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Abstract

New drug production, from target identification to marketing approval, takes over 12 years and can cost around $2.6 billion.
Furthermore, the COVID-19 pandemic has unveiled the urgent need for more powerful computational methods for drug discovery.
Here, we review the computational approaches to predicting protein–ligand interactions in the context of drug discovery, focusing
on methods using artificial intelligence (AI). We begin with a brief introduction to proteins (targets), ligands (e.g. drugs) and their
interactions for nonexperts. Next, we review databases that are commonly used in the domain of protein–ligand interactions. Finally,
we survey and analyze the machine learning (ML) approaches implemented to predict protein–ligand binding sites, ligand-binding
affinity and binding pose (conformation) including both classical ML algorithms and recent deep learning methods. After exploring
the correlation between these three aspects of protein–ligand interaction, it has been proposed that they should be studied in unison.
We anticipate that our review will aid exploration and development of more accurate ML-based prediction strategies for studying
protein–ligand interactions.
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Introduction to protein–ligand interactions
Proteins participate in a wide range of essential intra-
and intercellular mechanisms. However, they do not
work independently in living organisms. Frequently, they
must bind with other molecules (other proteins, nucleic
acids, metal ions, organic and inorganic molecules,
etc.) to form a specific interaction in order to perform
their function [1–4]. Species capable of binding to
the protein are known as ligands. As an example,
consider the inhibitory drugs peramivir and bosutinib,
as demonstrated in Figure 1, which will be used to
illustrate protein–ligand interactions in the subsequent
sections.

Particularly, intermolecular interactions between
proteins and ligands occur at specific positions in the
protein, known as ligand-binding sites, which has sparked
a lot of interest in the domain of molecular docking and
drug design. Binding sites, also referred to as binding
pockets, are typically concavities on the surface of
proteins. Pockets, where small drug-like ligands bind, are
typically located in deep cavities. Ligand-binding sites are
typically found in large, deep pockets [5, 6] on the protein

surface, while some of them may exist in exposed
shallow clefts [7, 8]. In medicinal chemistry, there is an
emphasis on identifying key proteins whose biochemical
functions can be definitively linked to diseases. Such
proteins become targets for drug development. In fact,
the binding site is considered druggable if the ligand
binds with high affinity at the binding site and has an
effective therapeutic action [9].

When attempting to predict protein–ligand interac-
tions, a labyrinth of interactions needs to be accounted
for to generate an accurate prediction. Biologically,
two major factors play into the complexity of protein–
ligand interactions, large spectrum of ligand types:
small organic molecules, organometallics, nucleic acids,
peptides and even other proteins [10]. This paper will
primarily focus on small organic compounds as those are
immediately relevant to medicinal therapies as this class
of ligands is more commonly associated with inhibitor
and inactivating ligands than other classes of ligands.
The second factor is the resulting intermolecular forces
from within the protein–peptide chains, protein-solvent
interactions and the binding ligands [10, 11]. Often, these
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Figure 1. (A) Sketch of peramivir, an inhibitor of the viral protein neuraminidase from the H1N9 influenza virus. (B) Sketch of human Src kinase inhibitor
bosutinib.

forces are represented by forcefields to simplify compu-
tation. However, some estimations resulting from the use
of forcefields have been scrutinized as a means of error
when generating predictions for ligand interactions and
has been shown in the past to significantly misrepresent
the potential binding affinity, poses of the suspected
ligands [11]. Due to the large variety of ligand types,
the defining interactions between protein and ligand
can also vary. The most recognizable stabilizing forces
are hydrogen bonding and the columbic forces also
more commonly referred to as electrostatic interactions.
This however is far from the only intermolecular forces
driving favorable binding enthalpy. Van der Waals
forces including the critical hydrophobic interactions
of the London dispersion forces, pi stacking of aromatic
compounds and other ion-induced dipole and dipole–
dipole interactions also play a role [10, 11]. An example
of this can be seen with the human Src kinase inhibited
by bosutinib. To better visualize this mode of binding
between Src kinase and bosutinib, a hydrophobic surface
rendering was generated in chimera as seen in Figure 2.
In addition, these images showcase the ligand, bosutinib,
drawn in the space fill style to better demonstrate why
the ligand is posed in the way that it is as not only do
the interactions need to be fulfilled, but they must also
satisfy steric requirements to avoid clashes. Another
major interaction is the energy involved in overcoming
the desolvation of the ligand and the binding residues as
they interact with the solvating water molecules. These
forces are not static in their accumulative contributions
to binding enthalpy. For example, hydrogen bonding
can vary greatly ranging from 1 up to 40 kJ/mol due
to factors like the donating and accepting species, the
type of hydrogen bonding and the distance between the
donating and accepting species.

The production of a new drug, from target identifi-
cation through approval for marketing, can take over
12 years and cost around $2.6 billion [12–14]. The COVID-
19 pandemic has unveiled the urgent need for rapid drug
development [3]. In most drug design projects, the initial
goal is to find ligands that bind to a specific protein
target with high affinity and specificity. There is a signif-
icant need for expediting the computational process for
identifying promising drug candidates for experimental
validation [15].

An initial step in the drug discovery pipeline is
to identify molecules that bind with high affinity to
the target, which can be further developed into drug-
like molecules (lead compounds) [16]. Because of our
limited understanding of the dynamic relationship
between chemical space and genomic space [17–19],
identifying novel drugs and their targets remains a
difficult task. Experimental methods to identify lead
compounds, such as high-throughput screening, can
be time-consuming and expensive [16]. In contrast,
computational prediction of protein–ligand interaction
(PLI) can significantly reduce the resources, time and cost
required and reduce the need for physical experimental
studies to screen for new therapeutics. Reliable PLI
predictive algorithms can thus greatly accelerate the
development of new treatments, remove toxic drug
candidates and efficiently direct medicinal chemistry
[20]. Machine learning (ML) algorithms adopt a different
approach from classical virtual screening (VS) [21]
approaches. In the case of ligand-based virtual screening
(LBVS), it utilizes the active ligand’s information and
similarity between candidate ligands and the known
active compounds to find new ligands [22]. As a result,
these methods are useful when there is no 3-dimensional
structure of the target protein available. Likewise,
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Figure 2. Human Src kinase docked by bosutinib visualized with a hydrophobic surface generated in Chimera, PDB code 4MX0. Most hydrophobic regions
colored red; most hydrophilic indicated in blue.

structure-based virtual screening (SBVS) method uses
the 3D structure of a target to screen compound libraries
[23]. In contrast, ML follows the approach of learning
the relation between physicochemical parameters and
protein–ligand interactions from the known structures
of protein–ligand complex pairs to derive statistical
models for predicting the status of other unknown
ligands/proteins.

To identify associations between drugs and target
proteins (i.e. interaction between them), Yamanishi et
al. [24] suggested a kernel regression-based technique
to infer protein–ligand interactions by combining the
chemical structure information of ligands, sequence
information of proteins, as well as the drug–target com-
plex network. Similarly, another published work includes
the experiments by Bleakley and Yamanishi [25], called
BLM, that employs the supervised learning method.
Cao et al. [26] proposed another prediction method
based on the random forest (RF) algorithm. Similarly,
in the framework of restricted Boltzmann machines,
Wang and Zeng [27] introduced the method to predict
not just binary contacts between proteins and ligands
but also diverse types of interactions, viz how they
interact with one other. Readers can explore the review
papers [28–31] for the AI-driven drug discovery process
including target identification, hit identification, lead
optimization, chemical synthesis prediction and drug
repositioning.

A simplified illustration of ML technique in protein–
ligand interaction prediction is depicted in Figure 3. This
figure represents the general workflow of ML architec-
ture. Initially, the features of target protein and ligand
are extracted, followed by data preprocessing steps. Nor-
malization (a data preparation technique) is frequently
used in machine learning, which converts the values of

numeric columns in a dataset to a similar scale without
distorting the ranges of values or losing information.
Normalized data, thus obtained, are fed to a machine
learning model such as neural network in the figure. This
step is often performed because data standardization
improves accuracy, as shown by empirical evidence [32].
Several processes occur at hidden layers and eventually
the output layer outputs the predicted decision. As it does
not demand the explicit hard-coded rules curated by
human experts to make prediction and potentially yield
good prediction accuracy, there has been a lot of interest
in using ML and particularly powerful deep learning
methods to predict PLIs.

To achieve highly accurate predictions for new data,
a sufficient amount of training data is required. The
increase of structural information for protein–ligand
complexes, and the cataloging of this information into
databases, has enabled researchers to explore artificial
intelligence (AI) approaches, mostly ML methods, for
virtual screening.

