

Design and analysis of siloxanes removal by adsorption from landfill gas for waste-to-energy processes

Anthony C. Elwell, Nada H. Elsayed, John N. Kuhn*, Babu Joseph**

Department of Chemical & Biomedical Engineering, University of South Florida, Tampa, FL

33620, United States

*Corresponding author. Tel.: +1 813-974-6498; E-mail address: jnkuhn@usf.edu (J. Kuhn)

** Tel.: +1 813-974-0692; E-mail address: bjoseph@usf.edu (B. Joseph)

8 Postal address: 4202 E. Fowler Ave., ENB 118, University of South Florida, Tampa, FL 33620,
9 USA

11 Abstract:

12 Separation of volatile methyl siloxanes from landfill gas using fixed adsorption beds was modeled
13 with the objective of identifying appropriate technology and the economics associated with this
14 purification step. A general adsorption model assuming plug flow and radial symmetry was
15 developed and used to conduct a parametric sweep of 162 unique cases. The varied parameters
16 were adsorbent type (activated carbon and silica gel), bed height (3.05-9.15 m / 10-30 ft), inlet
17 siloxane concentration (5-15 mg/m³), moisture content (0-100% relative humidity at STP or RH),
18 and siloxane tolerance limit (0.094-9.4 mg/m³) that correlated to three distinct energy conversion
19 technologies (electricity production using engines or fuels cells or catalytic conversion to liquid
20 hydrocarbon fuels). Due to the detrimental effect of RH on siloxane absorption, the maximum
21 allowable moisture content of LFG before purification is 50% RH and moisture removal processes
22 are also required.

24 The design calculations using a selected case study show that the adsorption bed height required
25 needed for 6 months minimum breakthrough time for catalytic fuel production is twice that for
26 engine applications. Fuel cell applications require 3 times the bed height compared to engine
27 applications. However, the purification costs amounted to 94%, 16% and 52% of recovered
28 product value for engine, liquefaction, and fuel cell applications, respectively indicating the need
29 for a high value product to justify purification costs. The approaches and conclusions can be
30 extended to specific process conditions for landfill gas purification and to other processes that use
31 biogas produced from waste as a feedstock.

35 Keywords: Waste-to-energy; Siloxane; Landfill gas; Contaminant removal

36 **1. Introduction:**

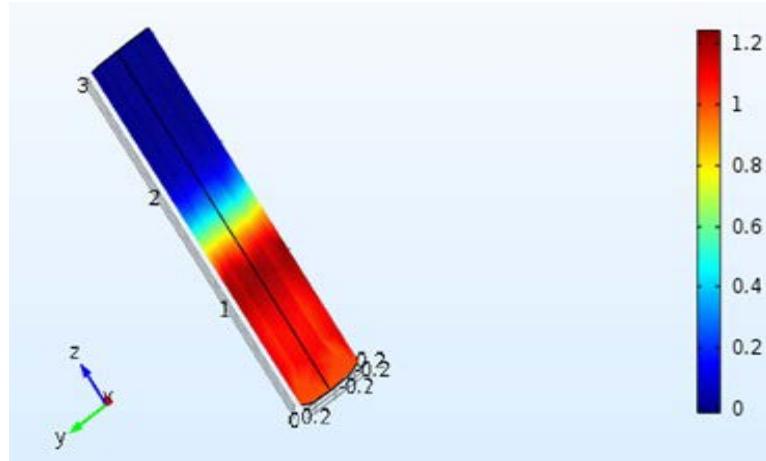
37 Biogas is produced from a variety of different sources such as landfills, industrial residues, and
38 wastewater treatment. Biogas derived from landfills is called landfill gas (LFG); it is produced
39 through anaerobic digestion of the organic fraction of municipal solid waste (MSW) discarded in
40 landfills. According to the U.S. Environmental Protection Agency (EPA), the U.S. produced 254
41 million tons of MSW in 2013 with roughly 61% by mass being biomass (EIA, 2016a; EPA, 2015).
42 LFG is composed primarily of roughly equal parts CH₄ and CO₂ by volume (and molecules), two
43 common greenhouse gases (GHGs), with various other species such as air, water, and inorganic
44 gases. The total emissions of GHGs in 2014 was 6,780 million metric tons of CO₂ equivalent, with
45 81% from CO₂ and 11% from CH₄ (EPA, 2016a). LFG accounted for 18% of the human-related
46 CH₄ emissions in the U.S. in 2014 (EPA, 2016c). Targeting the utilization of biogas from waste
47 has become increasingly popular and important. LFG utilization is favored over simply eliminating
48 its CH₄ emissions through flaring since LFG has significant energy content. The methane
49 contained can be used for electricity generation, purified to compressed/liquefied natural gas
50 (CNG/LNG), or converted to liquid hydrocarbons with heterogeneous catalysis (through Fischer-
51 Tropsch Synthesis). In 2014, the EPA's Renewable Fuel Standard (RFS2) added renewable biogas
52 as an advanced biofuel, adding increased financial incentives for LFG to energy projects (EPA,
53 2014).

54 Regardless of how LFG is used, the presence of various impurities can cause damage to process
55 equipment. Among the leading contaminates are volatile methyl siloxanes which are particularly
56 harmful or even destructive to the equipment. Siloxanes are organic compounds that contain
57 silicon, oxygen, and methyl groups in a linear or cyclic form. They have been shown to decompose
58 to silica which deposits and covers the LFG processing equipment such as flares, turbines, engine

59 parts, fuel cells, and catalysts (Elsayed et al., 2017; Hill, 2014; Papadias et al., 2012; Rasmussen
60 et al., 2006; Sevimoglu and Tansel, 2013a, b; UKEA, 2004; Wheless and Pierce, 2004). As a result,
61 many manufacturing companies have set maximum tolerable limits for siloxanes. For instance,
62 engines, which can tolerate the highest levels compared to catalysts and fuel cells, have a siloxane
63 manufacturer tolerance limit from 1000-5600 parts per billion by volume (ppbv) (Hill, 2014).
64 Catalysts for selective catalytic reduction and solid oxide fuel cells are more stringent in their
65 limitations with 100 ppbv and 10-1000 ppbv total siloxanes, respectively (Hill, 2014; Papadias et
66 al., 2012). Landfills vary greatly in their siloxane concentration depending on location, age,
67 weather, source, and components in the landfill and have been stated to be anywhere from 1 to 136
68 mg/m³ (Ajhar et al., 2010; Hill, 2014; Läntelä et al., 2012; McBean, 2008; Ryckebosch et al., 2011;
69 Schweigkofler and Niessner, 1999; Shin et al., 2002; Urban et al., 2009; Wheless and Pierce,
70 2004). According to the impurities database created by Argonne National Laboratory, the average
71 siloxane concentration is roughly 1000 ppbv (ANL, 2011). This is roughly 10 mg/m³ assuming
72 LFG contains a 1 to 1 molar ratio of linear (L2) and cyclic (D4) siloxanes.
73 The technologies for siloxane removal include adsorption, absorption, gas chilling, and biological
74 removal of contaminants (Abatzoglou and Boivin, 2009; Ryckebosch et al., 2011). By far, the most
75 widely studied is the adsorption of siloxanes on solid adsorbents. Each adsorbent has a different
76 capacity and rate for siloxane adsorption and adsorbents including activated carbon, silica gel, and
77 zeolites have been tested. Activated carbon and silica gel have been shown to have the highest
78 capacity which range from 36-404 and 17-131 mg of siloxanes per gram of adsorbent, respectively
79 (Nam et al., 2013; Oshita et al., 2010; Schweigkofler and Niessner, 2001; Sigot et al., 2014). The
80 majority of literature suggests that activated carbon has a higher capacity than silica gel (Nam et
81 al., 2013; Ortega and Subrenat, 2009; Oshita et al., 2010). In addition, activated carbon is readily

