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Sequestered Inflation

Renata Kallosh, Andrei Linde, Timm Wrase, and Yusuke Yamada*

We construct supergravity models allowing to sequester the phenomenology
of inflation from the Planckian energy scale physics. The procedure consists
of two steps: At Step I we study supergravity models, which might be
associated with string theory or M-theory, and have supersymmetric
Minkowski vacua with flat directions. At Step II we uplift these flat directions
to inflationary plateau potentials. We find certain conditions which ensure
that the superheavy fields involved in the stabilization of the Minkowski vacua
at Step I are completely decoupled from the inflationary phenomenology.

1. Introduction

Cosmological 𝛼-attractors[1–4] are among the very few inflation-
ary models favored by the Planck2018 data.[5,6] Simplest versions
of these models can match all presently available CMB-based ob-
servational data by tuning of a single parameter. These models
can be implemented in the context of  = 1 supergravity, and
can be generalized to describe any magnitude of supersymmetry
breaking and any value of the cosmological constant.[7,8]

The main advantage of this class of models is the stability
of the cosmological predictions with respect to even very sig-
nificant modifications of the inflationary potential; inflationary
predictions are mainly determined by geometric properties of
the moduli space. The required geometric properties are the
same as in many phenomenological  = 1 4D supergravity de-
scriptions of string theory. This suggests that if one finds a way
to suppress the effects related to steep string theory potentials
hindering the development of inflation, it may provide us with
string theory (or M-theory) inspired versions of the cosmological
𝛼-attractors.

R. Kallosh, A. Linde
Stanford Institute for Theoretical Physics and Department of Physics
Stanford University
Stanford, CA 94305, USA
E-mail: kallosh@stanford.edu; alinde@stanford.edu
T. Wrase
Department of Physics
Lehigh University
16 Memorial Drive East, Bethlehem, PA 18018, USA
E-mail: timm.wrase@lehigh.edu
Y. Yamada
Research Center for the Early Universe (RESCEU)
Graduate School of Science
The University of Tokyo
Hongo 7-3-1 Bunkyo-ku, Tokyo 113-0033, Japan
E-mail: yamada@resceu.s.u-tokyo.ac.jp

The ORCID identification number(s) for the author(s) of this article
can be found under https://doi.org/10.1002/prop.202100128

DOI: 10.1002/prop.202100128

Thus, our goal is to construct super-
gravity models which rely on the geomet-
ric properties of the string theory moduli
space, while sequestering the low energy
scale phenomenology of inflation from
the Planckian energy scale physics as-
sociated with string theory or M-theory.
This problem is highly non-trivial, be-
cause supergravity potentials describing
many moduli Ti have a lot of mixing
terms. Cosmological data suggest that the
last 50-60 e-foldings of inflation, which
are responsible for the formation of the

observable part of the universe, occurred at an energy density
that is less than 2 × 10−9 of the Planck density.[9] Thus one may
expect that only some symmetries may protect inflation from
being affected by the Planckian energy scale physics. Various
ideas of symmetries protecting the flatness of the inflationary
potential were studied for a long time in string theory and su-
pergravity, see for example [10–12] and [13–17] and references
therein.
In this paper we will discuss some models which have su-

persymmetric Minkowski vacua with flat directions protected by
shift symmetries. We will describe a procedure of uplifting these
flat directions which preserves their flatness at large values of the
moduli and allows to implement 𝛼-attractors in this context.
This procedure consists of two steps: At Step I we use 4D su-

pergravity with K (I),W (I) and some number of chiral multiplets
Ti and find string inspired superpotentials such that the scalar
potentials have supersymmetric Minkowski vacua with flat di-
rections. This requirement is satisfied for any Kähler potential if
the superpotentialW(Ti) and its derivatives 𝜕jW(Ti) vanish along
some direction.
At Step II we add some K (II),W (II) that uplift these flat direc-

tions to inflationary plateau potentials.We find certain conditions
which ensure that the superheavy fields, which are involved in
the stabilization of the Minkowski vacua at Step I, do not affect
inflation. Note that the choice of inflationary potentials here is
purely phenomenological, we do not derive them from string the-
ory. However, an important property of 𝛼-attractors is the stability
of their most important predictions with respect to the choice of
inflationary potentials. Therefore, we hope that this approach has
some merits.
This method was already used in [18] for constructing infla-

