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Abstract—Image data may contain sensitive information, such
as face and iris, which can be misused if in the hands of an adver-
sary. As image data is continuously being collected and shared,
it is imperative to ensure the privacy of image data. Widely used
image obfuscation methods apply blurring or pixelization to those
sensitive regions. However, they are prone to inference attacks,
and do not provide quantifiable privacy guarantees. Recently,
several obfuscation approaches have been proposed to satisfy the
rigorous notion of differential privacy. The goal of this work is
to provide a comparative evaluation of those previously proposed
approaches in the context of obfuscating face and iris images.
We synthesize existing differentially private obfuscation methods
and analyze their privacy guarantees. Furthermore, we conduct
an extensive empirical evaluation regarding practical utility and
privacy protection, with real-world face and iris image datasets.
We find that DP-SVD outperforms other methods on several
privacy and utility measures. Moreover, we provide an in-depth
discussion of our results and point to several considerations when
applying those differentially private image obfuscation methods.

Keywords-Image Obfuscation, Comparative Evaluation, Differ-
ential Privacy

I. INTRODUCTION

An immense amount of image data is captured from a
variety of sensors, and the wide-scale release of such data
would be of great benefit to society. For example, image
data has proven to be an invaluable asset for researchers,
allowing for advancements in intelligent traffic monitoring [14]
and early screening of mental illnesses [19]. However, as
image data may contain sensitive information, the privacy
of individuals captured in the data may be put at risk. For
instance, images from traffic cameras may expose a wide
array of information, such as faces and license plate numbers,
which may be used by adversaries track an individual. As
another example, eye-tracking images captured by virtual
reality headsets may expose a user’s iris, allowing an adversary
to obtain or misuse biometric information. In light of those
privacy concerns, image data must be protected by privacy
enhancing techniques before sharing with untrusted parties.

Standard image obfuscation approaches consist of methods
such as pixelization [17] and blurring [22]. More recently,
complex approaches have been proposed to in-paint sensitive
image regions [20], [24]. However, those approaches have
shown to be susceptible to re-identification attacks, which may
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utilize convolutional neural network models [11], [17] and
context cues outside the obfuscated regions [24]. Furthermore,
the aforementioned obfuscation approaches do not allow the
privacy to be effectively bounded. In other words, they do not
quantify the sensitive information that may be leaked in the
obfuscated image.

In order to address these challenges, several image ob-
fuscation techniques have been proposed recently [7], [8],
[13], [25] under the principles of differential privacy [5].
Differential privacy is the state-of-the-art paradigm for quanti-
fying privacy leakage in statistical databases. A differentially
private mechanism provides a guarantee that the outputs of
any two neighboring databases differing by one entry will be
indistinguishable to an adversary.

In this study, we conduct a comparative evaluation of
the current differentially private image obfuscation methods.
Specifically, our study considers four methods, namely DP-
Pix [7] and DP-Samp (an adaptation of [25]) which pro-
vide ε-differential privacy, DP-SVD [8] which satisfies metric
privacy [3], and Snow [13] which satisfies (ε, δ)-differential
privacy. Our specific contributions are: (1) We provide an in-
depth analysis of existing DP algorithms for image obfuscation
with consistent notation. We made our implementation pub-
licly available at [1]. (2) We conduct a systematic evaluation
among existing DP methods using real eye and face datasets.
We adopt widely used privacy and utility measures, such as
ε and δ for differential privacy and MSE/SSIM measures
for image quality. (3) We further evaluate existing methods
regarding their usefulness for specific applications, e.g., in eye-
tracking tasks, and regarding their practical privacy protection,
e.g., in re-identification attacks. (4) Last but not least, we
thoroughly discuss the observations, analyze the trade-off
between privacy and utility, and provide suggestions to domain
applications.

The rest of the paper is organized as follows: we describe
fundamental concepts around differential privacy in Section II.
In Section III, we describe and analyze each DP image
obfuscation method. In Section IV, we present our evaluation
methodology and the complete set of empirical evaluation
results. In Section V, we interpret the observed results and pro-
vide recommendations for applications. Section VI concludes
the paper with brief discussions on future work.



II. PRELIMINARIES

Differential Privacy. Differential privacy [5] is the state-of-
the-art notion for quantifying privacy leakage in statistical
databases containing sensitive data. Given two neighboring
databases, D and D′, that differ by at most one record, a ran-
domized mechanism M satisfies (ε, δ)-differential privacy [6]
if for any Z ∈ range(M),

Pr[M(D) = Z] ≤ eε · Pr[M(D′) = Z] + δ. (1)

The ε and δ parameters specify the degree of privacy provided
by the mechanism, also known as the privacy budget. Here,
ε > 0 bounds the difference between output probabilities
of two neighboring databases D,D

′
. In addition, δ ∈ [0, 1]

accounts for the probability of bad events that might lead to
a privacy breach. ε-DP, often called pure DP, can be achieved
by setting δ = 0. Typically, smaller ε and δ values indicate
stronger privacy protection, and vice versa.

