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IIB String Theory and Sequestered Inflation

Renata Kallosh, Andrei Linde, Timm Wrase, and Yusuke Yamada*

We develop sequestered inflation models, where inflation occurs along flat
directions in supergravity models derived from type IIB string theory. It is
compactified on a 𝕋 6

ℤ2×ℤ2
orientifold with generalized fluxes and

O3/O7-planes. At Step I, we use flux potentials which 1) satisfy tadpole
cancellation conditions and 2) have supersymmetric Minkowski vacua with
flat direction(s). The 7 moduli are split into heavy and massless Goldstone
multiplets. At Step II we add a nilpotent multiplet and uplift the flat
direction(s) of the type IIB string theory to phenomenological inflationary
plateau potentials: 𝜶-attractors with 7 discrete values 3𝜶 = 1, 2, 3,… , 7. Their
cosmological predictions are determined by the hyperbolic geometry inherited
from string theory. The masses of the heavy fields and the volume of the extra
dimensions change during inflation, but this does not affect the
inflationary dynamics.

1. Introduction

Our main goal in this paper is to construct the models where in-
flation can peacefully coexist with steep string theory potentials.
To achieve this goal, we will try to find string theory potentials
with supersymmetric Minkowski flat directions, and then gently
uplift them. Models of this type were introduced in the context
of M-theory compactified on twisted 7-tori with G2-holonomy.[1]

The general structure of sequestered inflation is explained in our
recent paper,[2] which also contains several simple examples illus-
trating our scenario. In this paper we will apply these methods to
IIB string theory.
The method consists of two steps. At Step I, we will try to

find supersymmetric Minkowski vacua with flat directions orig-
inating from IIB string theory. The goal is to find either a sin-
gle flat direction looking like a bottom of a mountain gorge, or
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several different valleys separated from
each other by extremely high barriers.
At Step II, we will introduce a nilpotent
field and uplift these flat directions,
transforming them into plateau infla-
tionary potentials. The height of these
plateau potentials can be many orders of
magnitude smaller than the height of the
barriers stabilizing the flat directions. We
find that under certain conditions speci-
fied in [2], the superheavy fields involved
in the stabilization of the Minkowski
vacua in string theory do not interfere
with inflation.
The choice of inflationary potentials at

Step II is phenomenological, we do not
derive them from string theory. However,
as we will see, the resulting inflation-
ary models belong to the general class of

𝛼-attractors.[3–6] An important property of 𝛼-attractors is stability
of their predictions with respect to the choice of inflationary
potentials. Most important observational consequences of these
models are determined not by their potentials, but by the hy-
perbolic geometry of the moduli space inherited from string
theory.
The main predictions of these models matching the observa-

tional data are the spectral index ns and the tensor to scalar ratio
r for a given number of e-foldings Ne:

ns = 1 − 2
Ne

, r = 12𝛼
N2

e

. (1.1)

These predictions are shown in Figure 1 for two classes
of 𝛼 attractors, T-models, with the inflaton potential V =
V0 tanh

2(𝜙∕
√
6𝛼), and E-models, with the inflaton potential V =

V0(1 − e−
√
2∕3𝛼 𝜙)2.[7] We explain the relation between these mod-

els in section 3.2.
In  = 1 supergravity, parameter 𝛼 can take any value. The

corresponding predictions are shown by the area bounded by two
thick yellow lines for T-models, and by two thick red lines for E-
models. However, in some supergravity models originating from
M-theory or string theory, the parameter 3𝛼 is expected to take
one of the 7 integer values, 3𝛼 = 1, 2, 3, 4, 5, 6, 7,[8–10] with pre-
dictions shown by 7 parallel lines in each of the two panels in
Figure 1. The upper line corresponds to 3𝛼 = 7 with r ∼ 10−2. It
will be the first one of this family of models to be tested by cos-
mological observations.
The discrete B-mode targets in the left panel of Figure 1

are related to Poincaré disks with V = V0ZZ̄ = V0 tanh
2(𝜙∕

√
6𝛼)

potential. They originate from the Kähler potential defining
Poincaré disk geometry

Fortschr. Phys. 2021, 69, 2100127 © 2021 Wiley-VCH GmbH2100127 (1 of 11)

http://www.fp-journal.org
mailto:yamada@resceu.s.u-tokyo.ac.jp
https://doi.org/10.1002/prop.202100127
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fprop.202100127&domain=pdf&date_stamp=2021-09-12


www.advancedsciencenews.com www.fp-journal.org

Figure 1. 𝛼-attractor benchmarks for T-models (left panel) and E-models (right panel). The predictions are shown for the number of e-foldings in the
range 50 < Ne < 60. Dark pink area corresponds to ns and r favored by Planck2018 after taking into account all CMB-related data.

K = −3𝛼 log(1 − ZZ) ⇒ ds2 = 3𝛼 dZdZ

(1 − ZZ)2
(1.2)

The unit size Poincaré disk has 3𝛼 = 1 and it is a first from the
bottom line in Figure 1 at the left panel.
In this paper we will describe the origin of thesemodels and of

their predictions in the context of sequestered inflation. At Step I
we will look for 4D Minkowski vacua with one or more flat direc-
tions in type IIB string theory compactified on a 𝕋 6

ℤ2×ℤ2
orientifold

with generalized fluxes and O3/O7-planes.[11,12] At Step II we will
uplift the flat directions and derive all seven cosmological mod-
els with 3𝛼 = 1, 2, 3, 4, 5, 6, 7. We consider type IIB string theory
setups having seven moduli chiral superfields (S, TI, UI) where
I = 1, 2, 3.
Each of the sevenmoduli has the hyperbolic geometry as its tar-

get space geometry,1 which can realize 𝛼-attractors with 3𝛼 = 1,

K = −
3∑

I=1
ln(TI + TI) − ln(S + S) −

3∑
I=1

ln(UI +UI) . (1.3)