tionary models in M-theory. However, this was part of a large
paper relying on the use of technical tools specific for M-theory.
Meanwhile the main idea of our method is quite general, and it
is not limited to M-theory, string theory, or 𝛼-attractors. In this
paper, we will explain and generalize this approach, giving some
simple examples to illustrate the general idea of protecting the
low energy scale phenomenology of inflation from the Planckian
energy scale physics.
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2. Single Field Models

2.1. Step I

Consider a model of n chiral superfields Ti with a superpotential
W (I)(Ti) (the superpotential at Step I) and with a Kähler potential
given by some real holomorphic function K (I)(Ti, Ti). If at some
point Ti = ti + iai the superpotential W

(I)(Ti) and all of its first
derivatives vanish,

W (I)(Ti) = 0, 𝜕TjW
(I)(Ti) = 0, (2.1)

this state corresponds to a stable supersymmetricMinkowski vac-
uum with vanishing scalar potential V (I)(Ti) = 0. This property
does not depend on the choice of the Kähler potential.
We will be interested in superpotentials such that the condi-

tions (2.1) are satisfied not only at a single point, but along some
flat directions. The potential may have several different flat direc-
tions with V(Ti) = 0,[18] but the simplest possibility discussed in
all examples given in this paper is that the flat direction appears
when all fields Ti are equal to each other, and real, Ti = t, ai = 0.
In this section we will illustrate our general approach using a

theory of a single field T with superpotentialW (I)(T), for several
different choices of the Kähler potential K (I)(T, T). One should
keep in mind that in the theory of a single field supersymmetric
flat directions are possible only ifW (I)(T) vanishes for all T , i.e.,
ifW (I)(T) = 0. Nevertheless we will keepW (I)(T) in our equations
because most of the results to be obtained in this section can be
easily generalized for models with many fields Ti, where flat di-
rections satisfying eqs. (2.1) may appear for non-trivial superpo-
tentialsW (I)(Ti).

2.1.1. Models with Canonical Kähler potential

Consider the model with superpotentialW (I)(T) with Kähler po-
tential

K (I)(T, T) = −1
2
(T − T)2. (2.2)

Now we introduce a nilpotent field X , and modify the Kähler po-
tential

K (II) = K (I)(T, T) +
F2X

F2X + Vinfl(T, T)
XX . (2.3)

We also modify the superpotential

W (II) = W (I) +W0 + FXX . (2.4)

In the limitW0 = 0, FX = 0, and X = 0 we are back to the model
discussed at Step I. Note that Kähler potential K (I)(T, T) and its
first derivatives vanish along its flat direction T = T

K (I)(T, T)|||T=T = 0,
𝜕K (I)(T, T)

𝜕T

|||||T=T =
𝜕K (I)(T, T)

𝜕T

|||||T=T = 0.

(2.5)

In this case one can show that ifW (I)(T) vanishes along the same
direction as K (I)(T, T) (which is trivially satisfied ifW(T) vanishes
for all T), then the potential of the field T for T = T = t is given
by

Vtotal(T) = F2X − 3W2
0 + Vinfl(T, T)

|||T=T=t. (2.6)

Note that in this expression in the limitW0 = 0, FX = 0, Vinfl = 0,
we are back to the model discussed at Step I. Here FX describes
the supersymmetry breaking scale and W0 corresponds to the
gravitino mass. The term F2X − 3W2

0 is the cosmological constant
Λ at the minimum (if Vinfl is zero there which will be always
the case for us). For the simplest potentialVinfl(T, T) = m2TT this
yields the inflaton potential

Vtotal(t) = Λ + 1
2
m2𝜙2, (2.7)

where 𝜙 =
√
2t is the canonically normalized inflaton. In the

context of inflationary cosmology, one may safely use the ap-
proximation Λ = 0. The inflaton field 𝜙 has mass squared m2

𝜙
=

m2. The inflaton trajectory T = T = t (= 1√
2
𝜙) is stable with re-

spect to the fluctuations in the orthogonal direction a, where
T = 1√

2
(𝜙 + ia). Fluctuations of the a field have positive mass

squared m2
a = m2(1 + 𝜙2) + 4W2

0 .