Owing to the advent of many robust AI techniques
and the abundance of data in this domain, many surveys
have been conducted examining the existing ligand-
binding site, binding affinity and binding pose prediction
algorithms. A decade ago in 2009, a review group led
by Henrich, analyzed various computational methods
to identify protein-binding sites for ligand design [33].
Because machine learning applications in this field
were still in their infancy years ago, authors focused
mostly on the traditional, yet successful, methods.
Macari et al. [34] published a review paper focusing
on the computational paradigms in the domain of
protein-small molecule binding site prediction. Here,
they analyzed the approaches from traditional geomet-
rical techniques to recent machine learning strategies
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Figure 3. Conceptual workflow of ML pipeline. Inputs are the properties of the target protein and ligands, and output are the predicted interactions.

and compared the characteristics and performances
of the techniques. Similarly, Zhao and his team [35]
discussed the expensive computing resources associated
with training deep learning algorithms in comparison
to traditional machine learning algorithms with an
ending note that the prediction problems are still not
solved mainly because of presence of some cryptic
sites [36].

Focusing on the binding affinity (inhibition constant,
dissociation constant and binding energy) prediction
models, the team of Heck (in 2017) published a review
paper largely concentrating on successful supervised
machine learning methods. Authors mention that this
holistic credit behind the rapid development of ML
strategies in this field goes to the open-source ML
libraries and the publicly available data sources, while
Yang’s group (in 2020) [37] argue that sufficiently large
and unbiased datasets would help training robust
AI models more accurately to predict protein–ligand
interactions.

In the paper by Ellingson et al. [38], the authors discuss
the trends of ML in the domain of drug-binding prediction
(binding pose and energy prediction), data sources and
potential problems associated with them. Additionally,
Chen’s group [39] summarizes the web servers and
databases used in drug–target identification and drug
discovery. Here, for ML-based approaches, they mostly
concentrate on the supervised and semisupervised
models. A similar kind of analysis was carried out
by Inhester and Rarey [40] describing the publicly
available databases containing the affinity data and
structural information that plays a vital role in describing
interaction geometries and strength of binding.

Recently, Lim’s team [41] published a review paper on
compound protein interaction (CPI) prediction models
that includes a precise description of the data format
used, the techniques associated with model develop-
ment and emerging methods. They also provide an
overview of databases as chemistry-centric, protein-
centric and integrated database and analyzed the
diversified methods of AI like, tree, neural network,
kernel and graph-based methods in the field of CPI.
Since widely used human-readable formats, SMILES,
generally fail to represent critical information like
neighborhood in 3D space, latent vector representation
of compounds and proteins is highly recommended.
In the same way, since deep learning (DL) methods
make black-box decisions (difficult to understand
how decisions are made by neural networks), authors
are in favor of attention mechanisms to address this
issue.

The unique goal of this review is to illustrate the
importance of interconnection of separately discussed
topics of PLI: binding site, binding affinity and binding
pose prediction beforehand. A systematic search on three
aspects of ML-based protein–ligand interactions (i.e.
binding site, binding affinity and binding pose prediction)
was carried out using Google Scholar. Research method-
ologies were populated based on the year of publication
as well as underlying relevant techniques. Selected
literature was analyzed, articles and group of articles
were compared, themes identified, and gaps noted, and
suggestions recommended for future research. We have
tried to provide a comprehensive, organized summary of
related databases, recent research trends in AI-guided PLI
prediction, their interconnection and prospects so that
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Figure 4. Pie charts showing the distribution of prevailing datasets for the AI-based PLI prediction models. (A) Prevalent dataset for AI based protein-
ligand binding affinity prediction models. (B) Prevalent dataset for AI based protein-ligand binding pose prediction models. (C) Prevalent dataset for AI
based protein-ligand binding site prediction models.

researchers can fully utilize these resources to develop
novel prediction methods.

Existing databases for AI-driven
protein–ligand interaction models
The main purpose of ML/AI algorithms is to reveal hidden
information/knowledge in data. For ML models to under-
stand how to perform different tasks, training datasets
are fed into the algorithm. The model sees and learns
from the training data automatically. The model can rec-
ognize the underlying, hidden relationships and patterns
in the data that are not obvious to human and even
experts. The validation dataset, on the other hand, is a
different dataset that is often used during training to
assess how well the model is performing and used to tune
the hyperparameter of the model. After the model has
been fully trained and validated, one can run assessment

metrics on an independent test dataset not used in train-
ing to monitor the performance of the model predictions.
As a result, data are critical for such ML applications.
Generally, the more data provided to the ML system, the
greater its performance of learning and prediction.

Here, we discuss the prevailing datasets in the field of
PLIs that serve as sources of training, testing and vali-
dating data for ML/AI methods. We studied 63 AI-driven
methods that have been published since 2004 and inves-
tigated the availability of several databases for training–
testing–validating them. In Figure 4A, 32 publications on
binding affinity prediction using AI’s most frequently
used database is PDBBind [42], followed by CASF bench-
marking dataset [42] and BindingDB [43]. In Figure 4B,
we observe the recurrence of PDBBind for training AI
models for predicting binding pose that signifies its
popularity and usefulness. As shown in Figure 4C, out
of 25 AI-driven binding site prediction methods, many
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Figure 5. Statistics of PDBBind dataset showing its composition from Version 2015 as well as the basic structure of Version 2020.

datasets are mostly self-curated by developers according
to the requirement for training–testing–benchmarking
purposes. The most frequent datasets used in this
domain are BioLip, CASP targets, LigAsite and PDBbind.
It is worth noting that many datasets were created using
the original protein structure and ligand data in the
Protein Data Bank (PDB) [44]. Overall, these datasets
would be valuable resources for those who are looking
for validating and developing ML-driven PLI prediction
methods and for the study of drug design in general.

PDBBind
The PDBbind database was created in 2004 by Wang et
al. [42] providing a broad set of binding affinity data that
are experimentally determined. The binding affinity data
are for all the types of biomolecular complexes that are
deposited in the PDB. Originally, PDBbind was limited
to complexes formed by proteins and small-molecule
ligands. Starting from 2008, other types of biomolecular
complexes in PDB were added into PDBbind. Being
updated annually, the latest release (i.e. version 2020)
contains binding data (Kd, Ki and IC50 values) for 19 443
protein–ligand, 2852 protein–protein, 1052 protein–
nucleic acid and 149 nucleic acid–ligand complexes as
shown in Figure 5. Here, all binding data are curated by
the authors derived from original literatures.

The PDBbind version 2020 is based on the contents
of PDB officially released at the first week of 2020. It
contains 157 974 structures that were experimentally
determined. A series of computer programs were
implemented to screen the entire PDB to identify four
major types of molecular complexes: protein–small
ligand, nucleic acid–small ligand, protein–nucleic acid
and protein–protein complexes. Version 2020 is the most
recent edition at the time of writing this manuscript.

LIGand attachment site (LigASite)
LIGand Attachment SITE (LigASite) is a publicly acces-
sible dataset of biologically relevant binding sites in
protein structures. To automatically filter out the

biologically irrelevant ligands, an algorithm is used that
considers the number of heavy atoms in the ligand and
the number of interatomic contacts between protein and
ligand [45]. The fact that each protein has both unbound
and bound structures ensures that this dataset can be
used to benchmark the binding site prediction models.
The version 9.7(nr25) contains the list of 391 proteins,
while the redundant list contains the information of 816
proteins.

BioLiP
BioLiP is a semimanually curated database of ligand–
protein binding interactions that are biologically rele-
vant. After the automated process for determining a
ligand’s biological relevance is completed, a thorough
manual review is performed to correct any errors. The
structure data are mainly obtained from the PDB, with
biological insights obtained from literature and other
databases. Eventually, the manual check is performed,
and possible false-positive entries are verified by reading
the original literature and consulting other databases
that ensures the completeness and high quality of BioLiP
[46]. It is updated on weekly basis and the total number
of entries in the current version (17 September 2021: at
the time of writing) is 529 047, which includes 109 998
proteins from PDB, 57 059 DNA/RNA ligands, 25 960 pep-
tide ligands, 146 969 metal ligands and 299 051 regular
ligands. Out of these entries, 23 492 have binding affinity
information.

BindingDB
BindingDB is a public, web-accessible database, extracted
from the scientific literature, which consists of binding
affinities between protein targets and small, drug-like
molecules. The latest version: (September 2021), it has
41 296 entries, containing 2 338 906 binding data with
8617 protein targets and 1 011 134 small molecules [43].
Moreover, the BindingDB website offers a comprehensive
collection of tools for querying, analyzing and download-
ing binding data.
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Binding MOAD
Binding MOAD is the largest possible (hence called
mother of all databases) deposition of high-quality,
protein–ligand complexes available from the PDB, which
was augmented with the inclusion of binding data
extracted from literature. Binding MOAD’s preference for
affinity data is Kd over Ki over IC50 [47–49]. It was designed
using the ‘top-down’ approach so that it contained every
protein–ligand complex with a 3D structure. Annual
updates are done to contain more binding-affinity data
as they become available in the PDB. The current release
(2019) contains 38 702 protein–ligand structures, 14 324
binding data, 18 939 ligands and 10 500 protein families.

