
HyperSpike: HyperDimensional Computing for
More Efficient and Robust Spiking Neural Networks

Justin Morris∗†, Hin Wai Lui‡, Kenneth Stewart‡, Behnam Khaleghi∗, Anthony Thomas∗, Thiago Marback∗,
Baris Aksanli†, Emre Neftci‡, and Tajana Rosing∗

∗University of California San Diego, La Jolla, CA 92093, USA
†San Diego State University, San Diego, CA 92182, USA
‡University of California Irvine, Irvine, CA 92697, USA

justinmorris@ucsd.edu, {hwluiu, kennetms}@uci.edu, {bkhalegh, ahthomas, tmarback}@ucd.edu,
baksanli@sdsu.edu, eneftci@uci.edu, tajana@ucsd.edu

Abstract—Today’s Machine Learning(ML) systems, especially
those running in server farms running workloads such as Deep
Neural Networks, which require billions of parameters and
many hours to train a model, consume a significant amount
of energy. To combat this, researchers have been focusing on
new emerging neuromorphic computing models. Two of those
models are Hyperdimensional Computing (HDC) and Spiking
Neural Networks (SNNs), both with their own benefits. HDC has
various desirable properties that other Machine Learning (ML)
algorithms lack such as: robustness to noise in the system, simple
operations, and high parallelism. SNNs are able to process event
based signal data in an efficient manner. In this paper, we create
HyperSpike, which utilizes a single, randomly initialized and
untrained SNN layer as feature extractor connected to a trained
HDC classifier. HDC is used to enable more efficient classification
as well as provide robustness to errors. We experimentally show
that HyperSpike is on average 31.5× more robust to errors than
traditional SNNs. We also implement HyperSpike in hardware,
and show that it is 10× faster and 2.6× more energy efficient
over traditional SNN networks run on Intel’s Loihi [1].

I. INTRODUCTION

The Internet of Things (IoT) creates an ever increasing
demand for new complex applications on low power edge
devices. The slowdown of Moore’s Law has pushed the current
processing systems to their limits. Running data intensive
workloads with large datasets on traditional cores results in
high energy consumption and slow processing speeds. Most
IoT applications today run on power constrained embedded
systems. However, many such applications require the use
of state-of-the art machine learning algorithms that consume
a lot of power. This leads many systems to relay on cloud
computing, causing user privacy issues when sending user
data to be processed in the cloud rather than on their local
device, and increasing the energy consumption of servers. With
the growing importance of achieving energy efficiency and
data privacy for IoT applications, there is a need to explore
emerging low power neuromorphic computing models.

Neuromorphic computing platforms offer a promising ef-
ficient, low power alternative to conventional Von Neumann
architectures for state-of-the-art ML algorithms, making them
well-suited for complex yet power-constrained IoT and mobile
applications. Neuromorphic systems take inspiration from the
brain’s event-driven dynamics, distributed architecture, in-
memory computation, and massive parallelism to achieve such
energy efficiency. Two such promising models are Hyperdi-

mensional Computing (HDC) and Spiking Neural Networks
(SNNs).

Brain-inspired HDC is a computation paradigm which
represents data in terms of extremely large vectors, called
hypervectors (HV). These HVs may have tens of thousands of
dimensions and present data in the form of a pattern of signals
instead of numbers [2]. By representing data with HVs, HDC
reduces the complexity of operations required to process data.
As a result, HDC uses extremely simple and highly parallel
operations [3], and is very robust to errors [4]. Prior work
has shown the suitability of HDC for various applications
like activity recognition, face detection, language recognition,
image classification, etc [5], [6].

Spiking Neural Networks (SNNs) simulate the dynamics
and spike-based communication of biological neurons and are
compatible with neuromorphic hardware platforms for online
on-chip learning and inference [7]. The formalization of SNNs
in terms of neural network building blocks reveals that SNNs
are a type of Recurrent Neural Network (RNN) with internal
states akin to the long short-term memory (LSTM), but in
SNNs the time step is on the order of the modeled neural and
synaptic processes. This implies that suitable applications for
SNNs are those requiring memory and the modeling of tem-
poral dynamics [8]. Furthermore, their dynamics and spike-
based communication result in a rich temporal resolution,
which make them particularly interesting for processing and
learning spatiotemporal patterns recorded by neuromorphic
sensors such as Dynamic Vision Sensors (DVS) [9]. However,
inherent noise in emerging neuromorphic sensors, the variabil-
ity in mixed-signal hardware that realize SNN operations, and
limited weight precision all pose challenges when deploying
systems for real-world applications [9]. Adding HDC for
increased robustness could resolve these issues.

