 after taking into account all CMB-related data.

dzdz

K=-3alogl-27) = ds*=3a—""—
(1-2zy

(1.2)

The unit size Poincaré disk has 3a = 1 and it is a first from the
bottom line in Figure 1 at the left panel.

In this paper we will describe the origin of these models and of
their predictions in the context of sequestered inflation. At Step I
we will look for 4D Minkowski vacua with one or more flat direc-
tions in type I1B string theory compactified ona - 7 orientifold

with generalized fluxes and 03/07-planes.!!112] At Step 1T we will
uplift the flat directions and derive all seven cosmological mod-
els with 3a = 1,2, 3,4,5, 6,7. We consider type IIB string theory
setups having seven moduli chiral superfields (S, T}, U,) where
I1=1,2,3.

Each of the seven moduli has the hyperbolic geometry as its tar-
get space geometry,! which can realize a-attractors with 3a = 1,

3
==Y In(T,+T)-
I=1

Our aim of Step I is to find string theoretically motivated models
where we may stabilize some of the moduli, while keeping
some of the inflaton candidates massless. We found two classes
of models: The first one has after Step I a single massless
superfield, whose moduli space geometry realizes 3a = 7. At
Step II we uplift it to the top Poincaré disk target in Figure 1. The
second model has three unfixed moduli at Step I. They have the
geometries of 3a = 4,2, 1, respectively. At Step II this model will
be uplifted to produce all Poincaré disk targets in Figure 1 above.

The flux superpotential which we use for Step I satisfies all tad-
pole conditions and Bianchi identities that arise in the presence
of our generalized fluxes, see also Appendix A for details. We do
not require any exotic sources and we will show the number of
D3 and D7 branes necessary for each flux superpotential.

An important property of flux superpotentials which we use
at Step I is that they have certain symmetries which predict

3

Y In(U,+U).

I=1

In(S + S) — (1.3)

! Atarget space hyperbolic geometry here is defined by a Kéhler potential
K = -3aln(T + T). The case K = —In(T + T) in (1.3) means 3a = 1.
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the number of Goldstone supermultiplets (number of flat direc-
tions). We present the corresponding Goldstone theorem and the
relation to symmetries of the superpotentials in Appendix B.

In Step II we deform supersymmetric Minkowski minima
to dS cosmological backgrounds with spontaneously broken su-
persymmetry, developing the construction proposed in [10, 13].
Specifically, we add a nilpotent superfield X interacting with the
moduli and we add phenomenological superpotential terms, like
the mass of the gravitino. This will lead to inflation which can
realize the B-mode targets 3a = 1, ....,7 in Figure 1.

The nilpotent superfield X is known to be associated with the
anti-D3 brane in string theory("* '8 and more generically with
non-supersymmetric branes.['*2% It was proposed in [13] that
the interaction of X with the moduli fields might be a result of
the quantum corrections to the Kihler potential. The features of
the construction at Step II are to a large degree independent of
Step I, as long as a specific choice of a string theory compacti-

fication on % with fluxes and O3/O7-planes is made and a
2 2

supersymmetric Minkowski vacuum with a certain number of
flat directions is derived. The reason for this sequestering is the
fact that Wy, = 0Wj,,, = 0. Therefore, in the resulting cosmo-
logical theory the only trace left of the choice of Wy, is how
many flat directions there are for different choices. The resulting
cosmological models depend only on the choice of the uplifting
construction which turns the flat directions of supersymmetric
Minkowski vacua into inflationary plateau potentials.

2. Step | : Type 1IB String Theory
2.1. Effective 4D Theory and Tadpole Cancellation Conditions

We study an effective 4D N =1 supergravity theory obtained
from type IIB string theory compactified on the orientifold
T%/Z, X Z, with 03/07-planes. We define our moduli fields to
be S, the 4d complex axion-dilaton, U, are the complex struc-
ture moduli and T; are the Kahler moduli. The Kihler potential
is given in Equation (1.3). The superpotential also depends on
these seven untwisted closed string moduli. It is generated by
the presence of 10D NS-NS fluxes H;, R-R fluxes F; as well as
non-geometric Q and P fluxes.''12] It involves moduli dependent
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terms starting from a constant term and up to terms quintic in
the moduli. We present the general W for such a compactifica-
tion in Equation (A.1). There are many tadpole cancellation con-
ditions which such a general flux potential must satisfy, we show
them in Equations (A.2)-(A.21) which are taken from [12, 21].