82 available and inexpensive, however, it has low regeneration capability therefore it is generally
83 discarded after it has been used (Läntelä et al., 2012; Ryckebosch et al., 2011). Silica gel has a
84 better regeneration ability and can potentially be used more than once before it needs to be
85 replaced, however, it is more costly and requires high temperatures for regeneration
86 (Schweigkofler and Niessner, 2001; Sigot et al., 2014). Since there are a number of literature
87 studies on activated carbon and silica gel and both may be used in practice, results for both
88 adsorbents are included in the present study. Another important aspect of LFG purification through
89 adsorption is the moisture content of the gas. LFG is often completely saturated with water vapor
90 (Bove and Lunghi, 2006; Wheless and Pierce, 2004). Increasing moisture content has been shown
91 to decrease the capacity of the adsorbent used, which is why a drying unit is typically installed
92 before LFG purification (Abatzoglou and Boivin, 2009; G.R. Herdin, 2000; Schweigkofler and
93 Niessner, 2001; Wheless and Pierce, 2004).

94 The objective of this paper is to present an analysis of equipment used and the economics of LFG
95 purification prior to energy recovery. COMSOL® Multiphysics version 5.2 was utilized for
96 modeling the gas purification step via adsorption in a fixed bed. The model was used to
97 appropriately size and cost the LFG purification process. In order to account for the different LFG-
98 to-energy projects and the distinct purification needs, the model was modified for three common
99 LFG applications: direct use (engines), electricity generation (fuel cells), and conversion to liquid
100 hydrocarbon fuels (catalysis). Each process was designed to have a minimum adsorption bed life
101 of 6 months and optimized for moisture content to design an appropriate pre-treatment step.


102
103
104

2. Methodology:

105 *2.1 Conditions and Assumptions*

106 The adsorption simulation studies were done using the Transport of Diluted Species in Porous
107 Media package in COMSOL Multiphysics® 5.2a (COMSOL, 2017). The model geometry consists
108 of a 3-dimensional cylinder, which represents the adsorbent packing within the bed (see Figure 1
109 for an example). There is an inlet set on one face and an outlet set on the other, assuming no radial
110 flux of any species through the pipe walls. With symmetry, constant pipe dimension, and the
111 assumption of plug flow, the resulting model simplified to 1-dimensional. The study simulated
112 500 days of clean up in 1 day increments. Gas flow rate was assumed to be 2500 SCFM because
113 it is the average flow of LFG collected according to the Landfill Methane Outreach Program
114 (LMOP) database (EPA, 2016b). Atmospheric pressure and a temperature of 25°C were chosen
115 since literature data is given around these conditions and they are reasonable for the industrial
116 scale process (Boulinguiez and Le Cloirec, 2010; Nam et al., 2013; Oshita et al., 2010;
117 Schweikofler and Niessner, 2001; Sigot et al., 2014). Low pressure was allowed to be used for
118 schedule 40 piping for the adsorption beds. The velocity through the bed was kept close to values
119 used in experiments reported in the literature (~0.5 m/s) (Oshita et al., 2010; Schweikofler and
120 Niessner, 2001; Sigot et al., 2014) by using 10 pipes with a 0.61 m (2 ft) diameter. The model gas
121 was comprised of mostly nitrogen and LFG equivalent levels of a single siloxane (L2) which is
122 adsorbing. The carrier gas was chosen to be nitrogen because most literature experiments are done
123 using nitrogen as the carrier gas (Oshita et al., 2010; Schweikofler and Niessner, 2001; Sigot et
124 al., 2014). It is not necessary to model CH₄ and CO₂ (model LFG) as the carrier because they do
125 not significantly adsorb. CH₄ losses have been reported to be around 2-4% for pressure swing
126 adsorption (PSA) (Sun et al., 2015). This means it is safe to assume the carrier gas plays no role
127 in the adsorption. Only L2 was chosen to model because larger siloxanes have been shown to break
128 down into smaller siloxanes (L2) and the adsorption of L2 has been widely studied (Oshita et al.,

129 2010; Schweigkofler and Niessner, 2001; Sigot et al., 2014). The properties of the gas stream were
130 found from nitrogen properties because the L2 levels are dilute enough to be neglected.

131
132 **Figure 1: COMSOL® simulation screenshot showing an illustrative concentration profile**
133 **(c/c_0 ratio) throughout 3.05 m (10 ft) adsorption bed.**

134
135 *2.2 Parametric Sweep Variables*
136 A parametric sweep to be performed over a range of other variables including bed height,
137 adsorbent, relative humidity (RH), and inlet concentration. These results are able to give data for
138 a wide range of conditions and allows for the sizing and optimization of a viable process for each
139 application of LFG. The bed height was varied between three values: 3.05, 6.10, and 9.15 m (10-
140 30 ft). These heights are all reasonable sizes for the full-scale process and height will affect the
141 bed life and cost. The RH was varied between 0%, 50%, and 100%. Since adsorbent capacity
142 correlates to RH, its variation allows for optimization of the LFG moisture level for the
143 determination of appropriate pre-treatment steps. Since the concentration of siloxanes varies
144 greatly between landfills, the initial inlet concentration was assumed to be 10 mg/m³, which is the
145 average value found in literature with 5 and 15 mg/m³ also tested to provide a comparative

146 evaluation. All of these variables were included in the parametric sweep for two commercially
147 available 4 mm size adsorbents that have been widely studied: activated carbon and silica gel. The
148 parametric sweep in COMSOL® runs calculations for every combination of the variables stated.

149

150 *2.3 Governing Equations/Correlations*

151 The following equations and correlations were used through COMSOL® to run calculations and/or
152 to calculate data needed as an input to the model.

