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ABSTRACT

Catering to the proliferation of Internet of Things devices and

distributed machine learning at the edge, we propose an en-

ergy harvesting federated learning (EHFL) framework in this

paper. The introduction of EH implies that a client’s avail-

ability to participate in any FL round cannot be guaranteed,

which complicates the theoretical analysis. We derive novel

convergence bounds that capture the impact of time-varying

device availabilities due to the random EH characteristics of

the participating clients, for both parallel and local stochas-

tic gradient descent (SGD) with non-convex loss functions.

The results suggest that having a uniform client scheduling

that maximizes the minimum number of clients throughout

the FL process is desirable, which is further corroborated by

the numerical experiments using a real-world FL task and a

state-of-the-art EH scheduler.

Index Terms— Federated learning, energy harvesting,

stochastic gradient descent, convergence analysis.

1. INTRODUCTION

Federated learning (FL) is a novel machine learning (ML)

paradigm that builds a global ML model by training at many

distributed clients. FL represents an ongoing paradigm shift

towards moving the data collection and model training away

from the server and to the edge [1, 2]. The proliferation of

Internet of Things (IoT) devices that produce massive amount

of data directly at the edge devices, the desire to reduce data

transfer to the cloud, and the need to improve ML responsive-

ness have made FL in IoT networks an important application.

Despite its potential and impact, FL in IoT networks is a

difficult task as IoT devices are highly resource constrained.

In particular, this paper focuses on enabling FL with energy

harvesting (EH) devices [3, 4], where the computation [5, 6,

7] and communication [8, 9, 10, 11, 12] operations of FL at an

EH device depend entirely on its harvested energy. The focus
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of FL with EH devices is motivated by the rapid deployment

of these devices in IoT networks, such as the agricultural ap-

plication where devices may be exclusively powered by am-

bient energy sources such as wind or solar [13].

The main challenge, however, is that the introduction of

EH devices complicates the already difficult FL problem. In

particular, FL cannot narrowly focus on each learning round,

but must consider the temporal correlation of progressive

learning rounds that collectively determine the final learning

outcome. With EH devices, the availability of any given client

is no longer guaranteed for FL in a given round, if it does not

have sufficient energy for computation and communication.

Furthermore, the random evolution of the energy queue at

each device also has temporal correlation that depends on

both the energy arrival process and the FL client schedul-

ing algorithm. The coupled temporal correlations of the FL

process and the EH process represent a significant challenge

in both theoretical analysis and algorithm design, suggesting

that one cannot separately consider the EH design and FL

design when optimizing the overall system performance.

In this paper, we propose an energy harvesting federated

learning (EHFL) framework, where EH clients are scheduled

to participate in the FL process. To address the aforemen-

tioned challenges of EHFL, we first analyze the convergence

behavior of FL under an arbitrary sequence of available

clients that participate in the corresponding learning rounds.

This analysis is useful in that the sequence of clients can be

viewed as the output of an EH client scheduler, and opti-

mizing the resulting convergence bound sheds light on the

desired behavior of the EH scheduler. A unified principle

for both parallel and local stochastic gradient descent (SGD)

emerges from the analysis, which suggests that a uniform

client scheduling that maximizes the minimum number of

clients in FL is beneficial. This theoretical result is corrobo-

rated by a numerical experiment using the standard CIFAR-10

classification task and a state-of-the-art EH scheduler.

2. THE EHFL FRAMEWORK

The proposed energy harvesting federated learning (EHFL)

framework is illustrated in Fig. 1. This framework is notably
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Fig. 1. Illustration of the EHFL framework.

different from standard FL, because the introduction of EH

devices implies that a client’s availability to participate in any

round cannot be guaranteed. FL must deal with different sets

of available clients that are determined exogenously (by the

EH scheduler) in every round, which would affect the model

convergence. To further complicate the analysis, such client

availability is not independent over time, as clients who have

participated in one round and consumed the harvested energy

are less likely to have sufficient energy for the next round.