Our aim of Step I is to find string theoretically motivated models
where we may stabilize some of the moduli, while keeping
some of the inflaton candidates massless. We found two classes
of models: The first one has after Step I a single massless
superfield, whose moduli space geometry realizes 3𝛼 = 7. At
Step II we uplift it to the top Poincaré disk target in Figure 1. The
second model has three unfixed moduli at Step I. They have the
geometries of 3𝛼 = 4, 2, 1, respectively. At Step II this model will
be uplifted to produce all Poincaré disk targets in Figure 1 above.
The flux superpotential which we use for Step I satisfies all tad-

pole conditions and Bianchi identities that arise in the presence
of our generalized fluxes, see also Appendix A for details. We do
not require any exotic sources and we will show the number of
D3 and D7 branes necessary for each flux superpotential.
An important property of flux superpotentials which we use

at Step I is that they have certain symmetries which predict

1 A target space hyperbolic geometry here is defined by a Kähler potential
K = −3𝛼 ln(T + T̄). The case K = − ln(T + T̄) in (1.3) means 3𝛼 = 1.

the number of Goldstone supermultiplets (number of flat direc-
tions). We present the corresponding Goldstone theorem and the
relation to symmetries of the superpotentials in Appendix B.
In Step II we deform supersymmetric Minkowski minima

to dS cosmological backgrounds with spontaneously broken su-
persymmetry, developing the construction proposed in [10, 13].
Specifically, we add a nilpotent superfield X interacting with the
moduli and we add phenomenological superpotential terms, like
the mass of the gravitino. This will lead to inflation which can
realize the B-mode targets 3𝛼 = 1,… ., 7 in Figure 1.
The nilpotent superfield X is known to be associated with the

anti-D3 brane in string theory[14–18] and more generically with
non-supersymmetric branes.[19,20] It was proposed in [13] that
the interaction of X with the moduli fields might be a result of
the quantum corrections to the Kähler potential. The features of
the construction at Step II are to a large degree independent of
Step I, as long as a specific choice of a string theory compacti-
fication on 𝕋 6

ℤ2×ℤ2
with fluxes and O3/O7-planes is made and a

supersymmetric Minkowski vacuum with a certain number of
flat directions is derived. The reason for this sequestering is the
fact that Wflux = 𝜕Wflux = 0. Therefore, in the resulting cosmo-
logical theory the only trace left of the choice of Wflux is how
many flat directions there are for different choices. The resulting
cosmological models depend only on the choice of the uplifting
construction which turns the flat directions of supersymmetric
Minkowski vacua into inflationary plateau potentials.

2. Step I : Type IIB String Theory

2.1. Effective 4D Theory and Tadpole Cancellation Conditions

We study an effective 4D  = 1 supergravity theory obtained
from type IIB string theory compactified on the orientifold
𝕋 6∕ℤ2 × ℤ2 with O3/O7-planes. We define our moduli fields to
be S, the 4d complex axion-dilaton, UI are the complex struc-
ture moduli and TI are the Kähler moduli. The Kähler potential
is given in Equation (1.3). The superpotential also depends on
these seven untwisted closed string moduli. It is generated by
the presence of 10D NS-NS fluxes H3, R-R fluxes F3 as well as
non-geometricQ andP fluxes.[11,12] It involvesmoduli dependent
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terms starting from a constant term and up to terms quintic in
the moduli. We present the general W for such a compactifica-
tion in Equation (A.1). There are many tadpole cancellation con-
ditions which such a general flux potential must satisfy, we show
them in Equations (A.2)-(A.21) which are taken from [12, 21].
Here we will use only terms in W that are quadratic in the

fields

W = −
3∑

I=1
qI
U1U2U3

UI
−

3∑
I=1

aISUI −
3∑

I,J=1
bJITIUJ −

3∑
I=1

fISTI.

(2.1)

As we will see below, this simple form automatically satisfies var-
ious tadpole conditions. Nevertheless, there are still several non-
trivial conditions, which constrain the parameters in the super-
potential.
Belowwe calculate the tadpole equations in the quotient space,

as in [12]. This means we are counting a brane plus its image
under the O3/O7 orientifold involution as 1. A brane stuck on
an orientifold does not have an image and would therefore be
counted as a 1/2 brane. This leads toND3, ND7 being positive half
- integers, i.e., we should ensure that for any given model the
numbers below are positive integers, half-integers or zero.
Below we give the list of simplified tadpole conditions for only

the fluxes that appear in Equation (2.1), whereas all tadpole can-
cellation conditions for the general expression forW are given in
appendix A.
D3 brane number: (2.35) in [12]

ND3 = 16 − 1
2

3∑
I=1

qIaI. (2.2)

D7 brane number: (3.9) in [12] (after adding the contributions
from O7-planes, see also equation (3.19) and the text below it in
[21])

ND7I
= 16 − 1

2

3∑
J=1

qJbJI. (2.3)

NS7 brane number: (4.13) in [12]

NNS7I
= 0. (2.4)

I7 brane number: (4.40) in [12]

NI7I
= 0. (2.5)

QH − PF = 0 constraints: (4.35) in [12] for I ≠ J ≠ K ≠ I

aIbJJ + aJbIJ − qKfJ = 0. (2.6)

QQ = 0 constraints: (3.30) in [12] for I ≠ J ≠ K ≠ I

−bIIbJK − bJIbIK = 0. (2.7)

Note, that we do not need NS7 or I7 branes in our models since
their numbers automatically vanish in our setup. The remaining

constraints like PP = 0 and QP + PQ = 0 are automatically sat-
isfied for our choice of superpotential with only terms that are
quadratic in the fields.