153 The material balance used for the adsorption process is shown below in equation (1) (Geankoplis,
154 1993):

155 (1)

$$156 \epsilon_b \frac{\partial c}{\partial t} + \rho_b \frac{\partial q}{\partial t} = -v \frac{\partial c}{\partial z} + E \frac{\partial^2 c}{\partial z^2}$$

157 Where ϵ_b is the bed void fraction, c is the siloxane concentration, t is time, ρ_b is the bulk density
158 of the adsorbent, q is the loading of siloxane on the adsorbent, v is the superficial velocity, z is the
159 distance along the length of the bed, and E is the axial dispersion coefficient. The concentration at
160 the inlet is equal to the inlet siloxane concentration set for the simulation at all times. The
161 concentration and adsorbent loading are both initially 0 and increase with time.

162 The Freundlich isotherm parameters for the adsorption of L2 on activated carbon and silica gel
163 were obtained from literature (Ortega and Subrenat, 2009). The data found was fit to the Langmuir
164 isotherm shown in equation (2), which is the form COMSOL® utilizes for calculations:

165 (2)

$$166 q = \frac{K_L C_p c}{1 + K_L c}$$

167 The loading of siloxane on the adsorbent is q (mol/kg). The concentration of siloxanes in the gas
168 phase is given by c (mol/m³). K_L (m³/mol) and C_p (mol/kg) are the Langmuir parameters, where

169 C_p represents the capacity of the adsorbent. The values used from literature data 0% RH are 412.3
170 m^3/mol and 1.26 mol/kg for silica gel and 2504 m^3/mol and 2.22 mol/kg for activated carbon.
171 In order to obtain a relationship between the moisture content and capacity for each adsorbent,
172 literature data was used to develop an equation that gives the adsorption factor (AF) as a function
173 of RH. The adsorption factor is defined as the ratio of the capacity at some RH to the capacity for
174 a dry gas. For activated carbon, graph data from literature (G.R. Herdin, 2000) was digitized and
175 fit to a sigmoid equation and regressed to minimize error using equation (3).

176 (3)

177
$$AF = \frac{3.7348E6}{3.7586E6 + e^{26.44(RH)}}$$

178 Silica gel was also regressed to fit the sigmoid function in equation (4) from available literature
179 data (Schweigkofler and Niessner, 2001; Sigot et al., 2014):

180 (4)

181
$$AF = \frac{2.65}{1.65 + e^{0.046(RH)}}$$

182 In both equations (3) and (4), AF is a fraction. However, the RH term for activated carbon must
183 be given as a fraction while the RH in the silica gel equation is a percent. AF was used by
184 multiplying its value by the value of the Langmuir capacity term to get the new capacity.
185 The correlation shown by equation (5) was used to determine the value of the bed void fraction
186 (Ribeiro et al., 2010):

187 (5)

188
$$\epsilon_b = 0.373 + 0.917e^{-0.824\left(\frac{D}{d_p}\right)}$$

189 D is the internal diameter of the bed and d_p is the pellet diameter (chosen as 4 mm).

190 The pressure drop was calculated through the adsorption bed using the Ergun Equation shown in
191 equation (6) (Thornhill, 2017):

192 (6)

$$193 \frac{\Delta P}{L} = \frac{150\mu(1 - \epsilon_b)^2 v}{\epsilon_b^3 d_p^2} + \frac{1.75(1 - \epsilon_b)\rho v^2}{\epsilon_b^3 d_p}$$

194 where ΔP is the pressure drop across the length (L) of the bed and μ and ρ are properties of the
195 flowing fluid (nitrogen/L2) and represent viscosity and density, respectively.

196

197 *2.4 Applications for LFG Purification*

198 The parametric sweep results were used for the three LFG to energy processes identified earlier.

199 Since siloxanes decompose and damage equipment, each application has its own set of
200 specifications for the maximum amount of siloxanes allowed in the LFG. One application is the
201 use of LFG for combustion engines, which require the least clean up. The specifications change
202 depending on the engine manufacturing company so the lowest siloxane tolerance was selected.

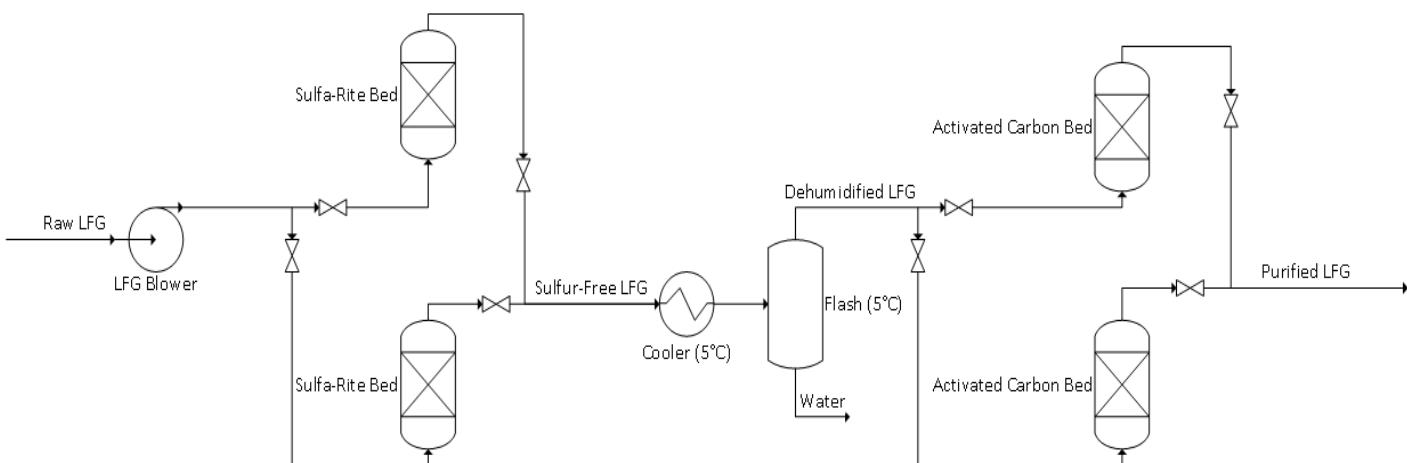
203 For engine applications, the limit of siloxanes was chosen as 1000 ppbv (9.4 mg/m³) (Hill, 2014).

204 The second application is the conversion of LFG to liquid fuels using heterogeneous catalysts.

205 Catalysts are damaged by siloxanes at lower levels than engines, with a tolerance of 100 ppbv
206 (0.94 mg/m³)(Hill, 2014). The most sensitive application is the use of LFG to generate electricity

207 with fuel cells which has a limit ranging from 10-1000 ppbv (Papadias et al., 2012). A
208 concentration of 10 ppbv (0.094 mg/m³) was chosen as the fuel cell limit for this study to

209 accommodate for the variations stated in the literature. Table 1 has the siloxane tolerance
210 concentrations for each application. These three limits are used to determine the breakthrough time


211 for each variable combination from the parametric sweep. The breakthrough is defined as the time
212 it takes for the outlet gas stream siloxane concentration to reach the limit given by each application.