An advantage of DP is its resistance to post-processing [6],
i.e., any computation performed on the output of a DP mech-
anism would not incur additional privacy cost. Other benefits
of DP include the lightweight computation and ease of control
over the information leakage with the help of ε, δ parameters.
Naturally, there exists a trade-off between preserving privacy
and maintaining data utility.

Metric-based Privacy. Metric-based privacy [3], i.e., ε · dX -
privacy, extends differential privacy to a set of secrets X that
are equipped with a distance metric, i.e., dX , and guarantees
a level of indistinguishably that is proportional to the distance
between secrets. Specifically, a mechanism K : X → P(Z)
satisfies ε · dX -privacy, iff ∀x, x′ ∈ X :

K(x)(Z) ≤ eε·dX (x,x′)K(x′)(Z) ∀Z ∈ FZ (2)

where Z is the output space of K, FZ is a σ-algebra over Z ,
and P(Z) is the set of probability measures over Z .

To extend the principle of differential privacy to image
data, several image obfuscation methods adopt the classic DP
definition, such as DP-Pix [7], DP-Samp [25], and Snow [13],
to protect pixel values in the input image. The DP-SVD [8]
method adopts metric-based privacy, to protect significant
singular values of the input image.

III. OBFUSCATION METHODS

A. DP-Pix

Differentially private pixelization [7] (DP-Pix) is the first
method that provides differential privacy guarantees for pub-
lishing individual images. Given the large number of pixels
contained in a typical image, directly perturbing each pixel
in the source image would lead to low utility. To balance
privacy and utility, DP-Pix adopts pixelization and the Laplace
mechanism to satisfy differential privacy.

Algorithm 1: DP-Pix
Input : Input image I, Privacy budget ε,

Block size b, Number of pixels m
Output: Obfuscated image satisfying ε-DP

1 blocks ← partition I into blocks of size b× b
2 foreach block in blocks do
3 average ← average pixel intensity of block
4 noise ← noise drawn from Laplace(0, 255m

b2ε
)

5 assign intensity of pixels in block to average + noise
6 end

7 Î ← output image constructed from blocks

1) m-neighborhood: The work [7] proposes a m-
neighborhood notion to define neighboring images in the
context of differential privacy. Two images, I1 and I2, are
considered neighboring if they differ by at most m pixels.
By varying the value of m, the data owner can control the
privacy protection offered by DP-Pix: higher m values indicate
indistinguishability in a larger neighborhood, thus stronger
privacy protection.

2) Private Pixelization: DP-Pix leverages pixelization to
reduce the amount of noise required for differential privacy.
Pixelization, a.k.a. mosaicing, decomposes an image into
blocks by superimposing a grid on the source image, where
each grid cell (i.e., super-pixel) contains b × b pixels. The
value of each super-pixel is determined by averaging all pixels
contained in the grid cell. To achieve ε-DP, a perturbation noise
is sampled from a Laplacian distribution with mean 0 and scale
255m
b2ε and added to each grid cell. Algorithm 1 depicts the steps

taken by DP-Pix.

B. DP-Samp

A recent work [25] proposed a pixel-sampling method to
protect visual elements (e.g., persons and objects) in videos.
In this study, we design a new method named DP-Samp, which
adapts [25] to protecting up to m pixels in a source image and
is presented in Algorithm 2. DP-Samp consists of four steps,
namely pixel clustering, budget allocation, pixel sampling, and
interpolation.

1) Pixel Clustering: The goal of clustering is to identify
pixel intensities that are useful for reconstructing the image.
An intuitive approach is to select the most frequent intensities
in the image; however, this approach may not capture the
structures of images containing large regions with slightly
varying intensities. The work of [25] adopted multi-scale
analysis [27] to partition each visual element in a video in
k cells; as such methods do not apply to a single image, we
propose to generate k pixel clusters with K-means1. The most
frequent intensity in each cluster, Ψ1:k, will be candidates
for pixel sampling. Note that the multi-scale analysis step in
[25] is conducted in the public setting, as does the clustering
step in our adaptation. The integration with differentially
private clustering methods, such as [23], is possible but out
of the scope of this study. Figure 2 presents the clustering

1Note that other clustering methods (e.g., hierarchical clustering) may also
apply.



Algorithm 2: DP-Samp
Input : Input image I, Privacy budget ε,

Number of clusters k, Number of pixels m
Output: Obfuscated image satisfying ε-DP

1 perform pixel clustering to generate k clusters
2 calculate most frequent intensity in each cluster

(Ψ1, ...,Ψk)

3 // Budget allocation
4 foreach Ψi, i ∈ [1, k] do
5 compute the privacy budget ε(Ψi) with Eq. 3
6 end
7 // Pixel sampling
8 foreach Ψi, i ∈ [1, k] do
9 compute maximum xi with Eq. 4

10 randomly select xi pixels from I with intensity Ψi to
preserve in output image Î

11 end
12 // Interpolation

13 linear interpolate non-sampled pixels in Î

(a) Input Image (b) Sampled Pixels (c) Interpolated Image
Fig. 1: Sampled and interpolated images generated by DP-Samp with
ε = 3, k = 15, m = 1

results on eye and face images at varying values of k. Pixels
chosen as sampling candidates are highlighted in green. From
the images, we see that a higher number of clusters may
capture important structures better in both datasets, potentially
allowing an more effective reconstruction of the image.