Here we will use only terms in W that are quadratic in the
fields

3 U U U 3 3 3
W= —;qllTj’ - Z;aISUI— > b, T,U, - IZ;fISTI.

Lj=1

(2.1)

As we will see below, this simple form automatically satisfies var-
ious tadpole conditions. Nevertheless, there are still several non-
trivial conditions, which constrain the parameters in the super-
potential.

Below we calculate the tadpole equations in the quotient space,
as in [12]. This means we are counting a brane plus its image
under the 03/07 orientifold involution as 1. A brane stuck on
an orientifold does not have an image and would therefore be
counted as a 1/2 brane. This leads to Np;, N, being positive half
- integers, i.e., we should ensure that for any given model the
numbers below are positive integers, half-integers or zero.

Below we give the list of simplified tadpole conditions for only
the fluxes that appear in Equation (2.1), whereas all tadpole can-
cellation conditions for the general expression for W are given in
appendix A.

D3 brane number: (2.35) in [12]

3
1
Nps =16 - > g4, (2.2)
I=1

D7 brane number: (3.9) in [12] (after adding the contributions
from O7-planes, see also equation (3.19) and the text below it in
(21))

3
Npy, =16 — % Z{ ab;;- (2.3)
NS7 brane number: (4.13) in [12]

Nys7, = 0. (2.4)
17 brane number: (4.40) in [12]

N, =0. (2.5)
QH — PF = 0 constraints: (4.35) in [12]for I # J # K # I

arby; +a;by — qef; = 0. (2.6)
QQ = 0 constraints: (3.30) in [12] for I # J # K # I

=bybyx — byb = 0. (2.7)

Note, that we do not need NS7 or I7 branes in our models since
their numbers automatically vanish in our setup. The remaining
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constraints like PP = 0 and QP + PQ = 0 are automatically sat-
isfied for our choice of superpotential with only terms that are
quadratic in the fields.

2.2. One Flat Direction, One Goldstone Supermultiplet

We found two superpotentials leading to a single modulus super-
field T

T=T,=T,=T,=U,=U,=U,=S. (2.8)
The low energy effective Kihler potential for T becomes
K, = —=7In(T + T). (2.9)

We found two specific superpotentials satisfying the tadpole con-
ditions (2.6), (2.7). The first one is

W = (S = T,)(U; - Us) + (T, - Ty)(U, — Uy)
+ (T, = S)(Us = Uy) + 2(U, = ST, = Ty)

+2(T, — T,)(U, = S). (2.10)
The equations (2.2) and (2.3) give the number of D-branes re-
quired for this superpotential as
Np; = Np;, = Npy, = Ny, =16 (2.11)
to cancel the 03/07-plane contributions. No other branes are
needed and 96 Bianchi identities without exotic sources are sat-
isfied. Note, that the number of D3/D7-branes is exactly the re-
quired number to fully cancel the contributions from the 03/07-
planes, i.e., our choice of fluxes that led to the superpotential in
Equation (2.10) does not induce any charges. We could therefore
also not do the orientifold projection and would not have to in-
clude any local sources at all in this particular model.

Another example of a superpotential that leads to the single
modulus (2.8) is

W = (S = U)(T, = Uy) + (S = Uy)(T, = Uy)

+(S— U,)(T, - Uy). (2.12)

In this case, the following numbers of branes are required

35 33

ND71 = ND72 = ND73 = 7 (213)

Itis interesting that the superpotentials (2.10) and (2.12) are man-
ifestly invariant under the uniform shift

S—=S8S+CST,U), T,-T,+C(ST,U),

U = U +C(S,T, U, (2.14)

where C(S, T}, U)) is a holomorphic function of all moduli. This

is a symmetry predicting one flat direction in this model, i.e., one
Goldstone supermultiplet, as explained in Appendix B.
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2.3. Three Flat Directions, Three Goldstone Supermultiplets

We also found another class of models where we are left with
three moduli superfields. We call this class of models split (4,2,1)
disk models. It is realized by the superpotential

W(4,2,1) =(U-U)T -T)+ (S-U ) - Uy + T, - Uy).
(2.15)

The scalar potential has a Minkowski minimum with three flat
directions:

T(l)

T,=T,=U,=U, Tyu=S=U, Ty=T, (216
After integrating out the heavy modes, the Kihler potential in
Equation (1.3) becomes

Koy = —4In(Ty, + Tpp) = 2In(Ty, + Tpp) = In(Tpp) + Tpy)).
(2.17)

The above superpotential satisfies the tadpole conditions (2.6)
and (2.7), and from (2.2) and (2.3) we find that the following
branes are required

Nps =17, Ny, =Np, =N, =16. (2.18)
Let us briefly look at the symmetry structure of this model. The
superpotential is invariant under the following three shift sym-
metries

Toy(=U, U, T}, Ts) = Ty + G, (S, T, U)),
Tp(=S U,) = Ty + (S, T, Uy,

Ty (=T;) = T+ G(S, T, U)), (2.19)
where C, ,;(S, T}, U,) are holomorphic functions of all moduli.
As was the case for the one flat direction models, the sym-
metry generators of the superpotential are in one-to-one corre-
spondence with the massless moduli multiplets, namely, there
are three Goldstone supermultiplets here in agreement with the
Goldstone theorem in Appendix B.