213 Only breakthrough times of at least 6 months (180 days) are deemed viable, due to a general desire
214 for minimal disruption of operations and being a general value for process operation maintenance,
215 for the LFG purification process.

216
217 *2.5 Economics of Siloxane Removal by Adsorption*
218 In this study, a desired lifetime of the adsorbent beds was assumed to be 6 months (180 days) for
219 70 Nm³/min (2500 SCFM) of LFG. The costing of the overall process includes a refrigeration
220 condenser, gas blower, and two adsorption beds operating 8400 hours per year to provide
221 scheduled downtime. As shown in Figure 2, two beds were used to allow for constant operation of
222 the LFG processing facility. When one adsorbent bed is used up, the gas is switched to the second
223 bed and the first bed can be disposed and replaced for the next cycle. Since activated carbon does
224 not regenerate well, the processes assume that the adsorbent is replaced after each use. The bed
225 consists of schedule 40 piping (0.051 m or 24 inch diameter) at \$76.27 per ft and activated carbon
226 bulk priced at \$1.20 per pound (ADCOA, 2017; Pipe, 2016). A headspace of 0.152 m (6 inches)
227 was allowed on the top and bottom of the beds. The gas blower was designed with the assumption
228 of a motor efficiency of 90%, a blower efficiency of 70%, and 50 kPa pressure increase to account
229 for pressure drop. The power requirement of the blower is 78.5 kW (Yoon, 2016). The purchased
230 cost for the blower was estimated to be \$50,000 (Towler and Sinnott, 2012). The condenser was
231 designed and costed with AspenPlus V8.8 and utilized Freon-12 as the refrigerant. The combined
232 purchased and installed cost is \$76,400 with a Freon-12 cost of \$1225 per year and electricity
233 consumption of 52 kW. The fixed capital costs (blower, condenser, adsorption beds) were
234 annualized assuming a Lang factor of 4 (to estimate total plant cost), a minimum attractive interest
235 rate of 20%, and a 15 year lifetime. The activated carbon costs were annualized based on the
236 breakthrough time. In September 2016, the electricity costs for industrial facilities in the U.S. was

237 about \$0.07 per kWh (EIA, 2016c). Labor costing was done knowing that the gas cleanup is only
238 one step of multiple steps for LFG to energy applications. The pretreatment of the gas is assumed
239 to utilize about half of a single operators time per day, where the operators wage is \$35 per hour.
240 Additional details are located in the Supplemental Material (Sections A-C).

241
242

243

244 **Figure 2: LFG purification process flow diagram**

245
246 **3. Results and Discussion:**

247

248 *3.1 Parametric Sweep*

249 Parametric sweeps were performed using COMSOL® 5.2 for activated carbon and silica gel over
250 three variables each with three different specifications. This gives 54 combinations of variables
251 which can be applied to three applications for a total of 162 different LFG clean up scenarios.

252

253 *3.2 Approach for Moisture Removal*

254 Because LFG is usually saturated with moisture, an appropriate dehumidification process was
255 determined and included in the overall LFG cleanup design/costing. The model results show that
256 at most 50% RH can be tolerated, so this was the target set for the pretreatment step. Many LFG
257 pretreatments include installation of a refrigeration condenser for moisture removal, which also
258 removes some of the contaminants including siloxanes (Kuhn et al., 2017; Schweikofler and
259 Niessner, 2001). A temperature of 5°C was chosen as the target dew point temperature for the
260 cooler because it will remove enough moisture to meet the RH requirement (Schweikofler and
261 Niessner, 2001). This gives a RH of about 30% at the operation temperature of the adsorption beds
262 (25°C).

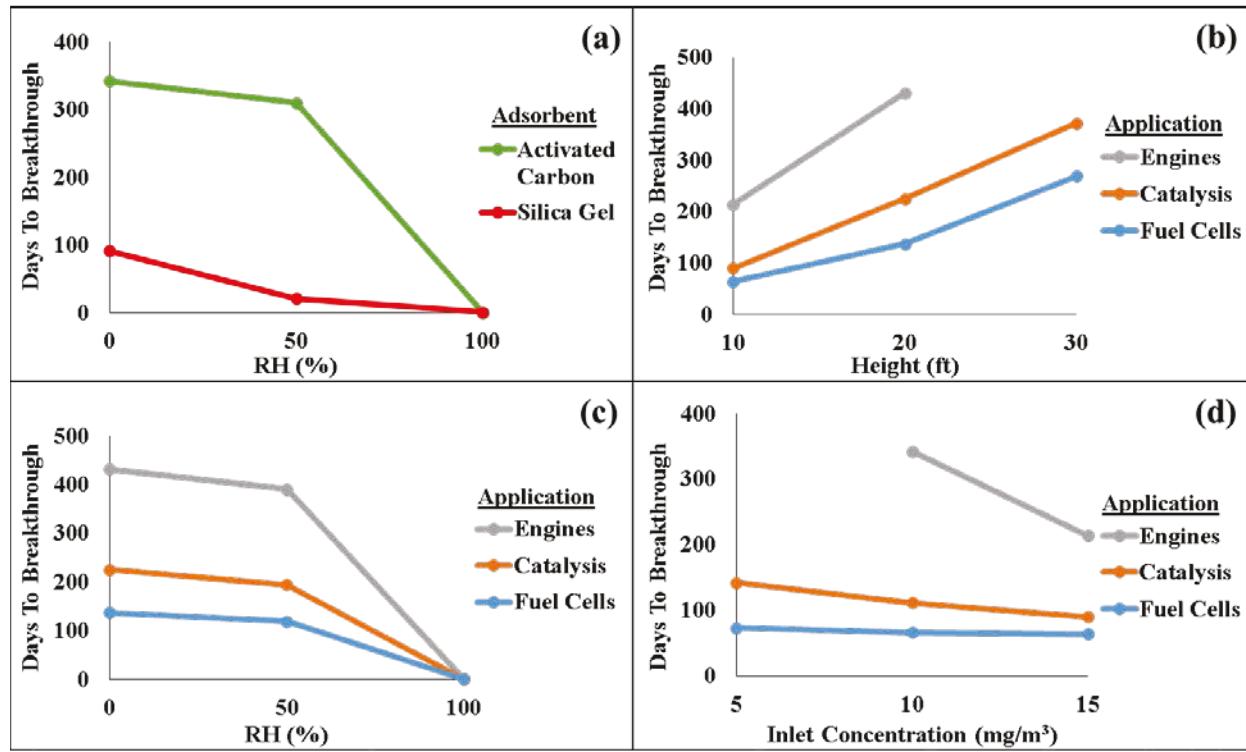
263

264 *3.3 Effect of Adsorbent*

265 The breakthrough times are presented in Figure 3a with respect to RH (in percentage, or %RH) for
266 both activated carbon and silica gel. Breakthrough time is defined as the time it takes for the outlet
267 siloxane concentration to equal the specified application limit. When comparing the ability of
268 activated carbon to silica gel for siloxane adsorption, activated carbon performs better in every
269 scenario. In some cases, the breakthrough times for activated carbon were an order of magnitude
270 higher. This was expected due to activated carbon's high siloxane adsorption capacity compared
271 to silica gel. Although silica gel has a better regeneration ability, it is not enough to overcome its
272 increased cost and decreased capacity. As a result, activated carbon was determined to be the
273 adsorbent for the remainder of this study.