Federated learning model. In a typical case, the goal of FL

is to solve the standard empirical risk minimization (ERM)

problem:

min
x2Rd

f(x) = min
x2Rd

1

D

X

z2D

l(x; z),

in a distributed fashion, where x 2 R
d is the machine learn-

ing model variable that we would like to optimize, l(x; z)
is the loss function evaluated at model x and data sample

z, and f : Rd ! R is the differentiable loss function aver-

aged over the total dataset D with size D. We denote x⇤ :=
arg minx2Rd f(x), and f⇤ := f(x⇤). We denote the maximum

number of clients in the FL system as M , and the total global

dataset is the union of all local datasets at these M clients:

D =
SM

m=1
Dm. We assume that Di has Di data samples at

client i 2 [M ] := {1, · · · ,M}, and all local datasets are non-

overlapping, hence
P

i Di = D. Note that M is generally

not the number of clients that participate in FL in any given

learning round. The original ERM problem can be rewritten

as

min
x2Rd

f(x) = min
x2Rd

M
X

i=1

Di

D
fi(x),

where fi : R
d ! R is the local loss function for client i, aver-

aged over its local dataset Di, i.e., fi(x) =
1

Di

P

ξ2Di
l(x; ⇠).

We consider that local SGD [14] is adopted to solve the

FL problem. In the t-th round of local SGD, t = 1, · · · , T ,

there are nt clients Nt := {m1, · · · ,mnt
} who actively par-

ticipate in FL. Each client independently runs K individual

SGD steps before aggregating the local models at the server.

Specifically, the t-th round starts with client i 2 Nt receiving

the latest global model xt from the parameter server: xi
t =

xi
t,0 = xt. It then runs K steps of stochastic gradient evalua-

tion:

xi
t,τ+1 = xi

t,τ � ⌘trf̃i(x
i
t,τ ), 8⌧ = 0, · · · ,K � 1. (1)

The client’s updated model after these K steps can be written

as xi
t+1 = xi

t,K . Notation wise, we use f̃i(x) := l(x; ⇠i) to

denote the loss function of model x evaluated with a random

data sample ⇠i at client i. The server collects the local models

{xi
t+1, i 2 Nt} and computes a simple aggregation xt+1 =

1

nt

P

i2Nt
xi
t+1 as the global model for the next round. Local

SGD then moves on to the (t+ 1)-th round.

Energy harvesting model. In EHFL, each client i 2 [M ] is

powered by energy harvested from the ambient environment.

We assume that each client has an energy queue (recharge-

able batteries or capacitors) to store the harvested energy. The

energy queue at each client is replenished randomly and con-

sumed by computation and communication for FL. We as-

sume that the energy unit is normalized so that if a device

participates in one round of FL, it consumes one unit of en-

ergy. This energy unit represents the cost of both computation

and communication. We assume the duration between two

consecutive rounds is fixed.

Let Ei(t) be the total amount of energy units available

at the beginning of round t at device i, and Ai(t) be the

amount of energy units harvested during the t-th round. We

assume Ai(t) is an independent and identically distributed

(IID) Bernoulli random variable with E[Ai(t)] = �i. Dif-

ferent values of �i capture the energy heterogeneity among

clients. Then, the energy level at device i evolves according

to the following equation:

Ei(t+1) = min{(Ei(t)� 1{i 2 Nt})+Ai(t), Emax} (2)

where 1{·} is the indicator function, Emax is the capacity of

the battery, and the energy causality condition requires that

Ei(t) � 1{i 2 Nt} for all i, t.

3. CONVERGENCE ANALYSIS FOR EHFL

We analyze the convergence of FL with an arbitrary sequence

of participating clients {N1, · · · ,NT } as the output of the EH

scheduler, with non-convex loss functions. We first focus on a

special case of parallel SGD, which refers to distributed SGD

with per-step model average, to gain some insight of the FL

convergence behavior due to the random EH characteristics.

We then extend the analysis to local SGD with periodic model

average whose period is strictly larger than one. Finally we

summarize the main theoretical result and discuss its implica-

tion on the EH scheduler design.
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3.1. Parallel SGD: K = 1

3.1.1. Assumptions

We limit our attention to L-smooth (possibly non-convex)

loss functions, as stated in Assumption 1. In addition, we as-

sume that the stochastic gradients are unbiased at all clients,

and the variance is (uniformly) bounded in Assumption 2.

Assumption 1 l(x, ⇠) is L-smooth: krl(x, ⇠)�rl(y, ⇠)k 
Lkx� yk for any x, y 2 R

d and any ⇠ 2 D.

Assumption 2 SGD is unbiased at all clients: Eξrfi(x) =
rf(x), 8i, and its variance is bounded: Eξkrl(x, ⇠) �
rf(x)k2  �2.