In this paper, we go beyond a simple combination of
these two neuromorphic models, SNNs and HDC, to create
HyperSpike. We show that in fact we do not need more than
a single layer of the SNN, with randomized weights, as a
feature extractor for the HDC layer. This removes the need
to train SNN, and provides all the simplicity of HDC in
terms of simple and fast training, and highly robust inference.
While the success of the randomly initialized SNN with an
HDC layer may sound surprising, there is precedent in the
broader literature [10] [11]. In fact, in our work we show that



HyperSpike, with randomized first layer, is 31.5× more robust
to errors than SNNs, with comparable accuracy. Furthermore,
we show that our hardware implementation of HyperSpike is
10× faster and 2.6× more energy efficient over the traditional
SNN network running on Intel’s Loihi [1].

II. BACKGROUND AND RELATED WORK

A. Hyperdimensional Computing

Without loss of generality, we explain the steps HDC uses
for classification, though other algorithms, e.g., clustering,
follow the same procedure as well.

(1) Encoding: Let us assume a feature vector F =
{f1, f2, . . . , fn}, with n features in the original domain.
The goal of encoding is to map this feature vector to a D
dimensional space vector: H = {h1, h2, . . . , hD}. The
encoding first randomly generates D dense bipolar vectors
with the same dimensionality as the original domain, P =
{p1,p2, . . . ,pD}, where pi ∈ {−1, 1}n. The inner product
of a feature vector with each generated vector gives us a
single dimension of a hypervector in high-dimensional space.
To encode a feature vector into a hypervector, we perform a
matrix vector multiplication between the projection matrix and
the feature vector using: H = PF.

(2) Training: The simplicity of HD training makes it
distinguished from conventional learning algorithms. Consider
hypervector Hi as the encoded hypervector of input i with the
procedure explained above. Each input i belongs to a class j,
so we further annotate Hji to show the class j of input i, as
well. HD training simply adds all hypervectors of the same
class to generate the final model hypervector. Therefore, the
class hypervector of label j, denoted by Cj , is:

Cj = Hj0 +Hj1 + · · · =
∑
i

Hji . (1)

We simply accumulate the encoded hypervectors for which
their original input belongs to class j. The class HVs are then
binarized by taking the sign of the final accumulated class
HVs.

(3) Similarity checking: The inference searches for the
most similar class hypervector to the encoded query. When
hypervectors are binary, such as in this work, the search is
done using Hamming distance. When hypervectors are not
binary, cosine similarity is used.

B. Spiking Neural Networks

SNNs can be formulated as a type of recurrent neural
network with binary activation functions [8]. With this formu-
lation, SNN training can be carried out using standard tools of
autodifferentiation. In particular, to best match the dynamics
of existing digital neuromorphic hardware implementing SNNs
[1], our neuron model consists of a discretized Leaky Integrate
and Fire (LIF) neuron model with time step ∆t written in the
form of a Spike Response Model [12]:

P t+∆t
j = αP tj + Stin,

Rt+∆t
i = αRti + αU tiS

t
i ,

U t+∆t
i =

∑
j

WijP
t+∆t
j −Rt+∆t

i ,

St+∆t
i = Θ(U t+∆t

i ).

(2)

where the constant α = exp(− ∆t
τmem

) reflects the decay
dynamics of the membrane potential during a ∆t timestep,
where τmem and is the membrane time constant. The time step
in our experiments was fixed to ∆t = 1ms. Ri here represents
the reset and refractory period of the neuron, and state Pi
is the pre-synaptic trace that captures the leaky dynamics of
the membrane potential. Sti = Θ(U ti ) represents the spiking
non-linearity, computed using the unit step function, where
Θ(Ui) = 0 if Ui is smaller than threshold Uth, otherwise 1.
We distinguish here the input spike train Stin from the output
spike train St. For the purposes of computing the gradient,
the derivative of Θ is replaced with the derivative of a smooth
function, the fast sigmoid function [13]. This Follows the
surrogate gradient approach [8].