274

275 *3.4 Effect of Bed Height*


276 The height of the adsorption bed versus the days to breakthrough was analyzed for each application
277 of LFG as shown in Figure 3b. Consistent with expectations of an adsorption tower and
278 experiments (Sigot et al., 2014), the increased bed height increased the breakthrough time in all
279 cases. One thing to observe is that the height change has different effects on each application. The
280 engine is impacted most by height change, then catalysts, and lastly the fuel cells. This trend is
281 due to the difference in siloxane limits with engines being highest, then catalysts, and fuel cells as
282 the most stringent. With lowering siloxane limit, the less of a difference a height change will make
283 due to the adsorption isotherm behavior. The concentration plot versus time for adsorption shows
284 relatively no outlet concentration in the beginning, then starts to increase exponentially as the
285 adsorbent is increasingly loaded (can be seen in Figure 4). At some point in time, the rate of
286 concentration increase (slope) will start to decrease, causing the concentration to level off at the
287 capacity of the adsorbent. The breakthrough concentration is very low for fuel cells (0.094 mg/m^3)
288 compared to catalysts (0.94 mg/m^3) and engines (9.4 mg/m^3). This puts the lower siloxane limit
289 closer to the point where the concentration rate of change is higher, reducing the effects of having
290 extra adsorbent.

291

292 *3.5 Effect of Siloxane Concentration*

293 The effect of inlet concentration on all three applications is shown in Figure 3d. In general, as
294 siloxane concentration increases, the breakthrough time decreases. The increased siloxanes flow
295 rate outweighs the increased adsorption associated with increasing concentration. Applications
296 with higher inlet siloxane concentrations will require more adsorbent to appropriately remove the
297 contaminant. This trend is consistent with experimental results in literature (Wheless and Pierce,
298 2004). As with the height change, the change in siloxane concentration has its largest effect on the

299 engine application, then catalysis, and fuel cells least effected. This happens for the same reason
 300 stated before, caused by the difference in application siloxane limits and adsorption behavior. Fuel
 301 cells tolerate much lower amounts of siloxanes, so even low concentrations will breakthrough
 302 quickly and changing them will not have a significant effect. In some cases for engines, the inlet
 303 concentration is lower than the 9.4 mg/m^3 limit and no gas purification is needed, such as when
 304 the inlet concentration is 5 mg/m^3 . This is why there is no data point for 9.15 m (30 ft length;
 305 Figure 3b) and 5 mg/m^3 (Figure 3d).

306
 307 **Figure 3: Effect of variables on breakthrough time: (a) Adsorbent, (b) Bed height, (c)**
 308 **Relative humidity (RH), (d) Siloxane concentration. Conditions: (a) Height = 3.05 m (10 ft),**
 309 **tolerance = 0.094 mg/m^3 (i.e., fuel cell application), inlet siloxane concentration = 5 mg/m^3 ,**
 310 **(b) Activated carbon, inlet siloxane concentration = 15 mg/m^3 , RH = 0%, (c) Activated**
 311 **carbon, height = 6.10 m (20 ft), inlet siloxane concentration = 15 mg/m^3 , (d) Activated carbon,**
 312 **height = 6.10 m (20 ft), RH = 0%.**

313

314 *3.6 Effect of Moisture Content*

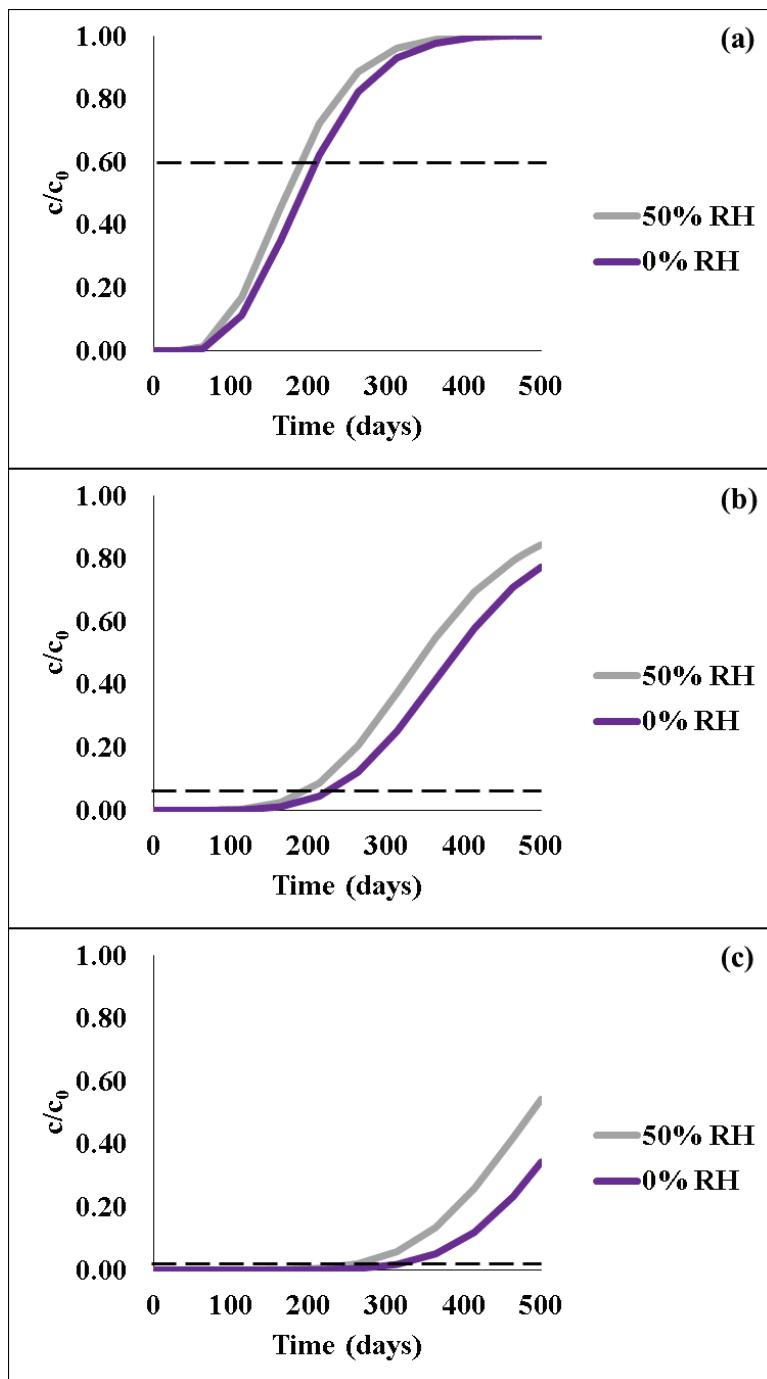
315 The moisture content (in %RH) of the inlet gas stream had a negative effect on the breakthrough
316 time for all three applications (Figure 3c). Overall, as the RH increases, the breakthrough
317 decreases. This trend occurs because there is competition for adsorption sites between the water
318 and siloxanes, which has been shown to happen in multiple adsorption studies (G.R. Herdin, 2000;
319 Ortega and Subrenat, 2009; Schweigkofler and Niessner, 2001; Sigot et al., 2014). The results
320 suggests that 100% RH will lead to virtually no siloxane removal in the gas, which is in agreement
321 with literature (G.R. Herdin, 2000). Since LFG is usually saturated, a dehumidification process is
322 necessary before other adsorption processes. Based on these results, the RH should be under 50%
323 to keep the siloxane adsorption capacity as high as possible. If it is higher than this, the water will
324 dominate the adsorption.