Using this method and various potentials Vinfl(T, T) one can
find many inflationary models consistent with the Planck data.
However, the results will be very sensitive to the choice of the
potential Vinfl(T, T). Therefore, in next sections we will describe
𝛼-attractors where this issue can be alleviated.

2.1.2. General Kähler potentials

The derivation of the results obtained in the previous subsection
required that the Kähler potential K (I)(T, T) and its first deriva-
tives vanish for T = T . If this condition is not satisfied, one may
use one of the two equivalent methods to be discussed now.
Method 1: One should make a specific Kähler transforma-

tion1 of the Kähler potential K (I)(T, T) and superpotentialW (I) at
Step I:

()(T, T) = K (I)(T, T) −
𝜅(T) + 𝜅(T)

2
,  ()(T) = WI(T) e𝜅(T)∕2,

(2.8)

where

𝜅(T) = K (I)(T, T)|T→T
, 𝜅(T) = K (I)(T, T)|T→T

. (2.9)

For example, one may start with the simple Kähler potential
K (I) = TT , which is not flat in the direction T = T . In this

1 Recall that supergravity Lagrangian is invariant under Kähler transfor-
mation K → K − logA(T) − logA(T) and W → WeA(T), where A(T) is
a holomorphic function of chiral fields T . This invariance is manifest
if one uses the Kähler invariant function G = K + log |W|2.
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case 𝜅(T) = T2 and 𝜅(T) = T
2
. Subtracting T2+T

2

2
from K (I) = TT

yields the Kähler potential − 1
2
(T − T)2 (2.2), which has the flat

direction T = T .
The new formulation describes the same theory, with the same

flat directions of the superpotential as in the original theory (if
there were any), but the Kähler potential in the new formulation
satisfies the required flatness conditions (2.5). Then one can use
the same procedure as in the case considered in the previous sub-
section, with the final result given in eq. (2.6). This method was
used in [18] in application to inflation in M-theory.
Method 2: After making these modifications at Step I and

adding the term W0 + FXX at Step II to the modified superpo-
tential(T), one can perform a reversed Kähler transformation:
multiply the superpotentialWI(T) e

𝜅(T)∕2 +W0 + FXX by e−𝜅(T)∕2,
and make the corresponding transformation of(). This returns
the Kählerpotential() and the superpotential ()(T) to their orig-
inal form K (I) and W (I)(T). The only change which appears after
this set of procedures is the modification

W0 + FXX ⇐⇒ (W0 + FXX) e
−𝜅(T)∕2 (2.10)

in the expression forW (II) in eq. (2.4).
The methods 1 and 2 produce equivalent results.We will use the

more compact method 2 in the present paper. Namely at Step II
we have

K (II)(T, T) = K (I)(T, T) +
F2X

F2X + Vinfl(T, T)
XX, (2.11)

W (II)(T) = W (I)(T) + (W0 + FXX) e
−𝜅(T)∕2, (2.12)

where 𝜅(T) is defined in eq. (2.9). This results in

Vtotal(T) = Λ + Vinfl(T, T)|T=T=t , (2.13)

where Λ = F2X − 3W2
0 .

In a theory with many fields Ti with the Kähler potential given
by a sum of independent Kähler potentials for each field Ti one
should multiplyW0 + FXX by a product of terms e−𝜅(Ti)∕2 for each
of the fields Ti.
In the next subsectionwewill apply thismethod to 𝛼-attractors.