C. Related Work
HDC is light-weight enough to run with acceptable perfor-

mance on CPUs [14]. However, utilizing a parallel architecture
can significantly speed up HDC execution time. Imani et al.
showed two orders of magnitude speed up when HD runs on
GPU [15]. Salamat et al. proposed a framework that facilitates
fast implementation of HDC algorithms on an FPGA [16].
However, to get the best performance out of HDC ASIC
accelerators should be used [3]. HDC is able to achieve the
best performance in ASIC due to the bit-level operations
in HDC. Furthermore, there have been multiple works on
implementing HDC on new emerging computing hardware
such as ReRAM crossbars [17], [18]. However, these works do
not evaluate the hardware level errors that these architectures
incur. In this paper, we empirically evaluate the robustness
of HyperSpike to these hardware level errors by simulating
various levels of bit error rates in software.

Several works show that HDC is inherently robust to
noise [19], [20], [4]. Work in [19] investigated the robustness
of HDC to RTL errors and found that HDC-based approach
tolerated 8.8× higher probability of bit-level errors, similar
to [20]. Work in [4] showed that HDC is also robust to wireless
communication errors.

The semantic pointer architecture [21] implements a type
of HD-computing using SNNs and the Neural Engineering
Framework. Since then other approaches to using semantic
pointer architectures for SNN computation have been proposed
such as representing phasors as spike times [22] and repre-
senting hypervectors as Sparse Block-Codes [23]. However no
implementation of this and similar methods in neuromorphic
hardware have been reported to date [24].
HyperSpike differs from previous approaches because it

combines two separate blocks, namely SNNs and HD com-
puting separately, rather than implementing SNNs using HD
or vice versa. We used the Intel Loihi [1] for evaluating the
neuromorphic processing component of HyperSpike. The Intel



Fig. 1. Overall System Architecture of HyperSpike.
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Fig. 2. Comparison of Using Existing HDC vs Traditional SNNs

Loihi is a 60-mm2 neuromorphic processor fabricated in Intel’s
14-nm process that integrates a wide range of features such
as hierarchical connectivity, dendritic compartments, synaptic
delays, and programmable synaptic learning rules [1]. Results
from previous studies have demonstrated that brain-inspired
networks implemented on the Intel Loihi, such as SNNs using
precise spike-timing relationships from event-based data pro-
cessing, perform certain computation with orders of magnitude
lower latency and energy compared to conventional state of the
art approaches such as those based on feedforward deep neural
networks [25]. Additionally, the Loihi is capable of online
learning allowing for low power edge learning without needing
a cloud [7]. It uses SRAM for state, causing the state bit cost to
be high compared to conventional processors that use DRAM.
To reduce the cost of the Loihi chip one could store state
in ReRAM, but at the cost of high bit error rates [26]. We
evaluate the impact of utilizing emerging computing hardware
with errors and show how HyperSpike combats them.

III. HyperSpike: COMBINING SNNS AND HDC
HyperSpike starts with (A), a high energy efficiency mem-

ory where HyperSpike stores the parameters for the SNN
and HDC layers. HyperSpike is accelerated by an ASIC chip
that utilizes 56 Intel Loihi cores for acceleration of the SNN
layer shown in (B). The output of the SNN layer at the final
time step of the sequence is connected to (C), the inference
accelerator for HDC based on tinyHD [3]. This accelerator
first encodes the feature vector from the output of the SNN
as shown in Section II. Then, the encoded hypervector (HV)
is compared to the pre-trained class HVs using Hamming
distance metric.

HDC Challenges: Figure 2 shows the accuracy of HDC
on three DVS datasets. We tested two encoding methods:
one that targets feature vectors using random projection (HD-
RP) [6] and is also the encoding we use for the HDC layer
of HyperSpike, as well as HDC encoding for times series
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Fig. 3. Impact of Random Weights on HyperSpike and Traditional SNNs
Across Different Layers of the SNN using the NMNIST dataset.

data (HD-TS) [27]. With an average HDC accuracy of 57%,
compared to an average accuracy of 94% on SNNs, we can see
that existing HDC systems are not able to classify DVS data
as accurately. To combat this, we use randomly initialized first
layer of an SNN to preprocess the DVS data. This transforms
the event based data from the neuromorphic sensors into more
representational feature vectors that HDC can better leverage.