3.1.2. Main result

We note that for non-convex loss functions, it is well-

known that SGD may converge to a local minimum or

saddle point, and it is a common practice to evaluate the

expected gradient norms as an indicator of convergence. In

particular, an algorithm achieves an ✏-suboptimal solution if
1

T

PT�1

t=0
Ekrf(xt)k2  ✏, which guarantees the conver-

gence to a stationary point [15].

We now state our main result in Theorem 1. Due to the

space limitation, detailed proofs for both theorems are de-

ferred to the online appendix [16].

Theorem 1 Suppose Assumptions 1 and 2 hold. Consider an

energy harvesting client scheduler that produces nt clients

to participate in the t-th round parallel SGD. Assume 0 <
nmin  nt  nmax  M , and we choose a parameter ⌘

satisfying 0 < ⌘  1

L

q

T
nmax

. Then, if we set the learning

rate of SGD as

⌘t = ⌘

r

nt

T
, , 8t = 0, · · · , T � 1,

the convergence of parallel SGD with non-convex loss func-

tions and IID local datasets satisfies:

1

T

T�1
X

t=0

Ekrf(xt)k2  f(x0)� f⇤

⌘
p
nminT � L

2
⌘2nmin

+
L�2

2⌘
p
nminT � L⌘2nmin

⇠ O

✓

1p
nminT

◆

. (3)

Remark 1 The key novelty in this theorem is to establish the

relationship ⌘t = ⌘
p

nt

T
, which is accomplished by minimiz-

ing the derived upper bound as a general function of ⌘t and nt.

Theorem 1 states that if we tie the choice of learning rate to

the available number of clients according to ⌘t ⇠ O
�p

nt

�

,

then we achieve the same O
⇣

1/
p
T
⌘

convergence rate as the

constant-client parallel SGD [14].

Remark 2 It is known that within a proper range that guar-

antees the convergence, selecting larger stepsize has the ben-

efit of speeding up the SGD process. In this spirit, a partic-

ular choice of ⌘ is ⌘ = 1

L

q

T
nmax

, which leads to ⌘min :=

min ⌘t =
1

L

q

nmin

nmax

. This results in a convergence scaling of

O
⇣
q

nmax

nmin

1p
T

⌘

. Clearly, selecting a uniform client schedul-

ing such that nmax = nmin minimizes the coefficient of 1p
T

.

This insight thus provides a theoretical guidance for the EH

scheduler design.

Remark 3 Assumption 2 corresponds to the so-called IID lo-

cal dataset setting for FL. How to extend the analysis to non-

IID local datasets is an interesting future research direction.

3.2. Local SGD: K > 1

We now analyze the case of local SGD with K > 1. The main

result is stated as follows.

Theorem 2 Suppose Assumptions 1 and 2 hold. Consider an

energy harvesting client scheduler that produces nt clients to

participate in the t-th round local SGD. Assume 0 < nmin 
nt  nmax  M , and we choose a parameter ⌘ satisfying

0 < ⌘  1

2KL

q

1

30nmax

. Then, if we set the stepsize of SGD

at the t-th round as

⌘t = ⌘

r

nt

T
, 8t = 0, · · · , T � 1,

then we achieve the following convergence of local SGD with

non-convex loss functions:

1

T

T�1
X

t=0

Ekrf(xt)k2 
2

K
(f(x0)� f⇤) + L�2⌘2

⌘
p
nminT �

p
30KL⌘2nmin

+
5KL2�2⌘3n

3

2

max

⌘
p
nminT �

p
30KL⌘2nmin

p
T

= O

✓

1p
nminT

◆

.

(4)

Remark 4 The key challenge for analyzing local SGD is that

the gradient estimation after the first step becomes biased,

i.e., they do not represent the true gradients in expectation.

Having a varying nt means that different rounds are “hetero-

geneous” in terms of averaging the biased SGDs with vary-

ing variances, which cannot be easily handled when bounding

the convergence rate. The proof relies on enhancing the per-

turbed iterate framework [17] to decouple the impact of each

additional SGD step by a careful construction of the virtual

model sequence. This allows us to derive an ⌘t-dependent

upper bound for the average (over nt clients) gradient for

each SGD step ⌧ = 0, · · · ,K � 1. This bound is then uti-

lized in the enhanced perturbed iterate framework to derive a

non-trivial (nt, ⌘t)-dependent convergence rate upper bound.
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Then, similar to Theorem 1, we can minimize this bound over

the choice of ⌘t as a function of nt.