2) Budget Allocation: The privacy budget ε is split amongst
all selected intensities in Ψ. DP-Samp allocates higher privacy
budgets to intensities occurring more frequently. Let Freq(Ψi)
be the number of pixels in the source image with intensity Ψi,
then the privacy budget for Ψi can be computed as:

ε(Ψi) =
ε · Freq(Ψi)∑k
j=1 Freq(Ψj)

(3)

3) Pixel Sampling: From each intensity Ψi, we randomly
sample xi pixels from the source image, which preserve their
location and intensity. The value of xi is solved by:

maxxi, s.t.
(
ci
xi

)/(
ci −m
xi

)
≤ eε(Ψi), (4)

where ci is the count of pixels with intensity Ψi in the input,
m is the number of pixels that are allowed to differ between
neighboring images. Selecting xi according to Equation 4
satisfies ε-DP, and the analysis is similar to that of [25].

4) Interpolation: DP-Samp performs linear interpolation on
the sampled pixels to estimate the values of those non-sampled
pixels. Utilizing the post-processing property of DP [6], the
interpolation does not inflict additional privacy loss in the
output image Î. The sampled pixels and the final interpolated
image are shown in Figure 1, we see that pixel interpolation

Algorithm 3: DP-SVD
Input : Input image I, Privacy budget ε,

Number of eigenvalues i
Output: Obfuscated image satisfying ε · di-privacy

1 decompose I using SVD: U,Σ, V T

2 Σ̂← i largest singular values of Σ. (Σ̂1, ..., Σ̂i)
3 N ← noise vector sampled according to Eq. 5

4 for j ∈ [1, i] do
5 Σ̂j ← Σ̂j +Nj
6 end

7 pad Σ̂ with 0s for the discarded singular values

8 Î = U · Σ̂ · V

produces an accurate estimation of the input, despite sparsely
sampled pixels.

C. DP-SVD

The work of [8] (DP-SVD) adopted to singular value
decomposition to decompose a source image into constituent
feature matrices that capture perceptual and geometric features
in the image. Furthermore, the work developed a novel sam-
pling mechanism in high-dimensional space which achieves
metric-based privacy [3]. Algorithm 3 provides an overview
of the method.

1) Singular Value Decomposition: The singular value de-
composition (SVD) is in the form I = UΣV T , where I is
the source image, U and V consist of singular vector matrices
that capture geometric features, and Σ consists of the singular
value matrix that capture the magnitudes of features in U and
V . It can be been shown that SVD can capture perceptual the
perceptual information in input images, which can be used
to robustly hash visually similar images [15], such as after
compression, rotation, and cropping. The singular values are
considered as sensitive information in [8].

2) Private Sampling: The intuition of DP-SVD is to pro-
vide indistinguishability guarantees to visually similar images,
similar to the geo-indistinguishability [2] for location data.
To that end, metric-based privacy, i.e., ε · dX -privacy, was
adopted in [8] for protecting image data. DP-SVD achieves
metric privacy by perturbing the first i singular values using a
novel sampling method. Other singular values are discarded,
and the output image is produced with the privacy-enhanced
singular values.

Specifically, DP-SVD perturbs the first i singular values ac-
cording a specific probability distribution. In an i-dimensional
space, let x0 denote the input vector, i.e., containing the real
singular values. A mechanism that samples the output vector x
according to following probability distributions satisfies ε · di-
privacy [8]:

Dε,i(x0)(x) = Cε,ie
−ε·di(x0,x) (5)

where di represents Euclidean distance in the i-dimensional
space and

Cε,i =
1

2

(
ε√
π

)i ( i
2 − 1

)
!(

i− 1
)
!

(6)



Algorithm 4: Snow
Input : Input image I, Privacy budget δ
Output: Obfuscated image satisfying (0, δ)-DP

1 p ← (1− δ)
2 S ← random subset of p · Iwidth · Iheight pixels in I

3 Î ← I
4 foreach pixel in S do
5 set intensity of pixel to 127 in Î
6 end

Dataset DP-Pix (b) DP-Samp (k) DP-SVD (i)
CASIA 6 28 6
AT&T 4 48 4

Table I: Default algorithm parameters

where i is assumed to be even without loss of generality.
Details of sampling according to Equation 5 are described
in [8]. Increasing i may lead to a better approximation of the
input image, while inflicting a higher perturbation to achieve
privacy.

D. Snow

The intuition of Snow [13] is the introduction of noise to an
image via randomly re-assigning pixel intensities to a constant
value, i.e., 127 for grayscale images. The method is outlined
in Algorithm 4. The parameter p controls the proportion of
pixels that will be re-assigned and is related to the privacy
parameter δ. It is shown in [13] that the method achieves
(0, δ)-differential privacy with δ = 1− p.

IV. EXPERIMENTS

A. Methodology

We implement the above four differentially private methods
in Python 3 and empirically evaluate their performance on
utility and privacy measures. Our experiments were conducted
on a Linux machine with a 2.20 GHz processor and 12 GB
RAM.