In Memory Errors: When a query comes in for processing
on HyperSpike, the data is first stored in memory, or (A) in
Figure 1. This memory comes at the cost of introducing bit
errors in the data. Previous designs with emerging computing
hardware assumed that the technology had ideal characteristics
and no errors. However, various emerging computing tech-
nologies, especially those that offer significantly more energy
efficiency often incur bit level errors on the data they store. We
simulate these errors in Section IV. These errors extend to all
data stored in memory, such as SNN weights and hypervectors
for HDC. However, as we describe below, HDC is able to
overcome these errors due to its robustness. Although we
model our memory separately from our compute chip, our
experiments can be generalized to other applications where
bit error rates occur on the model parameters. For instance,
our results would extend to implementing HyperSpike entirely
on ReRAM storing our model parameters and computing on
the same ReRAM arrays. This can be further generalized
beyond just ReRAM to other hardware with bit error rates
(BER). Such as, emerging Non-volatile memories, low voltage
memories, or even wireless communication [26].

SNN Acceleration of HyperSpike: After the data is in
memory, it is then sent for processing in the custom neu-
romorphic processor that realizes the dynamics of the SNN
layer of HyperSpike. The acceleration of the SNN layer is
handled by 56 Loihi cores. For one-to-one mapping of the
trained network in Loihi, the SNN is modeled with a functional
Loihi simulator and the normalized post-synaptic response is
used for temporal error credit assignment during gradient-
based learning. Since Loihi only supports integer weights, a
strategy of full precision shadow weights is used, which are
quantized during the forward inference phase only [7].

HyperSpike Removes SNN Training: Due to the memory
implemented by the accelerator for HyperSpike being subject
to errors, we compare SNN models with trained weights to
models using randomly generated weights. Figure 3 compares
the accuracy results of using random weights and trained
weights with both HDC as the classifier and a more traditional
MLP as the classifier on N-MNIST. The results show that



TABLE I
ACCURACY OF HyperSpike VS OTHER SNN CLASSIFIERS AT FULL PRECISION AND QUANTIZED TO 16 BITS. PERFORMANCE NUMBERS ARE RELATIVE

TO QUANTIZED SNN+MLP

Dataset SNN+MLP [8] Quantized SNN+MLP [28] SNN+VAE [29] Quantized SNN+VAE [29] HyperSpike Quantized HyperSpike

Metrics Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy Speedup Energy Efficiency

N-MNIST 98.4% 97.4% 98.2% 97.4% 98.6% 95.2% 1.1× 1.1×

DVSGesture 93.8% 86.8% 83.6% 72.8% 87.2% 85.3% 14× 2.2×

ASL-DVS 89.7% 87.1% 89.7% 87.1% 88.2% 87.8% 14.9× 4.6×

when using a traditional classifier, such as an MLP, training
of the SNN weights is necessary. In contrast, HDC is able to
achieve high accuracy even with random SNN weights. Not
training the weights does come at a slight accuracy drop, but
HyperSpike gains the benefit of not needing to perform any
costly SNN training. We got similar results for all datasets.

While the success of the randomly initialized SNN with
an HDC layer may sound surprising, there is precedent in
the broader literature on deep learning for the success of
random networks. Seminal work from [10] and reservoir com-
puting showed that a randomly initialized shallow multilayer
perceptron can learn to approximate any continuous function
just by training the final layer – similar to how we here
train only the final HD layer. More recently, these properties
have been extended to more general types of neural networks
with random initializations [11]. A key implication of this
work is that weights in the early layers of networks generally
move very little over the training process, suggesting that
a random initialization is sufficient to obtain good perfor-
mance while only training the last few layers. Moreover,
randomly initialized neural networks are able to store and
recall information like sequences of pixel values [30]. These
random architectures have previously been used successfully
to classify simple images of handwritten characters Work in
[30] showed that this property extends to randomly initialized
recurrent neural networks which are functionally similar to
SNNs. In summary, there is a broad literature showing that
even randomly initialized neural networks possess strong prop-
erties for learning, which lend credence to our findings here.
However, our findings show that this random initialization of
SNNs only works when using HDC as the classifier.

