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1 Introduction

The mathematical structure underlying superstring theory has received a tremendous and
well-deserved amount of attention. However, it is a fact that the real world is not supersym-
metric (at least at low energies), and there are reasons to believe that non-supersymmetric
string-theory models should possess as much mathematical elegance as their supersymmet-
ric counterparts. In fact, even if in these models there is no supersymmetry, it has been
proposed that there is often nevertheless a special pattern in the bosonic and fermionic
degrees of freedom, whereby the typical spectrum exhibits an increasing oscillation be-
tween net-bosonic and net-fermionic state degeneracies at each level. This has been called
‘misaligned supersymmetry’ [1–3] and it is the subject of the present work. More on the
mathematical side, in ref. [4] an intriguing connection to the Riemann hypothesis has been
proposed, thus pointing towards the presence of a rich and interesting structure behind
non-supersymmetric models.

The original formulation of misaligned supersymmetry involved only closed strings [1, 3].
Recently, we showed explicitly in ref. [5] that misaligned supersymmetry is also present in
certain open-string models with broken supersymmetry in which anti-Dp-branes are placed
on top of Op-planes (see also ref. [6] for related work involving open strings). This is
consistent with the conjecture in ref. [7], which states essentially that non-supersymmetric
theories without open strings, like the heterotic string theories, have to admit misaligned
supersymmetry, while, in theories with oriented and unoriented closed and open strings,
the open-string sector needs to have misaligned supersymmetry, but not necessarily the
closed string sector.

Misaligned supersymmetry has been used to provide a heuristic explanation as to how
string theory is capable of giving finite answers even without supersymmetry [1, 3]. A
given non-supersymmetric string theory consists of a number of different sectors, each with
their own infinite tower of physical states. The net boson-fermion degeneracies, ain in each
sector i, can be computed from the corresponding partition-function characters via a Hardy-
Ramanujan-Rademacher expansion, and they each grow exponentially as ain ∼ eC

√
n. De-

spite this exponential growth in the mismatch between bosons and fermions, Kutasov and
Seiberg showed in ref. [8] that in non-supersymmetric string theories that are modular
invariant and free of physical tachyons, an asymptotic supersymmetry is observed in the
high energy limit, leading to a cancellation between bosons and fermions. In ref. [1], Dienes
observed that non-supersymmetric closed oriented string theories actually exhibit the os-
cillating pattern of misaligned supersymmetry at all energy levels. So, bosons and fermions
never cancel at any given level but rather exhibit an oscillation between net bosonic and
net fermionic states. Dienes defined a sector-average net degeneracy 〈an〉, and proved that
for oriented closed string theories, the exponential growth in 〈an〉 is always slower than the
growth in the individual sectors, 〈an〉 ∼ eCeff

√
n with Ceff < C, provided modular invariance

and the absence of physical tachyons. He moreover conjectured that all exponential growth
in the sector-average cancelled, Ceff = 0, leaving only polynomial growth with n. These
remarkable cancellations in the sector-average degeneracies provided a way to characterise
the finiteness of non-supersymmetric string theories with misaligned spectra. In ref. [5],
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we extended the results to open-string setups and proved the conjecture that all exponen-
tial growth is cancelled in an appropriately defined sector-average. However, there was no
clear, direct relationship between the sector-average and finite physical observables.

The purpose of this paper is to make these heuristic arguments precise, and to provide
an explicit proof of how a misaligned spectrum ensures cancellations in physical quantities
and leads to finite results. This represents a physically intuitive explanation that should
parallel the usual argument based on modular invariance. In particular, we show that
the cancellations that take place in the heuristic sector-average net degeneracy also appear
directly in the one-loop cosmological constant. We find indeed that misalignment leads to a
cancellation of all exponential divergences in the latter, and we expect a similar structure
to emerge in the other quantum-corrected observables too. The modular properties of
the partition functions further lead leftover power-law divergences to cancel, leading to
an overall finite result. Although the role of modular invariance in ensuring finiteness is
well-known for closed string theories, we prove that similar cancellations also hold for open
strings. This might be considered surprising, as modular invariance is explicitly broken
by the worldsheet boundary. In this respect, we will argue that a remnant of the original
modular group is enough to explain finiteness in the open-string models we analyze.

As is well known, string theory provides a huge multitude of vacua, which makes it
hard to draw general conclusions. For this reason, in this article we restrict our analysis to
10-dimensional models, prior to any compactification. There are only a small number of
known 10-dimensional consistent superstring models [9]. Of course, there are the five su-
persymmetric and anomaly-free consistent theories: type IIA and type IIB theories, which
are closed-string theories with N10 = 2 supersymmetries, heterotic E8 × E8- and SO(32)-
theories, that are also closed-string theories but with N10 = 1 supersymmetry, and type I
SO(32)-theory, which involves both closed and open strings and has N10 = 1 supersymme-
try. Moreover, there also exist three non-supersymmetric, tachyon-free theories:

• the heterotic SO(16)×SO(16)-theory [10, 11], with the eponymous gauge group;

• the Sugimoto model [12], with a gauge group USp(32);

• the type 0′B theory [13–15], with a gauge group SU(32).

A key difference of the Sugimoto model with the other non-supersymmetric models is the
presence of a gravitino in its spectrum. The absence of a Lagrangian mass term for the
gravitino is still compatible with supersymmetry breaking at the string scale, which leads
indeed to a non-linear realisation in the spacetime effective theory [16]. This is the simplest
instance of a scenario that goes by the name of ‘brane supersymmetry breaking’ [12, 16–
24]. While the heterotic SO(16)×SO(16)-theory and the Sugimoto model have their entire
spectrum in a standardly or misalignedly supersymmetric phase, and therefore do exhibit
misaligned supersymmetry, this is not the case for the type 0′B theory. The latter is some-
what special since it presents misaligned supersymmetry only in the open-string sector
(annulus and Möbius strip), whereas its closed-string sector does not present any sort of
supersymmetry whatsoever, containing only bosons. Nevertheless, the closed-string sector
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is not tachyonic and therefore it has no divergence in physical quantities like the cosmo-
logical constant. It turns out that the structure ensuring the absence of UV-divergences in
the latter can also be described in terms of a misaligned action of the orientifold symmetry
in the Klein bottle, which alternatively adds or removes states from the halved torus at
integer and semi-integer levels. The result is a closed string spectrum which, albeit being
purely bosonic, exhibits an oscillating growth of the number of states with the energy.

This paper is organized as follows. In section 2 we briefly review the core ideas behind
misaligned supersymmetry. In section 3, we review the relationship between the one-loop
cosmological constant and the partition function in string theory. In section 4, we show
the details of how misaligned supersymmetry guarantees a finite one-loop cosmological
constant for open strings and then in section 5 we discuss the same topic for closed strings.
In section 6, we provide an interpretation of open-string supertraces. In section 7, we
comment on the presence of misaligned supersymmetry in the known 10-dimensional non-
supersymmetric theories. We summarize the main results of the article in section 8. After
this, appendix A reviews useful properties of special functions appearing in misaligned
supersymmetry and appendix B contains additional computational details.

2 Misaligned supersymmetry: a review

Misaligned supersymmetry [1–3] is an idea describing string-theory models that are not
supersymmetric, and therefore lack a one-to-one matching between bosonic and fermionic
number of states at each energy level. Instead, these theories have an exponentially growing
oscillation between the net number of bosons and fermions at each mass level. A simple
example realising this property is made up by an anti-Dp-brane on top of an Op-plane [5],
whose spectrum is sketched in figure 1. The proposal of refs. [1–3] is that misaligned
theories nonetheless have observables that undergo boson-fermion cancellations because all
of the infinitely-many contributions average out.

In order to assess whether a misaligned theory actually exhibits boson-fermion cancel-
lations that keep physical observables finite (at least at one-loop), one needs control over
the number of degrees of freedom at each mass level. In string theory, such a number is
counted by the coefficients appearing in the q-expansion of the partition function, where
q = e2πiτ , with τ = τ1 + iτ2 being the modular parameter of the theory. As discussed by
refs. [5, 25], these coefficients are particularly simple to determine if the partition function
can be expressed as a quotient of Dedekind η-functions, since they can be obtained via
a simple Hardy-Ramanujan-Rademacher expansion. After a review of such expansion in
subsection 2.1, in subsection 2.2 we review the idea of sector-average, which is the tool
commonly used in the literature to discuss the presence of misaligned supersymmetry.

2.1 Hardy-Ramanujan-Rademacher expansions for simple Dedekind
η-quotients

In this subsection, we summarize the Hardy-Ramanujan-Rademacher expansions for the
net boson-fermion state degeneracies in partition functions composed of a class of Dedekind
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−20

20

(−1)Fn log (gn) bosons
fermions

Figure 1. The net number of bosonic and fermionic physical degrees of freedom for the lightest
energy levels for an anti-Dp-brane on top of an Op-plane, defined as (−1)Fngn = Nb(n) − Nf (n),
with Nb(n) and Nf (n) being the number of bosonic and fermionic states at the n-th mass level. Each
point corresponds to states with mass M2

n = n/α′, with n = 0, 1, . . . , 20. Filled points correspond
to states that are invariant under the orientifold projection, whereas empty dots represent states
that would be there if the anti-Dp-brane was at a smooth point, with a supersymmetric matching
in the bosonic and fermionic degrees of freedom.

η-quotients, as discussed in ref. [25]. Let {δm}∞m=1 be a sequence of integers δm ∈ Z with
only finitely many non-vanishing ones. Let Z = Z(τ) then be the Dedekind η-quotient

Z(τ) =
∞∏
m=1

[
η(mτ)

]δm = q−n0
∞∑
n=0

anq
n, (2.1)

where an represent the Laurent coefficients in the expansion in terms of the variable q =
e2πiτ . Let the constants n0, c1 and the functions c2 = c2(α), c3 = c3(α) be defined as

n0 = − 1
24

∞∑
m=1

mδm, (2.2a)

c1 = −1
2

∞∑
m=1

δm, (2.2b)

c2(α) =
∞∏
m=1

[gcd(m,α)
m

] δm
2
, (2.2c)

c3(α) = −
∞∑
m=1

δm
[gcd(m,α)]2

m
. (2.2d)

Then, given the Dedekind sum

s(k, α) =
α−1∑
n=1

n

α

(
kn

α
−
⌊
kn

α

⌋
− 1

2

)
(2.3)

and the function
ϕ(k, α) = e−iπ

∑∞
m=1 δm s

(
mk

gcd (m,α) ,
α

gcd (m,α)

)
, (2.4)
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let the function Pα = Pα(n) be

Pα(n) =
∑

0≤k<α,
gcd (k,α)=1

e−2πin k
α ϕ(k, α). (2.5)

Finally, let the function G = G(α) be

G(α) = min
m∈N: δm 6=0

{ [gcd (m,α)]2
m

}
− c3(α)

24 . (2.6)

With these definitions in hand, the main result of ref. [25] is the following theorem.
Theorem. If c1 > 0 and G(α) is a non-negative function, then, for an arbitrary positive

integer n that satisfies n > n0, the coefficients an in the series expansion of the function
Z(τ) can be written as

an =
∑
α∈N,

c3(α)>0

2π c2(α) [c3(α)]
c1+1

2

[24(n− n0)]
c1+1

2

Pα(n)
α

Ic1+1

[(2π2

3α2 c3(α)(n− n0)
) 1

2
]
, (2.7)

where Iδ(z) is the modified Bessel function of the first kind.
The theorem of eq. (2.7) can be used to compute exactly the net degeneracies for

physically interesting partition functions. For example, for an anti-Dp-brane on an Op-
plane, after a few manipulations detailed in ref. [5], one arrives at the exponentially
growing oscillations pictured in figure 1. Note that, because of the asymptotic expan-
sion Iν(x) x∼∞' ex/(2πx) 1

2 , one observes in eq. (2.7) the leading Hagedorn behaviour and,
moreover, each decreasing value c3(α)/α2 represents a successively subleading exponential
correction to the coefficient an.

The series coefficients an in eq. (2.7) involve the n-dependent, periodic functions Pα(n).
For a fixed α, the Pα(n) can only take up to α different values, which we denote as Pα(β),
with β = 1, . . . , α. One can prove the following lemma [5].

Lemma. Given the integers m, α ∈ N, n ∈ N0 and for γ = gcd(α,m), if @ p ∈ N : m =
pα, i.e., if m is not a multiple of α and if α > 1, then

α
γ
−1∑

β=0
Pα(n+mβ) = 0. (2.8)

This lemma has been used in ref. [5] to prove the presence of misaligned supersymmetry
at all orders in the Hardy-Ramanujan-Rademacher expansion, as we will now review.