The CASF dataset
Scoring functions are often used to evaluate PLIs in
structure-based drug design. Several scoring functions
have been established thus far, and hence some open-
access benchmarks are required for assessing their
strength and weakness. CASF benchmark provides
the precalculated prediction results of known scoring
functions allowing a fair comparison of the model with
existing scoring functions on the same test set. All
performance tests enabled in CASF-2016 are based on
a set of 285 protein–ligand complexes with high-quality
crystal structures and reliable binding data [42]. This
test set is selected from the PDBbind refined set (version
2016). In CASF-2016, the evaluation methods have been
improved in comparison to its previous version (CASF-
2013) and the performance of a scoring function is
evaluated by four metrics: (i) scoring power, (ii) ranking
power, (iii) docking power and (iv) screening power.

Prediction of the ligand bind sites of
proteins
Virtual Screening (VS) requires knowledge of the location
of the ligand-binding site (LBS), which in some cases this
information is unknown. Accurate prediction of protein–
ligand binding sites from a 3D protein structure plays a
crucial role in structure-based drug design [50, 51] and
can aid in drug side effects prediction [52] as well as
understanding a protein’s function [53]. Intermolecular
interactions between proteins and ligands occur through
amino acid residues at specific positions in the protein,
usually located in pocket-like regions. Identification of
these key residues is imperative for elucidating protein
function, analyzing molecular interactions and facili-
tating docking computations in virtual screening–based
drug design. These specific key amino acid residues in
proteins are called the LBSs. Empirical studies show that
the actual ligand-binding site correlates to the biggest
pocket on the surface of a protein [6, 54]. On a test set
of 67 protein structures [55], the SURFNET architecture
[56] successfully predicted the ligand-binding site as the
largest pocket in 83% of the cases. The findings from
LIGSITE [57] also displayed that the ligand-binding site

was found in the largest pocket in all 10 proteins tested.
Similar was the result yielded from POCKET [58].

Each amino acid (residue) has a distinct impact on the
structure and function of a protein. Even if the measured
distance between two residues in a protein sequence is
long, the spatial distance between them may be short
due to protein folding [59–61]. As a result, residues in the
sequence that are far from the target residue sequen-
tially, but spatially close, can also have a significant effect
on the position of the binding residues. AlphaFold [62]
can be considered as one of the major breakthroughs that
predicts the tertiary structures of most proteins rather
accurately integrating 1D, 2D and 3D protein features.
Ultimately, there is a need to consider the spatially neigh-
boring residues for the binding site prediction. Further-
more, the secondary and tertiary structure of the protein
also impacts binding, often more significantly than the
primary structure.

To further exemplify the concept of ligand-binding
site, we take an instance of neuraminidase, an influenza
virus protein extensively studied due to its candidacy
as a drug target. It is often seen as a good drug target
due to the ability to disrupt the life cycle of the virus.
Unfortunately, influenza is irritatingly good at manu-
facturing drug-resistant variations driving the need for
constant development of new drugs. One such drug to be
developed is peramivir also known as BCX-1812 (sketch
shown in Figure 1A. Structurally, peramivir inhibits neu-
raminidase (interaction shown in Figure 6A) by form-
ing numerous electrostatic interactions including salt
bridges and H-bonding [63]. When observing the pro-
tein monomer, 11 hydrogen bonds can be found hold-
ing peramivir in place greatly increasing the binding
affinity for the compound through its enthalpic effects
on the system (Figure 6B and C) [6, 54–58]. Although the
experimental determination provides the most accurate
assignment of the binding locations, it is a time- and
labor-intensive process. Computational methods for the
detection and characterization of functional sites on pro-
teins have grown in popularity, and as a result, numer-
ous methods have been developed in recent decades
attempting to address this issue.

Binding site prediction methods
Many different approaches to predicting the binding site
have been established over the last two decades, based
on (i) templates, (ii) energy functions, (iii) geometric con-
siderations and (iv) ML.

The template-based methods attempt to predict the
position of binding sites on an input protein using known
protein templates. They are based on the assumption
that proteins sharing a similar structure can also share
a similar function [64]. In comparison to the geometry
and energy-based methods, these methods are generally
more accurate if a good template can be found [34].

Energy-based approaches rely on the principle to find
energetically favorable regions on the protein surface
that contain ligand-binding pockets. In most cases, the
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Figure 6. Protein–ligand interactions demonstrated through neuraminidase–peramivir interaction. (A) Neuraminidase monomer with peramivir depicted
in red. (B) view of full monomer with peramivir with hydrogen bonding pairs labeled and displayed in canonical atom coloring. Oxygen colored red, and
nitrogen in blue. (C) focused view of neuraminidase peramivir hydrogen bonding, PDB code 1L7F.

protein is enclosed in a grid structure, and the interaction
energy at each grid point is calculated using one or
more probes. The resulting interaction points are then
clustered to predict the location of pockets.

In geometry-based methods, the geometry of the
molecular surface is analyzed to find surface cavities
on the target protein. Based on the algorithm used
for cavity localization, Macari et al. [34] have divided
it into three subcategories: (i) grid system scanning,
(ii) probe sphere filling (iii) alpha shape. In the grid
system scanning approach, the protein is enclosed
into a three-dimensional grid, and latter, if certain
geometric conditions are met, are considered as points
belonging to a pocket. The accuracy of this method is
dependent on the resolution of the grid. Probe sphere–
based approaches are based on directly filling pockets or
cavities with specific probe spheres. Furthermore, alpha
shape methods rely on the computation of Delaunay
triangulation [65] to locate voids on the protein surface.
The final step of all these methods involves clustering
and a ranking procedure of the pockets identified.

The earlier pioneering binding prediction methods
use preexisting templates, employing genetic identity,
or molecular geometry to predict the binding pockets.
COACH and later COACH-D took advantage of the
PDB by using previously solved structures as a tem-
plate for the predictions of the target complex [66,
67]. Another popular server, LigASite and its upgrade
LIGSITEcsc utilizes geometry by scanning the model
on a 3D grid map for convolutions by defining grid
points to determine protein solvent locations ultimately
identifying potential binding locations [68]. Using these
concepts of course has its limitations. Accuracy of the
predictions begins to decay as the pairwise identity of
the target in respect to the template decreases and
often become unreliable as the identity approaches the
‘twilight zone’ [69, 70]. The methods based on templates
are rather limiting when encountering novel protein
structures. As the field matured, FindSite was developed
that also took advantage of structural similarity to
find templates. Biologically, the rationale behind using
structural and genetically similar proteins as templates
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for the prediction is due to the idea that as proteins
accumulating mutations from years of evolution will
result in functional regions having a higher degree of
conservation within the same protein family due to risk-
ing loss of function [67, 70, 71]. However, cautions must
be used when using this method as this conservation is
not perfect and there can be a high degree of variability
among the residues within the family or the function of
highly conserved regions of the protein [70].

But how do these non-ML prediction methods com-
pare to ML? Template-based methods perform well if
templates having known binding site information can be
found, but do not work if there are no good templates.
Machine learning methods can learn from existing data
and generalize to new data that are not similar to the
training data. Energy function–based approaches are cal-
ibrated from a small set of known protein–ligand struc-
tures using the function designed by human experts,
which may not fit a large amount of data best and cannot
generalize well to new data. Similarly, geometry-based
methods locate surface cavities on the target protein
by analyzing the geometry of the molecular surface,
whose precision is largely dependent on the resolution of
grid [34]. Another limitation to geometry-based method
is the sensitiveness to the scanning direction and to
the orientation of protein in the grid system [72]. But
machine learning, particularly deep learning methods,
can directly learn a parameterized function from a large
amount of data integrating multiple sources of informa-
tion, leading to better accuracy of predicting protein–
ligand interaction.

The growing availability of high-resolution protein
structures in various databases has opened up new
possibilities for machine learning (ML) applications.
The basic workflow of existing ML methods to predict
binding sites can be divided into five main steps: data
acquisition and preprocessing, feature engineering,
model development, training–testing, hyperparameter
tuning and evaluation. At first, several sources of known
protein–ligand binding data are aggregated, and several
significant features are extracted to represent the protein
and ligand, which are then normalized. Then, ML models
are designed to use the input features to predict binding
sites, including shallow supervised learning algorithms,
artificial neural network, convolutional neural network
and ensemble methods (different approaches are further
described in detail in Sections ‘Classical ML methods
for binding site prediction’ and ‘Deep learning methods
for binding site prediction’). A typical ML workflow is
illustrated in Figure 3. We group ML methods into two
categories: classical ML methods (non–deep learning
methods) and modern deep learning methods to be
described separately below.