1) Datasets: We analyze the performance of the methods
on two widely used datasets: CASIA-IrisV2 [10] (CASIA) and
AT&T Database of Faces [21] (AT&T) . CASIA is a collection
of iris images containing 2400 images from 60 subjects, and
the images have a resolution of 640 × 480 pixels. AT&T
contains 400 face images from 40 subjects, and each image
has a resolution of 92× 112 pixels.

2) Default Parameter Values: The privacy parameters, i.e.,
ε and δ, indicate the level of privacy protection. For ε-DP
methods (DP-Pix, DP-Samp, and DP-SVD), our evaluation fo-
cuses on the range of ε ∈ [0.1, 0.5, 1, 5, 10]; and for Snow, we
focus on the range of δ ∈ [0.1, 0.33, 0.4, 0.5, 0.6, 0.7, 0.8], as
smaller δ values offer little to no usefulness. Other algorithm-
specific parameters also help balance privacy and utility,
such as b of DP-Pix. The default parameter values used are
listed in Table I. Note that the default parameter values are
adjusted to the image resolution of each dataset. Furthermore,
a smaller number of clusters (k) is sufficient for DP-Samp
on CASIA. Figure 2 visualizes the sampling candidate pixels
while varying the number of clusters, k. We see that less data

k = 0 k = 4 k = 0 k = 8

k = 8 k = 12 k = 16 k = 24

k = 28 k = 48 k = 32 k = 48

Fig. 2: Pixels in green as sampling candidates for DP-Samp at
varying values of k: CASIA (two columns on left) and AT&T (two
columns on right)

is required to capture the data structure in CASIA compared
to for AT&T , e.g. when k = 8.

3) Generic Utility Measures: Mean Squared Error (MSE)
and Structural Similarity (SSIM) [26] are adopted to quantify
the usefulness of the image obfuscation methods. Both mea-
sures are computed between the source and the obfuscated
images and the average value in each dataset is reported.
Intuitively, MSE measures the pixel-wise difference between
two images; SSIM captures the differences in the perceived
quality (e.g. structure, lighting, contrast) of images.

4) Task Based Utility: We adopt pupil confidence and gaze
error as task based utility measures, to support eye-tracking
applications [18], [29]. Specifically, for each image in the
CASIA dataset, we utilize the DeepVOG [28] framework to
compute a pupil confidence score and to estimate the gaze
in both the x (yaw) and y (pitch) directions. We report the
percentage of images with a confidence score ≥ 0.8, similar
to [13]. Furthermore, we compute the gaze error (in ◦) for gaze
estimates obtained from the source image and the obfuscated
image and report the average across the CASIA dataset.

5) Privacy Risk Measures: In addition to the differential
privacy guarantees, we evaluate the practical privacy protection
offered by the existing methods. Since each image can be
obfuscated locally, this study focuses on the privacy risks
associated with sharing obfuscated images.

Correct Recognition Rate (CRR). For iris images, an impor-
tant privacy risk is that an obfuscated image of a target individ-
ual may be misused by an adversary for authentication [4]. For
example, the adversary may aim to unlock the target’s online
account or device, which stores the target’s iris baseline (e.g.,
template), with the obfuscated iris image. To evaluate such
risks, we adopt widely used iris segmentation and recognition
solutions [9], [16] to extract a binary iris signature for CASIA
images. Specifically, we partition the dataset such that 2
randomly selected images for each individual are set aside
as baselines, and the rest of images for the individual will
be used for recognition as in [12]. To authenticate an image,
Hamming distances are computed between its iris signature



(a) DP-Pix (MSE) (b) DP-Pix (SSIM)

(c) DP-Samp (MSE) (d) DP-Samp (SSIM)

(e) DP-SVD (MSE) (f) DP-SVD (SSIM)
Fig. 3: Mean Squared Error (MSE) and Structural Similarity (SSIM)
results of varying algorithm parameters on CASIA dataset

and two baseline signatures of the individual. If the lower
distance is below a pre-defined threshold, the authentication
is considered successful. In our evaluation, 0.35 is used as
the threshold for a successful match, in order to achieve a
low false positive rate on real CASIA images. For obfuscated
images, we compute the correct recognition rate (CRR) as the
percentage of obfuscated images successfully matched with
their corresponding baselines. Higher values of CRR indicate
higher privacy risks.

Face Re-Identification. For face images, a widely adopted
privacy measure is the risk of re-identification based on
convolutional neural networks (CNN) [7], [17]. In this setting,
an adversary has access to some clear face images of all
individuals (e.g., from social media); the adversary can apply
any obfuscation method to those images and train a CNN
model to predict the identity of an obfuscated image. When
a new obfuscated image is available (e.g., a pixelized face in
a news article), the adversary applies the trained CNN model
to infer the identity of the individual. Similar to [7], [17], we
partition the AT&T dataset by randomly selecting 8 images
for each individual as training and the remaining 2 images for
each individual as testing. A CNN model is trained for each
obfuscation method and each parameter value. The accuracy
on the testing set is reported in our results, with higher values
indicating higher privacy risks.