Thus, it turns out that the symmetry of the flux superpoten-
tial is responsible for the realization of interesting cosmological
models, which are discussed later.

2.4. Mass Eigenvalues: Increasing/decreasing Moduli (volume)
During Inflation

In this subsection we study the values of the masses squared of
the heavy fields when the massless field changes. For that pur-
pose we calculate how masses change when we move along the
flat modulus direction towards either larger or smaller values.
We find that the masses decrease when Re T =t increases. The
masses squared depend exponentially on the canonically normal-
ized inflaton field and could in some case even become tachyonic.
However, as we will see in Step II when we introduce an inflation-
ary potential, ultimately we will be able to have of order hundred
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e-folds of inflation and heavy masses that stay above the Hubble
mass and below a few M.

Concretely, with T=T =t = ¢~ Vie for the case with one flat
direction and the model in Equation (2.10) with the Kihler po-
tential in Equation (2.9) we find the eigenvalues of the squared
masses of our seven multiplets to be?

(m2) = (m)’ 12 = () V70 (2.20)

where

(m)) ~ {60727, 4.0024, 07589, 05, 05, 01660, 0}
(2.21)

in Planck mass units M, = 1. Here ¢ is a canonically normalized
real scalar field that ultimately will become the inflaton. We see
that at ¢ = 0 there are 6 masses of order le and one mass is
zero. At large positive values of ¢ the values of the modulus t are
smaller than that at ¢ = 0 and at large negative values of ¢ the
values of the modulus are larger than at ¢ = 0. This observation
suggests that if we would like to start inflation in 4D at small
values of the moduli (and small volume of the extra dimensions)
and have them increase during inflation, we might be interested
in having the initial stage of inflation at about ¢ = 0 and move
towards some negative values of ¢. The masses of 6 heavy fields
decrease with increasing |¢| and one has to check that at Step II
that these heavy fields are not getting too light or even become
tachyonic during inflation.

In the opposite case, we can change the canonical field ¢ to

—¢pandtake T=T = e\/gd’. We can start inflation at large values
of the modulus, at some positive value of ¢ and move towards
¢ = 0. The masses of the 6 heavy fields will grow during inflation
towards smaller ¢

(m)i = (m2)} £ = (m?), eV 7 (2:22)
and we have to check that they do not exceed the Planckian scale
but still are sufficiently heavy at the beginning of inflation. We
have studied these models at Step II and found that they are con-
sistent: there are no tachyons up to more than 500 e-foldings of
inflation. Therefore, this scenario with decreasing volume is vi-
able.

We show both of the above discussed scenarios in Figure 2.
In the M-theory models in [1] our choice was the growing vol-
ume scenario, but we started there at positive ¢ so that at the
minimum the value of T = 1 was reached. Here we will start at
¢ = 0 and move towards some negative ¢, so that at the mini-
mum some T = ¢ value can be reached with ¢ > 1.

2 In a simplified model with three moduli in [2] and one flat direction we
— 2
had T=T= e_\/;/) and the squared mass eigenvalues have a factor

. ) ) 2
(m?) = (mz)g b= (mz)ge_\/;‘l’. In general for n moduli the formula is
(m2)i — (MZ)B t—n+4.
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Figure 2. On the left panel we present a growing volume scenario: There are six heavy multiplets according to Equation (2.20) plotted against the canonical
field ¢. They start at ¢ = 0 at Planckian scale and decrease to the left, towards the exit from inflation. On the right panel there is a decreasing volume

. \/Zq)
scenario : a plot of the six heavy masses with T=¢eV 77,

3. Step II: Cosmological Models with B-mode
Detection Targets

Following the proposal for cosmological models in [1] and as ex-
plained in simple models in [2], we now uplift the flat directions
of Step I using additional terms in the action. These additional
terms include the gravitino mass parameter W, and a nilpotent
superfield X? = 0 with the Volkov-Akulov [22] parameter Fy, and
an inflationary potential depending on the moduli with the flat
directions found in Step I.