Classical ML methods for binding site prediction
Table 1 contains a summary of a list of the classical
methods, their machine learning techniques, input fea-
tures and training/test data, which are reviewed below.

In 2013, Wong et al. [77] proposed a method for pre-
dicting protein–ligand binding sites using support vector
machines (SVM). SVM was used to cluster the pockets
that are most likely to bind ligands based on geometric
characteristics (grid values calculated by LIGSITE and
SURFNET that can represent binding site), interaction
potential (calculated using the PocketFinder method),
offset from protein, conservation score (obtained from
a residue-level analysis) and properties surrounding the
pockets. The dataset (LigASite) used to train the method
faces the same issue as most bioinformatics dataset:
imbalance, i.e. the number of positive examples (the
grid points of binding site) is much less than the neg-
ative examples (the other grid points). To mitigate this
problem, undersampling of negative examples was used,
which resulted in better performance. Likewise, Integrat-
ing Data Selection and Extreme Learning Machine for
Imbalanced Data (IDELM) [92] can be implemented to
overcome the data imbalance problem. IDELM, which
was designed by modifying Extreme Learning Machine
(ELM) [93], was reported to have a faster learning capacity
in comparison to ELM.

In the same year, Yu et al. proposed TargetS [80], a
template-free LBS predictor with classifier ensemble and
spatial clustering to address the challenge, especially
when the target proteins’ 3D structures are unavailable,
or no homology models are available in the library. To cre-
ate discriminative features, protein evolutionary details,
predicted protein secondary structure (as determined by
PSIPRED [94]) and ligand-specific binding propensities of
residues were combined. To address the severe imbal-
ance problem between positive (binding) and negative
(nonbinding) samples, an improved AdaBoost classifier
ensemble scheme based on random under sampling was
used.

Another approach was proposed by Wang et al. [81]
introducing the statistical depth function to identify neg-
ative samples for predicting binding site using sequence
and structural information with SVM. In this study, the
statistical depth functions were used to determine the
depth of the residues and analyze the protein structure.
They chose the half-space depth function to calculate the
depth of the residues out of a variety of statistical depth
functions because the concept and description of the
half-space depth are simple and straightforward. Their
research revealed that defining a negative sample in this
manner was fair and beneficial to model training.

Inspired by the promising performance of SVM, many
other ML approaches have been implemented. In 2005,
Guo et al. [73] introduced a new statistical descriptor,
named Oriented Shell Model, that considers the distance
and angular position distribution of several structural
and physicochemical features. Similarly, Kauffman and
Karypis developed a sequence-based approach, called
LIBRUS [75], based on SVM in 2009. And in 2012, Volkamer
et al. published DoGSiteScorer [78], a web-based tool for
predicting binding sites and determining druggability.
The same SVM technique was applied by Yu et al. in their
method: OSML [84].
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In Suresh et al.’s method [83], they implemented Naive
Bayes classifier with amino acid residue in membrane
protein sequence. Here, they predicted whether the
given input is a ligand-binding residue or not using
only sequence-based information. They opted Bayesian
classifiers since they are resistant to real-world noise
and missing values [37].

LigandRFs [82], a sequence-based method for iden-
tifying protein–ligand binding residues with RF, was
developed by Chen et al. In the process of encoding
input features, they proposed a hybrid technique to
reduce the effects of different sliding residue windows.
They also built several balanced datasets, for each of
which an RF-based classifier was trained, addressing the
high imbalance between ligand-binding sites and non–
ligand-binding sites. They discovered that hydrophilic
amino acids are more likely to be ligand-binding sites.
Besides LigandRFs, RF algorithm was also implemented
by Qiu and Wang’s method [76], Bordner [74], PRANK [7],
PrankWeb [91] and UTProt Galaxy [85].

Deep learning methods for binding site
prediction
Deep learning methods have grown in popularity in
recent years due to their potential in capturing com-
plicated relationships hidden within the data. Several
deep learning methods for binding site prediction are
summarized in Table 2.

Cui et al. proposed DeepCSeqSite [95] for predicting
protein-ligand binding residues, a sequence-based
method based on a deep convolutional neural network
(CNN). Several convolutional layers were stacked to
obtain hierarchical features from input. Binding residues
belonging to any selected ligand class were classified
as positive samples in the training sets, whereas the
remainder were labeled as negative samples. Seven
types of features are used for the protein-ligand binding
residue prediction: position-specific score matrix, rela-
tive solvent accessibility, secondary structure, dihedral
angle (predicted by ANGLOR [101]), conservation scores,
residue type and position embeddings, which are purely
derived from protein sequences.

In 2020, a 3D fully CNN (based on an architecture
called U-Net) was published for finding druggable pock-
ets on protein surface [97]. U-Net [102] is a state-of-
the-art neural network architecture that was initially
invented to deal with the 2D medical images. In this
method, the task of pocket detection was reformulated
as a 3D image segmentation problem. Both the input
and output are represented as 3D grids of the same
dimensions.

Xia et al published a deep learning–based method
called DELIA [96], which is a hybrid deep neural network
integrating a CNN with a bidirectional long short-term
memory network (BiLSTM) to mobilize 1D sequence
feature vectors and 2D distance matrices. DELIA’s
hybrid neural network architecture is made up of three
main modules: (i) feature extractor, (ii) residual neural
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Table 3. Binding affinity (Ki) of the SmCI group of inhibitors on three proteins [161].

Inhibitor ligand (protein) Porcine pancreatic elastase Trypsin Bovine carboxypeptidase A Human carboxypeptidase A1

SmCI 2.66 × 10−8 3.81 × 10−8 2.83 × 10−8 –
rSmCI 1.70 × 10−8 3.66 × 10−8 9.55 × 10−8 2.54 × 10−8

SmCI N23A 1.94 × 10−9 4.08 × 10−10 4.25 × 10−8 1.29 × 10−8

Here, – is an indication of no data

network (ResNet) and (iii) BiLSTM. To improve the model,
oversampling in minibatch, random undersampling and
stacking ensemble strategies were used to resolve the
problem of the extreme data imbalance between binding
and nonbinding residues.

In 2021, Mylonas’ team [99] proposed a binding site
prediction method, DeepSurf, based on deep learning
architecture. This work is unique in the sense that it
mobilizes surface-based representation (implementation
of 3D voxelized grids) along with state-of-the-art deep
learning architectures to predict potential druggable
sites on proteins. After the input features are determined,
those grids are imported to a 3D CNN and the resulted
ligandability scores of each surface point obtained thus
are clustered to create the binding sites.

Recently in late 2021, Kandel et al. published a paper
called PUResNet [100], which involves the implementa-
tion of Deep ResNet as the backbone of the network in
their model for the prediction of protein–ligand binding
site. This is unique in the prospect of data cleaning
process. Here, 3D protein structure of protein is fed into
the model as input and probability of voxel belonging
to cavity is given as output. Later, these predictions are
saved as mol2 files and visualized using molecular mod-
eling software.

Prediction of protein–ligand binding affinity
In order to be a lead molecule for drug development, a
molecule must be able to bind tightly to a target protein;
i.e. it must have a high affinity. The degree of attraction
between a receptor (e.g. a protein) and its binding partner
(e.g. drug or inhibitor) is measured by binding affinity,
which can be expressed by the thermodynamic value of
dissociation constant (Kd) or in the case of inhibitors (Ki).
Table 3 demonstrates a variability of different inhibitors
acting upon different proteins. SmCI N23A is a mutant
variant of the SmCI inhibitor, demonstrating how small
changes to an inhibitor can greatly affect Ki.

Predicting a protein–ligand complex’s binding affin-
ity (such as inhibition constant, dissociation constant
and binding energy) is critical for efficient and effective
rational drug design. However, experimentally measuring
protein–ligand binding affinity is time-consuming and
complex, which is one of the major bottlenecks of the
drug discovery process.

As discussed earlier, the dissociation constant (Kd) can
be used to explain the affinity between a protein and a
ligand. The smaller Kd, the stronger the binding. In case

of enzymes and their inhibitors, the inhibitory constant
Ki is equivalent to Kd. Further information about ther-
modynamic measurements of PLIs has been reviewed by
Perozzo et al. [103].

In computational medicinal chemistry, calculating
ligand-binding affinity is an open challenge. The ability
to computationally predict binding affinity of small
molecules to specific biological targets is extremely
useful in the early stages of drug discovery since it allows
a mathematical model to determine PLIs. When opposed
to conventional experimental methods or computational
scoring approaches, ML methods are significantly faster
and less expensive.