Remark 5 Theorem 2 unifies the selection of learning rate

as a function of the EH device availability for both parallel

and local SGDs (at least with respect to the scaling), which

suggests that the EH scheduler design can be agnostic to the

SGD steps chosen by the FL task. This is an important fea-

ture that improves the generalization of the proposed EHFL

framework in terms of the performance guarantees.

3.3. EH scheduler design

The convergence analysis for both parallel and local SGD in-

dicates that maintaining a balanced number of clients par-

ticipating in each round throughout the learning horizon is

desirable. However, strictly maintaining a constant number

of clients in the face of stochastic energy arrival and energy

causality constraint is a very challenging task, not to mention

the inhomogeneous EH processes at clients.

In order to gain some intuition of the desired EH scheduler

design, we first ignore the stochasticity of the EH process and

focus on the long-term average EH rate instead. Given the

total EH rate Λ :=
PM

i=1
�i and the energy flow conserva-

tion condition (i.e., energy consumption rate must be upper

bounded by the energy arrival rate), the average number of

active clients in each round must be upper bounded by Λ as

well. For a clear exposition of our rationale, we assume Λ is

an integer. Thus, if we are able to obtain a subset of clients Nt

in round t such that |Nt| = Λ with high probability, then we

can expect that the nmin throughout the learning process is

maximized, and the convergence rate can thus be optimized

with high probability based on our theoretical results. The

problem then boils down to ensuring such a selection of Nt

is feasible in each round, in the presence of stochastic energy

arrivals and heterogeneous EH rates across the clients.

In our previous work [9], we have developed an energy

queue length based myopic scheduling policy when Emax =
1. At the beginning of round t, the scheduler first selects

Λ clients with the longest energy queues and forms a candi-

date set of active clients, denoted as N 0
t . Then, it determines

Nt = {i : i 2 N 0
t , Ei(t) � 1}. The myopic scheduling pol-

icy has a queue-length balancing nature, i.e., it tries to equal-

ize the battery levels of all clients by prioritizing clients with

longer energy queues. As a result, it ensures that |Nt| = Λ

in almost every round t. We will evaluate the performance of

this myopic EH scheduling policy in the experiment.

4. SIMULATION RESULTS

Experiment setup. We have carried out an experiment on

the standard real-world CIFAR-10 classification task [18] un-

der the proposed EHFL framework. We set M = 10, K = 5,

and mini-batch size of 50. The nominal learning rate initially

Fig. 2. Model convergence comparison of Myopic [9] with

two baseline EH schedulers Round Robin and Greedy for

EHFL.

sets to 0.15 and decays every 10 rounds with rate 0.99. On top

of that, we apply a c
p
nt variation such that the mean value

for every 10 rounds remain the same as the nominal learning

rate. We train a convolutional neural network (CNN) model

with two 5⇥5 convolution layers (both with 64 channels), two

fully connected layers (384 and 192 units respectively) with

ReLU activation and a final output layer with softmax. The

two convolution layers are both followed by 2⇥ 2 max pool-

ing and a local response norm layer. In each round, the avail-

able clients are generated by the corresponding EH scheduler,

and will participate in FL if its available energy is larger than

one unit. Otherwise, the client will not participate in FL in

the current round. We set Λ = 5 with a homogeneous arrival

rate of all clients for the Myopic policy of [9].

Main result. The model convergence performances of

EHFL under three EH schedulers are plotted in Fig. 2. The

Round Robin policy cyclically schedule among all clients,

while the Greedy policy always schedule the clients with

non-empty energy queues. We can see that the Myopic policy

has the best performance among the three scheduler, while

Round Robin has the worst convergence.

5. CONCLUSIONS

We have carried out a novel convergence analysis of federated

learning under an arbitrary sequence of participating clients

for each learning round, for non-convex loss functions and

both parallel and local SGD. The analysis revealed a unified

client scheduling principle, which is to maintain a balanced

number of clients participating in each round throughout the

learning horizon. This result offers a principled guideline for

the energy harvesting client scheduler design, and we have

shown via a numerical experiment that a state-of-the-art en-

ergy harvesting scheduler that follows this guideline achieves

better convergence performance for a standard real-world FL

task.

8660

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on June 12,2022 at 00:09:19 UTC from IEEE Xplore.  Restrictions apply. 