In the KKLT construction!**!>] the role of the anti-D3-brane as-
sociated with the nilpotent superfield is to uplift the AdS, min-
imum to a dS, minimum. Here we start with a Minkowski flat
direction and the role of the nilpotent superfield interacting with
the flat direction modulus is to uplift the flat direction to a nearly
flat plateau-type inflationary potential.

3.1. Step Il Potential

It is convenient here to (re-)label the type IIB fields
1,71, T,, U, U, Us, S as the ones in M-theory which were
used in [1]: T*, T%, T3, T4, T°, T®, T.

We consider the Step II seven disk model®

] R P —
K=-YInT+T)+ —X——XX. (3.1)
i F2 + Voo(T', T)
. 7
W= W (T) + (W, + EX)v:,  v=[]er), (3.2)
i=1

where Wy, denotes the flux superpotentials inherited from IIB
string theory and discussed in the previous section and e™¥|

(T~T)
defines V. The holomorphic volume factor V is responsible for

3 At W, = 0and X = 0 the Equations (3.1) and (3.2) trivially lead to mod-
els of Step L.
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realizing an approximate shift symmetry for the inflaton, see sec-
tion 2.1.2 of [2]. The scalar potential at X = 0 is*

V= eK<Z K| D,W|? + (F% + Vo (T, T ) V| — 3|W|2>. (3.3)

1

AtT =T and along the flat directions where Wy, = 9, Wy, =0
the total potential of Step II simplifies dramatically and we get

V= A+ Vig(Tha) (3-4)

where A = F2 — 3| W|* > 0. In our models flat directions are real
Ty = Taur- In the models with one flat direction we have Ty, =
T' where i=1,...,7. In the split model (2.15) Tg,, has 3 compo-
nents: Ty, = Uy =Us; =T, =T5, T =S = Uy, Ty =T

At Wy, (T%) = 0, Wy, (T") = 0and T = T , we can identify the
mass of the gravitino, m, ,, and the auxiliary field of the nilpotent
multiplet F¥ in these models

|””3/2|2 = W)’ = Wé:

Ky FXI? = &KX Dy WP = Ff + Vig (T (35)

For simple choices of V, 4 here we will derive the E-model ver-
sion of a-attractors.[>*! To derive the T-models we need to change
variables as described in the next subsection.

3.2. From E-models to T-models

Using the Cayley transformation we can switch from the half
plane variables T to the disk variables Z as shown in [23]
T = 1+ Z’J

1-2Zi

(3.6)

4 This is a consequence of the nilpotent condition on a chiral super-
field X, X2 = 0 which makes the complex scalar a fermion bilinear,
1PX wXyX where yX is the Goldstino and FX is the auxiliary

NG

scalar component of X.
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In all 3¢ models we find that the Kihler potential, the superpo-
tential and the position of the minimum become functions of
disk coordinates. The flat direction we now call Z. We define the
T-models via the change of variables from the E-models given in
Equation (3.6). However, in the expression for K3 we make a
different choice of the function V4, i.e., it is not the one which
follows from a change of variables from the E-models. Thus, we
have

7 — FZ
K=-Ylogl-2Z)+—*——
= F2 4+ V,4(2,7)

XX,

W = Wa (T(Z) + (W, + ExX)VY*(TY(Z})). (3.7)

The flat directions are now defined in terms of Z variables and
. —l

at Z' = Z and at the flat directions where Wy, = 9, W, = 0 the

total potential of Step II is simply

V=A+ Vinﬂ(Zﬂat)

(3.8)

4. One Valley Cosmological Scenario

4.1. E-model of the Top B-mode Target

For the model with 3a = 7 the single flat direction T with Kah-
ler potential K = —7log(T+ T) at T = T' wherei=1,...,7 was
defined in Equation (2.8) in terms of T;. We make a choice

Vi (T =m2(1—5)<1—f>. (1)

c c

This choice allows us to have the position of the exit from infla-
tion depending on the choice of the parameter c. For ¢ = 1 the
minimum is at T = 1 and ¢ = 0 and inflation starts at some pos-
itive values of ¢. This is suitable for the class of models with the
volume of the extra dimensions decreasing during inflation, as shown
in the right panel of Figure 2. For big positive values of ¢ we can
start inflation at about T = 1 and ¢ = 0 and get down to the min-
imum at some negative values of ¢ and T = c. This is suitable for
the class of models with the volume of the extra dimensions increas-
ing during inflation, as shown in the left panel of Figure 2.
It is convenient to switch to canonical variables ¢ and 0:

T=e Vi (1 +i\/g0>.