2.2. One Flat Direction, One Goldstone Supermultiplet

We found two superpotentials leading to a single modulus super-
field T

T ≡ T1 = T2 = T3 = U1 = U2 = U3 = S. (2.8)

The low energy effective Kähler potential for T becomes

K7 = −7 ln(T + T). (2.9)

We found two specific superpotentials satisfying the tadpole con-
ditions (2.6), (2.7). The first one is

W (1)
7 = (S − T1)(U1 −U3) + (T2 − T3)(U2 −U1)

+ (T1 − S)(U3 −U2) + 2(U1 − S)(T1 − T3)

+ 2(T2 − T3)(U3 − S). (2.10)

The equations (2.2) and (2.3) give the number of D-branes re-
quired for this superpotential as

ND3 = ND71
= ND72

= ND73
= 16 (2.11)

to cancel the O3/O7-plane contributions. No other branes are
needed and 96 Bianchi identities without exotic sources are sat-
isfied. Note, that the number of D3/D7-branes is exactly the re-
quired number to fully cancel the contributions from the O3/O7-
planes, i.e., our choice of fluxes that led to the superpotential in
Equation (2.10) does not induce any charges. We could therefore
also not do the orientifold projection and would not have to in-
clude any local sources at all in this particular model.
Another example of a superpotential that leads to the single

modulus (2.8) is

W (2)
7 = (S −U1)(T1 −U2) + (S −U2)(T2 −U3)

+ (S −U3)(T3 −U1). (2.12)

In this case, the following numbers of branes are required

ND3 =
35
2
, ND71

= ND72
= ND73

= 33
2
. (2.13)

It is interesting that the superpotentials (2.10) and (2.12) areman-
ifestly invariant under the uniform shift

S → S + C(S, TI, UI), TI → TI + C(S, TI, UI),

UI → UI + C(S, TI, UI), (2.14)

where C(S, TI, UI) is a holomorphic function of all moduli. This
is a symmetry predicting one flat direction in this model, i.e., one
Goldstone supermultiplet, as explained in Appendix B.
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2.3. Three Flat Directions, Three Goldstone Supermultiplets

We also found another class of models where we are left with
three moduli superfields. We call this class of models split (4,2,1)
disk models. It is realized by the superpotential

W(4,2,1) = (U1 −U3)(T1 − T3) + (S −U2)(T3 −U1 + T1 −U3).

(2.15)

The scalar potential has a Minkowski minimum with three flat
directions:

T(1) ≡ T1 = T3 = U1 = U3, T(2) ≡ S = U2, T(3) ≡ T2. (2.16)

After integrating out the heavy modes, the Kähler potential in
Equation (1.3) becomes

K(4,2,1) = −4 ln(T(1) + T (1)) − 2 ln(T(2) + T (2)) − ln(T(3) + T (3)).

(2.17)

The above superpotential satisfies the tadpole conditions (2.6)
and (2.7), and from (2.2) and (2.3) we find that the following
branes are required

ND3 = 17 , ND71
= ND72

= ND73
= 16. (2.18)

Let us briefly look at the symmetry structure of this model. The
superpotential is invariant under the following three shift sym-
metries

T(1)(= U1, U3, T1, T3) → T(1) + C1(S, TI, UI),

T(2)(= S,U2) → T(2) + C2(S, TI, UI),

T(3)(= T2) → T(3) + C3(S, TI, UI), (2.19)

where C1,2,3(S, TI, UI) are holomorphic functions of all moduli.
As was the case for the one flat direction models, the sym-
metry generators of the superpotential are in one-to-one corre-
spondence with the massless moduli multiplets, namely, there
are three Goldstone supermultiplets here in agreement with the
Goldstone theorem in Appendix B.
Thus, it turns out that the symmetry of the flux superpoten-

tial is responsible for the realization of interesting cosmological
models, which are discussed later.

2.4. Mass Eigenvalues: Increasing/decreasing Moduli (volume)
During Inflation

In this subsection we study the values of the masses squared of
the heavy fields when the massless field changes. For that pur-
pose we calculate how masses change when we move along the
flat modulus direction towards either larger or smaller values.
We find that the masses decrease when Re T = t increases. The
masses squared depend exponentially on the canonically normal-
ized inflaton field and could in some case even become tachyonic.
However, as wewill see in Step II whenwe introduce an inflation-
ary potential, ultimately we will be able to have of order hundred

e-folds of inflation and heavy masses that stay above the Hubble
mass and below a fewMpl.

Concretely, with T = T = t = e−
√

2
7
𝜙 for the case with one flat

direction and the model in Equation (2.10) with the Kähler po-
tential in Equation (2.9) we find the eigenvalues of the squared
masses of our seven multiplets to be2

(m2)i = (m2)i0 t
−3 = (m2)i0 e

3
√

2
7
𝜙 (2.20)

where

(m2)i0 ≈ {6.0727, 4.0024, 0.7589, 0.5, 0.5, 0.1660, 0}

(2.21)

in Planckmass unitsMpl = 1. Here𝜙 is a canonically normalized
real scalar field that ultimately will become the inflaton. We see
that at 𝜙 = 0 there are 6 masses of order M2

pl and one mass is
zero. At large positive values of 𝜙 the values of the modulus t are
smaller than that at 𝜙 = 0 and at large negative values of 𝜙 the
values of the modulus are larger than at 𝜙 = 0. This observation
suggests that if we would like to start inflation in 4D at small
values of the moduli (and small volume of the extra dimensions)
and have them increase during inflation, we might be interested
in having the initial stage of inflation at about 𝜙 = 0 and move
towards some negative values of 𝜙. The masses of 6 heavy fields
decrease with increasing |𝜙| and one has to check that at Step II
that these heavy fields are not getting too light or even become
tachyonic during inflation.
In the opposite case, we can change the canonical field 𝜙 to

−𝜙 and take T = T = e
√

2
7
𝜙. We can start inflation at large values

of the modulus, at some positive value of 𝜙 and move towards
𝜙 = 0. Themasses of the 6 heavy fields will grow during inflation
towards smaller 𝜙

(m2)i = (m2)i0 t
−3 = (m2)i0 e

−3
√

2
7
𝜙 (2.22)

and we have to check that they do not exceed the Planckian scale
but still are sufficiently heavy at the beginning of inflation. We
have studied these models at Step II and found that they are con-
sistent: there are no tachyons up to more than 500 e-foldings of
inflation. Therefore, this scenario with decreasing volume is vi-
able.
We show both of the above discussed scenarios in Figure 2.