In the last couple of years, several databases (as
discussed in the ‘Existing databases for AI-driven
protein-ligand interaction models’ section) have been
maintained. The impressive amount of collected exper-
imental data in these datasets can be used to design
different deep learning architectures to develop ML-
driven ligand-binding affinity prediction methods.

This section is mainly focused on the application of ML
in predicting the ligand-binding affinity, which is still an
open challenge in computational drug discovery.

Classical ML approaches for binding affinity
prediction
While modern ML libraries include many supervised ML
techniques, the majority of ML applications for the devel-
opment of scoring functions have concentrated on three
main techniques: SVM, RF and linear regression. Table 4
lists the methods that have been studied using classical
ML techniques.

In 2014, Li et al. investigated the significance of struc-
tural features in binding affinity prediction and discov-
ered that RF can effectively leverage more structural
features and more training samples, resulting in bet-
ter prediction performance than multiple linear regres-
sion [109]. Later, in 2016, Shar et al. developed a method
called Pred-binding [112], where they compared the per-
formance of RF and SVM, and found that both models
(RF and SVM) provide a potent Ki predictability while
avoiding overfitting. Similarly, Wang et al. [110] conducted
a comparative analysis of affinity prediction for family-
specific protein–ligand complex using RF method. Their
method predicted the binding affinity using the features
like protein sequence, binding pocket, ligand structure
and intermolecular interaction.

Inspired by the Cerebellar Model Articulation Con-
troller (CMAC) learning architecture, a method named
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CSCORE [106] was designed that used a data-driven scor-
ing function for accurate binding affinity prediction. But
it had poor interpretability power. It has been noticed
that torsion angles play an important role in docking.
Despite its significance, it was not considered in this
model. In the study reported in B2BScore [108], authors
used RF for binding affinity prediction based on β Con-
tacts and B Factor. The key concept of B2Bscore was
focused on two physicochemical properties of PLIs: B fac-
tor and β contacts, both of which had not previously been
used in affinity prediction. Here, the B factor assesses
the mobility and flexibility of dynamic atoms in proteins,
which is critical in determining the protein’s activity and
functions and β contacts are a small fraction of distance-
based contacts [120].

Recently, Holderbach’s team published a protein–
ligand binding free energy prediction method called
RASPD+ [117], which employs the fast prefiltering
approach for ligand prioritization, where RF outperforms
others. Similarly, Ashtawy et al. [105] investigated a
variety of various ML methods in combination with
physicochemical features of protein–ligand complexes.
Ensemble prediction methods RF and Boosted Regression
Trees (BRT) were found to be the most effective in
predicting binding affinities of protein–ligand complexes.
SFCscoreRF [107] and Boyles et al.’s work [116] followed
the RF approach to train new regression models as well.

In 2018, Kandu et al. [115] used the RF and Gaussian
process regression algorithms on protein–ligand binding
affinity prediction. As part of the feature extraction pro-
cess, they determined a total of 127 ligand and protein
features. For proteins, they used the whole protein rather
than just features of pockets and cavities. This is because
calculating the features of the cavity necessitates the
details of the cavity, which is time-consuming. Similarly,
for ligands, all physicochemical properties available in
Pubchem [121], as well as a few structural properties
measured using a method called Padel Descriptor [122]
were included. The Gaussian process, linear regression,
multilayer perceptron, sequential minimal optimization
(SMO) regression [123], K-star [124] and RF were used to
train 2864 instances with 128 features, and they discov-
ered that the RF model was ideally suited to the protein–
ligand binding energy prediction problem.

Deep learning methods for binding affinity
prediction
Table 5 summarizes a list of the deep learning methods
for the binding affinity prediction. Back in 2015, to predict
binding affinity, Ashtawy and Mahapatra provided novel
scoring functions that used a large ensemble of neural
networks. [125]. For accurate predictions, the bagging-
and boosting-based ensemble of neural networks scor-
ing functions was used. According to their research, the
proposed neural network–based scoring functions BsN-
Score and BgN-Score obtained the best results. They also
found that the neural network–based ensemble models
outperformed RF models.

In 2018, Jimenez et al. presented KDEEP [127], a pro-
tein–ligand affinity predictor based on 3D convolutional
neural networks (CNN), which have shown promising
results across a wide range of datasets. In this study, both
protein and ligand were featurized via a voxelized 24 Å
representation of the binding site considering different
pharmacophoric-like properties. These descriptors were
used by a 3D CNN model, which learns the binding affin-
ity of the complex given enough training examples. Once
trained, the network could predict previously unseen
instances. Similarly, in 2020, Mohammad Rezaei’s team
published a research method called DeepAtom [132],
which utilized 3D CNN to extract the atomic interaction
patterns from the voxelized complex structure.

On the other hand, Ozturk et al. proposed a deep
learning–based model, DeepDTA [128], which made use
of only drug–target’s sequence information. This study
introduces a new deep learning–based model for drug–
target affinity prediction that utilizes protein and drug
character representations.

In 2019, a new method, OnionNet [130], a multiple-
layer intermolecular-contact-based CNN was developed
for protein−ligand binding affinity prediction. Its input
features were based on rotation-free element pair-
specific contacts between ligands and protein atoms.
Later in 2020, Zhu et al. proposed the binding affinity
prediction method by pairwise function based on ANN
[131]. Basically, it predicts binding affinity from a given
pose of a 3D protein–ligand complex and shows that a
simple neural network model based on pairwise inter-
atomic distances performs relatively well for binding
affinity prediction.

In addition to these, there have been reports on the
works based on the ensemble-based approach. In the
study reported in AK-score [134], its model used an
ensemble of multiple independently trained networks
composed of multiple channels of 3D CNN layers to
predict a complex’s binding affinity, which significantly
improved prediction quality. The ensemble approach
has the advantage of requiring no additional network
architecture modifications and being easily applied to
most existing models. In 2020, Jones et al. proposed
improved protein–ligand binding affinity prediction with
structure-based deep fusion inference [133]. In this
project, they developed a midlevel fusion model together
with 3D CNN and spatial graph CNN to predict protein–
ligand binding affinity. graphDelta [135] is a related
method that uses graph neural networks to predict
binding affinity.

Wang et al. proposed a predictive model called Deep-
DTAF [136], where the local and global features were
generated using only 1D sequence data. (3D structures
of proteins, ligands and their complexes were excluded
in input representation). It was a successful method
for capturing multiscale interactions for protein–ligand
binding affinity prediction that merged dilated convo-
lution with traditional convolution. While in the model,
developed by Wang’s team, the ResAtom System [140],
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they implemented ResNet neural network with added
attention mechanism. Similar to ResAtom System, Seo
et al.’s method [138] also employed attention mechanism
to protein–ligand complex binding affinity as attention
mechanism was able to capture the ligand-binding sites
that contributed to the improvement in the prediction.

The Ahmed group earlier this year in 2021 proposed
a deep learning approach called DEELIG [139], which
used CNN to extract the spatial relationship information.
Docked poses or protein–ligand complexes were not used
as input in this research. Another similar CNN applica-
tion in this domain is LigityScore [137] that includes rota-
tionally invariant scoring functions called LigityScore1D
and LigityScore3D.

Predicting and scoring of protein–ligand
binding pose (3D structure)
The ligand active conformation is the 3D structure of a
ligand when it is coupled to a protein. Binding mode of
the ligand/drug is defined as the orientation of a ligand
relative to the target in the bound state. Straightforward
to grasp, a binding pose is simply a candidate bind-
ing mode.

A visual illustration of protein–ligand binding pose can
be found in Figure 7 [141]. It depicts the human large
GTPase known as dynamin. Biologically dynamin can
excise clathrin-coated vesicles anchored to the mem-
brane for endocytosis of the molecules to their targeted
destination within the cell. Due to this, some viruses have
learned to use this machinery to gain access to their
host cell thus making dynamin a promising druggable
target. Figure 7 displays an in silico docking model of
two pyrimidine analogues docked within the PH domain
of the protein. This demonstrates how ligand pose can
vary with extremely minor changes even among struc-
turally similar ligands within the same protein further
complicating predictions. In molecular docking, many
binding poses are computationally generated and then
evaluated using a scoring function. A scoring function
is a mathematical model that quantifies the binding
stability of the pose, which can be used to rank and select
binding poses/conformations. The outcome of a docking
run, therefore, is a ligand’s top pose selected according
to its predicted binding score. Despite some similarities,
it is worth noting that the scoring function here is used
to measure the binding stability of a pose, which is con-
ceptually different from the scoring function to quantify
the experimental binding affinity such as dissociation
constant in ‘Prediction of protein-ligand binding affinity’
section.