2.2 The sector-averaged 〈an〉

In misaligned string theories, one can use the Hardy-Ramanujan-Rademacher expansion
in eq. (2.7) to compute the physical state net-degeneracies in different sectors, ain, corre-
sponding to distinct discrete sets for n (for instance, in figure 1 for an anti-Dp-brane on
an Op-plane, one observes two sectors, n even and n odd corresponding to fermionic and
bosonic abundances, respectively). Each sector’s net-degeneracy grows as ain ∼ An−BeC

√
n
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Φ1(n)

−Φ1(n)

Φ3(n; 1) = Φ3(n; 3)

Φ3(n; 2)

0 10 20 n

−20

20

(−1)Fn log (gn)

P3(1) = −1
P3(2) = +2
P3(3) = −1

Figure 2. A schematic plot representing the spectrum of an anti-Dp-brane on top of an Op-plane,
including the terms at leading order, for α = 1, and the (magnified) corrections at next-to-leading
order, for α = 3. One has to consider bosons (odd n) and fermions (even n) separately. Then,
levels n = 1 mod 3 have corrections multiplied by the value P3(1) = −1, levels n = 2 mod 3 have
corrections multiplied by the value P3(2) = +2 and levels n = 3 mod 3 have corrections multiplied
by the value P3(3) = −1. For each different value the function Pα(n) can take, one can individuate
a different interpolating function, both for bosons and for fermions. Evidently, the average of such
interpolating functions vanishes, in both the bosonic sector and in the fermionic sector, separately.

for large n, with C the inverse Hagedorn temperature and A and B constants. How-
ever, by analytically continuing the net degeneracies ain to continuous n, introducing the
envelope functions Φi(n) for n ∈ R, a modular-invariant sector-average net-degeneracy,
〈an〉 ≡

∑
i Φi(n), can be defined, in which the exponentially growing net boson-fermion

oscillations lead to cancellations [1]. Indeed, ref. [1] showed that for oriented closed-string
theories that are modular invariant and tachyon-free, the α = 1 leading order exponen-
tial growth in the Hardy-Ramanujan-Rademacher expansion cancels in the sector-average,
leaving a slower growth 〈an〉 ∼ An−BeCeff

√
n for large n, with Ceff < C. It was moreover

conjectured that Ceff = 0. In ref. [5], we extended these results to open-string models.
Moreover, by extending the notion of sector-average to include an average over subleading
contributions at each order α > 1 in the Hardy-Ramanujan-Rademacher expansion, and
using lemma (2.8), we proved that Ceff = 0. This is illustrated in figure 2 for the case of
an anti-Dp-brane on an Op-plane.

Although these cancellations associated with misaligned supersymmetry seem remark-
able, the physical significance of the envelope functions and sector-averages introduced
in refs. [1, 5] was not clear. The purpose of this paper is to demonstrate that the same
cancellations occur in physically meaningful quantities, like the one-loop vacuum energy.
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2.3 Misaligned supersymmetry and modular transformations

A fundamental result of ref. [1] is the proof that, for closed strings, a sufficient condition for
the envelope functions to average out to zero, at leading order in the Hardy-Ramanujan-
Rademacher sum, is the modular invariance of the partition function Z = Z(τ, τ). This
conclusion holds whenever the theory with a modular-invariant partition function is non-
supersymmetric and free of physical tachyons.

In ref. [5], for a class of theories, the cancellation of the envelope functions in the
sector-average has been shown at all orders in the Hardy-Ramanujan-Rademacher sum.
This applies to both closed and open strings. Whilst the role of modular invariance in
closed strings at one-loop is clear,1 its appearance for one-loop open-string diagrams may be
puzzling. It is therefore worthwhile to spend a few words to recall how open-string partition
functions are covariant under some subgroup of the full modular group, and moreover, how
the well-known open-closed string duality and electric-magnetic Dp/D(6 − p) duality can
be expressed in terms of modular transformations.

Open strings and modular symmetry.
Open-string models descend from left-right symmetric closed-string models after a world-
sheet (parity) orbifolding that mixes left and right movers, together with a further target-
space Z2-involution for orientifolds (see ref. [26] for a review). In addition to these open-
string descendants, further open sectors can be introduced via probe D-branes. A conse-
quence of the orbifolding is that the modular invariance of the closed string at one-loop is
broken. However, as we will now discuss, a remnant symmetry survives.

For open-string models, which of course include also closed-string sectors, four world-
sheet surfaces contribute to the one-loop vacuum amplitude; the torus (closed orientable),
the Klein bottle (closed non-orientable), the annulus (open orientable) and the Möbius
strip (open non-orientable). The latter three surfaces can each be described in terms of
closed orientable doubly-covering tori [27, 28] (see also e.g. refs. [26, 29]), with the complex
structures parametrised as usual by a value τ ∈ C. The original fundamental polygons P
are then recovered by quotienting the double-covering tori under associated anti-conformal
involutions I(z). A convenient set of parametrizations is as follows [29–31]:

PK = [0, 1]× [0, iτ2] : IK(z) = 1− z + iτ2, τ = 2iτ2; (2.9a)

PA =
[
0, 1

2

]
×
[
0, iτ2

2

]
: IA(z) = −z = 1− z, τ = iτ2

2 ; (2.9b)

PM =
[1

2 , 1
]
×
[
0, iτ2

2

]
: IM(z) = 1

2 − z + iτ2
2 τ = iτ2

2 + 1
2 . (2.9c)

For a sketch of the fundamental polygons together with their double-covering tori, see
figure 3.

In particular, note that in order to obtain the fundamental polygons from the double-
covering tori via the involutions, the complex structure of the double-tori are fixed to be

1In fact, we will see below that misaligned cancellations for closed strings take place piece-wise within
modular non-invariant terms, similar to the open string cancellations, though in the closed string case the
non-invariant terms add up to make a fully modular partition function.
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0 1

iτ2

2iτ2

Klein bottle

0 1
2

1

iτ2
2

annulus

0 1
2

1

iτ2
2

Möbius strip

Figure 3. A sketch of the fundamental polygons (magenta) and of the double-covering tori (cyan)
for the Klein bottle, the annulus and the Möbius strip in the complex plane. Any point z ∈ C
can be mapped into the fundamental polygon by means of a combination of the corresponding
antiholomorphic involution and of the lattice symmetry of the associated double-covering torus.

2iτ2 for the Klein bottle; iτ2/2 for the annulus; and 1/2 + iτ2/2 for the Möbius strip.
Each double-torus thus has only one modular parameter and its surviving modular group
is trivial. The Klein-bottle, annulus and Möbius-strip amplitudes are naturally expressed
in terms of these moduli of the respective double-tori, with the domain of integration
extending along the whole positive imaginary axis of the τ -plane (see e.g. refs. [32, 33]).
It is interesting to note that these observations have been generalised to higher genus-g
surfaces. For g > 1, the modular transformations that preserve the involution form a
non-trivial subgroup of Sp(2g,Z), called the “relative modular group” [34].

Although the orbifolding to reach the descendant genus-one surfaces breaks the modu-
lar invariance of the covering closed oriented tori, modular transformations still have some
role to play. Indeed, a modular transformation underlies the famous open-closed string du-
ality. Let us focus on the Möbius strip, as this will be the main diagram of interest in what
follows. The Möbius strip can itself be interpreted as a dual tree-level closed-string dia-
gram, with the different channels being related by the modular P-transformation [26, 35],
with P = TST 2S. Moreover, the interaction between a probe Dp-brane and an Op-plane,
given by the Möbius-strip amplitude, is related to a D(6− p)-brane/O(6− p)-plane inter-
action by an S-transformation (see e.g. ref. [5]). As we will see, in the end our open-string
partition functions will carry an covariance under congruence subgroups of PSL2(Z).
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As an example, the Dedekind η-quotients set up in eqs. (2.1) and (2.2), are covariant
forms of weight k = −c1 under the congruence PSL2(Z)-subgroup with a generically non-
trivial multiplier system [25]

Γ0(n) =
{(

a b

c d

)
∈ PSL2(Z) : c = 0 modn

}
, (2.10)

where n = lcm {m ∈ N : δm 6= 0}. Therefore, the amplitude for the anti-Dp-brane/Op-
plane case, which takes the form M(τ) = −8 η16(τ)η16(4τ)/η40(2τ), is covariant, with
weight k = −4, under the subgroup Γ0(4). Note moreover that, although the S-transforma-
tion is not part of Γ0(n) for n 6= 1, the Dedekind quotientM(τ) = ∏

m[η(mτ)]δm transforms
under the S-transformation asM(−1/τ) = (−iτ)−c1(∏mm

−δm/2)∏m[η(τ/m)]δm , where we
may still interpret −c1 as a ‘weight’. In the case of a Dp-brane on an Op-plane, this S-
transformation realises the electric-magnetic duality between Dp- and D(6−p)-branes, and
will be discussed further around eq. (6.10).

3 One-loop cosmological constant in string theory

Since the cosmological constant is the main observable we are interested in, in this section
we review its definition in perturbative string theory at one loop and point out the aspects
relevant for our analysis.

Let us consider a D-dimensional quantum field theory consisting of a tower of string
states, labelled by a discrete index n, with mass levels M2

n. We denote the number of
bosonic states minus the number of fermionic states at level n by (−1)Fngn with gn ≥ 0
and we call the gn the net state degeneracies and the Fn the fermion parities. Given an
arbitrary mass scale µ2, in terms of a Schwinger proper time parameter t, the one-loop
cosmological constant reads [2, 3]

Λ = −1
2

(
µ2

8π2

)D/2∑
n

(−1)Fngn
∫ ∞

0

dt
t1+D/2 e−2πM2

nt/µ
2
. (3.1)

In this expression, the region t ∼ ∞ leads to divergences only in the presence of tachyons,
whereas the region t ∼ 0+ is instead generally singular unless cancellations occur due to
the structure of the net physical degeneracies.

We discuss this expression for open and closed strings in subsections 3.1 and 3.2 below.
We will always refer to Dp-branes when considering open strings.

3.1 One-loop cosmological constant for open strings

For open strings, the mass spectrum in both the NS- and R-sectors follows the pattern
M2
n = n/α′ for each mass level n ∈ N0, so it is convenient to set µ = 1/

√
α′. Moreover,

for the field theory of a Dp-brane one must consider a spacetime of dimension D = p+ 1.
Therefore, eq. (3.1) can be rearranged as

ΛDp = − 1
2π TDp

∫ ∞
0

dt
2t MDp(t), (3.2)
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where the tension of the Dp-brane is TDp = 2π/lp+1
s , with the string length being ls =

2π
√
α′, and where we have singled out the partition function

MDp(t) = 1
(2t) 1

2 (p+1)

∑
n

(−1)Fngn e−2πtn. (3.3)

In eq. (3.2), the cosmological constant is UV-divergent unless cancellations occur such
that the partition function in eq. (3.3) approaches the origin t = 0 at least as a power tε,
with ε > 0. This is the case for supersymmetric theories, where the partition function is
identically zero, due to the level-by-level exact matching in the number of fermions and
bosons, i.e. gn ≡ 0 for all n ∈ N0. As heuristically discussed in ref. [5], a similar mechanism
is at work in a wider class of theories, where an overall fermion-boson cancellation takes
place amongst different levels. This feature is called misaligned supersymmetry and in the
next section we are going to show that it is a sufficient condition to have cancellations in
the physical contributions to the cosmological constant.

3.2 One-loop cosmological constant for closed strings

For closed strings, as the mass spectrum typically follows the pattern M2
n = 4n/α′ for each

mass level n ∈ N0/2, which is provided by two identical contributions from the right- and
left-moving sectors m2

n = m2
n = 2n/α′, it is convenient to set µ = 2/

√
α′. Defining a com-

plex variable τ = τ1 + iτ2, with τ2 = t/2, the right-handside in eq. (3.1) can accommodate
a further integration

∫ 1/2
−1/2 dτ1 = 1. More generally, any term amn e2πiτ1(m−n)e−2πτ2(m+n)

can be added, with m 6= n, leaving the result invariant, since the τ1-integration trivially
means

∫ 1/2
−1/2 dτ1 e2πiτ1k = δk0. Note that this always works since invariance under T-

transformations requires m− n ∈ Z in string-theory constructions. In particular, defining
the variable q = e2πiτ , we can express the cosmological constant as

ΛD = − 1
8π

1
κ2
Dl

2
s

∫
S

d2τ

τ2
2
Z(τ, τ), (3.4)

with the D-dimensional gravitational coupling constant being 2κ2
D = lD−2

s /2π, where the
partition function, defined as

Z(τ, τ) = τ
1−D/2
2

∑
m

∑
n

amn q
mqn, (3.5)

is integrated over the domain S =
{
τ ∈ C : Re τ ∈ [−1/2, 1/2] ∧ τ2 ∈ [0,+∞[

}
together

with the PSL2(Z)-invariant measure d2τ/τ2
2 . Note the identification ann ≡ (−1)Fngn. The

one-loop cosmological constant in eq. (3.4) is free of IR-divergences in the region τ2 ∼ ∞ if
the theory is free of physical tachyons. On the other hand, it is UV-divergent in the region
τ2 ∼ 0+. Thanks to modular invariance, this divergence can be removed by restricting the
domain of integration to non-redundant configurations.