B. Varying Parameters

In this section, we vary the parameters of the privacy
methods and study their effects on utility. Furthermore, we

(a) DP-Pix (MSE) (b) DP-Pix (SSIM)

(c) DP-Samp (MSE) (d) DP-Samp (SSIM)

(e) DP-SVD (MSE) (f) DP-SVD (SSIM)
Fig. 4: Mean Squared Error (MSE) and Structural Similarity (SSIM)
results of varying algorithm parameters on AT&T dataset

study those effects under different privacy levels, i.e., by
varying ε and δ values. The results for CASIA and AT&T
are reported in Figure 3 and Figure 4, respectively.

1) Varying b in DP-Pix: First we evaluate the effect of b in
the DP-Pix method. Recall that b specifies the block width in
pixels used for image pixelization. In Figure 3a and Figure 3b,
we observe that for lower ε values, MSE first decreases as b
increases and begins to increase when b is larger. The “elbow”
point is different for each ε value. For instance, in Figure 3b,
the elbow point is b = 4 for ε = 0.5 and 1, and b = 10
for ε = 0.1. The reason is that increasing b incurs a higher
loss of information, i.e., via pixelization, but it helps reduce
the magnitude of the Laplace perturbation error introduced
by differential privacy, i.e., with scale 255m

b2ε . The observed
elbow point indicates the b value that minimizes the combined
information loss and perturbation error. When ε > 1, we do
not observe elbow points. It is because when the perturbation
error is small, it is always beneficial to adopt a small b value to
minimize the information loss. The results of SSIM (Figure 3b
and Figure 4b) are consistent with the MSE results. Note that
SSIM is a similarity measure, hence the higher the better.

2) Varying k in DP-Samp: For this method, we evaluate
the number of pixel intensities selected for sampling. On both
datasets, we observe an initial decrease in MSE for smaller
values of k (e.g. k ≤ 10 in Figure 3c and Figure 4c.) As k
grows, we observe in Figure 3c a decrease in MSE on CASIA
for low ε values (ε ≤ 1,) and a plateau for other ε values.
On AT&T, we observe the increase of k leads to an increase
in MSE for smaller ε values, e.g., ε = 0.1 in Figure 4c. The



(a) MSE (b) SSIM
Fig. 5: Varying δ parameter of Snow on CASIA and AT&T datasets

(a) MSE (b) SSIM
Fig. 6: Varying δ parameter of Snow with median blur on CASIA
and AT&T datasets

reason is when sampling, the privacy budget is allocated to
each intensity according to Equation 3. Given a sufficiently
small ε, the allocated budgets for k intensities may be too
small, leading to a higher MSE in the obfuscated image. For
larger ε values, we observe an elbow point in MSE, e.g., k = 8
when ε ≥ 0.5 for AT&T, which indicates a trade-off between
more pixel intensities and a smaller privacy budget for each
intensity, as k increases. Note that CASIA dataset has a higher
resolution and therefore the trade-off is not obvious. The SSIM
results for both datasets in Figure 3d and Figure 4d show
that DP-Samp does not preserve the structural information in
the obfuscated image: the SSIM measure is constantly lower
than 0.6, despite increasing the privacy budget ε. Moreover,
the results show that the structure of AT&T images is more
sensitive to changes in k than CASIA images.

3) Varying i in DP-SVD: We investigate the effects of the
number of eigenvalues (i) preserved in DP-SVD. Similarly to
the other methods, increasing i may lead to different effects at
different privacy levels. In Figure 3e and Figure 4e, increasing
i leads to higher MSE errors in both CASIA and AT&T with
small ε values (e.g., ε = 0.1). For larger ε values, e.g., ε ≥
5, the MSE first decreases and then increases. The reason is
a higher number of eigenvalues allows more information of
the original image to be preserved, but would inflict larger
perturbation errors by private sampling in higher dimensional
spaces. As a result, an elbow point, i.e., lowest total error, is
observed when ε is sufficiently large; and such ε values also
depend on the input image, e.g., its resolution and structural
complexity. The SSIM results in Figure 4f show the trade-off
more clearly. Both Figure 3f and Figure 4f show that higher
SSIM scores can be achieved if relaxing privacy: DP-SVD
outperforms DP-Pix and DP-Samp given the same ε value.

4) Varying δ in Snow: Recall that Snow employs a single
parameter for pixel sampling, i.e., δ, which also indicates the

(a) DP-Pix (MSE) (b) DP-Pix (SSIM)