The current approaches of predicting protein–ligand
binding pose typically have two steps: (i) generating pro-
tein–ligand binding poses and (ii) evaluating the poses
using a scoring function. As the first step is mostly
carried out by some standard/mature docking tools such
as AutoDock [142], AutoDock Vina [143], Glide [144], GOLD
[145] and Internal Coordinate Mechanics (ICM) [146], the

recent development is mostly focused on the second step.
Therefore, we mostly review the literature on scoring
binding poses in the remaining part of this section below.

The scoring function is one of the most critical aspects
of molecular docking. It is used for the selection and
ranking of the best poses from the potentially wide list
of candidates simulated/generated by the docking algo-
rithms. Despite significant progress, designing a good
scoring function capable of reliably predicting binding
stability for any conformation remains a challenge in
molecular docking.

Generally, scoring functions can be divided into
four types: forcefield, empirical, knowledge-based and
machine learning–based scoring functions. Please refer
to these papers [20, 147–151] for in-depth references
to first three kinds. The fourth kind ML-based scoring
function is reviewed in the following section.

Here, we mainly focus on classical ML-based scoring
functions of scoring protein–ligand docking poses, as
well as provide insights into recently introduced deep
learning (DL) and reinforcement learning–based scoring
methods.

Classical ML and DL scoring methods for binding
pose prediction
With the rapid expansion of ML techniques, ML-based
scoring functions have steadily emerged as a promis-
ing alternative for scoring docking poses and virtual
screening, with majority of them outperforming a wide
range of traditional scoring functions. In recent years, the
emergence of more powerful deep learning (DL) methods
has inspired interest in the exploitation of more precise
scoring functions. Table 6 contains a list of the methods
described in the subsequent section.

In 2015, to select the optimal pose of a ligand in
protein’s binding site, Ashtawy and Mahapatra utilized a
variety of machine learning approaches to estimate the
difference (root mean square deviation (RMSD)) between
a pose and the true structure of a protein–ligand com-
plex [152]. They used protein–ligand complexes’ physic-
ochemical and geometrical features for their prediction
and found that ML models trained to predict RMSD val-
ues significantly outperform all traditional scoring func-
tions. The best-known empirical scoring function ASP,
which is used in the commercial docking software GOLD
[145], had a 70% success rate. On the same test set, their
top RMSD-based scoring function, MARS::XARG, had a
success rate of 80%, indicating a major improvement in
docking performance. They also noticed that increase in
training set size and number of features increases the
performance of scoring functions.

The D3R grand challenges hosted by the Drug Design
Data Resource (D3R) has also provided opportunities for
computer scientists and bioinformatics researchers to
explore the recent advancement in this field. In 2015 D3R
Challenge, Grudinin et al. evaluated their procedure to
score binding poses for protein–ligand complexes using
a regression method [153]. They used the affinity and
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Figure 7. In silico prediction of two similar analogue Inhibitors docked within the binding sight-2 of human dynamin-1 PH domain. (Figure adopted
from [141]) Both analogues share very similar intermolecular forces such as H-bonding and yet slight differences in the ligand’s orientation occur.

structural data from the PDBBind database to train the
model’s free parameters with a regularized regression.

Similarly, in the following D3R Grand Challenge in
2018, Nguyen et al. developed a ML-based scoring func-
tion [156] to select the poses generated by GOLD [145],
GLIDE [144] and Autodock Vina [158]. They created a
training dataset of complexes from the PDB after being
given a ligand target. Then, using docking software, they
re-docked ligands to proteins in those selected com-
plexes. They implemented RF to learn the biomolecular
structure and used CNNs to capture topological fea-
tures. The consensus of the energy values predicted by
these two ML strategies was the final predictions for this
method.

In 2017, Ragoza et al. developed a method using CNN
scoring functions to take a detailed 3D representation
of a PLI as input automatically learning the main fea-
tures of PLIs that correlate with binding [155]. Their
CNN scoring functions were trained and optimized to
distinguish between correct and incorrect binding poses,
as well as known binders and nonbinders. The CSAR-
NRC HiQ dataset was used as the pose prediction training
set, with the addition of the CSAR HiQ Update. They
discretized a protein–ligand structure into a grid that is
24 Å on each side and centered around the binding site
with a default resolution of 0.5 to handle the 3D struc-
tural data as input. Their CNN models were defined and
trained using the Caffe deep learning framework [159].
The classes were balanced by sampling the same number
of positive and negative examples in each batch after
shuffling training data. The CNN model outperformed
the Autodock Vina scoring function significantly in terms
of intertarget ranking of CSAR poses. They did, however,
perform worse in terms of intratarget pose ranking.

Recently, a reinforcement learning–based method for
predicting the score of ligand pose has been put forward
by the team of Jose [157]. In this method, the agent
optimizes the correct pose and can also be trained to
locate the binding site. The hypothesis is that train-
ing on protein–ligand complexes with known binding
poses would aid the reinforcement learning algorithm

in approximating the underlying molecular interactions,
using the input atomic and spatial features provided as
molecule fingerprints. Based on the atomic, spatial and
molecular features, this would result in an optimized
pose in the desired binding site of the protein of interest.
Here, the overall network for reinforcement learning–
based protein–ligand docking consists of a GraphCNN
layer that represents atomic and molecular properties as
a feature vector, as well as an optimization mechanism
that approximates the docking scoring function.

Interconnection of protein–ligand binding
site, binding affinity and binding pose
Like all matter, proteins are influenced and shaped
by thermodynamic principles that include protein–
ligand interactions. Often when characterizing these
interactions, intermolecular forces such as hydrogen
bonding, van der Waals forces, ion-induced dipoles,
desolvation and electrostatic forces are described. All
of which directly impact the enthalpy �H of the system.
Interactions such as H-bonding can net approximately
20 kJ/mol assuming optimal geometry and distance. The
intermolecular interactions of the ligand can also dictate
the pose of the ligand within the binding pocket. Poses
can vary greatly from ligand to ligand due to adjustments
of the ligand to bend or twist to accommodate the
attractive and repulsive forces involved. It is important
to remember molecules are dynamic in nature with
varying degrees of flexibility and not static and stiff.
Ligands will attempt to orient themselves in the lowest
energy conformation possible. Of course, entropy also
plays a big role as hydrophobicity of the compounds
and the environment in which it is docking can greatly
shift what kinds of ligands can bind and how the
compound can be accommodated within the binding
pocket. The hydrophobicity of the pocket and the ligand
can drastically alter the pose of the prospective ligand or
outright prevent docking even if the compound is capable
of accommodating some of the intermolecular forces
needed for specific binding. The entropic penalty of the
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protein–ligand complex must also not be ignored as it will
require most of the free energy that would result from
the stabilizing interactions. Because system enthalpy
and entropy are so critical in determining the likeliness
and orientation of ligand binding, it is commonplace
for Gibbs free energy, �G to be used as it incorporates
both thermodynamic parameters along with accounting
for temperature and pressure of the system, which can
be valuable when investigating kinetics and molecular
dynamics. �G is also useful when describing proteins,
allowing for equilibrium constants to be derived, in this
case, Kd or Ki. The relationship and the effects of the
thermodynamic parameters have been reviewed, and it is
easy to see how ignoring either thermodynamic principle
can greatly impact binding prediction accuracy.

To demonstrate these principles in a more tangible
manner, we will use four peptidases with two inhibitors
as an example; see Table 3. In this example, we can note
that the inhibitor in this case is a family of proteins
identified as SmCIs. Biologically, these proteases are reg-
ulated through the inhibitory action of its ligand, SmCI
proteins. Within Table 3, we see two inhibitors targeting
four different peptidases plus one mutant. When com-
paring SmCI with rSMCI in bovine carboxypeptidase A,
we can find an almost 3-fold difference in their Ki. When
looking at trypsin, we find the introduction of somewhat
conservative mutation of Asn to Ala causes a drastic
magnitudinous change within the Ki. The substantial
change in Ki highlights the significance of small ther-
modynamic changes within the system can have upon
ligand binding. This mutation also demonstrates how
changes in the system may be counterintuitive if the
entire system is not considered.

It is important to be mindful of the system as a whole.
Isolating individual parameters such as binding affinity
from binding pose will lead to a lackluster prediction,
an accurate prediction can only be obtained by accu-
rately representing the controlling natural phenomenon
as close as possible. In this case, thermodynamics is the
physical link that dictates what and how a ligand will
bind to a protein. Therefore, it is essential to integrate the
three traditionally separated tasks of predicting binding
sites, binding affinity and binding pose together in one
comprehensive machine learning system.

Conclusion and future direction’
In conclusion, based on the findings presented in studies
in the above sections, it appears that ML-based PLI pre-
diction methods can reach a higher level of accuracy if we
incorporate the use of a large number of physicochemical
properties and implement state-of-the-art deep learning
techniques.