Here ¢ is a canonical inflaton field, and # has a canonical nor-
malization in the vicinity of & = 0 which corresponds to the min-
imum of the potential with respect to 6 during inflation. The total
potential of the canonically normalized inflaton field ¢ at 6 =0
according to our choice (4.1) is

2
VE = A+m2<1 - le_\/g‘ﬁ) .
c

4.2)

(4.3)

This is a potential of the top benchmark target 3a = 7 for B-mode
detection®1% in E-models.
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We need to verify that the six multiplets which were heavy at
Step I are still under control and do not destabilize inflation due
to changing masses of the heavy fields. We study the case of the
moduli and volume increasing during inflation and decreasing
masses of the heavy fields with superpotential (2.10), as in the
left panel in Figure 2.

For ¢=10%,W,=10",m=10"7,A=0 we plot in the
Figure 3 the inflationary potential in the lower panel and on the
upper panel we plot the log of the absolute values of the masses
squared of the six heavy multiplets, as well as of the inflaton. The
six heavy masses starting from ¢ = 0 to about ¢ = —8 behave
exactly as in Step I in Figure 2 left panel, they decrease from
Planckian values down. However, they turn around and go up
later at Step II. So, there is no danger of them getting very light or
tachyonic.

We note that the kink for the inflaton mass in Figure 3 is an
artifact of the log of the absolute value of the mass squared, and
the kink is a signal of the sign change. To clarify this point we
have also plotted the mass squared of the inflaton in Figure 4.

4.2. Tools for Getting Lower B-mode Targets from Split Models

Thus, the model with 3a =7 is now described. To get 3a =
6,5,4,3,2,1 we proceed with the tools proposed in [9, 10] for
this purpose as well as the ones used in our models in M-theory
in [1]. There we have found Minkowski vacua with 2 flat direc-
tions which we called split models
(m,m) : {(6,1),(5,2), (4 3)} (4.4)
In these cases we have a two valley cosmological models with
3a; = m and 3a, = n. In [1] the potentials V,, for split models
were given in eq. (7.30). The particular example shown in Fig. 14
there corresponds to the split of the 7 moduli into groups of 6
and 1 discussed above, and the universe is divided into exponen-
tially large parts with 3a; = 6 and 3a, = 1, depending on initial
conditions. Therefore in some parts we have B-mode targets with
6 disks in some other with 1 disk. Other split models in (4.4) will
give us all seven B-mode targets.

An additional set of tools was also suggested in [9, 10] for the
purpose of using split models for cosmological purposes. These
include fixing one of the two flat moduli by just adding to V, 4 a
term that freezes one of the flat moduli (by making it very heavy).
The other suggestion was to merge two different disks by adding
to V,,q an interaction term.

In type IIB models the superpotentials satisfying the tadpole
cancellation conditions did not give us the two flat directions
models at Step I, however, we have found three flat direction
models, the split (4,2,1) models. We will show below that we
have 2 options here. The first is to observe that with three valley
cosmological scenario we can have models with 3a = 4,2, 1, de-
pending on initial conditions. However, the cases 3a = 6, 5, 3 still

> This is not true for the axionic masses squared that keep decreasing for
more and more negative ¢ and they can become tachyonic. However,
in the range —10 < ¢ that is relevant for us the axionic masses squared
are for our choice of parameters essentially indistinguishable from the
corresponding saxion masses squared.
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Figure 3. At the lower panel we show the inflationary potential as a function of the canonical field ¢. At the top panel we plot the log of the absolute
values of the masses squared of the six heavy fields. Here we have used superpotential (2.10). Each vertical line shows the value of ¢ corresponding to
the number of e-foldings N,. The dashed green line shows the log of the absolute values of the mass squared of the inflaton field. The kink at ¢ ~ —7.3
is where the inflaton mass squared changes sign, as we can see in Figure 4. The Hubble parameter in this figure is approximated as Hiznﬂ =V/3 (yellow

dashed line), which causes the kink behavior at the minimum of ¢.

5.x10" 12

Figure 4. Here we plot the mass squared of the inflaton field. It is negative
at the plateau of the potential and flips sign at about ¢ = —7.3, at which
the inflaton mass shows a singular behavior in Figure 3.

have to be obtained differently. For this purpose we will reduce
our split (4,2,1) model to the cases studied before, and given in
Equation (4.4).
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5. Three Valley Cosmological Scenario, 3a = 4,2,1

We study here a model with the superpotential in Equation (2.15),
which has three flat T, directions defined in Equation (2.16). We
choose V, 4 to be

’ T, T,
(i) (i)
Vinﬂ(T(i)) = mz E <1 - T)(l - T)
i=1

In case of two flat directions this was our choice corresponding
to the two valley cosmological scenario in [1], however, here we
made a shift of the minimum to T}, = ¢ to study a cosmologi-
cal scenario with the volume increasing during inflation. At this
point, as in the two flat valley, we can already identify the cases
with 3a; = 4and 3a, = 2 and 3a; = 1, based on initial conditions
being in vicinity of one of the three valleys.