(c) DP-Samp (MSE) (d) DP-Samp (SSIM)
Fig. 7: Results of varying m on CASIA dataset

probability of breaching ε-DP. In DP studies, δ is usually set
to a small value to ensure adequate privacy protection [6].
For instance, we may set δ = 1

n where n is the number
of pixels in the input image, in order to protect each pixel.
However, such an δ value will lead to graying the majority of
the image (see Algorithm 4), hence no practical usefulness. In
Figure 5, we vary δ between 0.1 and 0.85 to study the utility
empirically. For both CASIA and AT&T, increasing δ leads
to lower MSE errors (Figure 5a), as fewer pixels are grayed
out. In Figure 5b, we observe the SSIM first decreases and
then increases for the CASIA dataset. We believe that due to
the simple structure of CASIA images, SSIM does not capture
the difference between the original image and the obfuscated
image when most pixels are grayed out (i.e., smaller δ). We
also evaluated an extension of Snow (Figure 6), by applying
median blur with a 3× 3 kernel to the output image. As can
be seen in Figure 6b, the median blur improves the image
quality when δ > 0.5, i.e., when the majority of the pixels
are preserved. For the CASIA dataset, applying median blur
in low δ settings (e.g., δ ≤ 0.2) also leads to higher SSIM
scores, due to the limitation of SSIM when the majority of
the pixels are gray, as discussed previously. We see that face
images from AT&T, which have more complex structures, are
affected by this lack of robustness to a lesser extent.

C. Varying m for neighboring images

In differential privacy, the definition of neighboring
databases is an important factor. Similarly, in the context
of image obfuscation, the parameter m specifies the number
of pixels that may differ between two neighboring images.
Larger values of m provide stronger privacy protection, i.e.,
stronger indistinguishability guarantees, which may require
larger perturbation errors. In this evaluation, we adapt DP-
Pix and DP-Samp to different m values, while DP-SVD and
Snow are not applicable. The utility results are reported for
CASIA and AT&T datasets in Figures 7 and 8, respectively.
As can be seen, increasing m incurs larger MSE errors and
lower SSIM scores for DP-Pix and DP-Samp in both datasets.



(a) DP-Pix (MSE) (b) DP-Pix (SSIM)

(c) DP-Samp (MSE) (d) DP-Samp (SSIM)
Fig. 8: Results of varying m on AT&T dataset

Table II: Task Based Utility
Pupil Confidence Gaze Error (◦)

ε DP-Pix DP-Samp DP-SVD DP-Pix DP-Samp DP-SVD
0.01 47% 0% 30% 5.48 - 56.98
0.05 46% 2% 46% 4.30 10.41 44.39
0.1 47% 6% 47% 4.38 10.92 21.53
0.5 43% 40% 79% 5.79 5.66 2.58
1 45% 56% 77% 5.09 5.09 2.19
5 45% 77% 77% 4.98 3.02 2.08
10 46% 83% 77% 4.50 2.72 2.07

For CASIA datasets, DP-Samp inflicts lower MSE errors than
DP-Pix, enjoying the benefits of pixel sampling in higher
resolution images; but in AT&T dataset, DP-Samp does not
have that advantage. The results of SSIM show that DP-Pix
outperforms DP-Samp when increasing m and provides high
quality consistently in high ε settings, thanks to preserving the
high-level image structure with pixelization.

D. Practical Utility and Privacy Measures

Next, we discuss task based utility measures and practical
privacy risks of the methods at varying privacy levels. Results
are reported in Tables II, IV, III, and V. Note that in gaze
error results, a dash (-) is used to indicate that the gaze error
could not be determined due to a 0% pupil detection rate.

1) Task Based Utility: In Table II, we observe that when
the privacy protection is stronger (ε ≤ 0.1), DP-Pix pro-
vides higher pupil confidence scores and lower gaze errors,
compared to DP-Samp and DP-SVD; however, those utility
measures do not improve when increasing ε, due to the
information loss incurred by pixelization. Increasing ε for DP-
Samp and DP-SVD leads to higher pupil confidence and lower
gaze errors. We observe that DP-SVD quickly achieves high
utility at a low privacy cost, e.g., ε = 0.5. In Table III,
it can be seen that increasing δ values in Snow improves
pupil confidence and gaze error, with or without median blur.
Note that with median blur, Snow achieves better utility in
both measures at low privacy settings, i.e., δ ≥ 0.7, as the
median blur removes noise effectively when sufficient pixels
are sampled from the input image.

Table III: Task Based Utility - Snow
Pupil Confidence Gaze Error (◦)

δ Snow Snow-Med Snow Snow-Med
0.1 0% 0% - -
0.33 30% 0% 3.20 -
0.4 64% 2% 2.17 6.58
0.5 80% 50% 1.76 3.06
0.6 87% 82% 1.42 1.86
0.7 92% 94% 0.95 0.88
0.8 94% 99% 0.58 0.28

Table IV: Privacy Risk Measures
CRR - CASIA Re-ID - AT&T

ε DP-Pix DP-Samp DP-SVD DP-Pix DP-Samp DP-SVD
0.01 0% 0% 0% 3% 0% 1%
0.05 0% 0% 0% 9% 3% 3%
0.1 0% 0% 0% 10% 11% 58%
0.5 0% 0% 0% 68% 35% 63%
1 0% 0% 0% 68% 51% 56%
5 0% 4% 0% 83% 77% 59%
10 0% 7% 0% 81% 83% 60%

Table V: Privacy Risk Measures - Snow
CRR - CASIA Re-ID - AT&T

δ Snow Snow-Med Snow Snow-Med
0.1 0% 0% 4% 4%
0.33 0% 0% 13% 5%
0.4 0% 0% 23% 4%
0.5 0% 0% 75% 9%
0.6 1% 0% 86% 54%
0.7 5% 25% 85% 81%
0.8 10% 77% 91% 91%