Indeed, because Z = Z(τ, τ) represents the one-loop partition function of a closed-
string theory, it is invariant under the modular group PSL2(Z), and the UV-divergence
can be interpreted as a gauge divergence. In fact, a manifestly finite result can be obtained
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by factorising out the redundant volume, restricting the integration to the fundamental
domain

F =
{
τ ∈ C : τ1 ∈ [−1/2, 1/2] ∧ τ2 ∈ [0,+∞[∧ |τ | ∈ [1,+∞[

}
. (3.6)

Explicitly, therefore, the regularised version of the cosmological constant (3.4) reads

Λ̃D = − 1
8π

1
κ2
Dl

2
s

∫
F

d2τ

τ2
2
Z(τ, τ). (3.7)

This is an integral definition. Because the singular region corresponding to τ2 = 0 has been
removed, the UV-divergence is absent. In the absence of physical tachyons, this one-loop
cosmological constant is finite.

One may also express the regularised one-loop cosmological constant in a different way,
by means of the so-called Kutasov-Seiberg identity [8]. Before stating it, we will review a
heuristic argument to motivate it. One can account for the gauge divergence in the volume
of integration by defining a regulated domain Sσ =

{
τ ∈ C : Re τ ∈ [−1/2, 1/2] ∧ Im τ ∈

[σ−1,+∞[
}
, with σ � 1, and establishing the relationship

1
volPSL2(Z) F

∫
F

d2τ

τ2
2
Z(τ, τ) σ∼∞' 1

volPSL2(Z) Sσ

∫
Sσ

d2τ

τ2
2
Z(τ, τ), (3.8)

where the volumes of Sσ and F with respect to the modular-invariant measure are

volPSL2(Z) Sσ ≡
∫
Sσ

d2τ

τ2
2

=
∫ 1/2

−1/2
dτ1

∫ ∞
σ−1

dτ2
τ2

2
= σ, (3.9a)

volPSL2(Z) F ≡
∫
F

d2τ

τ2
2

=
∫ ∞
√

3/2

dτ2
τ2

2
− 2

∫ 1
√

3/2

dτ2
τ2

2

√
1− τ2

2 = π

3 . (3.9b)

In the Sσ-integration, the partition function effectively receives contributions only from the
physical states. Defining the function g(τ2), which depends only on the net-degeneracies
of physical states,

g(τ2) =
∫ 1/2

−1/2
dτ1 Z(τ1, τ2) = τ

1−D/2
2

∑
n

ann e
−4πτ2n, (3.10)

one can write

lim
σ→∞

[ 1
volPSL2(Z) Sσ

∫
Sσ

d2τ

τ2
2
Z(τ, τ)

]
= lim

σ→∞
1
σ

∫ ∞
σ−1

dτ2
τ2

2
g(τ2) = lim

σ→∞
g(σ−1), (3.11)

assuming the integral to be dominated by the region around τ2 ∼ σ−1 ∼ 0+ and ignoring
the τ2-dependence of g(τ2). Putting these expressions together, one arrives at the Kutasov-
Seiberg identity

Λ̃D = − 1
24

1
κ2
Dl

2
s

lim
σ→∞

g(σ−1). (3.12)

This equivalence matches the integral (3.7) with a limit definition. It is proven in physical
terms in ref. [8], and it assumes the absence of physical tachyons. In the mathematical
literature, this identity can be shown via a generalisation of the Rankin-Selberg-Zagier
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technique that lies in unfolding the F-domain integration into an S-domain integration
by taking advantage of the modular invariance of the partition function [4, 36–39], as
recently reviewed by ref. [40]. Similarly to the case of open strings, one might worry that
the cosmological constant in eq. (3.12) could diverge when approaching the UV-region
as σ → ∞. However, we know that such a divergence must be absent due to modular
invariance. We can then interpret the finiteness of eq. (3.12) as a consequence of some sort
of fermion-boson cancellation, in accordance with misaligned supersymmetry.

In particular, expanding g(τ2) in terms of gn, it is possible to infer the small-τ2 be-
haviour ∑

n

(−1)Fngn e−4πτ2n τ2∼0+
' −24κ2

Dl
2
s Λ̃D τD/2−1

2 . (3.13)

This expression motivates the definition of the regularized supertraces. Some of these are
finite as a consequence of the identity in eq. (3.13) and of the finiteness of the regularized
cosmological constant [2]. For open strings one can formally define supertraces [5], but they
are not manifestly related to the cosmological constant in an obvious way. An interpretation
is proposed in section 6.

4 Open-string misaligned supersymmetry and finiteness

For simplicity, we start by considering open strings, which is the simplest case. According
to eq. (3.2), the key fact to make sure there are no UV-divergences is that the partition
function

MDp(t) = 1
(2t)

p+1
2
M(it) (4.1)

approaches the region t ∼ 0+ like t or slower, which guarantees a finite cosmological
constant in the absence of tachyons. This is the main topic of this section. The focus
will be on the term M(it) = M(τ = iτ2), with t ≡ τ2, which is typically expressed as a
pure Dedekind η-quotient, with the power-law prefactor being the only difference between
branes of different spacetime dimensions. We will show that the misaligned symmetry
in the associated state degeneracies leads to cancellation of exponential divergences in
the one-loop partition function. A remnant modular symmetry moreover ensures that all
polynomial divergences cancel, leading to a finite final result.

4.1 Setup

For definiteness, we focus on the class of tachyon-free open-string theories where the par-
tition function M = M(τ) is not amenable to the special Hardy-Ramanujan-Rademacher
expansion discussed by ref. [25] and section 2.1, but the negative of the shifted-argument
function M̃(τ) = M(τ+1/2) is.2 An instance of this scenario is that of an anti-Dp-brane on
top of an Op-plane as discussed in detail in ref. [5]. Extensions to other more complicated
scenarios are immediate.

2Generically there can also be an overall numerical positive prefactor that leads to trivial modifications
of the equations below. It is immediate to include this rescaling in our results.
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If the partition function M(τ) has the Laurent expansion

M(τ) =
∑
n∈N0

(−1)Fngn qn, (4.2)

then the negative of the shifted-argument function M̃(τ) reads

− M̃(τ) =
∑
n∈N0

(−1)n+1(−1)Fngn qn ≡
∑
n∈N0

anq
n. (4.3)

Employing the Hardy-Ramanujan-Rademacher expansion of ref. [25], in the notation re-
viewed in section 2, the coefficients an are found to be

an = (−1)n+1(−1)Fngn =
∑
α∈Γ

2π c2(α) [c3(α)]
c1+1

2

[24n]
c1+1

2

Pα(n)
α

Ic1+1

[(2π2

3α2 c3(α)n
) 1

2
]
, (4.4)

where we have defined the set Γ = {α ∈ N : c3(α) > 0} for brevity. Note that the terms in
eq. (4.4) are only valid for n > 0, since eq. (2.7) does not cover the case corresponding to
n = 0. Taking all this into account, we restrict now our attention to the case τ = iτ2 and
the function M(iτ2) can be expressed in the form

g(τ2) ≡M(iτ2) = (−1)F0g0 +
∑
α∈Γ

α∑
β=1

Pα(β)gα(τ2;β). (4.5)

In this expression, the terms Pα(β), with β = 1, . . . , α, are the α different values that the
periodic function Pα(n) can assume. Moreover, we denote by Nα(β) = {n ∈ N : n =
βmodα} the sets of integers which satisfy Pα(n) = Pα(β) for all n ∈ Nα(β). We have also
defined the functions

gα(τ2;β) =
∑

n∈Nα(β)
(−1)n+1 2πc2(α)[c3(α)]

c1+1
2

α[24n]
c1+1

2
Ic1+1

[(2π2

3α2 c3(α)n
) 1

2
]
e−2πτ2n. (4.6)

Up to this point, we have reorganized the sum over n ∈ N into α sums over n ∈ Nα(β),
for β = 1, . . . , α. For each of these sums, the quantity Pα(β) factorizes out, due to its
periodicity.

It is actually convenient to make a further distinction, namely to distinguish the con-
tributions for which (−1)n+1 is positive from those for which it is negative. In ref. [5],
the open string cases of misaligned supersymmetry that were studied had only odd val-
ues of α contribute. This is also assumed here. Then, one can introduce the two sets
N±α (β) = {n ∈ Nα(β) : (−1)n+1 = ±1} and express the full function g(τ2) as

g(τ2) = (−1)F0g0 +
∑
α∈Γ

α∑
β=1

Pα(β)
(
g+
α (τ2;β)− g−α (τ2;β)), (4.7)

where the two definite-sign functions g±α (τ2;β) have been defined as

g±α (τ2;β) =
∑

n∈N±α (β)

2πc2(α)[c3(α)]
c1+1

2

α[24n]
c1+1

2
Ic1+1

[(2π2

3α2 c3(α)n
) 1

2
]
e−2πτ2n. (4.8)
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Notice that for the functions g±α (τ2;β) the superscript sign does not relate to their effective
contribution to g(τ2) being positive or negative: this also depends on the sign of the overall
term Pα(β) they are multiplied with. In the rest of this section, eqs. (4.7) and (4.8) will
constitute the fundamental tool to discuss misaligned supersymmetry.

4.2 Cancellation of exponential divergences

In order to discuss the behaviour of the function g(τ2) in eq. (4.7), one can take advantage
of the Taylor expansion of the modified Bessel function of the first kind, i.e. [41]

Iδ(z) =
(
z

2

)δ ∞∑
k=0

(
z2

4

)k
k! (δ + k)! , (4.9)

where it is understood that δ is a positive integer. Thanks to this, setting δ = c1 + 1, the
functions in eq. (4.8) can be expressed as

g±α (τ2;β) = 2πc2(α)αc1
∑

n∈N±α (β)

∞∑
k=0

[
π

12
c3(α)
α2

]c1+k+1 (2πn)k
k! (c1 + k + 1)! e−2πτ2n. (4.10)

This expression makes it possible to study the region τ2 ∼ 0+ in quite a fruitful way. In
what follows, we will consider a finite τ2 > 0 in order to carry out the calculations with the
infinite sums. Then, we will assess the behaviour of the functions of interest in the limit
τ2 → 0+.

Because the elements in the infinite summations over k and n are positive-definite, the
order of the two summations in eq. (4.10) can be interchanged. The sum for n ∈ N±α (β) can
be rearranged by observing that its elements can be written as n = m±α (β) mod γα, where
m±α (β) is an integer depending on α and β and γα = lcm (2, α) = 2α, with α assumed to
be odd. Note that m±α (β) is by definition the smallest element in the set N±α (β), and it is
generally not corresponding to β. For example, m+

α (β) is the smallest positive odd (since
(−1)n+1 ≡ 1) integer equal to βmodα. Since we assume α to be odd, if β is odd too we
have m+

α (β) = β, while if β is even m+
α (β) = β + α, which is odd. A similar reasoning

applies to m−α (β). In general we can write

m±α (β) = β + (1± (−1)β)
2 α. (4.11)

This will be helpful later on, but for now it can be left unexpanded. With this parametrisa-
tion, the summation over n can be performed in terms of the geometric series, resulting in3

3To evaluate the series by writing (2πτ2)ke−2πτ2n = (−1)k(d/dτ2)k e−2πτ2n, one must invert the order
of the differentiation with respect to k and of the summation over n. For a series of functions fn(x), if
their series f(x) =

∑
n∈N fn(x) is convergent and if the series of their derivatives

∑
n∈N f

′
n(x) is uniformly

convergent, then the identity holds f ′(x) =
∑

n∈N f
′
n(x) (see eq. (0.307) in ref. [42]). For the case at hand,

the series is not convergent in the region τ2 ∼ 0+, as shown by the term 1/τ2, so one should remove this
and consider the leftover sum. This is indeed our working assumption. An alternative way to compute the
required series rigorously is to make use of the results for the arithmetico-geometric sum (see eq. (0.113) in
ref. [42]).
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∑
n∈N±α (β)

(2πn)k e−2πτ2n =
∞∑
l=0

[2π(m±α (β) + lγα)]k e−2πτ2[m±α (β)+lγα]

= (−1)k dk
dτk2

∞∑
l=0

e−2πτ2[m±α (β)+lγα] (4.12)

= (−1)k dk
dτk2

[
e2π[γα−m±α (β)]τ2

e2πγατ2 − 1

]
.