But we can also use the other tool mentioned above, namely
we can enforce via extra terms in V, 4 two of the light fields to
be fixed and only allow one direction in this three dimensional
moduli space to serve as the inflaton. In such case, only one field

(5.1)
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Figure 6. On the left panel we present the case with 3a = 1, on the right panel we present the inflaton potentials for the cases with 3a = 4,2, 1.

remains as a dynamical inflaton, the other fields are either heavy
and changing during inflation or fixed.

For ¢=10%,W,=10°,m=10",A=0 we present in
Figure 5 the dynamics of scalars fields for the 3¢ =4 and
3a = 2 models. In Figure 6 we show at the left panel the dynam-
ics of scalars fields with 3a = 1 and on the right panel we show
the inflationary potentials for all these models.

To summarize, we now have derived 3a =7,4,2,1 models
with cosmological predictions shown in Figure 1.

6. Merger of (4, 2, 1) Split Model into (6, 1), (5, 2),
(4 3)

We discussed the merger mechanism of split models with few
flat directions into a model with less flat directions in [1, 9, 10].
We enforce the merger of the (4,2,1) split model by adding to V4
terms which require two different flat directions to coincide. For
example, we can add one of the terms of the form

M}(Tyy = Tg) (T = Ty): M3 (T = T} Ty = Tpy),

M3 (T = To)(Ty = T) (©6.1)
This will result in models with two flat directions, (6,1), (5,2),
(4,3), respectively. We have checked that merger parameters of
the order M; ~ 1073 are working well for our purpose. Namely,
the heavy fields remain heavy and there are 2 light fields repre-
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senting a two valley cosmological scenario. This one, as we know
from earlier studies, for example in [1], allows us to obtain E-
models with all discrete values of 30 = 7,6,5,4,3,2,1.

The related T-models where the scalar potentials are instead

of(l—e %‘7’)2 given by tanh’( . The relation between these

1
=9
models was explained in Sec. 3.2. We presented above in the in-
troduction the predictions for both classes of models in Figure 1.

7. Discussion

Plateau potentials, like a-attractors which we show in Figure 7 ap-
pear to be in a good agreement with the CMB data. The models
of sequestered inflation studied in this paper easily accommo-
date plateau potentials. In fact, these models suggest a possible
origin of plateau potentials. These will be tested during the next
2 decades, but at present they appear to be good candidates of
inflationary models which fit the data.

Sequestering means that we take an exactly flat direction in the
fundamental theory, type IIB string theory in this paper, at Step I
and uplift this flat direction to a plateau potential at Step II. The
flat directions, one or three in our models in this paper, are in one
to one correspondence to Nambu-Goldstone supermultiplets.

According to the Nambu-Goldstone theorem for supermulti-
plets in supergravity with Minkowski vacua, see Appendix B, the
flux superpotentials must have certain symmetries, as many as
the number of the massless Goldstone multiplets. We have found
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Higgs inflation N, =57
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Figure 7. The figure is courtesy of R. Flauger. It shows the main targets
for future detection of B-modes. The seven dark green lines in the n, - r
plane correspond to Poincaré disks models. We describe these models in
Equation (3.7). Each of the 7 Poincaré disks in this figure corresponds to

a potential V = VyZZ = V, tanh? (¢/V/6a) with 3a = 1,2,3,4,5,6, 7.

these symmetries and presented our fluxes in Secs. 2.2 and 2.3
in the form in which the symmetries are manifest. The key to
this feature is that Wy, (T") with i = 1, ..., 7 in our models actu-
ally depends only on some differences between moduli, namely
all new flux potentials are of the form Wy, (T" — TV). We have en-
countered the analogous feature in M-theory flux superpotentials
in [1]. The symmetries of these new flux superpotentials allows
one to make an arbitrary holomorphic change of variables which
preserve the differences T' — TV.

As usual with Goldstone fields, only non-perturbative quan-
tum corrections may uplift the mass and convert the flat direction
into a nearly flat inflationary plateau potential, as we have shown

n [1] for M-theory and here in type IIB string theory.