2.1.3. 𝛼-attractors

Here we will consider a Kähler potential which often appears in
 = 1 4D supergravity describing string theory phenomenology.
Therefore at Step I we take

K (I)(T, T) = − log(T + T), W (I) = 0. (2.14)

At Step II according to eqs. (2.11) and (2.12) we take

K (II)(T, T) = − log(T + T) +
F2X

F2X + Vinfl(T, T)
XX, (2.15)

W (II)(T) = (W0 + FXX)
√
2T, (2.16)

since in this model e−𝜅(T)∕2 =
√
2T .2 The difference with the pre-

vious case is that the fieldT will have a non-minimal kinetic term.
It is convenient to represent the field T as follows:

T = e−
√
2𝜙(1 + i

√
2a) . (2.17)

The inflaton field𝜙 is canonical, whereas the field a is also canon-
ical for a → 0. As an example, one may consider a potential

Vinfl = m2(1 − T)(1 − T). (2.18)

Along the inflaton direction, the total potential is

Vtotal(𝜙) = Λ +m2
(
1 − e−

√
2𝜙
)2
. (2.19)

If instead of the Kähler potential (2.14) one uses the Kähler po-
tential

K (I)(T, T) = −3𝛼 log(T + T) , (2.20)

one should use

W (II)(T) = (W0 + FXX)(2T)
3𝛼∕2 (2.21)

to find a family of E-model versions of 𝛼-attractors with

Vtotal(𝜙) = Λ +m2

(
1 − e−

√
2
3𝛼
𝜙

)2

= Λ +m2

(
1 − 2e−

√
2
3𝛼
𝜙 +⋯

)
.

(2.22)

One can considerably change the potential Vinfl(T, T), but the
large 𝜙 asymptotic behavior of this potential remains the same,
up to a change of the parameterm2 and a redefinition (shift) of the
canonical field 𝜙. This is the reason why these models are called
cosmological attractors. The model (2.19) describes 𝛼-attractor
with 𝛼 = 1∕3. In = 1 supergravity 3𝛼 is an arbitrary parameter
defining the moduli space curvature. In the case with an under-
lying maximal supersymmetry or string/M-theory one may have
3𝛼 = 7, 6, 5, 4, 3, 2, 1, see Refs. [7, 18, 20, 21].
Instead of T variables with Kähler potential (2.15) and super-

potential (2.21) describing a half (complex) plane T + T > 0, one
can use disk variables Z = T−1

T+1
with the resulting Kähler poten-

tial

K (II)(Z,Z) = −3𝛼 log(1 − ZZ) +
F2X

F2X + Vinfl(Z,Z)
XX, (2.23)

and superpotential

W (II) = (W0 + FXX )(1 − Z2)3𝛼∕2, (2.24)

2 Using a Kähler transformation, we find K (II) = − 1
2
log (T+T)2

4TT
+

F2X
F2X+Vinfl(T,T)

XX , W (II) = W0 + FXX . If we take Vinfl = 0, this ex-

pression manifests the invariance 𝜙 → 𝜙 + c, where 𝜙 is defined in
eq. (2.17). This shift symmetry was explained in detail in the context of
the hyperbolic geometry of 𝛼-attractors in [19].
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Figure 1. Predictions of the simplest T-models (left) and E-models (right) for 50 ≤ Ne ≤ 60.[6] Red ellipses show the Planck 2018 results taking into
account the CMB-related data including data from BICEP2/Keck. String theory motivated versions of these models have 7 specific predictions[20,21]:
3𝛼 = 7 (red line), 3𝛼 = 6 (orange), 3𝛼 = 5 (yellow), 3𝛼 = 4 (green), 3𝛼 = 3 (blue), 3𝛼 = 2 (purple) and 3𝛼 = 1 (black). All other values of 𝛼 originate
from general N = 1 supergravity models.

which yields

Vtotal(Z) = Λ + Vinfl(Z,Z)|Z=Z=z . (2.25)

For Vinfl(Z,Z) = m2ZZ̄ (and ignoring Λ) this leads to a family of
T-models with the potential of the canonical inflaton field 𝜙

V(𝜙) = m2 tanh2
𝜙√
6𝛼

, (2.26)

where z = tanh 𝜙√
6𝛼
. At 𝛼 ≪ 1, E-models (2.19) and T-models

(2.26) give very similar predictions for the spectral index ns and
tensor to scalar ratio r for a given number of e-foldings Ne:

ns = 1 − 2
Ne

, r = 12𝛼
N2

e

. (2.27)

At larger 𝛼, the predictions of these two families of models
slightly differ, see Figure 1.