2) Privacy Risks: We observe in Table IV that both DP-
Pix, DP-Samp, and DP-SVD are shown to be resistant to iris
authentication based attacks at all privacy levels, i.e., 0% CRR,
while DP-Samp allows a small percentage of matches at high ε
settings. It shows that the privacy perturbation inflicted by DP-
Pix and DP-SVD successfully prevents the obfuscated image
to be matched to existing templates. As DP-Samp outputs
pixels from the real image, some obfuscated images may be
matched at high ε settings. As seen in Table V, Snow leads
to at most 10% CRR; however, applying median blur leads
to up to 77% CRR at high δ settings. Since median blur
can be applied by any adversary on the output image, we
conclude that Snow does not provide strong defense against
iris authentication attacks.

The face re-identification attack shows whether deep learn-
ing models can adapt to the evaluated obfuscation methods. It
can be seen in Table IV that DP-Pix and DP-Samp lead to up
to 83% re-identification rates at high ε settings, while DP-SVD
inflicts lower risks despite the increase in ε. In Table V, we
observe that Snow and Snow-Med lead to high re-identification
risks, up to 91%. Even in lower δ settings (e.g., δ ≤ 0.5), Snow
inflicts up to 75% re-identification risks due to the disclosure
of real pixels.

3) CPU Time: We measure the runtime for each obfus-
cation method to sanitize a single image and the results are
reported in Figure 9. In general, higher runtimes can be
observed on the CASIA dataset for every method, due to a
higher resolution. Across all methods, the privacy level (ε or
δ) does not significantly affect the runtime performance of



Fig. 9: Runtimes of DP-Pix, DP-Samp, DP-SVD, and Snow for sanitizing one image

the obfuscation. DP-Samp inflicts the highest runtimes among
all methods, due to the computational costs inflicted by pixel
clustering and sampling; a higher number of clusters (k) leads
to higher runtimes. For DP-Pix, increasing the block width b
reduces the runtime as perturbation is performed on a smaller
number of blocks. For DP-SVD, increasing the number of
eigenvalues i increases the runtime as the method conducts
private sampling in a higher dimensional space.

E. Qualitative Evaluation

For qualitative evaluation, we present sample output images
produced by the obfuscation methods with different parameter
values and privacy levels in Figure 10. For CASIA dataset,
DP-Samp introduces higher distortions to the eyes with ε =
0.5, compared to other methods. DP-SVD does not capture
detailed features, e.g., eyebrows, while DP-Pix and Snow
introduce “salt and pepper” noise. Increasing ε to 1 reduces
the distortions and perturbations in DP-Samp and DP-SVD,
and improves the output quality of DP-Pix greatly. Applying
median blur to Snow may aggravate the gray noise at low δ
settings and help remove such noise at high δ settings.

For AT&T dataset, DP-Samp produces low quality output
images among all methods. DP-SVD introduces distortions
due to matrix singular value decomposition and private sam-
pling, but distortions incurred by sampling are alleviated ef-
fectively by increasing ε to 1. DP-Pix outputs show the effects
of pixelization and privacy perturbation, and the perturbation
effect may be reduced by adopting a higher b value and/or a
higher ε value. Due to a lower resolution, the outputs of Snow
and Snow-Med are affected by the gray noise much more than
for CASIA.

V. DISCUSSION

A. Interpreting the results

We have made several observations which may provide
insights for adopting existing obfuscation methods and devel-
oping new image obfuscation methods.

Firstly, although lower pixel-level errors, i.e., MSE, often
lead to higher SSIM scores, it does not always hold for images
with simpler structures, e.g., for CASIA eye images. Our

results in Figure 3c showed that DP-Samp inflicts MSE errors
which are equal to or smaller than those of DP-Pix (Figure 3a)
and DP-SVD (Figure 3e), while its SSIM scores are lower
in most instances. For Snow, the MSE errors on CASIA
monotonically decrease when increasing δ (see Figures 5a and
6a), while the SSIM scores (see Figures 5b and 6b) at δ = 0.1
are higher than those of other δ values. The sample output
images in Figure 10 show that the measures alone may not be
sufficient to reflect the quality for images.

Secondly, we observe that low generic utility (MSE and
SSIM) does not always lead to low task-based utility. For
example, DP-Pix in low ε settings (e.g., ε ≤ 0.1) leads to high
MSE errors and low SSIM scores, shown in Figures 3a and
3b; however, it provides higher pupil confidence (46%) and
lower gaze errors (5.48◦) than other methods when ε ≤ 0.1,
as in Table II. It shows that pixelization-based obfuscation
can provide usefulness for image applications, even at low ε
settings.

Thirdly, we observe that the obfuscation methods exhibit
distinct trade-off behaviors between privacy and task-based
utility. As seen in Tables II and III, DP-Pix provides stable
pupil confidence and gaze errors when increasing ε; DP-Samp
and DP-SVD show rapid improvements in those measures
between ε = 0.1 and ε = 0.5; Snow gradually improves as
δ increases. We believe that the design of the method plays
an important role: DP-Pix employs pixelization, which inflicts
a loss of detailed information independent of the privacy
perturbation. DP-Samp and DP-SVD utilize the global struc-
ture/features in the input image, which may not be accurately
captured at low ε settings. Snow outputs each pixel indepen-
dently, which results in the gradual utility improvement by
increasing the sampling probability.