In the case of binding site prediction, there exists
severe data imbalance in the benchmark datasets,
making it an imbalanced learning problem, in which
the number of samples in different classes (binding or
nonbinding) differs significantly. It has been found that
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applying conventional ML algorithms to imbalanced
problems, which presume that samples in different
classes are balanced, often results in poor performance.
To address this problem, the random undersampling
technique can be used to alter the size of the majority
class by randomly removing samples from the majority
class. Since random undersampling eliminates samples
from the original dataset, it provides a sparse training
dataset. Moreover, a part of the vital information buried
in the removed samples may also be lost simultaneously.
Hence, the method of combing multiple random under-
sampling with classifier ensemble is exploited to balance
the sample distribution and at the same time reduce
the information loss caused by undersampling. The
powerful deep learning approaches have been applied
to predict ligand binding sites recently. However, the
existing deep learning methods are based on conven-
tional convolutional/recurrent network architectures.
Next-generation deep learning architectures based on
the attention that has achieved success in protein
structure prediction and interpretation [62, 160] shall
be developed to further improve the accuracy of LBS
prediction.

Protein–ligand binding affinity prediction is still an
open challenge in computational drug discovery since it
is a highly selective process. It depends on the shape, size,
constitutional makeup and physicochemical properties
of both drug and its target. Hence, feature selection
must be performed with extreme caution, as training
a machine is heavily reliant on features. Upon study, it
has been found that RF can effectively leverage more
structural features and more training samples, result-
ing in better prediction performance than multiple lin-
ear regression. Moreover, RF-based scoring functions are
supposed to capture the nonlinear nature of the data
more comprehensively than multivariate linear regres-
sion (MLR)-based scoring functions. Moreover, among
a variety of novel scoring functions using various ML
methods in combination with physicochemical features
of protein–ligand complexes, ensemble prediction meth-
ods RF and Boosted Regression Trees are found to be
effective in predicting binding affinities. Regardless of the
merits of classical ML algorithms, most of them heavily
rely on biological feature engineering to extract explicit
fingerprints. Since it is focused on expert information, it
is supposed to be biased. Deep learning models, on the
other hand, which fall into the descriptor-based category
that can automatically extract features from raw data,
tend to reduce the bias. It is expected that deep learn-
ing methods will play an increasingly significant role in
this area.

For achieving a good binding pose, it has been found
that picking the right receptor template and reducing
the binding pocket size (and hence the size of the search
space) as much as possible are critical. Furthermore,
research has shown that the flexibility of protein side
chains within the binding pocket has no effect in improv-
ing the quality of docking poses. Since ML can express

nonlinear dependencies between chemical features, it
has become an increasingly popular approach for scor-
ing docking poses. RFs, SVMs and neural networks are
the algorithms that have been used to solve scoring
problems in a number of situations, and they are said
to provide more flexibility and expressiveness than tra-
ditional empirical scoring methods because they learn
both parameters and model structure from data. Fur-
thermore, we see a promising prospect of deep learning
and reinforcement learning in the domain of binding
pose prediction. It is likely more such methods will be
developed in the future. Moreover, as the tasks of pre-
dicting binding sites, binding affinity and binding poses
are related, advanced deep learning methods of predict-
ing the three simultaneously via multitasking are worth
exploring.

Key Points

• There is a significant need for improving the
prediction of protein–ligand binding site, binding
affinity and binding pose to aid drug discovery,
drug design and protein function study.

• Artificial intelligence, particularly data-driven
machine learning, can significantly advance the
prediction of protein–ligand interaction.

• The growing amount of valuable structural and
functional data of protein–ligand complexes
makes it possible to train highly sophisticated
deep learning architectures to predict protein–
ligand interactions.

• There is a promising potential of integrating the
three traditionally separated tasks of predicting
binding site, binding affinity and binding pose
together in one comprehensive deep learning
system via multitask learning.
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53. Konc J, Janežič D. Binding site comparison for function predic-
tion and pharmaceutical discovery. Curr Opin Struct Biol 2014;25:
34–9.

54. Campbell SJ, Gold ND, Jackson RM, et al. Ligand binding: func-
tional site location, similarity and docking. Curr Opin Struct Biol
2003;13:389–95.

55. Laskowski RA, Luscombe NM, Swindells MB, et al. Protein
clefts in molecular recognition and function. Protein Sci 1996;5:
2438–24352.

56. Laskowski RA. SURFNET: a program for visualizing molecular
surfaces, cavities, and intermolecular interactions. J Mol Graph
1995;13:323–30.

57. Hendlich M, Rippmann F, Barnickel G. LIGSITE: automatic and
efficient detection of potential small molecule-binding sites in
proteins. J Mol Graph Model 1997;15:359–63.

58. Levitt DG, Banaszak LJ. POCKET: a computer graphies method
for identifying and displaying protein cavities and their sur-
rounding amino acids. J Mol Graph 1992;10:229–34.

59. Hu X, Dong Q, Yang J, et al. Recognizing metal and acid
radical ion-binding sites by integrating ab initio model-
ing with template-based transferals. Bioinformatics 2016;32:
3260–9.

60. Lin CT, Lin KL, Yang CH, et al. Protein metal binding residue
prediction based on neural networks. Int J Neural Syst 2005;15:
71–84.

61. Chauhan JS, Mishra NK, Raghava GPS. Identification of ATP
binding residues of a protein from its primary sequence. BMC
Bioinformatics 2009;10:434.

62. Jumper J, Evans R, Pritzel A, et al. Highly accurate protein
structure prediction with AlphaFold. Nature 2021;596:1–11.

63. Smith BJ, McKimm-Breshkin JL, McDonald M, et al. Structural
studies of the resistance of influenza. Virus neuramindase to
inhibitors. J Med Chem 2002;45:2207–12.

64. Dey F, Zhang QC, Petrey D, et al. Toward a ‘structural BLAST’:
using structural relationships to infer function. Protein Sci
2013;22:359–66.

65. Lee DT, Schachter BJ. Two algorithms for constructing a Delau-
nay triangulation. Int J Comput Inf Sci 1980;9:219–42.

66. Yang J, Roy A, Zhang Y. Protein-ligand binding site recognition
using complementary binding-specific substructure compar-
ison and sequence profile alignment. Bioinformatics 2013;29:
2588–95.

67. Skolnick J, Brylinski M. FINDSITE: a combined
evolution/structure-based approach to protein function
prediction. Brief Bioinform 2009;10:378–91.

68. Huang B, Schroeder M. LIGSITEcsc: predicting ligand binding
sites using the Connolly surface and degree of conservation.
BMC Struct Biol 2006;6:1–11.

69. Rost B. Twilight zone of protein sequence alignments. Protein
Eng 1999;12:85–94.

70. Wu Q, Peng Z, Zhang Y, et al. COACH-D: improved
protein-ligand binding sites prediction with refined ligand-
binding poses through molecular docking. Nucleic Acids Res
2018;46:W438–42.

71. Brylinski M, Skolnick J. A threading-based method (FINDSITE)
for ligand-binding site prediction and functional annotation.
Proc Natl Acad Sci USA 2008;105:129–34.

72. Yu J, Zhou Y, Tanaka I, et al. Roll: a new algorithm for the
detection of protein pockets and cavities with a rolling probe
sphere. Bioinformatics 2009;26:46–52.

73. Guo T, Shi Y, Sun Z. A novel statistical ligand-binding site
predictor: application to ATP-binding sites. Protein Eng Des Sel
2005;18:65–70.

74. Bordner AJ. Predicting small ligand binding sites in proteins
using backbone structure. Bioinformatics 2008;24:2865–71.

75. Kauffman C, Karypis G. LIBRUS: combined machine learning
and homology information for sequence-based ligand-binding
residue prediction. Bioinformatics 2009;25:3099–107.

76. Qiu Z, Wang X. Improved prediction of protein ligand-binding
sites using random forests. Protein Pept Lett 2011;18:1212–8.

77. Wong GY, Leung FHF, Ling SH. Predicting protein-ligand bind-
ing site with differential evolution and support vector machine.
Proc 2012 Int Jt Conf Neural Networks 2012;10–5.

78. Volkamer A, Kuhn D, Rippmann F, et al. DoGSiteScorer: a web
server for automatic binding site prediction, analysis and drug-
gability assessment. Bioinformatics 2012;28:2074–5.

79. Wong GY, Leung FHF, Ling SH. Predicting protein-ligand bind-
ing site using support vector machine with protein properties.
IEEE/ACM Trans Comput Biol Bioinforma 2013;10:1517–29.

80. Yu DJ, Hu J, Yang J, et al. Designing template-free predictor for
targeting protein-ligand binding sites with classifier ensemble
and spatial clustering. IEEE/ACM Trans Comput Biol Bioinforma
2013;10:994–1008.