In this way, to finally explore the region where τ2 ∼ 0+, it is sufficient to Taylor-expand
the leftover order-k derivative. From the expansion

e2π[γα−m±α (β)]τ2
e2πγατ2 − 1 = 1

2πγα
1
τ2

+ γα − 2m±α (β)
2γα

+O(τ2; 0), (4.13)

(we refer the reader to the appendix A for the notation) we learn that the function to be
differentiated k times at leading order is 1/(2πγατ2). It should be noted that this is the
only β-independent term; the leftover power series depends on β via the terms m±α (β). In
more detail, one obtains

(−1)k dk
dτk2

[
e2π[γα−m±α (β)]τ2

e2πγατ2 − 1

]
= 1

2πγα
k!
τ1+k

2
+
∞∑
l=0

fl(k,m±α (β))τ l2, (4.14)

where fl(k,m±α (β)) are constants not depending on τ2 that will be discussed later on (see
eq. (B.2) for their explicit expression). Therefore, we have been able to perform the sum
over n in eq. (4.8). Thanks to the expansion of eq. (4.14), the original function g±α (τ2;β)
appearing in eq. (4.8), and rearranged into a different form in eq. (4.10), can now be
written as

g±α (τ2;β) = αc1

τ2

c2(α)
γα

[
π

12
c3(α)
α2

]c1+1 ∞∑
k=0

[
π
12
c3(α)
α2

1
τ2

]k
(c1 + k + 1)! + ∆g±α (τ2;β), (4.15)

where, according to eq. (4.14), the remainder is

∆g±α (τ2;β) = 2πc2(α)αc1
∞∑
k=0

∞∑
l=0

[
π
12
c3(α)
α2

]c1+k+1

k! (c1 + k + 1)!fl(k,m
±
α (β))τ l2. (4.16)

So, eq. (4.15) contains a singular part as τ2 ∼ 0+ and a power series remainder. As
anticipated above, the key difference among these two terms consists in the fact that only
the power series has a dependence on β. In the singular part, one can recognize the leftover
sum to be

∞∑
k=0

[
π
12
c3(α)
α2

1
τ2

]k
(c1 + k + 1)! = e

π
12
c3(α)
α2

1
τ2[

π
12
c3(α)
α2

1
τ2

]c1+1

[
1− 1

c1!Γ
[
c1 + 1, π12

c3(α)
α2

1
τ2

]]
, (4.17)
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where Γ(ν, z) is the incomplete Γ-function. In the region τ2 ∼ 0+, the incomplete Γ-function
can also be expanded to write

∞∑
k=0

[
π
12
c3(α)
α2

1
τ2

]k
(c1 + 1 + k)! = e

π
12
c3(α)
α2

1
τ2[

π
12
c3(α)
α2

1
τ2

]c1+1 −
1
c1!

τ2[
π
12
c3(α)
α2

] +O(τ2; 0)2. (4.18)

One can eventually conclude that the function g±α (τ2;β) around the point τ2 ∼ 0+ reads

g±α (τ2;β) τ2∼0+
' c2(α)

γα
αc1 τ c12 e

π
12
c3(α)
α2

1
τ2 + r(α, τ2) + ∆g±α (τ2;β), (4.19)

where the exponential term comes from the leading divergent term in eq. (4.18), with an
associated finite remainder

r(α, τ2) = − 1
c1!

c2(α)
γα

αc1
(
π

12
c3(α)
α2

)c1
+O(τ2; 0), (4.20)

and ∆g±α (τ2;β) is the polynomial term defined in eq. (4.16). The functions in eq. (4.19)
obviously diverge for τ2 → 0 sector by sector due to the exponential of 1/τ2. However, the
complete physical information relating to the one-loop cosmological constant is contained
in the sum over sectors in the function g(τ2) defined in eq. (4.7), and in this sum the
singular part is automatically cancelled out by the fermion-boson oscillation appearing
therein at order α = 1 and by the Hardy-Ramanujan-Rademacher-expansion property∑α
β=1 Pα(β) = 0 for higher orders α > 1. This is true for all the contributions coming from

the term scaling as 1/τk+1
2 in the expansion of eq. (4.14), i.e. not only for the leading term

in eq. (4.19) but also for the remainder in eq. (4.20), since they all are independent of β.
Finally, since all the β-independent terms appearing in g±α (τ2;β) cancel, eq. (4.7) can be
simply written as

g(τ2) = (−1)F0g0 +
∑
α∈Γ

α∑
β=1

Pα(β)
[
∆g+

α (τ2;β)−∆g−α (τ2;β)
]
. (4.21)

Remarkably, this is just a constant term plus a power series difference. Therefore, we proved
that all of the exponentially divergent contributions to the one-loop cosmological constant
coming from the first part of eq. (4.15) (namely those contained in eq. (4.17)) cancel
out when summing over all of the sectors of the theory, leaving at most a polynomial
dependence on τ2. The only thing that matters to reach this result is that all of these
singular contributions to g±α (τ2;β) are identical for a given α (i.e. they are independent
of β) and therefore cancel out when summing over the sectors labelled by β and/or when
taking into account the difference between positive and negative terms.

To summarise, we have shown how the exponential divergences appearing in the open-
string one-loop cosmological constant eq. (3.2) cancel, thanks to the misaligned supersym-
metry in the spectrum of state degeneracies. This result follows the cancellations found in
the sector-averages defined in refs. [1, 5]. To compute the sector-averages, it was necessary
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to define sector degeneracies an(α) for discrete towers n at each order α in the Hardy-
Ramanujan-Rademacher-expansion. Further, at each order α, different subsectors labelled
by β = 1, . . . , α were introduced, whose degeneracies could be extrapolated to the envelope
functions Φβ(n;α), defined for continuous n ∈ R+. The envelope functions could then be
summed into the sector-average, and the cancellations observed. Although the cancella-
tions seemed remarkable, the physical meaning of the (sub)sectors, envelope functions and
sector-average was unclear. We have shown above that the same cancellations actually
occur directly in the partition function M(iτ2) = g(τ2) and thus in physical quantities like
the one-loop cosmological constant.

4.3 Cancellation of polynomial divergences

In order to claim finiteness of the one-loop cosmological constant, the leftover polynomial
terms in eq. (4.21) need to be studied carefully as τ2 ∼ 0+. Indeed, although we have proven
that exponential divergences are absent, the integral defining the cosmological constant may
still be singular as a power-law. In general one can write

g(τ2) = (−1)F0g0 + ∆g+(τ2)−∆g−(τ2) = (−1)F0g0 +
∞∑
l=0

blτ
l
2, (4.22)

where the τ2-dependence comes from the difference of two simple power series

∆g±(τ2) =
∑
α∈Γ

α∑
β=1

Pα(β)∆g±α (τ2;β) =
∞∑
l=0

b±l τ
l
2, (4.23)

with the definition bl = b+l −b
−
l . On the other hand, the constant term is g(0) = (−1)F0g0+

b0. A few manipulations, summarised in appendix B, allow one to determine an explicit
expression for the coefficients of the power series ∆g±(τ2). In fact, one can show that the
power-series coefficients read

bl = π

l!
∑
α∈Γ

αl−1c2(α)
(2π)c1−l+1

∞∑
k=0

[
π2

6
c3(α)
α

]c1+k+1

k! (c1 + k + 1)!

α−1∑
r=0

(−1)k+rPα(−r)Ek+l

(
r

α

)
. (4.24)

This represents the coefficient of the order-l term in the power series ∆g(τ2) for a generic
open-string model where only odd values of α appear in the Hardy-Ramanujan-Rademacher
expansion. Although it is difficult to further reduce the expression (4.24) directly,4 we will
now do so indirectly by using some simple observations on the Dedekind η-function due to
Zagier [43].

Let the partition function be a Dedekind η-quotient

M(τ) = ξ
∞∏
m=1

[
η(mτ)

]δm , (4.25)

4The complication in eq. (4.24) lies in the form of the Kloosterman-like term Pα(−r), which is hard to
deal with analytically.
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for some constant ξ. By exploiting the modular properties of the string partition function,
it is possible to determine the behaviour of this function on the imaginary axis τ1 = 0 as
τ2 ∼ 0+. In fact, under the generating S-transformation S(τ) = −1/τ of the modular group
PSL2(Z), the Dedekind η-function transforms as η(−1/τ) =

√
−iτ η(τ), so, restricting to

the imaginary axis τ = iτ2, one can thus write

η

( i
τ2

)
= √τ2 η(iτ2). (4.26)

The Dedekind η-function can be written as η(it) = e−πt12
∏∞
m=1(1− e−2πmt), which gives

ln η(it) = −πt12 +
∞∑
m=1

ln (1− e−2πmt) = −πt12 +O(e−2πt;∞). (4.27)

So, combining the S-transformation relation and the limit as 1/τ2 ∼ ∞, one concludes
that, in the region where τ2 ∼ 0+, the Dedekind η-function behaves as (see appendix A.1
for more details)

η(iτ2) τ2∼0+
' τ

− 1
2

2 e−
π

12τ2 . (4.28)

Therefore, by defining the coefficients

s =
∞∏
m=1

mδm , c1 = −1
2

∞∑
m=1

δm, c4 = −
∞∑
m=1

δm
m
, (4.29)

one can simply write the asymptotic behaviour of the open-string partition function as

M(iτ2) τ2∼0+
' ξ s−

1
2 τ c12 e

πc4
12τ2 . (4.30)

In the absence of an exponential divergence, i.e. for c4 = 0, which we assume to be true in
subsection 4.2 and verify for all the explicit examples we consider, this provides a direct
way to compute the power-series coefficients (4.24) appearing in the expansion of eq. (4.22).
Assuming c1 to be an integer, which is also verified in our examples, eq. (4.30) indicates
that the constant term and the first c1 − 1 coefficients are zero and that the first non-zero
one is bc1 , i.e.

(−1)F0g0 + b0 = b1 = · · · = bc1−1 = 0, (4.31a)

bc1 = ξ s−
1
2 . (4.31b)

Note that not only can we easily find this leading polynomial term, but we can actually
also show that all the coefficients bl except bc1 are zero. Indeed, when using eq. (4.27) in
eq. (4.28), we find

η(iτ2) = τ
− 1

2
2 e−

π
12τ2

[
1 +O

(
e−

2π
τ2 , 0

)]
. (4.32)

This then means that eq. (4.30) is only corrected by terms that are exponentially suppressed
compared to the leading polynomial term. Therefore, we find that bc1τ c12 is the only non-
zero polynomial term. From the discussion in section 3.1, we see then that the cosmological
constant of a Dp-brane theory is not divergent if c1 > (p+ 1)/2.
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It is useful to illustrate these general results with an explicit example. For an anti-Dp-
brane on top of an Op-plane, the p-independent part of the partition function is

− 1
8 M(τ) = η16(τ) η16(4τ)

η40(2τ) . (4.33)

For this, one finds s = 1/256, c1 = 4, and the exponential disappears as c4 = 0, which
means

g(τ2) = M(iτ2) = −128τ4
2 +O

(
e−

2π
τ2 , 0

)
. (4.34)

So, we find the expected cancellation of divergent terms and we can explicitly determine
the full power-law behaviour, finding only one non-zero term. Note that, for the open
string there is no analogue of the Kutasov-Seiberg formula and, in order to determine the
cosmological constant, we have to do the integral in eq. (3.2). The above cancellations and
power-law behaviour ensure the finiteness of the integral for small τ2, whilst the absence
of physical tachyons ensures finitess for large τ2. One can compute the finite value of the
integral numerically [5].

To summarise, whilst we showed explicitly how misaligned state degeneracies lead to a
cancellation of exponential divergences in the open string one-loop cosmological constant,
we used modular invariance to prove that the polynomial divergences cancel. Although
it has not been possible to show it directly, modular invariance must constrain the state
degeneracies in such a way as to ensure these cancellations, leading to the mathematical
identities bl = 0 for l 6= c1, with bl defined in eq. (4.24). It is also interesting to note that,
whilst the behaviour in eq. (4.30) has been explained as a consequence of the PSL2(Z)-
properties of the Dedekind η-function, it can also be inferred from simpler considerations
in mathematical analysis that are in fact independent of modular invariance [43]. Details
about both methods are in appendix A.1.

5 Closed-string misaligned supersymmetry and finiteness

To describe misaligned supersymmetry for closed strings, the fundamental object to discuss
is the function g(τ2) defined in eq. (3.10). The Kutasov-Seiberg identity (3.12), directly
relates the function g(τ2) to the one-loop cosmological constant and the latter is finite
so long as g(τ2) approaches the region τ2 ∼ 0+ as a constant. The discussion is more
complicated compared to the case of open strings since the partition function is the product
of a right- and a left-moving sector, but the analysis follows the same pattern. For this
reason, we will mainly outline the relevant steps and differences with respect to the analysis
in the previous section.