HyperSpike Only Needs One SNN Layer: Figure 3 also
shows the accuracy of attaching HDC to different layers of the
SNN on N-MNIST. The data in Figure 3b shows that HDC
attached to SNN layers is able to achieve high accuracy across
all layers of the attached SNN, unlike a standalone trained
SNN shown in Figure 3a that only achieves high accuracy
in the last layer. In fact, we can see that HDC achieves
comparable accuracy to it’s maximum accuracy with just one
SNN layer. This trend is true across all the datasets we tested.
Therefore, HyperSpike utilizes just one SNN layer to act as
a preprocessing step to transform the data from DVS data to
a feature vector. This allows HyperSpike to save even more
energy over traditional SNN networks.

HDC Acceleration for HyperSpike: After the output of
the SNN is sent to the HDC module shown in Figure 1(C),
the data is first encoded into HD space. This is done with
the random projection encoding described in Section II. This

transforms the data from the lower dimensional feature vector
into a D = 10, 000 hypervector. This gives HDC its robustness
as the information is spread out over a 10, 000 dimensional
vector. We’ll call this the query HV. Once HyperSpike has the
query HV, it is then compared to the pre-trained class HVs,
which are trained offline and stored in memory (A). Since all
of the HVs use binary numbers, HyperSpike can use Hamming
distance to calculate the similarity of the query HV with all
the class HVs. This is done with simple XOR blocks to count
the number of mismatches. The class with the least number
of mismatches is chosen as the output.

IV. EVALUATION

A. Experimental Setup

We verified the functionality of HyperSpike using both
software and hardware implementations. In software, we im-
plemented HyperSpike on an Intel Core i7 7600 CPU using an
optimized C++ implementation. We additionally used C++ to
simulate bit error rates in HyperSpike. For SNN experiments
we estimate the performance of the 56 Loihi cores in the accel-
erator for HyperSpike by using Intel’s Loihi the Intel Nahuku
board [1]. For HDC acceleration our design is based on [3].
We utilized SystemVerilog at the RTL level and used Synopsys
Design Compiler with the 45 nm open source NanGate cell
library to synthesize [31]. For a good comparison with [1],
we scale the results to 14 nm by using 14 nm technology in
CACTI for the memories area and power, and adopting the
scaling trend of Intel [32] for the logic cells area. To scale
the power, we first obtained the 45 nm power consumption
reported by Synopsys Power Compiler, then, we obtained
the scaling trend using HSPICE simulations with Predictive
Technology Model (PTM) [33] models. For comparison, we
compare with SNNs using MLP as the classifier as well as
VAE as the classifier.

We tested our proposed approach on 3 popular DVS ap-
plications: Handwritten digit Recognition (N-MNIST) [34],
Gesture Recognition (DVSGesture) [35], and Sign Language
Recognition (ASL-DVS) [36].

B. Accuracy of HyperSpike vs SoA in the Presence of BER

Table I compares HyperSpike with SNNs using different
classifiers at the output of the SNN network. The results show
that HyperSpike with a full precision SNN is able to achieve
similar accuracy to State-of-the-Art solutions. HyperSpike is
able to achieve accuracy within 2.6%(1%) of the other clas-
sifiers (quantized). Although HyperSpike loses some accuracy
when compared to State-of-the-Art in some cases, HyperSpike
is able to achieve other significant benefits from using HDC.
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Fig. 4. Impact of Varying Levels of Bit Error Rates on the Accuracy of Quantized HyperSpike vs Other Quantized SNN Models.
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For instance, HDC makes HyperSpike significantly more en-
ergy efficient as HyperSpike only needs to use the first layer
of the SNN as well as HDC having simple parallel operations
easily accelerated in ASIC hardware. HyperSpike additionally
gains significantly more robust capabilities over the current
State-of-the-Art SNN classifiers.

Figure 4 shows a comparison of HyperSpike with SNNs
using different classifiers at the output of the SNN network.
All SNN networks are quantized to 16 bit fixed-point pre-
cision [28]. This is because when there are bit flips in a
system, having a fixed-point data representation reduces the
impact of the bit flips. For instance, if an exponent bit is
flipped in a floating point number, the resulting numerical
error is more significant than flipping a mantissa bit. Taking
this further, binary representations offer the highest resilience
to bit flip errors as no matter which bit is flipped, the
resulting numerical error is the same. This gives HyperSpike
an advantage over SNN classifiers as the HDC classification
portion of HyperSpike uses binary quantization. We define
empirically how much more robust one classifier is than the
other by the ratio of accuracy lost when there are no bit flip
errors. Our experiments show that HyperSpike is 31.4× more
robust than SNNs using MLPs (lost 31.4× less accuracy than
SNNs using MLPs) as a classifier when the BER is 0.1%,
which is a typical error rate for systems that have high bit
errors. HyperSpike is 58.3× more robust than SNNs using
MLPs as a classifier when the BER is 3.4%, or at worst case
scenario BERs. We additionally tested SNNs using a VAE for
classification and the results show that similar to MLPs, VAEs
do not offer as much robustness as HDC.