To summarize, already at the Step I in M-theory compactified

on twisted 7-tori with G,-holonomy and in type IIB string theory

compactified on a sz(z orientifold with generalized fluxes and

03/07-planes we find flux superpotentials with flat direction(s)
and hyperbolic geometries from the Kihler potentials. At Step
II these models are naturally converted into plateau potentials
which at present fit the data very well and therefore provide ex-
citing targets for future observations.

Note also that the models with discrete values for the 3a-
parameter are associated with string theory, M-theory and
maximal supersymmetry. These are the seven targets shown in
Figure 7, at the specific seven values of the parameter r which
defines the B-modes. Meanwhile, for continuous values of the
3a-parameter there is a band of values of r as we have shown
in Figure 1. It is possible that the B-modes will be discovered
above or below the seven hyperbolic disks targets, and still fit
the data on n. B-modes may not even be detected if r < 1073.
If, however, the future data on B-modes will fit one of the
seven discrete targets, the cosmological models associated with
string theory, M-theory, maximal supergravity will get a strong
support as the favorite models of theoretical physics which fit
the cosmological observations.

Appendix A: Tadpole Cancellation

ori-

We consider type 11B string theory compactified on the — r

2X2)
entifold with O3/07-planes and geometric and non-geometric
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fluxes. In the conventions of [12] the superpotential W can have
terms of order 0,1,2,3,4,5 in the fields and is given by

_eO+IZeIUI 2‘11

3+ imU, U, U,

3

3
U,U,U
[lh =Y U+ )i a,%—h U1U2U3]
I

I=1 I=1

3
+ )T, [ Z Uby + Zlbﬂ 3+ h,U U, U3]
I=1
U,U,U
- SZf,T + Z ig, SUT, + Zgﬂsr L2
I=1 Ij=1 Ij=1
(A1)

3
-iSUU,U, ) fiT,
I=1

The are a variety of tadpole cancellation conditions and Bianchi
identities that the fluxes are required to satisfy. Some of them po-
tentially require the presence of local sources like D3, D7, NS7 or
17 branes. Below is the full list with reference to their derivation
in [12] (see also [21]).

D3 brane number: (2.35) in [12]

3
1 7 _
Np; =16 — 3 {mho —eohy + Z(anI + e,al)} . (A.2)

I=1

D7 brane number: (3.9) in [12] (after adding the contributions
from O7-planes, see also equation (3.19) and the text below it in
(21))

3
1 - -
Npy, =16+ > [mh[ — eoh; = ) (q)by; + e]bﬂ)] : (A.3)
J=1
NS7 brane number: (4.13) in [12]
. 3
Nyg7, = 5 hofi = hof; = E(ajgjl - “jgﬂ)] . (A.4)
I =
17 brane number: (4.40) in [12]
. 3
N, = ) eofy — mf; + Z(%gﬂ + 3]3]1)] . (A.5)
I =

QH — PF = 0 constraints: (4.32)-(4.35) in[12]for [ # [ # K# I

ﬁoh] + é,bU + d]l_)j] - aKl_JK] + mf] — 918y — 958y — ex8xy = 0,

(A.6)
hoﬁ] + “151] + a]l_yﬂ - ﬁKbK] - e(f] — 8y — €8 — qx8xy = 0,

(A7)
ﬁobK] + @,BH + d]l_JU - aKﬁ] + mgy; — 4:8;; — 948y — eKﬁ =0

(A.8)
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hol_JKJ +aby +aby —agh; — €8 — €18 — €8 — dif; = 0.

(A.9)
QQ = 0 constraints: (3.30)-(3.33) in [12]for [ # J# K # I
—bybjy + byghy + hib — byby =0, (A.10)
_EHB]K +bhy + hybgy — B]IBIK =0, (A.11)
—byby; +byby + hihy = bygby =0, (A.12)
by = byby, + hihy — by by, = 0. (A.13)
PP = 0 constraints: (4.16)-(4.19) in [12]for [ # J# K # I
—gugk + Exufx + fiBxx — 818k = 0, (A.14)
—8ugk + gK]J?K +JI}gKK - 818k =0, (A.15)
—8u8y + 88y +f1]_9 — 8k =0, (A.16)
8By — 8118 +fLE — 8y = 0. (A.17)

QP + PQ = 0 constraints: (4.24)-(4.27) in[12]for [ # [ # K # I

byx8xy — h’KE - E]ngj + b8y + gKKEK] _lej‘] = &by + gIKBIj

=0, (A.18)

byxgy — hx8y — _ij] + bixgry + gxxby _fKEj] = gixh; + gicbyy
=0, (A.19)

BKKng - Engj - jKE + EIKgK] + gKKBI] _be]j - ng’:‘] + gIKEK]

=0, (A.20)

BKKgK] - Bld? —bgy + EIKgI] + 8xrbyy _th] - g]KE]] + &by

=0. (A.21)

Appendix B: Symmetries of Superpotentials and
Nambu-Goldstone Supermultiplets

The Nambu-Goldstone theorem was proven in global supersym-
metric theories in [24]. It was shown that for each massless super-
multiplet there is a symmetry of the superpotential. We present
here the generalization of this theorem to supergravity.