In the M-theory models in [1] our choice was the growing vol-
ume scenario, but we started there at positive 𝜙 so that at the
minimum the value of T = 1 was reached. Here we will start at
𝜙 = 0 and move towards some negative 𝜙, so that at the mini-
mum some T = c value can be reached with c ≫ 1.

2 In a simplifiedmodel with three moduli in [2] and one flat direction we

had T = T = e−
√

2
3 𝜙 and the squared mass eigenvalues have a factor

(m2)i = (m2)i0 t = (m2)i0e
−
√

2
3 𝜙. In general for n moduli the formula is

(m2)i = (m2)i0 t
−n+4.
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Figure 2. On the left panel we present a growing volume scenario: There are six heavy multiplets according to Equation (2.20) plotted against the canonical
field 𝜙. They start at 𝜙 = 0 at Planckian scale and decrease to the left, towards the exit from inflation. On the right panel there is a decreasing volume

scenario : a plot of the six heavy masses with T = e
√

2
7 𝜙.

3. Step II: Cosmological Models with B-mode
Detection Targets

Following the proposal for cosmological models in [1] and as ex-
plained in simple models in [2], we now uplift the flat directions
of Step I using additional terms in the action. These additional
terms include the gravitino mass parameter W0 and a nilpotent
superfield X̂2 = 0 with the Volkov-Akulov [22] parameter FX , and
an inflationary potential depending on the moduli with the flat
directions found in Step I.
In the KKLT construction[14,15] the role of the anti-D3-brane as-

sociated with the nilpotent superfield is to uplift the AdS4 min-
imum to a dS4 minimum. Here we start with a Minkowski flat
direction and the role of the nilpotent superfield interacting with
the flat direction modulus is to uplift the flat direction to a nearly
flat plateau-type inflationary potential.

3.1. Step II Potential

It is convenient here to (re-)label the type IIB fields
T1, T2, T3, U1, U2, U3, S as the ones in M-theory which were
used in [1]: T1, T2, T3, T4, T5, T6, T7.
We consider the Step II seven disk model3

K = −
7∑
i=1

ln(Ti + T
i
) +

F2X

F2X + Vinfl(Ti, T
i
)
XX . (3.1)

W = Wflux(T
i) + (W0 + FXX)

1
2 ,  =

7∏
i=1

(2Ti), (3.2)

where Wflux denotes the flux superpotentials inherited from IIB
string theory and discussed in the previous section and e−K |

(T
i
→Ti)

defines  . The holomorphic volume factor  is responsible for

3 AtW0 = 0 and X = 0 the Equations (3.1) and (3.2) trivially lead to mod-
els of Step I.

realizing an approximate shift symmetry for the inflaton, see sec-
tion 2.1.2 of [2]. The scalar potential at X = 0 is4

V = eK
(∑

i

Ki𝚤|DiW|2 + (F2X + Vinfl(T
i, T

i
))|| − 3|W|2). (3.3)

At Ti = T
i
and along the flat directions whereWflux = 𝜕iWflux = 0

the total potential of Step II simplifies dramatically and we get

V = Λ + Vinfl(Tflat) (3.4)

whereΛ = F2X − 3|W0|2 > 0. In ourmodels flat directions are real
Tflat = Tflat. In the models with one flat direction we have Tflat =
Ti where i = 1,… , 7. In the split model (2.15) Tflat has 3 compo-
nents: T(1) ≡ U1 = U3 = T1 = T3, T(2) ≡ S = U2, T(3) ≡ T2.

AtWflux(T
i) = 𝜕kWflux(T

i) = 0 and Ti = T
i
, we can identify the

mass of the gravitino,m3∕2, and the auxiliary field of the nilpotent
multiplet F̂X in these models

|m3∕2|2 = eK |W|2 = W2
0 ,

KXX̄ |F̂X |2 = eKKXX̄ |DXW|2 = F2X + Vinfl(Tflat). (3.5)

For simple choices of Vinfl here we will derive the E-model ver-
sion of 𝛼-attractors.[3,5] To derive the T-models we need to change
variables as described in the next subsection.