325

326 *3.7 Design of Application Specific Siloxanes Adsorption Processes*

327 The parametric sweep results were analyzed to determine which scenarios met this requirement
328 for each LFG application. The model used has assumptions and therefore the results presented are
329 to be taken for comparative purposes only. However, the model was validated using a literature
330 study (Matsui and Imamura, 2010) and accuracy would be improved with improved model
331 precision (Supplemental Material, Section D). Still, conclusions drawn from the model are used to
332 compare the costs associated with various LFG purification option and the impact of the cost of
333 gas purification on the economics of the process. The present model provides estimates for
334 preliminary process screening.

335


336 As stated earlier, activated carbon was found to be better than silica gel and was chosen as the
337 adsorbent. Since 50% RH was the maximum tolerable moisture level, each case with 100% RH
338 was neglected. The results were then narrowed down to only looking at inlet siloxane
339 concentrations of 15 mg/m³. The idea in choosing this is that the process will be able to apply to
340 most other siloxane concentrations because it was designed for a “worst-case scenario” situation.
341 From here, size was chosen in order to meet the breakthrough requirement while keeping the height
342 as low as possible. The breakthrough times are 195, 194, and 217 days, respectively, using 3.05 m
343 (10 ft) bed height for IC engines, 6.10 m (20 ft) for catalysis and 9.15 m (30 ft) for fuel cells. The
344 ratio of the outlet siloxane concentration to the inlet are plotted as a function of time in Figure 4.
345 The final process design results are shown in Table 1.

346

347 **Table 1: Design requirements for three LFG purification processes. All three processes**
348 **utilize activated carbon, are at 50% RH, and have inlet siloxane concentrations of 15 mg/m³.**

Application	Siloxane Limit (mg/m ³)	Height (m/ft)	Breakthrough ratio (c/c ₀)	Breakthrough time (days)
Engine	9.4	3.05 / 10	0.6	195
Catalysis	0.94	6.10/ 20	0.06	194
Fuel Cell	0.094	9.15/30	0.006	217

349

350

351 **Figure 4: Siloxane concentration ratio versus time plots for each application's purification**
 352 **process: (a) engines, (b) catalysis, (c) fuel cells. Dashed black lines indicate the breakthrough**
 353 **ratio (see Table 1 for application specific values).**

354

355

356 *3.8 Overall LFG Purification Process including Removal of Hydrogen Sulfide and Water*

357 To develop the comprehensive cost analysis desired, the removal of H₂S and water must be
358 included as shown in Figure 4. H₂S has negative effects on equipment because it turns into acid
359 gas, causing corrosion (Urban et al., 2009). It was not necessary to model a removal process
360 because it has been widely studied and costed. The cost for H₂S removal varies widely depending
361 on application, inlet concentration, and number of processing steps. One study included the cost
362 of H₂S removal assuming 70 Nm³/min (2500 SCFM) of LFG and 700 ppm of H₂S. The process
363 was designed to remove H₂S to a level of under 5 ppm (Kent, 2016). This concentration is suitable
364 for all applications because it meets the highest removal requirement, which is fuel cells (Papadias
365 et al., 2012). An iron sponge adsorbent (Sulfa-Rite©) and the two parallel adsorption beds were
366 employed for the continuous sulfur removal. This type of adsorbent requires the process gas to be
367 saturated with water vapor to perform effectively (Connelly-GPM, 2017; Kent, 2016; SourGas,
368 2016). Thus, the sulfur removal is advantageous to occur prior to the water knockout and the
369 siloxanes removal. The water knockout may also remove other volatile species, including
370 siloxanes (Supplemental Material, Section E). The cost of the H₂S adsorbent is \$440,000 per year
371 and the two packed beds cost \$408,000 (Kent, 2016). Note that the H₂S removal process is kept
372 the same for each application because it assumes the highest required removal level is done. Some
373 landfills do not have the high concentration of H₂S and would not require the removal step
374 (especially for engine applications with a high tolerance). The cost was calculated on a volume of
375 gas processed and amount of contaminant removed basis for each LFG application (Table 2).
376 Additional details are in Supplemental Material (Section F).

377

378

379 **Table 2: Cost of LFG contaminant (H₂S and siloxanes) removal for each application.**

Application	Annual Cost (in Millions of \$/yr)	Cost (\$/kg of contaminant removed)	Cost (\$/Nm ³ of LFG Processed)
Engine	1.16	31.8	0.031
Catalysis	1.19	32.6	0.032
Fuel Cell	1.2	33.3	0.033

380

381 The cost to pretreat LFG is more for applications that have a lower tolerance because they require
 382 more adsorbent and larger equipment to remove the contaminant. However, the cost of each
 383 application are very similar due to the sulfur removal, which accounts for about two-thirds of the
 384 cost and roughly 98.5% of the incoming contaminants by mass. Since the sulfur concentration was
 385 assumed to be on the larger end and the removal step was kept the same for each application, the
 386 cost came out to very similar values. There are also sulfur limits that vary depending on application
 387 and, again, engines have higher tolerance levels for sulfur (Kuhn et al., 2017). There is more
 388 discussion on this topic in the subsequent section.