5.1 Setup

Let the closed-string partition function be of the form Z(τ, τ) = τ
1−D/2
2 R(τ)L(τ), where

the terms R(τ) = q−n
R
0
∑∞
n=0 a

R
n q

n and L(τ) = q−n
L
0
∑∞
n=0 a

L
nq

n are the right- and left-
moving contributions, respectively, with q = e2πiτ . More generally, the closed-string par-
tition function can be the sum of several such terms, i.e. Z(τ, τ) = τ

1−D/2
2

∑
σ Zσ(τ, τ),
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with Zσ(τ, τ) = Rσ(τ)Lσ(τ), in which case our discussion of exponential divergences below
may be applied to each term Zσ(τ, τ) individually. This is the case for example for the
heterotic SO(16)×SO(16)-theory in ref. [5]. It should be pointed out that it is conceivable
that there also may be models in which the cancellations happen between different terms,
and this would require an adaptation of the procedure discussed below. Also notice that
for simplicity here we consider the case where n ∈ N0; terms with n ∈ N0/2 can be studied
similarly after a rescaling of the variable τ ′ = 2τ . The constant terms nR0 and nL0 are
assumed to be integer, which can also follow from a rescaling. Then, one can write

g(τ2) = τ
1−D/2
2

∞∑
n=−n0

(−1)Fngn e−4πτ2n, (5.1)

where, defining n0 = min (nR0 , nL0 ), the net physical degeneracies are

(−1)Fngn = aRn+nR0
aLn+nL0

. (5.2)

If both the functions R(τ) and L(τ) are Dedekind η-quotients that are amenable to the
special Hardy-Ramanujan-Rademacher-expansion analysed in ref. [25], then it is possi-
ble to express the Laurent coefficients aR

n+nR0
and aL

n+nL0
as simplified Hardy-Ramanujan-

Rademacher sums, for n > 0. In fact, it is possible to write

g(τ2) = τ
1−D/2
2

[
h0(τ2) + h(τ2)

]
, (5.3)

where h0(τ2) represents the sum restricted to coefficients not given by the Hardy-
Ramanujan-Rademacher-expansion and h(τ2) stands for the remaining infinite series, i.e.

h0(τ2) =
n0∑
n=0

(−1)F−ng−n e4πτ2n, (5.4a)

h(τ2) =
∑
n∈N

∑
α∈ΓR

∑
β∈ΓL

PRα (n+ nR0 )PLβ (n+ nL0 )fRn+nR0
(α)fLn+nL0 (β) e−4πτ2n. (5.4b)

Here, we have defined the two sets containing the contributions to the coefficients, i.e.
ΓR = {α ∈ N : cR3 (α) > 0} and ΓL = {β ∈ N : cL3 (β) > 0}, and the functions fRn (α) and
fLn (β) contain the rest of the Hardy-Ramanujan-Rademacher-expansions factors aside from
the P -functions. We can see from eq. (3.7) that we find a diverging cosmological constant
from the term h0(τ2) if and only if n0 6= 0. In this case we have physical tachyons in
the spectrum and therefore no stable vacuum around which we can study the theory. For
such cases the Kutasov-Seiberg identity in eq. (3.12) is not applicable and we will therefore
restrict ourselves to theories with n0 = 0, which implies h0(τ2) = (−1)F0g0.

Because of the periodicity of the functions PRα (n) and PLβ (n), given the index ` =
1, . . . , lcm (α, β), with the dependence on α and β on its range being left implicit for
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brevity, we can rearrange the infinite sum over n in h(τ2) by writing5

h(τ2) =
∑
α∈ΓR

∑
β∈ΓL

lcm(α,β)∑
`=1

PRα (`+ nR0 )PLβ (`+ nL0 )hαβ(τ2; `), (5.5)

where we have defined the functions

hαβ(τ2; `) =
∑

n∈Nαβ(`)
fRn+nR0

(α)fLn+nL0 (β) e−4πτ2n, (5.6)

with the sets Nαβ(`) = {n ∈ N : n = `mod lcm(α, β)} being defined in such a way that
the condition PRα (n+nR0 )PLβ (n+nL0 ) = PRα (`+nR0 )PLβ (`+nL0 ) holds for all n ∈ Nαβ(`). In
a straightforward calculation, analogous to the open-string one discussed above, one can
show that if the functions hαβ(τ2; `) have a divergent exponential term which is independent
of `, then the vanishing of the pure P -function combinations in one sector is enough to
conclude that such exponential divergences cancel out. This is discussed below.

5.2 Cancellation of exponential divergences

By making use of the explicit form of the functions fRn (α) and fLn (β), and thanks to the
Taylor expansion of the Bessel function, one can write the functions in eq. (5.6) as

hαβ(τ2; `) = 4π2cR2 (α)cL2 (β)
α−c

R
1 β−c

L
1

∞∑
a=0

∞∑
b=0

[
π

12
cR3 (α)
α2

]cR1+a+1[ π
12
cL3 (β)
β2

]cL1+b+1

×
∑

n∈Nαβ(`)

(2πn)a+b e−4πτ2n

a!b!(cR1 +a+ 1)!(cL1 +b+ 1)!
.

(5.7)

Defining the step γαβ = lcm (α, β), according with the definition of the sets Nαβ(`) above
we can write ∑

n∈Nαβ(`)
(2πn)a+b e−4πτ2n =

∞∑
k=0

[2π(`+ kγαβ)]a+b e−4πτ2(`+kγαβ)

=
(
−1

2
d

dτ2

)a+b e4π(γαβ−`)τ2

e4πγαβτ2 − 1 .

(5.8)

So the Bernoulli polynomials appear again, enabling one to write in general(
−1

2
d

dτ2

)r e4π(γαβ−`)τ2

e4πγαβτ2 − 1 =

= 1
4πγαβτ2

r!
(2τ2)r +

∞∑
m=0

Bm+r+1

(
`

γαβ

)(−1)m+1(2πγαβ)m+r(2τ2)m
(m+ r + 1)m! ,

(5.9)

5When summing over n, we have to be careful in exploiting properly the periodicity of the P -functions.
The correct strategy is explained in ref. [5]. We split the sum over n into ` = 1, . . . , lcm(α, β) contri-
butions, in front of which the P -functions factorize. Then, within each of these contributions we have
to sum the fn(α) over all of the possible values of n associated to the fixed `, namely those for which
n = `mod lcm(α, β). This is needed since we want to sum over all n such that PRα (n + nR0 )P̄Lβ (n + nL0 ) =
PRα (` + nR0 )P̄Lβ (` + nL0 ), for a fixed `. In fact, the product PRα (n + nR0 )P̄Lβ (n + nL0 ) is unchanged by an
lcm(α, β)-step.
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which eventually means∑
n∈Nαβ(`)

(2πn)a+b e−4πτ2n =

= 1
4πγαβτ2

(a+ b)!
(2τ2)a+b +

∞∑
m=0

Bm+a+b+1

(
`

γαβ

)(−1)m+1(2πγαβ)a+b+m(2τ2)m
(m+ a+ b+ 1)m! .

(5.10)

This formally looks the same as for open strings, as expected. In particular, the first term
could again give rise to exponential divergences, once it is resummed into an incomplete Γ-
function. However, as in the open-string case, this divergent term is manifestly independent
of ` and therefore, in the full expression of h(τ2) in eq. (5.5), one can immediately make
use of this to perform the sum over such `. For instance, for β > α, this sum gives

lcm(α,β)∑
`=1

PRα (`+ nR0 )PLβ (`+ nL0 ) =
α∑

kα=1

β
gcd(α,β)−1∑
m=0

PRα (kα +mα+ nR0 )PLβ (kα +mα+ nL0 )

=
α∑

kα=1
PRα (kα + nR0 )


β

gcd(α,β)−1∑
m=0

P
L
β (kα +mα+ nL0 )


= 0, (5.11)

implying the absence of exponential divergences, as for the open-string case. Notice that
we used the periodicity of the PRα -function in the right-moving sector and observed the
vanishing of the square bracket due to eq. (2.8) applied to the PLβ -function in the left-moving
sector.6 For α > β, of course, we can simply exchange them above. So, for an exhaustive
analysis, we are left with α = β, in which case one unfortunately cannot generally show
a cancellation. However, if for example only odd αs and even βs appear in the right- and
left-moving sectors, respectively, or viceversa, this case is obviously not encountered. This
situation is realised for instance in the heterotic SO(16)×SO(16)-theory [5]. For other
theories, the cancellations may also happen to take place between different terms in the
partition function (i.e. different right-left products cancelling their contributions against
each other). For the time being we defer a completely general analysis.

To summarise, we have proven that misaligned supersymmetry in the state degen-
eracies leads to a cancellation of the exponential divergence in the one-loop cosmological
constant of closed-string theories, if the condition α 6= β holds for all right-left products of
Kloosterman-like sums. The mathematical structure is exactly the same as for open strings,
with minor technical complications only induced by the product of right- and left-moving
sectors. The cancellations are also the same as those occurring in the sector-average that
is defined in terms of envelope functions, discussed in detail in ref. [5] using the explicit
example of the heterotic SO(16)×SO(16)-theory.

5.3 Cancellation of polynomial divergences

Having cancelled the exponential divergences, the remaining contributions to the one-loop
cosmological constant are encoded in the function g(τ2) = τ

1−D/2
2

[
(−1)F0g0 +h(τ2)

]
, where

6Recall that PRα (n) has period α, while PLβ (n) has period β.
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now the leftover part of the function h(τ2) reads

h(τ2) =
∞∑
m=0

bmτ
m
2 , (5.12)

with coefficients

bm =
∑
α∈ΓR

∑
β∈ΓL

lcm(α,β)∑
`=1

PRα (`+ nR0 )PLβ (`+ nL0 )

× 4π2cR2 (α)cL2 (β)
α−c

R
1 β−c

L
1

∞∑
a=0

∞∑
b=0

[
π

12
cR3 (α)
α2

]cR1 +a+1[ π
12
cL3 (β)
β2

]cL1 +b+1

× (2πγαβ)a+b

a! b! (cR1 + a+ 1)! (cL1 + b+ 1)!
Bm+a+b+1

(
`

γαβ

) (−1)m+1(4πγαβ)m
(m+ a+ b+ 1)m! .

(5.13)

The term (−1)F0g0 can be computed straightforwardly, whilst the coefficients bm are very
difficult to study analytically.

All in all, this is again reminiscent of the open-string result for g(τ2) in eq. (4.22).
In that case, we were able to deduce which coefficients bl were non-vanishing by using
properties of the Dedekind η-quotient, thanks to Zagier. For the closed-string case, g(τ2) is
not simply a Dedekind η-quotient, but the integral over dτ1 of the product of a Dedekind
η-quotient and the complex conjugate of another Dedekind η-quotient, so the open-string
arguments do not follow. To make progress, we have to be careful about the fact that the
partition function may be composed of several terms Zσ(τ, τ) = Rσ(τ)Lσ(τ), each modular
non-invariant but combining to a modular invariant sum. In this case, the function to be
eventually considered is of the form g(τ2) = τ

1−D/2
2

[
(−1)F0g0 + ∑

σ h
σ(τ2)

]
, where each

function hσ(τ2) = ∑∞
m=0 b

σ
mτ

m
2 is a power series as outlined in eqs. (5.12), (5.13).

Having restored modular invariance, the one-loop cosmological constant is of course
finite and the limit of g(τ2) is finite too, according to the Kutasov-Seiberg identity in
eq. (3.12). In fact, in the derivation of the latter, an asymptotic behaviour analogous to
the open-string one in eq. (4.30) can be established by considering the Mellin transform
I(s) of g(τ2)/τ2. Following refs. [4, 40, 43], one can show the relationship

I(s) ≡
∫ ∞

0
dτ2 τ

s−1
2

g(τ2)
τ2

=
∫
F

d2τ

τ2
2
E(τ, τ ; s)Z(τ, τ), (5.14)

where E(τ, τ ; s) is the non-holomorphic Eisenstein series. One can then invert the Mellin
transform to write

g(τ2)
τ2

τ2∼0+
∼

∑
i

riτ
−si
2 , (5.15)

where si ∈ {s0, sa} are the poles of the Mellin transform and ri are the corresponding
residues. On the real axis, s0 = 1 is the only pole. In the rest of the complex plane,
these poles can be seen to be related to the non-trivial zeros of the Riemann ζ-function
as sa = ρa/2, where ρa = 1/2 ± iγa, for γa ∈ R, assuming the Riemann hypothesis to be
correct. In the function g(τ2), the leading term for τ2 ∼ 0+ is clearly given by the real pole
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s0 = 1, implying the finite limit limτ2→0+ g(τ2) = r0. The associated residue can be seen
to be r0 = 3I/π, where I =

∫
F d2τ Z(τ, τ)/τ2

2 . So, in analogy with the open-string result
in eq. (4.31), the conclusion is that

(−1)F0g0 +
∑
σ

bσ0 =
∑
σ

bσ1 = · · · =
∑
σ

bσD/2−2 = 0, (5.16a)∑
σ

bσD/2−1 = r0. (5.16b)

It is again useful to consider a concrete example. For the SO(16)×SO(16)-theory,
discussed in more detail in subsection 7.1, one term in the partition function is of the form

Z(τ, τ) = τ
1−D/2
2 R(τ)L(τ) = τ

1−D/2
2

16 η8(2τ)
η16(τ)

η̄8(τ̄)
η̄16(2τ̄) . (5.17)

The holomorphic and anti-holomorphic terms can be expanded as Hardy-Ramanujan-Rade-
macher sums with odd α and even β, respectively. This means the cancellation of the
exponentially divergent term takes place as discussed in subsection 5.2. Nevertheless, even
with this explicit example, performing the sums in eq. (5.13) is hard due to the several
terms involved, and characterising the behaviour near τ2 ∼ 0+ of g(τ2) is hard due to the
τ1-integration. To prove the absence of polynomial divergences, one should consider the
full modular invariant partition function and apply the Kutasov-Seiberg identity.