3.2. From E-models to T-models

Using the Cayley transformation we can switch from the half
plane variables Ti to the disk variables Zi as shown in [23]

Ti = 1 + Zi

1 − Zi
. (3.6)

4 This is a consequence of the nilpotent condition on a chiral super-
field X̂ , X̂2 = 0 which makes the complex scalar a fermion bilinear,
X = 1√

2F̂X
𝜓X𝜓X where 𝜓X is the Goldstino and F̂X is the auxiliary

scalar component of X̂ .
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In all 3𝛼 models we find that the Kähler potential, the superpo-
tential and the position of the minimum become functions of
disk coordinates. The flat direction we now call Z. We define the
T-models via the change of variables from the E-models given in
Equation (3.6). However, in the expression for KXX we make a
different choice of the function Vinfl, i.e., it is not the one which
follows from a change of variables from the E-models. Thus, we
have

K = −
7∑
i=1

log(1 − ZiZ
i
) +

F2X

F2X + Vinfl(Zi, Z
i
)
XX,

W = Wflux(T
i(Zi)) + (W0 + FXX)

1∕2(Ti(Zi)). (3.7)

The flat directions are now defined in terms of Z variables and
at Zi = Z

i
and at the flat directions whereWflux = 𝜕iWflux = 0 the

total potential of Step II is simply

V = Λ + Vinfl(Zflat) (3.8)

4. One Valley Cosmological Scenario

4.1. E-model of the Top B-mode Target

For the model with 3𝛼 = 7 the single flat direction T with Käh-
ler potential K = −7 log(T + T) at T = Ti where i = 1,… , 7 was
defined in Equation (2.8) in terms of Ti. We make a choice

Vinfl(Tflat) = m2
(
1 − T

c

)(
1 − T

c

)
. (4.1)

This choice allows us to have the position of the exit from infla-
tion depending on the choice of the parameter c. For c = 1 the
minimum is at T = 1 and 𝜙 = 0 and inflation starts at some pos-
itive values of 𝜙. This is suitable for the class of models with the
volume of the extra dimensions decreasing during inflation, as shown
in the right panel of Figure 2. For big positive values of c we can
start inflation at about T = 1 and 𝜙 = 0 and get down to the min-
imum at some negative values of 𝜙 and T = c. This is suitable for
the class of models with the volume of the extra dimensions increas-
ing during inflation, as shown in the left panel of Figure 2.
It is convenient to switch to canonical variables 𝜙 and 𝜃:

T = e−
√

2
7
𝜙

(
1 + i

√
2
7
𝜃

)
. (4.2)

Here 𝜙 is a canonical inflaton field, and 𝜃 has a canonical nor-
malization in the vicinity of 𝜃 = 0 which corresponds to the min-
imum of the potential with respect to 𝜃 during inflation. The total
potential of the canonically normalized inflaton field 𝜙 at 𝜃 = 0
according to our choice (4.1) is

VE = Λ +m2

(
1 − 1

c
e−
√

2
7
𝜙

)2

. (4.3)

This is a potential of the top benchmark target 3𝛼 = 7 for B-mode
detection[8–10] in E-models.

We need to verify that the six multiplets which were heavy at
Step I are still under control and do not destabilize inflation due
to changing masses of the heavy fields. We study the case of the
moduli and volume increasing during inflation and decreasing
masses of the heavy fields with superpotential (2.10), as in the
left panel in Figure 2.
For c = 102,W0 = 10−5, m = 10−5,Λ = 0 we plot in the

Figure 3 the inflationary potential in the lower panel and on the
upper panel we plot the log of the absolute values of the masses
squared of the six heavy multiplets, as well as of the inflaton. The
six heavy masses starting from 𝜙 = 0 to about 𝜙 = −8 behave
exactly as in Step I in Figure 2 left panel, they decrease from
Planckian values down. However, they turn around and go up
later at Step II. So, there is no danger of them getting very light or
tachyonic.5

We note that the kink for the inflaton mass in Figure 3 is an
artifact of the log of the absolute value of the mass squared, and
the kink is a signal of the sign change. To clarify this point we
have also plotted the mass squared of the inflaton in Figure 4.

4.2. Tools for Getting Lower B-mode Targets from Split Models

Thus, the model with 3𝛼 = 7 is now described. To get 3𝛼 =
6, 5, 4, 3, 2, 1 we proceed with the tools proposed in [9, 10] for
this purpose as well as the ones used in our models in M-theory
in [1]. There we have found Minkowski vacua with 2 flat direc-
tions which we called split models

(m, n) : {(6, 1), (5, 2), (4, 3)} (4.4)

In these cases we have a two valley cosmological models with
3𝛼1 = m and 3𝛼2 = n. In [1] the potentials Vinf for split models
were given in eq. (7.30). The particular example shown in Fig. 14
there corresponds to the split of the 7 moduli into groups of 6
and 1 discussed above, and the universe is divided into exponen-
tially large parts with 3𝛼1 = 6 and 3𝛼2 = 1, depending on initial
conditions. Therefore in some parts we have B-mode targets with
6 disks in some other with 1 disk. Other split models in (4.4) will
give us all seven B-mode targets.
An additional set of tools was also suggested in [9, 10] for the

purpose of using split models for cosmological purposes. These
include fixing one of the two flat moduli by just adding to Vinfl a
term that freezes one of the flat moduli (by making it very heavy).
The other suggestion was to merge two different disks by adding
to Vinfl an interaction term.
In type IIB models the superpotentials satisfying the tadpole

cancellation conditions did not give us the two flat directions
models at Step I, however, we have found three flat direction
models, the split (4,2,1) models. We will show below that we
have 2 options here. The first is to observe that with three valley
cosmological scenario we can have models with 3𝛼 = 4, 2, 1, de-
pending on initial conditions. However, the cases 3𝛼 = 6, 5, 3 still

5 This is not true for the axionicmasses squared that keep decreasing for
more and more negative 𝜙 and they can become tachyonic. However,
in the range −10 ≲ 𝜙 that is relevant for us the axionic masses squared
are for our choice of parameters essentially indistinguishable from the
corresponding saxion masses squared.
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Figure 3. At the lower panel we show the inflationary potential as a function of the canonical field 𝜙. At the top panel we plot the log of the absolute
values of the masses squared of the six heavy fields. Here we have used superpotential (2.10). Each vertical line shows the value of 𝜙 corresponding to
the number of e-foldings Ne. The dashed green line shows the log of the absolute values of the mass squared of the inflaton field. The kink at 𝜙 ≈ −7.3
is where the inflaton mass squared changes sign, as we can see in Figure 4. The Hubble parameter in this figure is approximated as H2

infl
= V∕3 (yellow

dashed line), which causes the kink behavior at the minimum of 𝜙.