The fermion spin 1/2 mass matrix in Minkowski vacua in su-
pergravity with W = W, =01s

(B.1)
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The Minkowski vacuum is at T* = T(’)‘

4

=—| =0. B.2
T ST (B.2)

L=
T

The Goldstone theorem for chiral multiplets T' can be formu-
lated as follows. For each zero eigenvalue of m; in Minkowski
vacuum, in case there are L of them, there is a spontaneously
broken symmetry of W. Namely, one should be able to establish a
symmetry of W under the following continuous transformations

T'= T +a*AT), a=1,...,N. (B.3)
Proof: Assume W has a set of N symmetries

W\ iaimd

OW piacTy — 0. B.4
AT (B4

We differentiate this equation over TV and view itat W = W; = 0,
i. e. at T¥ = T}. Taking into account Equation (B.2) we find

[ BW_ e (B.5)

——A (Tl)] =0.
STiST Tiei

The symmetry generators A“(T") at T = T; either vanish or not

AL (T #0, a=1,...,L (B.6)

AY(T)) =0, a=L+1,...,N. (B.7)
Under the transformation (B.3) the ground state transforms as
follows

Ty = Ty + a*Ay(Ty),

a=1,..,L (B.8)

T > T, a=L+1,...,N. (B.9)
Therefore the L symmetries which affect the ground state, are
qualified as spontaneously broken symmetries. The remaining
N — L symmetries remain symmetries of the ground state, they
are qualified as unbroken symmetries.® Equation (B.5) acquires

the form

2 .
[ O W pie (B.10)

—=AY T’)] =0.
STisT! rio:

It shows that the rank of the M X M mass matrix WU-(T(’)C) is
less than M, and it is less or equal to M — L, since there are L
non-vanishing eigenvectors. It means that for each of the sym-
metries in Equation (B.6) we are bound to find a massless chiral
multiplet. And vice versa, for each of the L flat directions of W in
Minkowski minimum we are bound to find the corresponding L
symmetries of W.

® We show the possible unbroken generators here to keep generality of
the proof. However, our examples only contain spontaneously broken
(nonlinearly realized) symmetry generators.
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Examples

Our first example involves the octonion superpotentials of the M-

theory in [1] where

W= Y (T'=T)T =T, i=1..7 (B.11)
{ijkt}

where we take a sum over 7 different 4-qubit states defining the

choice of {jjkl} in W,,. For example we can take

W = (T2 = TYT® = T + (T* = T°)(T° - T")

+(T* = TNT = T+ (T° = T')(T" - T
+ (T = T'N(T? = T*) +(T" - T*(T° - T

+ (T = T*)(T* - T°). (B.12)
One important property of the superpotentials W_, is the fact that
under an arbitrary holomorphic shift all fields are shifted by the
same holomorphic function
T = T'+ F(TY. (B.13)
The difference between two fields and therefore W, are invari-
ant

(T'-T)= (T'-T), W,

oct

> W, (B.14)
The ground state solution of the equations for the Minkowski vac-
uum is at T = T}. For a given choice of T} the symmetry of W,
is broken. According to the theorem above, one of the eigenval-
ues of the mass matrix of the supermultiplets must vanish. This
is indeed the case.

The second example involves the M-theory superpotential with
two flat directions

W

5 = (TP = T')(T" = T?) + (T* = T')(T? - T)

+(T7 = T)(T? = TH + (T' = T*)(T* - T)

+(T? = TH(T° - T°). (B.15)
The flat directions are T°=T° and T'=T?=T°>=T*=T".
One finds that there are two symmetries of Ws ) are

T = T° + F|(TY,

T® = T® + F,(T"), (B.16)

and

T' > T'+ F(T"), T*=T’+F(T", T =T +F,(TY,

T > T+ F(TY, T =T + Fy(TH. (B.17)
All these symmetries are broken on a ground state which is at
T* = T}. The conditions of the theorem are satisfied and there
are two massless states in this model.

Examples of Nambu-Goldstone supermultiplets in type IIB

string theory are given in Secs. 2.2 and 2.3.
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