6 Open-string supertraces

Besides the one-loop cosmological constant, supertraces also encode interesting information
about the spectrum and finiteness of a given string theory model. In supersymmetric
setups, the supertraces StrM2β = ∑

n(−1)FngnM2β
n vanish due to the perfect matching

between bosonic and fermionic degrees of freedom at each mass level. As soon as the
matching is perturbed, though, for instance by a (spontaneous) breaking of supersymmetry
in the vacuum, the supertraces are no longer zero, but generically they are of the same
order of magnitude as the mass splittings.

In string-based models, there is an infinite number of degrees of freedom, and there-
fore any deviation from supersymmetry implies that standard supertraces are potentially
infinite. In order to tackle this issue, ref. [2] proposes the definition of supertraces of
the form

StrM2β = lim
t→0

∞∑
n=0

(−1)FngnM2β
n e−2πtM2

n/µ
2
. (6.1)

These reduce to the standard supertraces for a finite number of degrees of freedom, but
they are also well-defined quantities for theories with an infinite number of fields, since the
exponential of the mass operator plays the role of a natural cut-off. In view of eq. (6.1),
using the Kutasov-Seiberg identity eq. (3.12), one can express the one-loop cosmological
constant of a closed string theory in even D non-compact dimensions as [2]

Λ̃D = 1
κ2
Dl

2
s

(−4π)D2
96π(D/2− 1)! Str

(
α′M2

4

)D
2 −1

, (6.2)
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with all the supertraces of smaller powers of M2 being zero, i.e. StrM0 = StrM2 = · · · =
StrMD−4 = 0, where µ = 2/α′. This is interpreted as a generalisation of the QFT-
expression for the one-loop cosmological constant, which is a sum of terms depending on
the usual supertraces (see e.g. refs. [44, 45]).

Since Λ̃D is finite in theories exhibiting misaligned supersymmetry, when eq. (6.2)
holds misaligned supersymmetry is a sufficient condition to guarantee the finiteness of the
supertraces. However, for open strings there is no analogue to the relationship eq. (6.2),
as there is no Kutasov-Seiberg identity that expresses the one-loop cosmological constant
in terms of a simple limit. In this section, we show that an expression like eq. (6.1) also
makes sense for open strings and how to interpret it.

In accordance with the definitions of eqs. (3.2), (3.3) and (4.5), the one-loop cosmo-
logical constant for the theory of a Dp-brane can be written as

ΛDp = −TDp
2π

∫ ∞
0

dt
(2t)

p+3
2
g(t), (6.3)

with
g(t) =

∞∑
n=0

(−1)Fngn e−2πtn. (6.4)

For tachyon-free theories, the integral can diverge at t = 0, whereas the limit t ∼ ∞ is
finite thanks to the exponential suppression factor e−2πtn, for n > 0, and the power-law
damping t−(p+3)/2, for n = 0. For masses M2

n = n/α′, setting µ2 = 1/α′, the supertraces
defined in eq. (6.1) read

StrM2β = lim
t→0

∞∑
n=0

(−1)Fngn
(
n

α′

)β
e−2πtn = lim

t→0

[(
− 1

2πα′
d
dt

)β
g(t)

]
. (6.5)

Because we showed that the exponential divergences of the form e1/t cancel out and the
function g(t) is just a series of non-negative powers of t (see eqs. (4.21) and (4.22)), the
function g(t) can be expanded in a Taylor series around the point t = 0 as

g(t) =
∞∑
β=0

tβ

β!

[( d
dt

)β
g(t)

]
t=0

=
∞∑
β=0

tβ

β! (−2πα′)β StrM2β . (6.6)

Since the integration over t ∈ [ε,∞[ gives a finite result for an arbitrary ε ∈ R+, the
potentially divergent term in the cosmological constant corresponds to the part integrated
over t ∈ [0, ε[, and it can be written as

δΛDp = −TDp
2π

∫ ε

0

dt
(2t)

p+3
2
g(t) = −TDp

2π

∫ ε

0

dt
(2t)

p+3
2

∞∑
β=0

tβ

β! (−2πα′)β StrM2β . (6.7)

For any given β, the integral is convergent if β > (p + 1)/2, which means that for the
cosmological constant to be convergent one needs to have

StrM2β = 0, for β = 0, 1, . . . , p+ 1
2 . (6.8)
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For an anti-Dp-brane on top of an Op-plane, the cosmological constant can be seen to be
finite up to p = 6, which requires all supertraces to vanish up to β = 7/2. Indeed, the first
non-zero supertrace has been argued to be for β = 4, namely StrM8 [5]. Comparing the
Taylor expansion of g(t) with the power series defined in eq. (4.22), we see that

bl + (−1)F0g0 δl0 = (−1)l
l! (2πα′)l StrM2l. (6.9)

So, for an anti-Dp-brane/Op-plane, our proof above that bl + (−1)F0g0 δl0 = 0 for l 6= 4,
implies in fact that the only non-vanishing supertrace is StrM8 = 4!b4/(2πα′)4. This
resembles the closed-string result in 10-dimensional flat space, where the first non-zero
supertrace is likewise StrM8.

One may wonder whether the region near t ∼ ∞ can provide additional information
about the supertraces. This is not the case due to the peculiar properties of string-theory
one-loop partition functions under modular transformations. In fact, well-behaved changes
under S-transformations typically relate the regions around t ∼ 0 and t ∼ ∞. For instance,
the function M = M(τ) describing the excitations of the anti-Dp-brane/Op-plane theory,
i.e. M(τ) = −8η16(τ) η16(4τ)/η40(2τ), transforms as

M(τ) S→M

(
−1
τ

)
= 24

(−iτ)4M

(
τ

4

)
. (6.10)

This is manifested in a duality relating Dp- and D(6− p)-branes, for p < 7, as is apparent
from the identity

− TDp
2π

∫ ∞
0

dt
(2t)

p+3
2
M(it) = −TDp

2π

∫ ∞
0

dy
(2y)

(6−p)+3
2

M(iy) (6.11)

obtained by a simple change of variable t = 1/(4y), which means

lpsΛDp/Op = l6−ps ΛD(6−p)/O(6−p). (6.12)

Such a condition suggests that the information available in the region near t ∼ ∞
is equivalent to the information available around t ∼ 0. This is of course true in closed
string theories, and the same holds for open string theories if one assumes that the function
M(τ) transforms as M(i/τ2) = s−1/2τ−c12 M(iτ2/l), for some positive constant l. Then the
leftover integration over t ∈ [ε,∞[ reads

δ′Λ = −TDp
2π

∫ ∞
ε

dt
(2t)

p+3
2
g(t) = −TDp

2π
s−

1
2

2c1

(
l

4

)p+1
2 −c1∫ 1

lε

0

dy g(y)
(2y)2+c1− p+3

2
. (6.13)

The potential divergence now comes from y ∼ 0. Taking again advantage of the expansion
of the function g(t), one infers that the integral is finite so long as β > (2c1− p− 1)/2. So,
an IR-UV duality generally remains in the presence of an S-transformation.
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7 Ten-dimensional non-supersymmetric strings and misaligned super-
symmetry

In this section, we review the known consistent, tachyon-free 10-dimensional non-supersym-
metric models, i.e. the heterotic SO(16)×SO(16)-theory, the Sugimoto USp(32)-model and
the type 0′B SU(32)-theory, outlined in section 1, and we argue that indeed they all exhibit
the defining features of misaligned supersymmetry in part of their spectra.7 This supports
the proposal that misaligned supersymmetry is a generic feature of the non-supersymmetric
string landscape.

We will make use of the so(8)-characters O8, V8, C8 and S8, given in terms of Jacobi
ϑ-functions as

O8 = ϑ4
3 + ϑ4

4
2η4 , (7.1)

V8 = ϑ4
3 − ϑ4

4
2η4 , (7.2)

S8 = ϑ4
2 + ϑ4

1
2η4 , (7.3)

C8 = ϑ4
2 − ϑ4

1
2η4 . (7.4)

We refer the reader to e.g. appendix A of ref. [5] for more details on their properties.

7.1 Heterotic SO(16)×SO(16)-theory

The heterotic SO(16)×SO(16)-theory has been discussed in detail in ref. [5] and it has
a misaligned spectrum. This is a 10-dimensional model whose misalignment has to be
studied in relation to a closed-string partition function involving the product of right- and
left-moving sectors. Its partition function can be described in terms of the two functions8

µ1(τ) = 2S8
η8 (τ) = ϑ4

2(τ)
η12(τ) = 16 η8(2τ)

η16(τ) , (7.5)

ν1(τ) = ϑ8
3(τ)ϑ8

4(τ)
η24(τ) = η8(τ)

η16(2τ) . (7.6)

In both cases, one finds c1 = 4 and G(α) ≥ 0, therefore the particular Hardy-Ramanujan-
Rademacher-expansion discussed by ref. [25] applies and provides complete knowledge over
all of the subleading contributions. In particular, for any number ω ∈ N0 we find for µ1
that n0 = 0 and c3(2ω + 2) = 0, which means that only odd α appear in the Hardy-
Ramanujan-Rademacher-sum in eq. (2.7) and for those we have c2(2ω + 1) = 1/16 and
c3(2ω + 1) = 12, while for ν1 one finds n0 = 1 and c3(2ω + 1) = 0 so that only even α

contribute with c2(2ω + 2) = 1 and c3(2ω + 2) = 24.
7We refer the reader to ref. [46] for a recent review on non-supersymmetric strings and to ref. [47] for

an analysis of the interactions between branes in them.
8These functions are denoted as R1 and L1, respectively, in ref. [5].
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To be precise, not all terms in the partition function are necessarily of the form of
eq. (7.5) or eq. (7.6), but, apart from the rescaling τ ′ = 2τ that only amounts to index
labelling, they differ at most due to 1/2-shifts as

µ̃1(τ) = R1(τ + 1/2) = 16 η16(τ)η16(4τ)
η40(2τ) , (7.7)

ν̃1(τ) = L1(τ + 1/2) = − η8(2τ)
η8(τ)η8(4τ) . (7.8)

One finds c1 = 4 and G(α) ≥ 0 for ν̃1, with n0 = 1 and c3(4ω + 2) = 0, and the relevant
values in the Hardy-Ramanujan-Rademacher-expansion in eq. (2.7) are c2(2ω + 1) = 16,
c2(4ω+ 4) = 1, c3(2ω+ 1) = 6 and c3(4ω+ 4) = 24. On the other hand, the function µ̃1 is
not amenable to the Hardy-Ramanujan-Rademacher-expansion of ref. [25], but this does
not constitute a problem, since for counting the state degeneracies we can just work with
µ1 and keep track of the signs produced by the shift.

7.2 Sugimoto USp(32)-model

To introduce the Sugimoto model, it is worthwhile to review briefly its appearance in string
theory. Following ref. [26], for a type IIB theory modded out by an orientifold projection
and with n+ D9-branes and n− anti-D9-branes, the Klein-bottle, annulus and Möbius-strip
direct-channel amplitudes read9

K = 1
2

∫ ∞
0

dτ2
τ6

2

V8 − S8
η8 [2iτ2], (7.9a)

A = 1
2

∫ ∞
0

dτ2
τ6

2

(n2
+ + n2

−)(V8 − S8) + 2n+n−(O8 − C8)
η8

[ iτ2
2

]
, (7.9b)

M = −1
2

∫ ∞
0

dτ2
τ6

2

εNS(n+ + n−)V8 − εR(n+ − n−)S8
η8

[ iτ2
2 + 1

2

]
, (7.9c)

where εNS, εR = ±1 are factors depending on the symmetry property of the matrix rep-
resenting the orientifold action on the Chan-Paton indices, i.e. γTij = εγij , which in turn
restricts the gauge group for n branes from U(n) down to SO(n) and USp(n) for ε = 1
and ε = −1, respectively. Via the transformation ` = 1/(2τ2), ` = 2/τ2 and ` = 1/(2τ2),
respectively, the three transverse-channel amplitudes read

K̃ = 1
2 25

∫ ∞
0

d` V8 − S8
η8 [i`], (7.10a)

Ã = 1
2 2−5

∫ ∞
0

d` (n+ + n−)2V8 − (n+ − n−)2S8
η8 [i`], (7.10b)

M̃ = −1
2 2
∫ ∞

0
d` εNS(n+ + n−)V8 − εR(n+ − n−)S8

η8

[
i`+ 1

2

]
. (7.10c)

The lack of a cancellation among the constant terms proportional to V8 and S8 signals
the presence of an NSNS- and an RR-tadpole, respectively. An NSNS-tadpole signals the

9With respect to the notation in ref. [26], here the hat on the characters with shifted argument is
understood for simplicity.
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presence of a dilaton potential in the effective action proportional to eφ. This, in itself,
is believed not to be a fundamental inconsistency of the theory.10 On the other hand, an
RR-tadpole would indicate the violation of an equation of motion for an RR-form field,
and therefore is unacceptable. The absence of tadpoles is guaranteed by the conditions