3. Two Field Model

3.1. Step I

Nowwe will study amore advancedmodel, with two fields T1 and
T2, which have a nontrivial superpotential already at Step I:

K (I) = −1
2

2∑
i=1
(Ti − Ti)

2 , W (I) = M(T1 − T2)
2. (3.1)

There is a supersymmetric Minkowski vacuum at T1 = T2. The
canonically normalized variables Ti =

1√
2
(𝜙i + iai) can be rewrit-

ten in terms of canonically normalized mass eigenstates as
𝜙 = 1√

2
(𝜙1 + 𝜙2), a = 1√

2
(a1 + a2), 𝜙M = 1√

2
(𝜙1 − 𝜙2) and aM =

1√
2
(a1 − a2). Themass eigenvalues of𝜙, a atT1 = T2 = 0 are 0 and

themass eigenvalues of themassivemodes𝜙M, aM atT1 = T2 = 0

are m2 = 16M2. This mass is below the Planck massMPl = 1 for
M <

1
4
.

The absence of tensor modes at the level r ≲ 0.05 implies
that the inflaton potential V at the last 60 e-foldings of inflation
should be smaller than 2 × 10−9.[9] This means that if the field
T1 + T2 = 𝜙 + ia deviates from its equilibrium at T1 + T2 = 0 by
O(1), its potential can become many orders of magnitude higher
than the inflationary potential V . Thus it is necessary to check
whether the scenario outlined in the previous section may re-
main intact despite the introduction of the large superpotential
W (I) = M(T1 − T2)

2.

3.2. Step II

Just as in the previous section, we introduce a nilpotent field X
and modify the Kähler potential and the superpotential

K (II) = K (I) +
F2X

F2X + Vinfl(Ti, Ti)
XX, (3.2)

W (II) = W (I) +W0 + FXX . (3.3)

Fortunately, the Kähler potential K (I) vanishes along the flat di-
rection T1 = T1 = t, T2 = T2 = t along which the superpotential
W (I) also vanishes. As a result, one can show that eq. (2.6) derived
for the model with W (I) = 0 remains valid as well. At this time,
instead of a simple quadratic scalar potential we will take a more
complicated one

Vinfl(Ti, Ti) =
g2|T1|2|T2|2

𝜇4 + |T1|2|T2|2 . (3.4)

At TM = 0 and Ti = Ti = t the potential depends only on the
canonical inflaton field T = 1√

2
𝜙 (= t) and (for Λ = 0) is given

by

Vinfl(𝜙) = g2
𝜙4

4𝜇4 + 𝜙4
. (3.5)
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Figure 2. A combined plot of predictions of the simplest T-models
(bounded by two yellow lines corresponding to 50 ≤ Ne ≤ 60) the sim-
plest E-models (bounded by red lines) and the KKLTI model (bounded by
purple lines).[6]

This is the plateau potential of the D-brane inflation model de-
scribed recently in [22]. It was called KKLTI in the Encyclopedia
Inflationaris[23] because of its possible relation to the KKLTmech-
anism of vacuum stabilization and inflation in string theory.[24,25]

This model is in good agreement with observational data. Its pre-
diction

ns = 1 − 5
3Ne

(3.6)

is very close to the prediction of the 𝛼-attractors ns = 1 − 2
Ne
. This

model and 𝛼-attractors almost completely cover the area in the
(ns, r) plane favored by Planck2018,

[6] see Figure 2.
During inflation the mass squared of the heavy fields 𝜙M, aM

remain approximately the same as it was at Step I, so it can
take any value up to the Planck mass. This means that the fields
𝜙M and aM are strongly stabilized at 𝜙M = aM = 0. The mass
squared of the imaginary component a of the inflaton field field
T = 1√

2
(𝜙 + ia) is positive. Thus, the inflaton trajectory T = 1√

2
𝜙,

𝜙M = aM = a = 0 is stable. Importantly, the potential masses of
the light fields 𝜙 and a and the inflaton potential (3.5) do not de-
pend on M. This ensures sequestering of the inflaton potential
from the high energy scale physics related to the superpotential
W (I) = M(T1 − T2)

2.
The development of inflation depends on our choice of poten-

tial V(Ti, Ti) in eq. (3.4). Note that one can add to this potential
various terms stabilizing the inflaton trajectory without affecting
the inflaton potential V(𝜙). For example, any term proportional
to −(Ti − Ti)

2 vanishes along the inflaton trajectory, but it allows
to increase the mass squared of the axion a. We also note that the
mass of TM is not much affected by the inflaton dynamics in this
model because the Kähler potential is independent of the infla-
ton 𝜙. This might not be the case in more general setups, and we
will show an example in the next section.