389

390 *3.9 Economic Impact*

391 In order to understand the economic impact of the purification processes, the costs were compared
 392 to the value of LFG and the potential revenues for the three applications. The first method was
 393 done by scaling the price of natural gas using the heating value and CH₄ content of LFG. The
 394 average heating value is 18,640 kJ/m³ for LFG and the Henry Hub price of natural gas in December

395 of 2016 was \$3.59/MMBTU (Bade Shrestha and Narayanan, 2008; EIA, 2017), which yields an
396 estimated value of \$0.035/Nm³ (\$2/MMBTU) for LFG and \$1.26E6 per year for 2500 SCFM of
397 LFG. Additional details are in the Supplemental Material (Section G). The purification process
398 cost for each application was divided by this value and is reported in Table 3 as a percentage of
399 the potential revenue. The revenues for each application were also estimated for comparison, with
400 engines and fuel cells having their values calculated using electricity values. This electricity would
401 be sold back to the grid at a value equal to the production price of the electricity, which was about
402 \$0.033 per kWh in 2015 (EIA, 2016b). The efficiencies for engine and fuel cell operation on LFG
403 are 20% and 38%, corresponding to revenues of \$1.23E6 and \$2.33E6, respectively (Bade Shrestha
404 and Narayanan, 2008; Spiegel and Preston, 2003). Since the catalysis application involves
405 converting to liquid hydrocarbon fuels, the revenue was adjusted from electricity generation using
406 the ratio of gasoline-gallon equivalent (GGE) values for gasoline and electricity in 2016 (EERE,
407 2016). The annual revenue for the catalysis application is roughly \$7.29E6. Each purification cost
408 was divided by its application revenue and is shown as a percentage in Table 3. All of the
409 applications can provide more revenue than the cost of cleaning up the LFG. However, if H₂S and
410 siloxane removal is needed for engine applications, it seems nearly impractical to remove any
411 impurities. This situation is unlikely because the specified H₂S concentration is an extreme/worst-
412 case level and landfills typically have sulfur concentrations of 0.56 to 280 mg/m³ which is lower
413 than engines limits (~715-2200 mg/Nm³) (Kuhn et al., 2017). Although beyond the current scope,
414 the economic evaluation could also be assessed in terms of minimal sulfur removal using the same
415 procedure as conducted for the siloxanes removal in this work. However, since the cost of H₂S
416 removal was ~ 67% of the total purification costs, the values for the engine in Table 3 can be
417 divided by 3 to get the approximate value for the case where siloxanes but not sulfur removal is

418 required. As a result, it is challenging to envision electricity generation via fuel cells competing
419 with engines unless the LFG is inherently clean or emissions standards are high requiring
420 contaminant removal for environmental considerations. However, the catalysis route to fuels is
421 able to compete since hydrocarbon transportation fuels are worth about 5 times as much as
422 electricity on an equivalent energy basis (high value placed on energy storage in the form of
423 energy-dense hydrocarbons).

424

425 Also, due to lack of information, the cost analysis does not include the decreased maintenance and
426 equipment replacement costs for using purified LFG. Factors such as siloxanes or other
427 contaminants in LFG (e.g., alkylhalides) causing accelerated replacement to the iron adsorbent
428 may incur additional costs.

429

430 **Table 3: Cost of purification compared to application revenue and price of LFG.**

Application	Cost of purification as % of Application Revenue	Cost of purification as % of LFG Cost
Engine	94.4	92.1
Catalysis	16.3	94.6
Fuel Cell	52.2	96.7

431

432 **4. Conclusion:**

433 A model for purification of LFG from siloxanes was developed and a comprehensive analysis was
434 conducted for full-scale LFG purification. To assess the impacts of different purification needs
435 and different revenue potential of the end product, electricity generation via engines (direct use)

436 and fuel cells and liquid hydrocarbon fuels via heterogeneous catalysis were evaluated. A
437 parametric sweep of possible siloxane removal scenarios was performed and then analyzed to
438 determine the most suitable conditions and specifications for each applications process. The results
439 indicate substantial costs (capital and operating) if LFG must be cleaned of specific contaminants
440 regardless of the degree that the LFG must be cleaned. For example, equipment, blower, and
441 chilling costs substantiate a large portion of the overall costs independent of the severity over the
442 threshold allowed value for a specific application. In this study, H₂S concentrations in feed
443 approached a worst case scenario and thus contributed more to the total purification cost than
444 siloxanes. In addition, there is a need for value-added products to justify increased costs (capital
445 and operating) for LFG purification. This study provides an initial comparative assessment of the
446 costs associated to LFG purification and screening for stakeholders interested in evaluating WTE
447 technologies.

448

449 **Acknowledgements:**

450 The authors would like to acknowledge The Hinkley Center for Solid and Hazardous Waste
451 Management, NSF award MRI CHE-1531590, and USF Office of Undergraduate Research for
452 their financial support. ACE would like to personally thank Dr. Timothy Fawcett for his assistance
453 with COMSOL®.

454

455 **References:**

456 Abatzoglou, N., Boivin, S., 2009. A review of biogas purification processes. Biofuels, Bioproducts
457 and Biorefining 3, 42-71.

458 ADCOA, 2017. Grade AC. <http://catalog.adcoa.net/viewitems/activated-charcoal/grade-ac>, Last
459 Accessed 2017 November 2016..

460 Ajhar, M., Travasset, M., Yuce, S., Melin, T., 2010. Siloxane removal from landfill and digester
461 gas—a technology overview. *Bioresource technology* 101, 2913-2923.

462 ANL, 2011. Impurities - LFG, http://www.cse.anl.gov/FCs_on_biogas, October 27, 2017 ed.

463 Bade Shrestha, S.O., Narayanan, G., 2008. Landfill gas with hydrogen addition – A fuel for SI
464 engines. *Fuel* 87, 3616-3626.

465 Boulinguez, B., Le Cloirec, P., 2010. Adsorption on Activated Carbons of Five Selected Volatile
466 Organic Compounds Present in Biogas: Comparison of Granular and Fiber Cloth Materials^t.
467 *Energy & Fuels* 24, 4756-4765.

468 Bove, R., Lunghi, P., 2006. Electric power generation from landfill gas using traditional and
469 innovative technologies. *Energy Conversion and Management* 47, 1391-1401.

470 COMSOL, 2017. COMSOL Multiphysics, The Platform for Physics-Based Modeling and
471 Simulation.

472 Connelly-GPM, Iron Sponge for Sulfur Control. [cited 2017 March 24]; Available from:
473 <http://www.connellygpm.com/ironspunge.html>.

474 EERE, 2016. Clean Cities Alternative Fuels Price Report.

475 EIA, 2016a. Advancing Sustainable Materials Management: 2014 Fact Sheet.

476 EIA, 2016b. Electric Power Annual 2015, p. 231.

477 EIA, 2016c. Electric Power Monthly with Data for October 2016, p. 241.

478 EIA, 2017. Henry Hub Natural Gas Spot Price. 2017 February 1, 2017 [cited 2017 February 6];
479 Available from: <https://www.eia.gov/dnav/ng/hist/rngwhhdM.htm>.

480 Elsayed, N.H., Elwell, A., Joseph, B., Kuhn, J.N., 2017. Effect of silicon poisoning on catalytic dry
481 reforming of simulated biogas. *Applied Catalysis A: General* 538, 157-164.