25 − εNS(n+ + n−) = 0, (7.11a)
25 − εR(n+ − n−) = 0. (7.11b)

A simple solution to both constraints is given by n− = 0 and n+ = 32, with εNS = εR = 1.
This is type I string theory and it contains a stack of D9-branes generating the gauge
group SO(32). Solutions with both n+, n− 6= 0 suffer tachyonic instabilities, due to the
presence of O8 in the direct-channel. A consistent solution with no D9-branes, i.e. n+ = 0,
is represented by the Sugimoto model, which has εNS = εR = −1 and n− = 32. This theory
contains anti-D9-branes generating the gauge group USp(32) and it has an NSNS-tadpole,
but no RR-tadpole. Effectively, implementing the Jacobi identity V8 = S8, the Sugimoto
model is described by the Möbius-strip amplitude in eq. (7.9c), which can be written as

S = 1
2

∫ ∞
0

dt
t6
V8 + S8
η8

[
it+ 1

2

]
, (7.12)

after the change of variable τ2 = 2t. The integrand can be analysed by considering it as
the restriction to imaginary arguments of the function

S(τ) = 1
2
V8 + S8
η8

[
τ + 1

2

]
, (7.13)

where the power-term has been ignored. In fact, up to a constant factor, this is the function
µ̃1. Not unexpectedly, this has exactly the same structure as the open-string theory shown
to exhibit misaligned supersymmetry in ref. [5], i.e. an anti-Dp-brane sitting on top of an
Op-plane. This is precisely the kind of partition functions discussed in section 4, where
the partition function is not amenable to the Hardy-Ramanujan-Rademacher-expansion
of ref. [25], but the shifted-argument function is. This means that the exponential UV-
divergences cancel automatically as in eq. (4.21). In the classification of ref. [5], this is case
1.(a). Note, however, that there is an IR-divergence. Since the function above is µ̃1 as
defined in eq. (7.7), its small-τ2 expansion can be obtained from eqs. (4.33) and (4.34) and
starts with τ4

2 . So, the integral in eq. (7.12) is IR-divergent. This is due to the uncancelled
NSNS-tadpole in eq. (7.11a). For these codimension zero sources this tadpole leads to a
runaway potential for the dilaton and could be cancelled by a non-trivial dilaton profile,
see for example refs. [9, 21].

It is interesting to interpret the physical content of the Sugimoto USp(32)-model. The
closed-string sector is the same as the one of the type I theory, and it is supersymmetric.
The open-string sector presents misaligned supersymmetry, and this is reflected in the fact
that the gauge representations of bosons and fermions follow an alternating misaligned
pattern: even-mass level bosons are in symmetric representations and even-mass level

10See refs. [48, 49] for seminal work in this direction.
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fermions are in antisymmetric representations of USp(32), and vice versa at odd mass
levels. This can be seen easily by counting the degrees of freedom stemming from the
combination of the V8-terms in the annulus and in the Möbius strip to count the bosons,
and the S8-terms to count fermions [9].

7.3 Type 0′B strings

Combining the functions O8/(τ4
2 η

8), V8/(τ4
2 η

8), S8/(τ4
2 η

8) and C8/(τ4
2 η

8), i.e. the elements
that appear from the Hilbert traces of superstring oscillations, including (−1)F -projectors,
it is possible to identify further modular-invariant theories along with the type II ones.

Requiring the theory to have a single graviton and to always have bosons and fermions
to contribute with opposite signs, one finds that, along with the type IIA and type IIB
theories, two more exist. These are the so-called type 0A and type 0B theories [11, 15]
and, following again ref. [26], their partition functions read

Z0A(τ, τ) = 1
τ4

2

O8O8 + V8V 8 + S8C8 + C8S8
η8η8 [τ, τ ], (7.14)

Z0B(τ, τ) = 1
τ4

2

O8O8 + V8V 8 + S8S8 + C8C8
η8η8 [τ, τ ]. (7.15)

These theories do not have any spacetime fermions and therefore they are not supersym-
metric. Furthermore, they also both contain a tachyon, as is apparent due to the presence
of the term O8O8.

Unlike the case of type 0A, where chirality cannot be achieved, an orientifold projection
of the type 0B theory reveals the existence of a theory with a chiral spectrum hosting both
bosons and fermions. Actually, there exist three possible such projections with chiral spec-
tra [13, 14, 24, 50], and only one of them, remarkably, removes the tachyon. For this theory,
referred to as type 0′B theory [13], the open-descendant direct-channel amplitudes are

K = −1
2

∫ ∞
0

dτ2
τ6

2

O8 − V8 − S8 + C8
η8 [2iτ2], (7.16a)

A = −1
2

∫ ∞
0

dτ2
τ6

2

1
η8
[
−2 (nV nC + nOnS)O8 − 2(nV nS + nOnC)V8

+ 2(nOnV + nSnC)S8 + (n2
O + n2

V + n2
S + n2

C)C8
][ iτ2

2

]
, (7.16b)

M = 1
2

∫ ∞
0

dτ2
τ6

2

(nO − nV − nS + nC)C8
η8

[ iτ2
2 + 1

2

]
, (7.16c)

where nO, nV , nS and nC are non-negative integers that are fixed by consistency conditions,
which will shortly be discussed. In the transverse channel, these amplitudes read

K̃ = −1
2 26

∫ ∞
0

d` C8
η8 [i`], (7.17a)

Ã = 1
2 2−6

∫ ∞
0

d` 1
η8
[
−(nO + nV − nS − nC)2O8 + (nO + nV + nS + nC)2V8

+ (nO − nV + nS − nC)2S8 − (nO − nV − nS + nC)2C8
]
[i`], (7.17b)

M̃ = 1
2 2
∫ ∞

0
d` (nO − nV − nS + nC)C8

η8

[
i`+ 1

2

]
. (7.17c)
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Focusing on the consistency conditions stemming from eqs. (7.17a), (7.17b) and (7.17c),
one should set the coefficients of the O8- and S8-terms to zero, since they describe boson
and fermion contributions with the wrong sign: this pair of conditions reduces to nO = nC
and nV = nS . Further, tadpole cancellation requires that the ubiquitous C8-contributions
vanish, thus fixing nO = 32 + nV . Next, in the direct-channel, the closed-string tachyon in
the halved torus amplitude stemming from eq. (7.15) is removed by the Klein-bottle term
in eq. (7.16a). To additionally remove the open-string tachyon from the annulus term in
eq. (7.16b), in view of the tadpole constraints, one has to fix nV = nS = 0, which means
nO = nC = 32. Note that these conditions still leave a dilaton tadpole [13] from the
V8-term in the transverse-channel annulus.

The total one-loop amplitude, proportional to the one-loop cosmological constant, is

T /2 +K +A+M =

= +1
2

∫
F

d2τ

τ6
2

|O8|2+|V8|2+|S8|2+|C8|2

|η|16 [τ, τ ]− 1
2

∫ ∞
0

dτ2
τ6

2

O8−V8−S8+C8
η8 [2iτ2]

− 1
2

∫ ∞
0

dτ2
τ6

2

[
−2 · 322 V8 + 2 · 322C8

]
η8

[ iτ2
2

]
+ 1

2

∫ ∞
0

dτ2
τ6

2

2 · 32C8
η8

[ iτ2
2 + 1

2

]
.

(7.18)

One can now discuss the presence of misaligned supersymmetry within this amplitude.
Along with the functions µ1 and µ̃1 of eqs. (7.5) and (7.7) (recalling that S8 = C8), the
functions11

µ2(τ) = O8 + V8
η8 (τ) = ϑ4

3(τ)
η12(τ) = η8(τ)

η8(τ/2)η8(2τ) , (7.19)

µ3(τ) = O8 − V8
η8 (τ) = ϑ4

4(τ)
η12(τ) = η8(τ/2)

η16(τ) (7.20)

also appear. As in ref. [5], it is convenient to rescale the variable as τ ′ = 2τ , obtaining

µ′2(τ) = µ2(2τ) = η8(2τ)
η8(τ)η8(4τ) , (7.21)

µ′3(τ) = µ3(2τ) = η8(τ)
η16(2τ) . (7.22)

Both functions have c1 = 4 and G(α) ≥ 0. For µ′2 one finds n0 = 1, c2(2ω + 1) = 16,
c2(4ω + 4) = 1, c3(2ω + 1) = 6 and c3(4ω + 4) = 24, with c3(2 mod 4) = 0. For µ′3, one has
n0 = 1, c2(2ω) = 1 and c3(2ω) = 24, with c3(2ω + 1) = 0. One should notice the identity

ν1(τ) = µ′2(τ + 1/2) = µ′3(τ). (7.23)

To sum up, one has to study the amplitude of eq. (7.18) term by term, but luckily this is
a relatively easy task for most contributions. The open-string sector is analogous to the
Sugimoto USp(32)-theory one. On the other hand, a plot representing the total number of
closed-string states for the type 0′B theory is in figure 4.

11These functions are denoted as −R2 and R3, respectively, in ref. [5].
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0 5 10 n

10

(−1)Fn log (gn)

(+)-projected states
(−)-projected states

Figure 4. The net number of physical degrees of freedom for the lightest energy levels in the closed-
string sector of the type 0′B theory, defined as gn, at the n-th mass level. All states are bosonic,
and each point corresponds to states with mass M2

n = 4n/α′, with n = 0, 1/2, 1, . . . , 10. There is a
clear alternance between states receiving a positive contribution from both the torus and the Klein
bottle, i.e. undergoing the ‘(+)-projection’, and states receiving a positive contribution from the
torus and a negative contribution from the Klein bottle, i.e. undergoing the ‘(−)-projection’.

• The open-string sector exhibits misaligned supersymmetry. The annulus amplitude
happens to vanish by the Jacobi identity, so it represents a supersymmetric term.
On the other hand, the Möbius-strip term is proportional to µ̃1(τ), and therefore its
exponential divergences cancel out in the same way as for anti-Dp-branes/Op-planes
and the Sugimoto model. This is a manifestation of misaligned supersymmetry, and
it refers to the so-called case 1.(a) in ref. [5]. In fact, this open-string sector follows
exactly the same pattern as the Sugimoto USp(32)-model.

• In the closed-string sector, the spectrum is purely bosonic. Yet, we can interpret it
using the perspective of a misalignment. To start, one has to observe that the torus
amplitude has a tachyonic term which is only cancelled by the combination with the
Klein bottle. This eliminates IR-divergences. Then, UV-divergences can be seen to
be absent from the spectrum since the Klein bottle, described by the function µ′3,
undergoes the cancellations discussed in section 4. This corresponds to case 1.(b)
in ref. [5]. Although the physical interpretation of this fact cannot be phrased in
terms of bosonic and fermionic oscillations, the mathematics is the same and in fact
one can observe the cancellation of the divergences of the form e1/τ2 coming from
O8 and V8. The correct physical interpretation regards the projection undergone by
the bosons of the closed-string sector after the interplay of the torus with the Klein
bottle. The oscillation given by the function −µ′3(τ) = −q−1[1− 8q+ 36q2− 128q3 +
O(q, 0)4] implies an alternating pattern in the spectrum when combined with the
halved torus [9], as pictured in figure 4.
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The type 0′B theory illustrates several important points in the closed-string sector.
Bearing in mind that the tachyon in the half-torus is cancelled by the tachyon in the Klein
bottle, the remaining integration of the torus amplitude is finite since the UV-region is cut
off from the domain thanks to modular invariance. This specific result does not require
misaligned supersymmetry,12 but also it does not violate the claim that all non-tachyonic
modular-invariant theories are either supersymmetric or misalignedly-supersymmetric [1],
since in fact this specific amplitude technically contains a tachyon. The presence of the
tachyon also prevents one from making use of the Kutasov-Seiberg identity. The tachyon
is actually removed due to an orientifold projection, which brings in a Klein-bottle am-
plitude as well as (misalignedly-supersymmetric) open-string sectors. These observations
also appear in ref. [7]. An interesting analysis of the open strings appearing in the type
0′B theory is also in ref. [51].

8 Conclusions

In this article, we have investigated the mechanisms by which string theory is capable of
giving finite results in the absence of spacetime supersymmetry. Working at one-loop level
in perturbation theory, we have reviewed how this is possible due to modular invariance,
which plays a role even when broken by the worldsheet boundaries. Then, we have inter-
preted such a finiteness as a consequence of cancellations between bosonic and fermionic
terms in the full infinite tower of string states. Since the spectrum is not supersymmetric,
such cancellations have been named ‘misaligned’ (or ‘asymptotic’) supersymmetry in the
literature, and in fact in this article we have shown that the analogy with standard super-
symmetric scenarios is indeed accurate. More precisely, we have shown that, in the class of
models we have been considering, the cancellations induced by misaligned supersymmetry
in the sector-averaged number of states also occur directly in physical observables, such as
the one-loop cosmological constant.