Although we model errors to occur in a separate chip
for memory, our experiments can be generalized to other
applications where BERs occur on the same model parameters.
Our results would extend to implementing HyperSpike entirely

on a ReRAM architecture such as [18]. They can similarly also
extend to wireless communication errors if the parameters are
sent and shared across different devices in a network. This
indicates that one could create a compute architecture for
HyperSpike that utilizes BER emerging hardware and not need
to add overhead of error correction as HyperSpike is robust to
the errors due to its HDC layer.

Figure 5 tests HyperSpike with varying dimensionalities
and two different error rates. The lines in red represent worst
case BER environments and the lines in blue represent typical
high BER environments. The results indicate that HyperSpike
robustness scales with the dimensionality of the HDC model
used for classification. As we increase the dimensionality of
the HDC model, the accuracy loss decreases. This is consistant
with prior work, which has shown that HDCs robustness is a
function of high dimensionality [4].

C. HyperSpike Accelerator Performance and Statistics

Figure 6 compares HyperSpike with a more traditional SNN
using an MLP as the output classifier running on an Intel
Loihi chips for acceleration. Our accelerator for HyperSpike
consists of a custom neuromorphic processor for SNN, but we
are evaluating using Loihi to get an estimate for the SNN layer
and [3] for the HDC layer. The results show that HyperSpike is
2.6× more energy efficient and achieves a speedup up of 10×
over traditional SNNs. There are two main reasons for this.
(1) HyperSpike only uses one SNN layer. This is significant
because the SNN portion of the process takes a large portion of
time and energy for inference. Therefore, cutting costs at the
SNN layers leads to significant improvements. (2) Our HDC
layer is significantly more energy efficient and faster than the
MLP layer of a traditional SNN.

We can see that the difference in performance in the
execution time and energy on the N-MNIST dataset is minimal
because the N-MNIST network uses only two fully connected
layers. Therefore, because most of the performance gain from
HyperSpike is from shrinking the SNN, the smaller the original
network, the less performance gain HyperSpike provides. On
the other hand, the other two datasets require larger networks
and HyperSpike provides significantly better performance.
Additionally, we see the largest difference in execution time on
the ASL-DVS dataset because the network is spread across the
greatest number of cores incurring communication overhead
across them.

Another advantage of our accelerator over State-of-the-Art
is reduced chip area. Figure 6 compares the area needed to
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Fig. 6. Comparison of HyperSpike vs Traditional SNN with Intel’s Loihi on
Energy Efficiency, Execution Time, and Chip Area.

accelerate HyperSpike with the area needed to accelerate a
traditional SNN with an Intel Loihi chip. For the traditional
SNN, we only include the percent area of the Loihi chip that
is actually used for acceleration. For HyperSpike, we add up
the area from the number of Loihi cores our chip needs plus
the area needed for our HDC ASIC. For both HyperSpike and
SNN-MLP we compare the chip area needed for the largest
dataset, DVSGesture. As a result, this hardware could run all
three datasets. The data shows that our accelerator is 3.4×
smaller than a traditional SNN accelerator.

V. CONCLUSION

In this paper we go beyond a simple combination of two
neuromorphic models, SNNs and HDC, to create HyperSpike.
The first layer of HyperSpike is a randomly initialized SNN
layer that does not need to be trained. This layer processes
the event based signal data from a neuromorphic sensor and
outputs feature vectors. Then, the trained HDC layer interprets
these feature vectors to perform classification. By combining
SNNs and HDC in this way, HyperSpike is able to achieve high
classification accuracy with HDC on DVS data, while being
much smaller, faster and more energy efficient. Our results
show that HyperSpike is 31.4× more robust to errors than
traditional SNNs. Our HW implementation of HyperSpike is
10× faster and 2.6× more energy efficient over traditional
SNN networks running on Intel’s Loihi [1].
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