482 EPA, 2014. Final Renewable Fuel Standards for 2014, 2015 and 2016, and the Biomass-Based
483 Diesel Volume for 2017.

484 EPA, 2015. Advancing Sustainable Materials Management: Facts and Figures 2013.

485 EPA, 2016a. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2014.

486 EPA, 2016b. Landfill Gas Energy Project Data and Landfill Technical Data.

487 EPA, 2016c. LFG Energy Project Development Handbook

488 G.R. Herdin, F.G., R. Kuffmeier, A. Brandt, 2000. Solutions for Siloxane Problems in Gas Engines
489 Utilizing Landfill and Sewage Gas. ASME Spring Technical Conference 34-3.

490 Geankoplis, C.J., 1993. Transport processes and unit operations, 3rd ed. Prentice-Hall
491 International.

492 Hill, A., 2014. Conduct a Nationwide Survey of Biogas Cleanup Technologies and Costs. Final
493 Report AQMD Contract #: 13432, http://www.aqmd.gov/docs/default-source/rule-book/support-documents/rule-1110_1112/aqmd-contract-13432-final-report-12014---revised.pdf?sfvrsn=13432.

496 Kent, R.A., 2016. Conversion of Landfill Gas to Liquid Hydrocarbon Fuels: Design and Feasibility
497 Study, Chemical & Biomedical Engineering. University of South Florida.

498 Kuhn, J.N., Elwell, A.C., Elsayed, N.H., Joseph, B., 2017. Requirements, techniques, and costs for
499 contaminant removal from landfill gas. Waste Management.

500 Läntelä, J., Rasi, S., Lehtinen, J., Rintala, J., 2012. Landfill gas upgrading with pilot-scale water
501 scrubber: performance assessment with absorption water recycling. Applied energy 92, 307-
502 314.

503 Matsui, M., Imamura, S., 2010. Removal of siloxane from digestion gas of sewage sludge.
504 Bioresource Technology 101, S29-S32.

505 McBean, E.A., 2008. Siloxanes in biogases from landfills and wastewater digesters. Can J Civil
506 Eng 35, 431-436.

507 Nam, S., Namkoong, W., Kang, J.-H., Park, J.-K., Lee, N., 2013. Adsorption characteristics of
508 siloxanes in landfill gas by the adsorption equilibrium test. Waste Management 33, 2091-2098.

509 Ortega, D.R., Subrenat, A., 2009. Siloxane treatment by adsorption into porous materials.
510 Environmental technology 30, 1073-1083.

511 Oshita, K., Ishihara, Y., Takaoka, M., Takeda, N., Matsumoto, T., Morisawa, S., Kitayama, A.,
512 2010. Behaviour and adsorptive removal of siloxanes in sewage sludge biogas. Water Science
513 and Technology 61, 2003.

514 Papadias, D.D., Ahmed, S., Kumar, R., 2012. Fuel quality issues with biogas energy – An
515 economic analysis for a stationary fuel cell system. Energy 44, 257-277.

516 Pipe, P.I.T., 2017. Our Steel Pipe Prices & Inventory. [cited 2016 December 20]; Available from:
517 <http://www.pitpipe.com/steel-pipe-prices-inventory.html>.

518 Rasmussen, S.B., Kustov, A., Due-Hansen, J., Siret, B., Tabaries, F., Fehrman, R., 2006.
519 Characterization and regeneration of Pt-catalysts deactivated in municipal waste flue gas.
520 Applied Catalysis B: Environmental 69, 10-16.

521 Ribeiro, A., Neto, P., Pinho, C., 2010. Mean porosity and pressure drop measurements in packed
522 beds of monosized spheres: side wall effects. International Review of Chemical Engineering 2,
523 40-46.

524 Ryckebosch, E., Drouillon, M., Vervaeren, H., 2011. Techniques for transformation of biogas to
525 biomethane. Biomass and bioenergy 35, 1633-1645.

526 Schweikofler, M., Niessner, R., 1999. Determination of siloxanes and VOC in landfill gas and
527 sewage gas by canister sampling and GC-MS/AES analysis. Environmental science & technology
528 33, 3680-3685.

529 Schweikofler, M., Niessner, R., 2001. Removal of siloxanes in biogases. Journal of hazardous
530 materials 83, 183-196.

531 Sevimoglu, O., Tansel, B., 2013a. Composition and source identification of deposits forming in
532 landfill gas (LFG) engines and effect of activated carbon treatment on deposit composition.
533 Journal of Environmental Management 128, 300-305.

534 Sevimoglu, O., Tansel, B., 2013b. Effect of persistent trace compounds in landfill gas on engine
535 performance during energy recovery: A case study. Waste Management 33, 74-80.

536 Shin, H.-C., Park, J.-W., Park, K., Song, H.-C., 2002. Removal characteristics of trace compounds
537 of landfill gas by activated carbon adsorption. Environmental Pollution 119, 227-236.

538 Sigot, L., Ducom, G., Benadda, B., Labouré, C., 2014. Adsorption of
539 octamethylcyclotetrasiloxane on silica gel for biogas purification. Fuel 135, 205-209.

540 SourGas, 2016. Iron Sponge Process – H2S Removal. Last accessed 2017 April 4; Available from:
541 <https://sourgas.ca/2016/02/11/iron-sponge-process-h2s-removal/>.

542 Spiegel, R.J., Preston, J.L., 2003. Technical assessment of fuel cell operation on landfill gas at the
543 Groton, CT, landfill. Energy 28, 397-409.

544 Sun, Q., Li, H., Yan, J., Liu, L., Yu, Z., Yu, X., 2015. Selection of appropriate biogas upgrading
545 technology-a review of biogas cleaning, upgrading and utilisation. Renewable and Sustainable
546 Energy Reviews 51, 521-532.

547 Thornhill, D., 2017. Flow Through Packed Beds. Last accessed 2017 April 4; Available from:
548 http://faculty.washington.edu/finlays/Fluidized_Bed/FBR_Fluid_Mech/packed_beds_fbr.htm.

549 Towler, G., Sinnott, R., 2012. Chemical Engineering Design, 2nd ed. Elsevier.

550 UKEA, 2004. Guidance on gas treatment technologies for landfill gas engines. Environment
551 Agency, Almondsbury.

552 Urban, W., Lohmann, H., Gómez, J.S., 2009. Catalytically upgraded landfill gas as a cost-effective
553 alternative for fuel cells. *Journal of Power Sources* 193, 359-366.

554 Wheless, E., Pierce, J., 2004. Siloxanes in landfill and digester gas update, *Proceedings of the*
555 *27th SWANA Landfill Gas Symposium*, San Antonio, TX, March, pp. 22-25.

556 Yoon, S.H., 2016. Blower power calculation. Last accessed January 27, 2016; Available from:
557 <http://onlinembr.info/cost/blower-power-calculation/>.

558