As an aside, we have given an interpretation of supertraces for open strings, relating
them to the series coefficients of the function whose integral gives the one-loop cosmological
constant. This is reminiscent of the closed-string results of ref. [2], where the first non-
vanishing supertrace is shown to be proportional to the one-loop cosmological constant. It
would be interesting to examine the formulation of the light-fermion conjecture proposed in
ref. [52], which makes use of standard supertraces, in terms of these string-based supertraces
for non-supersymmetric models.

Finally, we have discussed the presence of misaligned supersymmetry in all known 10-
dimensional non-supersymmetric string constructions. While the heterotic SO(16)×SO(16)-
theory and the Sugimoto USp(32)-model, along with the single anti-Dp-brane/Op-plane
theory, clearly exhibit misaligned supersymmetry, the type 0’B theory is more interesting.
Its closed spectrum is purely bosonic and thus it cannot realise misaligned supersymmetry,
strictly speaking. However, the Klein bottle, needed to remove the closed string tachyon,
does exhibit misaligned supersymmetry. Likewise the open-string annulus and Möbius-strip
amplitudes do realise it as conjectured in ref. [7].

12We thank A. Faraggi and V. Matyas for discussions related to this point.
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We focused on a generic family of partition functions, which could be simply re-
cast in the form of Dedekind η-quotients. This includes all known 10-dimensional non-
supersymmetric closed- and open-string models, but in principle there may exist other
models that require extensions of our analysis. One may need e.g. to relax the assumptions
on the form of the partition functions, or on the parity of the values α denoting succes-
sively subleading terms in the Hardy-Ramanujan-Rademacher-sums, for both open and
closed strings. A particularly interesting future direction to pursue is the analysis of more
realistic compactified 4-dimensional non-supersymmetric theories, including non-Abelian
gauge groups. Such constructions are attracting significant attention of late, as evidence
for supersymmetry in nature remains elusive. For instance, heterotic string models exhibit-
ing misaligned supersymmetry have recently been analysed in refs. [53–59]. Noteworthy
constructions involving open strings are for instance refs. [24, 51, 60–64].

Recently, ref. [40] has discussed the calculation of the one-loop scalar masses in string-
theoretic constructions. It would be interesting to analyze the expression of such masses
with the tools presented here, in order to see how misaligned supersymmetry acts con-
cretely in observables other than the cosmological constant. Ultimately, one would like
to understand to what extent modular invariance, misaligned supersymmetry and the in-
finite towers of string states can help with the long-standing hierarchy problems in the
cosmological constant and Higgs mass, as propounded in ref. [3].
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A Special functions appearing in misaligned supersymmetry

In this appendix, we collect all the relevant results concerning the special functions that
appear in the discussion of misaligned supersymmetry.

A.1 Asymptotic expansion for the Dedekind η-function

It is instructive to discuss in some detail the derivation of the asymptotic expansion of the
Dedekind η-function written in eq. (4.28). There are two ways for doing this: one relies
on the modular properties of the function, whilst another is just a result of mathematical
analysis.

Based on the definitions in ref. [43], the notation and the terminology is as follows.
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• The expression f(x) = O(g(x);x0) means that there exists a value M ∈ R+ such that
|f(x)| ≤ Mg(x) for any x in a sufficiently small neighbourhood Ix0 . The expression
f(x) = o(g(x);x0) means that limx→x0(f(x)/g(x)) = 0.

• The expression f(x) x∼x0' g(x) means that limx→x0 f(x)/g(x) = 1. The expression
f(x) x∼0∼

∑
n fnx

n means that f(x) −∑m
n=0 fnx

n = o(xm; 0) for any natural number
m ∈ N.

• The function f : R+ → R is a function of rapid decay at the point x0 if f(x) x→x0→ 0
faster than any power (x−x0)m, i.e. f(x) = o((x−x0)m;x0) for any natural number
m ∈ N.

The two derivations of the asymptotic behaviour of the function η(iτ2) are discussed
below. They are reviews of the discussion by Zagier in ref. [43].

1. One can make use of the behaviour of the Dedekind η-function under the modular
group PSL2(Z). Under the generating S-transformation S(τ) = −1/τ , the Dedekind
η-function transforms as

η

(
−1
τ

)
=
√
−iτ η(τ). (A.1)

Restricting to the imaginary axis τ = iτ2, one can thus write

η

( i
τ2

)
= √τ2 η(iτ2). (A.2)

The Dedekind η-function can be written as η(iτ2) = e−
πτ2
12
∏∞
n=1(1− e−2πnτ2), so one

finds that

ln η(iτ2) = −πτ2
12 +

∞∑
n=1

ln (1− e−2πnτ2) = −πτ2
12 +O(e−2πτ2 ; +∞). (A.3)

The magnitude of the subleading terms stems from the Taylor-Maclaurin expansion
ln (1 + x) = O(x; 0): one finds ln (1 − e−2πt) = O(e−2πt; +∞). So, combining the
S-transformation relation of eq. (A.2) and the limit as 1/τ2 ∼ ∞, one finds

ln η(iτ2) = −1
2 ln τ2 −

π

12τ2
+O(e−2π/τ2 ; 0). (A.4)

This confirms the expansion in eq. (4.28) and quantifies the magnitude of the sub-
leading terms. The asymptotic behaviour is a direct consequence of the modular
properties of the Dedekind η-function.

2. One can make use of tools from mathematical analysis. One can prove the following
theorem.

Theorem. Let the function g = g(x) be defined as

g(x) =
∞∑
m=1

f(mx), (A.5)

where f is a smooth function on the positive real line with the following properties:
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• at the origin, f has the asymptotic development

f(x) x∼0∼ b ln 1
x

+
∞∑
n=0

fnx
n; (A.6)

• at infinity, f and all of its derivatives are of rapid decay.

Further, let the definite integral of f be

If =
∫ ∞

0
dx f(x). (A.7)

Then, the function g = g(x) at the origin has the asymptotic development

g(x) x∼0∼ If
x
− b

2 ln 2π
x

+
∞∑
n=0

(−1)n fnBn+1
n+ 1 xn. (A.8)

We refer the reader to ref. [43], section 6.7.4, for details on the proof. This theorem
is enough to determine the asymptotic behaviour of the Dedekind η-function. Let
the function f be

f(x) = ln
(
1− e−x

)
. (A.9)

This has the asymptotic expansion13 and the definite integral

f(x) x∼0∼ ln x+
∞∑
n=1

Bn
n · n!x

n, (A.12)

If = −π
2

6 . (A.13)

So, one can apply the theorem with b = −1, f0 = 0, fn = Bn
n·n! for n ≥ 1, and write

∞∑
m=1

f(mx) x∼0∼ −π
2

6x + 1
2 ln 2π

x
+
∞∑
n=1

(−1)n BnBn+1
n · (n+ 1)!x

n = −π
2

6x −
1
2 ln x

2π + x

24 .

(A.14)
In particular, there are no powers beyond x1 since all the even Bernoulli numbers
vanish beyond B2 = 1/6, with moreover B0 = 1 and B1 = −1/2. This can be used
to write

ln η(iτ2) = −πτ2
12 +

∞∑
m=1

ln (1− e−2πmτ2) τ2∼0∼ − π

12τ2
− 1

2 ln τ2, (A.15)

in agreement with eq. (A.4).
13To see this, one can expand the derivative as

df
dx (x) = 1

x

x

ex − 1 = 1
x

+
∞∑
n=0

Bn+1

(n+ 1)!x
n (A.10)

and integrate it to

f(x; c) = ln x+
∞∑
n=0

Bn+1

(n+ 1)(n+ 1)!x
n+1 + c. (A.11)

By requiring that f(1) = f(1; c), for instance, one finds c = 0.
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A.2 Bernoulli and Euler polynomials

It is useful to collect the relevant expressions used in the main text about Bernoulli and
Euler polynomials. The main guidance is ref. [41].

For a given real x, Bernoulli and Euler polynomials Bn = Bn(x) and En = En(x),
respectively, are defined as the coefficients appearing in the Taylor expansions

text
et − 1 =

∞∑
n=0

Bn(x) t
n

n! , (A.16)

2ext
et + 1 =

∞∑
n=0

En(x) t
n

n! . (A.17)

For the variable 1− x, one finds

Bn(1− x) = (−1)nBn(x), (A.18)
En(1− x) = (−1)nEn(x). (A.19)

A simple equation relates them to each other for n > 0, i.e.

En−1(x) = 2n
n

[
Bn

(
x+ 1

2

)
−Bn

(
x

2

)]
. (A.20)

Bernoulli numbers are defined as Bn = Bn(0), whilst Euler numbers are En = 2nEn(1/2),
for all n ∈ N.

B Analytic expression of open-string power-series coefficients

It is possible to express the power series ∆g±(τ2) appearing in eq. (4.16) in an explicit way.
This requires knowledge of the coefficients fl(k,m±α (β)), which can be gained by going
back to their original introduction. From the definition of the Bernoulli polynomials (see
eqs. (23.1.1) and (23.1.8) in ref. [41] or equivalently eqs. (A.16) and (A.18) with t = 2πγατ2,
x = m±α (β)/γα) we find

e2π(γα−m±α (β))τ2

e2πγατ2 − 1 = 1
2πγατ2

2πγατ2 e2πγατ2
[
1−m

±
α (β)
γα

]
e2πγατ2 − 1

=
∞∑
n=0

(−1)nBn
[
m±α (β)
γα

](2πγατ2)n−1

n! ,

(B.1)

where Bn(x) are the Bernoulli polynomials. In the expansion of eq. (4.14) one finds that
the power-series coefficients read

fl(k,m±α (β)) = (−1)l+1

l!
(2πγα)l+k
k + l + 1 Bk+l+1

[
m±α (β)
γα

]
. (B.2)

– 38 –



J
H
E
P
0
1
(
2
0
2
2
)
1
2
7

Therefore, in the functions ∆g±(τ2) of eq. (4.23), the power-series coefficients are (insert
eq. (B.2) in eq. (4.16) and compare it with eq. (4.23))

b±l = (−1)l+1

l!
∑
α∈Γ

2πc2(α)αc1
α∑
β=1

Pα(β)

×
∞∑
k=0

[
π
12
c3(α)
α2

]c1+k+1

k! (c1 + k + 1)!
(2πγα)k+l

k + l + 1 Bk+l+1

[
m±α (β)
γα

]
.

(B.3)

Now, starting from eq. (B.3), one can write the total coefficient bl = b+l − b
−
l as

bl = (−1)l+1

l!
∑
α∈Γ

παl−1c2(α)
(2π)c1−l+1

α∑
β=1

∞∑
k=0

[
π2

6
c3(α)
α

]c1+k+1

k! (c1 + k + 1)! Pα(β)

× 2k+l+1

k + l + 1

[
Bk+l+1

[
m+
α (β)
2α

]
−Bk+l+1

[
m−α (β)

2α

]]
,

(B.4)

where we used also that γα = 2α in our case. By plugging in the definition of m±α (β) in
eq. (4.11), one can see that the difference of Bernoulli polynomials can be written as

Bk+l+1

[
m+
α (β)
2α

]
−Bk+l+1

[
m−α (β)

2α

]
= (−1)β

[
Bk+l+1

(
β

2α + 1
2

)
−Bk+l+1

(
β

2α

)]
. (B.5)

For n > 0, Bernoulli and Euler polynomials are related by the condition (see eq. (23.1.27)
in ref. [41] or eq. (A.20) in appendix A)

En−1(x) = 2n
n

[
Bn

(
x+ 1

2

)
−Bn

(
x

2

)]
, (B.6)

so setting x = β/α one finds

bl = (−1)l+1

l!
∑
α∈Γ

παl−1c2(α)
(2π)c1−l+1

α∑
β=1

∞∑
k=0

[
π2

6
c3(α)
α

]c1+k+1

k! (c1 + k + 1)! (−1)βPα(β)Ek+l

(
β

α

)

= (−1)l
l!

∑
α∈Γ

παl−1c2(α)
(2π)c1−l+1

α−1∑
r=0

∞∑
k=0

[
π2

6
c3(α)
α

]c1+k+1

k! (c1 + k + 1)! (−1)rPα(−r)Ek+l

(
1− r

α

)
,

(B.7)

where the change of variable β = α − r has been employed, knowing that α is odd by
assumption, and it has been made use of the periodicity condition Pα(α − r) = Pα(−r).
Because the Euler polynomials are such that En(1 − x) = (−1)nEn(x) (see eq. (23.1.8)
in ref. [41] or eq. (A.19) in appendix A), one can conclude that the power-series coeffi-
cients read

bl = π

l!
∑
α∈Γ

αl−1c2(α)
(2π)c1−l+1

∞∑
k=0

[
π2

6
c3(α)
α

]c1+k+1

k! (c1 + k + 1)!

α−1∑
r=0

(−1)k+rPα(−r)Ek+l

(
r

α

)
. (B.8)

This is eq. (4.24) in the main text.
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