Figure 4. Here we plot the mass squared of the inflaton field. It is negative
at the plateau of the potential and flips sign at about 𝜙 = −7.3, at which
the inflaton mass shows a singular behavior in Figure 3.

have to be obtained differently. For this purpose we will reduce
our split (4,2,1) model to the cases studied before, and given in
Equation (4.4).

5. Three Valley Cosmological Scenario, 3𝜶 = 4, 2, 1

We study here amodel with the superpotential in Equation (2.15),
which has three flat T(i) directions defined in Equation (2.16). We
choose Vinfl to be

Vinfl(T(i)) = m2
3∑
i=1

(
1 −

T(i)
c

)(
1 −

T (i)

c

)
. (5.1)

In case of two flat directions this was our choice corresponding
to the two valley cosmological scenario in [1], however, here we
made a shift of the minimum to T(i) = c to study a cosmologi-
cal scenario with the volume increasing during inflation. At this
point, as in the two flat valley, we can already identify the cases
with 3𝛼1 = 4 and 3𝛼2 = 2 and 3𝛼3 = 1, based on initial conditions
being in vicinity of one of the three valleys.
But we can also use the other tool mentioned above, namely

we can enforce via extra terms in Vinfl two of the light fields to
be fixed and only allow one direction in this three dimensional
moduli space to serve as the inflaton. In such case, only one field
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Figure 5. On the left panel we present the case with 3𝛼 = 4, on the right panel we present the case with 3𝛼 = 2.

Figure 6. On the left panel we present the case with 3𝛼 = 1, on the right panel we present the inflaton potentials for the cases with 3𝛼 = 4, 2, 1.

remains as a dynamical inflaton, the other fields are either heavy
and changing during inflation or fixed.
For c = 102,W0 = 10−5, m = 10−5,Λ = 0 we present in

Figure 5 the dynamics of scalars fields for the 3𝛼 = 4 and
3𝛼 = 2 models. In Figure 6 we show at the left panel the dynam-
ics of scalars fields with 3𝛼 = 1 and on the right panel we show
the inflationary potentials for all these models.
To summarize, we now have derived 3𝛼 = 7, 4, 2, 1 models

with cosmological predictions shown in Figure 1.

6. Merger of (4, 2, 1) Split Model into (6, 1), (5, 2),
(4, 3)

We discussed the merger mechanism of split models with few
flat directions into a model with less flat directions in [1, 9, 10].
We enforce themerger of the (4,2,1) split model by adding to Vinfl
terms which require two different flat directions to coincide. For
example, we can add one of the terms of the form

M2
1(T(1) − T(2))(T (1) − T (2)), M2

2(T(1) − T(3))(T (1) − T (3)),

M2
3(T(2) − T(3))(T (2) − T (3)) (6.1)

This will result in models with two flat directions, (6,1), (5,2),
(4,3), respectively. We have checked that merger parameters of
the order Mi ∼ 10−3 are working well for our purpose. Namely,
the heavy fields remain heavy and there are 2 light fields repre-

senting a two valley cosmological scenario. This one, as we know
from earlier studies, for example in [1], allows us to obtain E-
models with all discrete values of 3𝛼 = 7, 6, 5, 4, 3, 2, 1.
The related T-models where the scalar potentials are instead

of (1 − e
√

2
3𝛼
𝜙)2 given by tanh2( 1√

6𝛼
𝜙). The relation between these

models was explained in Sec. 3.2. We presented above in the in-
troduction the predictions for both classes of models in Figure 1.

7. Discussion

Plateau potentials, like 𝛼-attractors which we show in Figure 7 ap-
pear to be in a good agreement with the CMB data. The models
of sequestered inflation studied in this paper easily accommo-
date plateau potentials. In fact, these models suggest a possible
origin of plateau potentials. These will be tested during the next
2 decades, but at present they appear to be good candidates of
inflationary models which fit the data.
Sequesteringmeans that we take an exactly flat direction in the

fundamental theory, type IIB string theory in this paper, at Step I
and uplift this flat direction to a plateau potential at Step II. The
flat directions, one or three in ourmodels in this paper, are in one
to one correspondence to Nambu-Goldstone supermultiplets.
According to the Nambu-Goldstone theorem for supermulti-

plets in supergravity with Minkowski vacua, see Appendix B, the
flux superpotentials must have certain symmetries, as many as
the number of themassless Goldstonemultiplets.We have found
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Figure 7. The figure is courtesy of R. Flauger. It shows the main targets
for future detection of B-modes. The seven dark green lines in the ns - r
plane correspond to Poincaré disks models. We describe these models in
Equation (3.7). Each of the 7 Poincaré disks in this figure corresponds to

a potential V = V0ZZ̄ = V0 tanh
2(𝜙∕

√
6𝛼) with 3𝛼 = 1, 2, 3, 4, 5, 6, 7.

these symmetries and presented our fluxes in Secs. 2.2 and 2.3
in the form in which the symmetries are manifest. The key to
this feature is thatWflux(T

i) with i = 1,… , 7 in our models actu-
ally depends only on some differences between moduli, namely
all new flux potentials are of the formWflux(T

i − Tj). We have en-
countered the analogous feature inM-theory flux superpotentials
in [1]. The symmetries of these new flux superpotentials allows
one to make an arbitrary holomorphic change of variables which
preserve the differences Ti − Tj.
As usual with Goldstone fields, only non-perturbative quan-

tum correctionsmay uplift themass and convert the flat direction
into a nearly flat inflationary plateau potential, as we have shown
in [1] for M-theory and here in type IIB string theory.
To summarize, already at the Step I in M-theory compactified

on twisted 7-tori with G2-holonomy and in type IIB string theory
compactified on a 𝕋 6