6. REFERENCES

[1] Wei Yang Bryan Lim, Nguyen Cong Luong, Dinh Thai

Hoang, Yutao Jiao, Ying-Chang Liang, Qiang Yang,

Dusit Niyato, and Chunyan Miao, “Federated learn-

ing in mobile edge networks: A comprehensive survey,”

IEEE Commun. Surveys Tuts., 2020.

[2] Guangxu Zhu, Dongzhu Liu, Yuqing Du, Changsheng

You, Jun Zhang, and Kaibin Huang, “Toward an in-

telligent edge: Wireless communication meets machine

learning,” IEEE Commun. Mag., vol. 58, no. 1, pp. 19–

25, 2020.

[3] Maria Gorlatova, John Sarik, Guy Grebla, Mina Cong,

Ioannis Kymissis, and Gil Zussman, “Movers and shak-

ers: Kinetic energy harvesting for the internet of things,”

IEEE J. Select. Areas Commun., vol. 33, no. 8, pp.

1624–1639, 2015.

[4] Waleed Ejaz, Muhammad Naeem, Adnan Shahid, Ala-

gan Anpalagan, and Minho Jo, “Efficient energy man-

agement for the internet of things in smart cities,” IEEE

Commun. Mag., vol. 55, no. 1, pp. 84–91, 2017.

[5] Basak Guler and Aylin Yener, “Energy-harvesting

distributed machine learning,” arXiv preprint

arXiv:2102.05639, 2021.

[6] Basak Guler and Aylin Yener, “Sustainable federated

learning,” arXiv preprint arXiv:2102.11274, 2021.

[7] Rami Hamdi, Mingzhe Chen, Ahmed Ben Said, Marwa

Qaraqe, and H Vincent Poor, “Federated learning over

energy harvesting wireless networks,” IEEE Internet

Things J., 2021.

[8] Jing Yang and Sennur Ulukus, “Optimal packet schedul-

ing in a multiple access channel with energy harvest-

ing transmitters,” Journal of Communications and Net-

works, vol. 14, no. 2, pp. 140–150, April 2012.

[9] Jing Yang, Xianwen Wu, and Jingxian Wu, “Optimal

scheduling of collaborative sensing in energy harvesting

sensor networks,” IEEE J. Select. Areas Commun., vol.

33, no. 3, pp. 512–523, March 2015.

[10] Jing Yang, Xianwen Wu, and Jingxian Wu, “Optimal

online sensing scheduling for energy harvesting sensors

with infinite and finite batteries,” IEEE J. Select. Areas

Commun., vol. 34, no. 5, pp. 1578–1589, 2016.

[11] Silas L. Fong, Vincent Y. F. Tan, and Jing Yang, “Non-

asymptotic achievable rates for energy-harvesting chan-

nels using save-and-transmit,” IEEE J. Select. Areas

Commun., vol. 34, no. 12, pp. 3499–3511, 2016.

[12] Jing Yang, Omur Ozel, and Sennur Ulukus, “Broadcast-

ing with an energy harvesting rechargeable transmitter,”

IEEE Trans. Wireless Commun., vol. 11, no. 2, pp. 571–

583, February 2012.

[13] Tamoghna Ojha, Sudip Misra, and Narendra Singh

Raghuwanshi, “Internet of things for agricultural ap-

plications: The state of the art,” IEEE Internet Things

J., 2021.

[14] Sebastian U Stich, “Local SGD converges fast and com-

municates little,” in International Conference on Learn-

ing Representations, 2019.

[15] Jianyu Wang and Gauri Joshi, “Cooperative SGD:

A unified framework for the design and analysis of

communication-efficient SGD algorithms,” in ICML

Workshop on Coding Theory for Machine Learning,

2019.

[16] Cong Shen, Jing Yang, and Jie Xu, “On federated

learning with energy harvesting clients,” arXiv preprint

arXiv:2202.06105, 2022.

[17] Horia Mania, Xinghao Pan, Dimitris Papailiopoulos,

Benjamin Recht, Kannan Ramchandran, and Michael I.

Jordan, “Perturbed iterate analysis for asynchronous

stochastic optimization,” SIAM Journal on Optimiza-

tion, vol. 27, no. 4, pp. 2202–2229, 2017.

[18] Alex Krizhevsky, “Learning multiple layers of features

from tiny images,” Tech. Rep., University of Toronto,

April 2009.

[19] Sashank Reddi, Zachary Charles, Manzil Zaheer,

Zachary Garrett, Keith Rush, Jakub Konečnỳ, Sanjiv
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