Last but not least, we observe that although theoretical
privacy guarantees often correlate with practical privacy pro-
tection, post-processing may change the level of practical
privacy protection. In Table IV, we see that the practical
privacy risks increase when ε increases for DP-Pix, DP-Samp,
and DP-SVD. In Table V, we see that applying median blur
after Snow significantly increases the CRR, e.g., from 10% to
77% for δ = 0.8, although median blur does not weaken the



DP-Samp DP-SVD DP-Pix Snow
Input k = 12 k = 28 i = 4 i = 6 b = 4 b = 6 δ = 0.33 δ = 0.80

k = 24 k = 48

(a) ε = 0.5 for DP-Pix, DP-Samp, and DP-SVD. Snow is not affected by ε.

DP-Samp DP-SVD DP-Pix Snow-Med
Input k = 12 k = 28 i = 4 i = 6 b = 4 b = 6 δ = 0.33 δ = 0.80

k = 24 k = 48

(b) ε = 1 for DP-Pix, DP-Samp, and DP-SVD. Snow-Med is not affected by ε.
Fig. 10: Sample output images produced by DP-Samp, DP-SVD, and DP-Pix at ε = 0.5 and ε = 1, as well as by Snow and Snow-Med
(i.e., with median blur) at δ = 0.33 and δ = 0.80

differential privacy guarantees.

B. How to choose

It is important to recognize that applications may have
different priorities and requirements for image obfuscation.
There is no “one size fits all” solution. For applications
requiring provable privacy guarantees, DP-Pix provides ε-
DP guarantees and can be adapted to protecting more than
one pixels in the input image. Both DP-SVD and Snow
provide relaxed DP guarantees, i.e., metric privacy and (ε, δ)-
DP, respectively. DP-Samp provides ε-DP for individual pixels
in some steps but not in the pixel clustering step (similar
to [25]). For applications requiring strong practical privacy
protection, DP-Pix with ε ≤ 0.1 is a great option, thanks to
low privacy risks in Table IV and much better utility measures
compared to other methods in Table II. For applications
wishing for a balance between privacy and utility, DP-SVD
or DP-Samp with ε = 0.5 may be considered: as shown in
Table II, DP-SVD provides 79% pupil confidence and 2.58◦

gaze error, while DP-Samp provides 40% pupil confidence
and 5.66◦ gaze error; but DP-SVD leads to a higher Re-
ID risk than DP-Samp in Table IV, i.e., 63% vs 35%. With
even weaker privacy guarantees, applications may consider
Snow with δ = 0.5, which achieves 80% pupil confidence,
1.76◦ gaze error, and 75% Re-ID risk (see Tables III and V).
Additional considerations such as computational resources and
runtime requirements should also be taken to account.

C. Extension to Multi-Channel Images.

We evaluated current DP image obfuscation methods with
grayscale image data, as in [7], [8], [13]. Considering image
data with multiple channels, such as RGB (red-green-blue) and
HSV (hue-saturation-value) images, each channel may not be
independent of the other channels. A straight-forward exten-
sion of current image obfuscation is to apply the composition
theorems [6] by splitting the privacy budget across multiple
channels, as mentioned in [7]. An alternative idea is to treat
each pixel as a vector, as in [25].



VI. CONCLUSION

We performed a comprehensive evaluation of four image
obfuscation methods, namely DP-Pix, DP-Samp, DP-SVD,
and Snow, which provide provable privacy guarantees based
on differential privacy. We adopted real eye and face image
datasets in the empirical evaluation and included both generic
and task based utility measures as well as privacy risk mea-
sures against attacks. We found that DP-Pix achieves the best
task-based utility in strong privacy settings (i.e., ε ≤ 0.1) with
low empirical privacy risks, while providing pure ε-DP. For
moderate to low privacy settings (i.e., ε ≥ 0.5), DP-SVD and
DP-Samp provide a trade-off between privacy and utility, while
DP-SVD achieves lower gaze errors and lower privacy risks
even in low privacy settings (e.g., ε = 10). Snow may achieve
higher task-based utility at the cost of high practical privacy
risks, e.g., 77% CRR for eye images.

The following directions may be considered for future
work. 1) The development of new image obfuscation methods
for specific domain applications: Snow and DP-SVD adopt
different approaches to serve the target domains (i.e., eye-
tracking applications and face images, respectively). Future
work should take into account of the characteristics of the
data and applications, in order to achieve high usefulness.
2) The development of new privacy risk measures: this study
focused on identity based privacy attacks due to its sensitivity,
while the disclosure of other types of information may also be
considered, such as emotion, activity, etc. 3) The development
of new obfuscation methods to produce more natural looking
images: current methods may lead to visually unappealing
artifacts. Future research may leverage latest machine learning
techniques to generate natural looking images, while providing
rigorous privacy guarantees.
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