ℤ2×ℤ2
orientifold with generalized fluxes and

O3/O7-planes we find flux superpotentials with flat direction(s)
and hyperbolic geometries from the Kähler potentials. At Step
II these models are naturally converted into plateau potentials
which at present fit the data very well and therefore provide ex-
citing targets for future observations.
Note also that the models with discrete values for the 3𝛼-

parameter are associated with string theory, M-theory and
maximal supersymmetry. These are the seven targets shown in
Figure 7, at the specific seven values of the parameter r which
defines the B-modes. Meanwhile, for continuous values of the
3𝛼-parameter there is a band of values of r as we have shown
in Figure 1. It is possible that the B-modes will be discovered
above or below the seven hyperbolic disks targets, and still fit
the data on ns. B-modes may not even be detected if r ≪ 10−3.
If, however, the future data on B-modes will fit one of the
seven discrete targets, the cosmological models associated with
string theory, M-theory, maximal supergravity will get a strong
support as the favorite models of theoretical physics which fit
the cosmological observations.

Appendix A: Tadpole Cancellation

We consider type IIB string theory compactified on the 𝕋 6

ℤ2×ℤ2
ori-

entifold with O3/O7-planes and geometric and non-geometric

fluxes. In the conventions of [12] the superpotentialW can have
terms of order 0,1,2,3,4,5 in the fields and is given by

W = e0 + i
3∑

I=1
eIUI −

3∑
I=1

qI
U1U2U3

UI
+ imU1U2U3

+ S

[
ih0 −

3∑
I=1

aIUI +
3∑

I=1
iāI

U1U2U3

UI
− h̄0U1U2U3

]

+
3∑

I=1
TI

[
−ihI −

3∑
J=1

UJbJI +
3∑

J=1
ib̄JI

U1U2U3

UJ
+ h̄IU1U2U3

]

− S
3∑

I=1
fITI +

3∑
I,J=1

igJISUJTI +
3∑

I,J=1
ḡJISTI

U1U2U3

UJ

− iSU1U2U3

3∑
I=1

f̄ITI. (A.1)

The are a variety of tadpole cancellation conditions and Bianchi
identities that the fluxes are required to satisfy. Some of them po-
tentially require the presence of local sources like D3, D7, NS7 or
I7 branes. Below is the full list with reference to their derivation
in [12] (see also [21]).
D3 brane number: (2.35) in [12]

ND3 = 16 − 1
2

[
mh0 − e0h̄0 +

3∑
I=1

(qIaI + eIāI)

]
. (A.2)

D7 brane number: (3.9) in [12] (after adding the contributions
from O7-planes, see also equation (3.19) and the text below it in
[21])

ND7I
= 16 + 1

2

[
mhI − e0h̄I −

3∑
J=1

(qJbJI + eJb̄JI)

]
. (A.3)

NS7 brane number: (4.13) in [12]

NNS7I
= 1
2

[
h0 f̄I − h̄0fI −

3∑
J=1

(āJgJI − aJḡJI)

]
. (A.4)

I7 brane number: (4.40) in [12]

NI7I
= −1

2

[
e0 f̄I −mfI +

3∑
J=1

(qJgJI + eJḡJI)

]
. (A.5)

QH − PF = 0 constraints: (4.32)-(4.35) in [12] for I ≠ J ≠ K ≠ I

h̄0hJ + āIbIJ + āJ b̄JJ − aKb̄KJ +mfJ − qIgIJ − qJgJJ − eK ḡKJ = 0,
(A.6)

h0h̄J + aIb̄IJ + aJb̄JJ − āKbKJ − e0 f̄J − eIḡIJ − eJḡJJ − qKgKJ = 0,
(A.7)

h̄0bKJ + āIb̄JJ + āJ b̄IJ − aKh̄J +mgKJ − qIḡJJ − qJḡIJ − eK f̄J = 0,
(A.8)
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h0b̄KJ + aIbJJ + aJbIJ − āKhJ − e0ḡKJ − eIgJJ − eJgIJ − qKfJ = 0.
(A.9)

QQ = 0 constraints: (3.30)-(3.33) in [12] for I ≠ J ≠ K ≠ I

−bIIbJK + b̄KIhK + hIb̄KK − bJIbIK = 0, (A.10)

−b̄IIb̄JK + bKIh̄K + h̄IbKK − b̄JIb̄IK = 0, (A.11)

−bIIb̄IJ + b̄JIbJJ + hIh̄J − bKIb̄KJ = 0, (A.12)

b̄IIbIJ − bJIb̄JJ + hIh̄J − bKIb̄KJ = 0. (A.13)

PP = 0 constraints: (4.16)-(4.19) in [12] for I ≠ J ≠ K ≠ I

−gIIgJK + ḡKIfK + fI ḡKK − gJIgIK = 0, (A.14)

−ḡII ḡJK + gKI f̄K + f̄IgKK − ḡJI ḡIK = 0, (A.15)

−gIIḡIJ + ḡJIgJJ + fI f̄J − gKIḡKJ = 0, (A.16)

ḡIIgIJ − gJIḡJJ + fI f̄J − gKIḡKJ = 0. (A.17)