81. Wang K, Gao J, Shen S, et al. An accurate method for prediction
of protein-ligand binding site on protein surface using SVM and
statistical depth function. Biomed Res Int 2013;2013:1–7.

82. Chen P, Huang JZ, Gao X. LigandRFs: random forest ensemble
to identify ligand-binding residues from sequence information
alone. BMC Bioinformatics 2014;15:1–12.

83. Suresh MX, Gromiha MM, Suwa M. Development of a machine
learning method to predict membrane protein-ligand binding
residues using basic sequence information. Adv Bioinformatics
2015;2015: Article ID 843030.

84. Yu DJ, Hu J, Li QM, et al. Constructing query-driven dynamic
machine learning model with application to protein-ligand
binding sites prediction. IEEE Trans Nanobiosci 2015;14:45–58.

85. Komiyama Y, Banno M, Ueki K, et al. Automatic generation of
bioinformatics tools for predicting protein-ligand binding sites.
Bioinformatics 2016;32:901–7.

86. Chen P, Hu S, Zhang J, et al. A sequence-based dynamic ensem-
ble learning system for protein ligand-binding site prediction.
IEEE/ACM Trans Comput Biol Bioinforma 2016;13:901–12.

87. Chen ASY, Westwood NJ, Brear P, et al. A random Forest model
for predicting allosteric and functional sites on proteins. Mol
Inform 2016;35:125–35.

88. Hu X, Wang K, Dong Q. Protein ligand-specific binding
residue predictions by an ensemble classifier. BMC Bioinformat-
ics 2016;17:1–12.

89. Krivak R, Hoksza D, Skoda P. Improving quality of ligand-
binding site prediction with Bayesian optimization. 2017 IEEE
Int Conf Bioinforma Biomed BIBM 2017;2017:2278–9.

90. Krivák R, Hoksza D. P2Rank: machine learning based tool for
rapid and accurate prediction of ligand binding sites from
protein structure. J Chem 2018;10:1–12.

91. Jendele L, Krivak R, Skoda P, et al. PrankWeb: a web server for
ligand binding site prediction and visualization. Nucleic Acids
Res 2019;47:W345–9.

92. Mahdiyah U, Imah EM, Irawan MI. Integrating data selection
and extreme learning machine to predict protein-ligand bind-
ing site. Contemp Eng Sci 2016;9:791–7.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/23/1/bbab476/6444314 by guest on 13 June 2022



22 | Dhakal et al.

93. Bin HG, Zhu QY, Siew CK. Extreme learning machine: theory
and applications. Neurocomputing 2006;70:489–501.

94. Jones DT. Protein secondary structure prediction based on
position-specific scoring matrices. J Mol Biol 1999;292:195–202.

95. Cui Y, Dong Q, Hong D, et al. Predicting protein-ligand binding
residues with deep convolutional neural networks. BMC Bioin-
formatics 2019;20:1–12.

96. Xia CQ, Pan X, Shen H-B. Protein-ligand binding residue
prediction enhancement through hybrid deep heterogeneous
learning of sequence and structure data. Bioinformatics
2020;36:3018–27.

97. Stepniewska-Dziubinska MM, Zielenkiewicz P, Siedlecki P.
Improving detection of protein-ligand binding sites with 3D
segmentation. Sci Rep 2020;10:1–9.

98. Desaphy J, Bret G, Rognan D, et al. Sc-PDB: a 3D-database
of ligandable binding sites-10 years on. Nucleic Acids Res
2015;43:D399–404.

99. Mylonas SK, Axenopoulos A, Daras P. DeepSurf: a surface-
based deep learning approach for the prediction of
ligand binding sites on proteins. Bioinformatics 2021;37:
1681–90.

100. Kandel J, Tayara H, Chong KT. PUResNet: prediction of protein-
ligand binding sites using deep residual neural network. J Chem
2021;13:1–14.

101. Wu S, Zhang Y. ANGLOR: a composite machine-learning algo-
rithm for protein backbone torsion angle prediction. PLoS One
2008;3:e3400.

102. Ronneberger O, Fischer P, Brox T. U-net: convolutional net-
works for biomedical image segmentation. Int Conf Med image
Comput Comput Interv 2015;234–41.

103. Perozzo R, Folkers G, Scapozza L. Thermodynamics of protein-
ligand interactions: history, presence, and future aspects. J
Recept Signal Transduct 2004;24:1–52.

104. Deng W, Breneman C, Embrechts MJ. Predicting protein - lig-
and binding affinities using novel geometrical descriptors and
machine-learning methods. J Chem Inf Comput Sci 2004;44:699–
703.

105. Ashtawy HM, Mahapatra NR. A comparative assessment
of conventional and machine-learning-based scoring func-
tions in predicting binding affinities of protein-ligand com-
plexes. 2011 IEEE Int. Conf. Bioinforma. Biomed. BIBM 2011 2011;
627–30

106. Ouyang X, Handoko SD, Kwoh CK. CScore:a simple yet effective
scoring function for protein ligand binding affinity prediction
using modified cmac learning architecture. J Bioinform Comput
Biol 2011;9:1–14.

107. Zilian D, Sotriffer CA. SFCscoreRF: a random forest-based scor-
ing function for improved affinity prediction of protein-ligand
complexes. J Chem Inf Model 2013;53:1923–33.

108. Liu Q, Kwoh CK, Li J. Binding affinity prediction for protein-
ligand complexes based on β contacts and B factor. J Chem Inf
Model 2013;53:3076–85.

109. Li H, Leung KS, Wong MH, et al. Substituting random forest for
multiple linear regression improves binding affinity prediction
of scoring functions: Cyscore as a case study. BMC Bioinformatics
2014;15:1–12.

110. Wang Y, Guo Y, Kuang Q, et al. A comparative study of family-
specific protein-ligand complex affinity prediction based on
random forest approach. J Comput Aided Mol Des 2015;29:349–
60.

111. Cao Y, Li L. Improved protein-ligand binding affinity prediction
by using a curvature-dependent surface-area model. Bioinfor-
matics 2014;30:1674–80.

112. Shar PA, Tao W, Gao S, et al. Pred-binding: large-scale protein–
ligand binding affinity prediction. J Enzyme Inhib Med Chem
2016;31:1443–50.

113. de Ávila MB, Xavier MM, Pintro VO, et al. Supervised machine
learning techniques to predict binding affinity. A study
for cyclin-dependent kinase 2. Biochem Biophys Res Commun
2017;494:305–10.

114. Bitencourt-Ferreira G, de Azevedo WF. Development of a
machine-learning model to predict Gibbs free energy of binding
for protein-ligand complexes. Biophys Chem 2018;240:63–9.

115. Kundu I, Paul G, Banerjee R. A machine learning approach
towards the prediction of protein-ligand binding affinity
based on fundamental molecular properties. RSC Adv 2018;8:
12127–37.

116. Boyles F, Deane CM, Morris GM. Learning from the ligand: using
ligand-based features to improve binding affinity prediction.
Bioinformatics 2020;36:758–64.

117. Holderbach S, Adam L, Jayaram B, et al. RASPD+: fast protein-
ligand binding free energy prediction using simplified physico-
chemical features. Front Mol Biosci 2020;7:1–14.

118. Amangeldiuly N, Karlov D, Fedorov MV. Baseline model for
predicting protein-ligand unbinding kinetics through machine
learning. J Chem Inf Model 2020;60:5946–56.

119. Wee J, Xia K. Ollivier persistent Ricci curvature-based machine
learning for the protein-ligand binding affinity prediction. J
Chem Inf Model 2021;61:1617–26.

120. Liu Q, Kwoh CK, Hoi SCH. Beta atomic contacts: identifying
critical specific contacts in protein binding interfaces. PLoS One
2013;8:e59737.

121. Kim S, Thiessen PA, Bolton EE, et al. PubChem substance and
compound databases. Nucleic Acids Res 2016;44:D1202–13.

122. Allouche A. PaDEL-descriptor: an open source software to cal-
culate molecular descriptors and fingerprints. J Comput Chem
2011;32:1466–74.

123. Keerthi SS, Shevade SK, Bhattacharyya C, et al. Improvements to
Platt’s SMO algorithm for SVM classifier design. Neural Comput
2001;13:637–49.

124. Cleary JG, Trigg LE. K∗: an instance-based learner using an
entropic distance measure. Mach Learn Proc 1995;1995:108–114.

125. Ashtawy HM, Mahapatra NR. BgN-score and BsN-score: bag-
ging and boosting based ensemble neural networks scoring
functions for accurate binding affinity prediction of protein-
ligand complexes. BMC Bioinformatics 2015;16:1–12.

126. Gomes J, Ramsundar B, Feinberg EN, et al. Atomic convolutional
networks for predicting protein-ligand binding affinityarXiv
Prepr. arXiv. 2017;1–17.
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