4. Three field model

4.1. Step I

The next model describes three fields T1, T2 and T3:

K (I) = −
3∑
i=1

ln(Ti + Ti) , W (I) = 1
4
(T1 − T2)(T2 − T3). (4.1)

There is a supersymmetric Minkowski flat direction T1 = T2 =
T3, corresponding to a massless field

T = 1
3
(T1 + T2 + T3). (4.2)

There are also two heavy fields TM1
, TM2

, which correspond to
some other combinations of the fields T1, T2, T3.
The fields Ti can be represented as Ti = e−

√
2𝜙i (1 + i

√
2ai),

where the fields 𝜙i and the fields ai are canonical in the small ai
limit. When 𝜙i =

1√
3
𝜙 and ai = 0 the mass squared eigenvalues

of the canonically normalized fields 𝜙i are:

m2 = 0, m2 = 9
8
e−
√

2
3
𝜙, m2 = 1

8
e−
√

2
3
𝜙
. (4.3)

The masses of the heavy fields change depending on 𝜙. There-
fore, we must check at Step II whether the heavy fields remain
heavy during inflation and decouple from the inflationary dy-
namics.

4.2. Step II

The Kähler potential and superpotential are

K (II) = −
3∑
i=1

ln(Ti + Ti) +
F2X

F2X + Vinfl(Ti, Ti)
XX,

W (II) = W (I) + (W0 + XFX )

(
3∏
i=1

2Ti

)1∕2

. (4.4)

Our choice of the potential in equation (4.4) with T defined in
equation (4.2) is

Vinfl(Ti, Ti) = 𝜇2

(
1 − 1

3

3∑
i=1

Ti

)(
1 − 1

3

3∑
i=1

Ti

)

→ Vinfl(T, T) = 𝜇2(1 − T)(1 − T). (4.5)

In the first approximation, let us follow the supersymmetric tra-
jectory T1 = T2 = T3 = T on which the Kähler and superpotential
are reduced to

K = −3 ln(T + T) +
F2X

F2X + Vinfl(T, T)
XX,

W = (2T)
3
2 (W0 + FXX ). (4.6)
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Figure 3. Here we plot, using the logarithmic scale, the absolute value of
the masses squared of the heavy fields, the two top lines, not far from the
MPl = 1 scale. The absolute value of the mass squared of the inflaton field
is many order of magnitudes lighter: This is the uplifted flat direction of
Step I, the inflaton field. The kink at 𝜙 ≈ 0.8 is due to the fact that the infla-
tonmass squared, which was negative during early stages of inflation, and
then vanishes and changes its sign, and we plot logarithm of its absolute
value. The actual mass squared of the inflaton field is shown in Figure 3.

At T1 = T2 = T3 and Ti = Ti the potential depends on the field

T = t = e−
√

2
3
𝜙 and is given by

Vtotal(t) = Λ + 𝜇2(1 − t)2 = Λ + 𝜇2

(
1 − e−

√
2
3
𝜙

)2

. (4.7)

Here with Λ = F2X − 3W2
0 > 0, inflation ends at t = 1,𝜙 = 0 in

a de Sitter vacuum. This is the 𝛼 = 1 attractor model, whose
bosonic part coincides with that of the Starobinsky model.
In order to make sure that the sequestering mechanism works

consistently, we need to check the behaviour of the two heavy
fields during inflation. The masses of them calculated by using
eqs. (4.4) are presented in Figure 3, for the choice of parameters
W0 = FX∕

√
3 = 10−5, 𝜇 = 10−5. The axionmasses of these heavy

superfields are only slightly different from the saxion masses
plotted here, this difference is due to the small values of the pa-
rametersW0 = FX∕

√
3 = 10−5, 𝜇 = 10−5.