QP + PQ = 0 constraints: (4.24)-(4.27) in [12] for I ≠ J ≠ K ≠ I

bKK ḡKJ − hK f̄J − b̄JKgJJ + bIK ḡIJ + gKK b̄KJ − fK h̄J − ḡJKbJJ + gIK b̄IJ

= 0, (A.18)

bKKgIJ − hK ḡJJ − b̄JK fJ + bIKgKJ + gKKbIJ − fK b̄JJ − ḡJKhJ + gIKbKJ

= 0, (A.19)

b̄KK ḡIJ − h̄KgJJ − bJK f̄J + b̄IK ḡKJ + ḡKK b̄IJ − f̄KbJJ − gJK h̄J + ḡIK b̄KJ

= 0, (A.20)

b̄KKgKJ − h̄K fJ − bJK ḡJJ + b̄IKgIJ + ḡKKbKJ − f̄KhJ − gJK b̄JJ + ḡIKbIJ

= 0. (A.21)

Appendix B: Symmetries of Superpotentials and
Nambu-Goldstone Supermultiplets

The Nambu-Goldstone theorem was proven in global supersym-
metric theories in [24]. It was shown that for eachmassless super-
multiplet there is a symmetry of the superpotential. We present
here the generalization of this theorem to supergravity.
The fermion spin 1/2 mass matrix in Minkowski vacua in su-

pergravity withW = W,i = 0 is

mij(T
k)|||W=W,i=0

= e
K
2 W,ij(T

k), i = 1,… ,M. (B.1)

The Minkowski vacuum is at Tk = Tk
0

W|||Tk
0

= 𝛿W
𝛿Ti

|||Tk
0

= 0. (B.2)

The Goldstone theorem for chiral multiplets Ti can be formu-
lated as follows. For each zero eigenvalue of mij in Minkowski
vacuum, in case there are L of them, there is a spontaneously
broken symmetry ofW. Namely, one should be able to establish a
symmetry ofW under the following continuous transformations

Ti ⇒ Ti + 𝛼aΔia(Tl), a = 1,… , N. (B.3)

Proof: AssumeW has a set of N symmetries

𝛿W
𝛿Ti

Δia(Tl) = 0. (B.4)

We differentiate this equation over Tj and view it atW = W,i = 0,
i. e. at Tk = Tk

0 . Taking into account Equation (B.2) we find[
𝛿2W
𝛿Ti𝛿Tl

Δia(Tl)
]
Ti=Ti

0

= 0. (B.5)

The symmetry generatorsΔia(Ti) at Ti = Ti
0 either vanish or not

Δia
SB(T

i
0) ≠ 0 , a = 1,… , L (B.6)

Δia
UB(T

i
0) = 0, a = L + 1,… , N. (B.7)

Under the transformation (B.3) the ground state transforms as
follows

Ti
0 → Ti

0 + 𝛼
aΔia

SB(T
i
0), a = 1,… , L (B.8)

Ti
0 → Ti

0, a = L + 1,… , N. (B.9)

Therefore the L symmetries which affect the ground state, are
qualified as spontaneously broken symmetries. The remaining
N − L symmetries remain symmetries of the ground state, they
are qualified as unbroken symmetries.6 Equation (B.5) acquires
the form[
𝛿2W
𝛿Ti𝛿Tl

Δia
SB(T

l)
]
Ti=Ti

0

= 0. (B.10)

It shows that the rank of the M ×M mass matrix W,ij(T
k
0 ) is

less than M, and it is less or equal to M − L, since there are L
non-vanishing eigenvectors. It means that for each of the sym-
metries in Equation (B.6) we are bound to find a massless chiral
multiplet. And vice versa, for each of the L flat directions ofW in
Minkowski minimum we are bound to find the corresponding L
symmetries ofW.

6 We show the possible unbroken generators here to keep generality of
the proof. However, our examples only contain spontaneously broken
(nonlinearly realized) symmetry generators.
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Examples
Our first example involves the octonion superpotentials of theM-
theory in [1] where

Woct =
∑
{ijkl}

(Ti − Tj)(Tk − Tl), i = 1,… , 7 (B.11)

where we take a sum over 7 different 4-qubit states defining the
choice of {ijkl} inWoct. For example we can take

Woct = (T2 − T4)(T5 − T6) + (T3 − T5)(T6 − T7)

+ (T4 − T6)(T7 − T1) + (T5 − T7)(T1 − T2)

+ (T6 − T1)(T2 − T3) + (T7 − T2)(T3 − T4)

+ (T1 − T3)(T4 − T5). (B.12)

One important property of the superpotentialsWoct is the fact that
under an arbitrary holomorphic shift all fields are shifted by the
same holomorphic function

Ti ⇒ Ti + F(Tk). (B.13)

The difference between two fields and therefore Woct are invari-
ant

(Ti − Tj) ⇒ (Ti − Tj), Woct ⇒ Woct. (B.14)

The ground state solution of the equations for theMinkowski vac-
uum is at Tk = Tk

0 . For a given choice of T
k
0 the symmetry ofWoct

is broken. According to the theorem above, one of the eigenval-
ues of the mass matrix of the supermultiplets must vanish. This
is indeed the case.
The second example involves theM-theory superpotential with

two flat directions

W(5.2) = (T5 − T7)(T1 − T2) + (T6 − T1)(T2 − T3)

+ (T7 − T2)(T3 − T4) + (T1 − T3)(T4 − T5)

+ (T2 − T4)(T5 − T6). (B.15)

The flat directions are T5 = T6 and T1 = T2 = T3 = T4 = T7.
One finds that there are two symmetries ofW(5.2) are

T5 → T5 + F1(T
k), T6 = T6 + F1(T

k), (B.16)

and

T1 → T1 + F2(T
k), T2 = T2 + F2(T

k), T3 = T3 + F2(T
k),

T4 → T4 + F2(T
k), T7 = T7 + F2(T

k). (B.17)

All these symmetries are broken on a ground state which is at
Tk = Tk

0 . The conditions of the theorem are satisfied and there
are two massless states in this model.
Examples of Nambu-Goldstone supermultiplets in type IIB

string theory are given in Secs. 2.2 and 2.3.
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