The mass squared of the inflaton is negative at the plateau
of the potential and flips sign at 𝜙 ≈ 0.8, at which the absolute

value of the inflaton mass squared shows a singular behavior in
Figure 4.
The heavy masses of the directions orthogonal to the inflation-

ary trajectory ensure the validity of the sequestering mechanism,
and we can safely use the effective description given by eq. (4.7).
It is also worth emphasizing that the effective Kähler potential ac-
quires the different Kähler curvature radius, 𝛼1,2,3 =

1
3
→ 𝛼T = 1.

Thus, the sequestering not only removes the heavy degrees of
freedom, but also affects the inflationary dynamics.

5. Discussion

In this paper we described and further developed a basic mecha-
nism which allows us to obtain inflationary models sequestered
from physics at the Planckian energy scale. We illustrated this
mechanism through several relatively simple examples. This
mechanism was used in [18] to construct inflationary models
in M-theory.
At Step I, considering the case of one flat direction for sim-

plicity, we find one massless supermultiplet and some number
of heavy supermultiplets. At Step II we find that all heavy multi-
plets remain sufficiently heavy, with some split of masses inside
the supermultiplet due to supersymmetry breaking. Meanwhile
the massless multiplet of Step I is uplifted in a way which leads
to a plateau potential for the real part of the superfield, i.e., for
a single field inflation model. The axion field orthogonal to the
inflationary trajectory is stabilized at vanishing value of the axion
due to supersymmetry breaking and due to the choice of Vinfl at
Step II. Its mass is sufficiently heavy to decouple the axion from
inflation despite these two fields being both massless at Step I.
In the follow-up investigation,[26] we will apply our methods

to models where Step I is derived from IIB string theory. There
are some specific features of such models. First of all, there are
many scalar fields. We will study the STU model with 7 differ-
ent moduli S, T1, T2, T3, U1, U2, U3. Secondly, there are many
constraints on the structure of the superpotentials in such mod-
els. The general structure of the superpotentialWflux(T

i) that we
are using is described in [27]. It has terms depending on mod-
uli starting from order zero up to order 5 in the fields. About 60
coefficients are arbitrary and are defined by various fluxes which
are possible in 10D supergravity. These fluxes must satisfy about

2 4 6 8 10
ϕ

5. × 10- 11

1. × 10- 10

1.5 × 10- 10

V

2 4 6 8 10 12
ϕ

- 2. × 10- 11

2. × 10- 11

4. × 10- 11

6. × 10- 11

8. × 10- 11

1. × 10- 10

1.2 × 10- 10

m2

Figure 4. The left panel shows the inflaton plateau potential of the 𝛼 = 1 attractor model in equation (4.7) for Λ = 0 and 𝜇 = 10−5. The right panel
shows the inflaton mass squared.
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100 tadpole cancellation conditions, which are basically Bianchi
identities in the presence of local sources, such as D-branes and
O-planes. It is not easy to find flux superpotentials which have
supersymmetric Minkowski vacua and satisfy all tadpole condi-
tions.
Fortunately, we have found such solutions in a class of super-

potentials which are quadratic in the fields so that most of the
tadpole cancellation conditions are satisfied trivially. We found
solutions for the remaining tadpole cancellation conditions. We
have found vacua with one flat direction T ≡ S = T1 = T2 = T3 =
U1 = U2 = U3 and with 3 flat directions T(1) ≡ U1 = U3 = T1 =
T3, T(2) ≡ S = U2 , T(3) ≡ T2.
Then, using the methods outlined in the present paper, we up-

lifted these flat directions and studied inflation in these models.
Just as in the models discussed in the present paper, the high en-
ergy scale parameters appearing in string theory and the heavy
masses do not affect the inflationary dynamics. The main conse-
quence of string theory inherited by the inflationarymodels is the
hyperbolic geometry of the moduli space, which helps to develop
𝛼-attractor inflationary models with the discrete set of possible
values 3𝛼 = 7, 6, 5, 4, 3, 2, 1.
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