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Single-cell damagenome profiling unveils vulnerable 
genes and functional pathways in human genome 
toward DNA damage
Qiangyuan Zhu1†, Yichi Niu1†, Michael Gundry1, Chenghang Zong1,2,3*

We report a novel single-cell whole-genome amplification method (LCS-WGA) that can efficiently capture sponta-
neous DNA damage existing in single cells. We refer to these damage-associated single-nucleotide variants as 
“damSNVs,” and the whole-genome distribution of damSNVs as the damagenome. We observed that in single 
human neurons, the damagenome distribution was significantly correlated with three-dimensional genome 
structures. This nonuniform distribution indicates different degrees of DNA damage effects on different genes. 
Next, we identified the functionals that were significantly enriched in the high-damage genes. Similar functionals 
were also enriched in the differentially expressed genes (DEGs) detected by single-cell transcriptome of both 
Alzheimer’s disease (AD) and autism spectrum disorder (ASD). This result can be explained by the significant 
enrichment of high-damage genes in the DEGs of neurons for both AD and ASD. The discovery of high-damage 
genes sheds new lights on the important roles of DNA damage in human diseases and disorders.

INTRODUCTION
As one of the major sources of DNA lesions, spontaneous DNA 
damage is known to be associated with mutagenesis (1–4). Recent 
studies have also suggested that spontaneous DNA damage could 
alter the epigenetic landscape and gene expression (5, 6). The levels 
of DNA damage on the genome are likely not uniform (7–9). As a 
result, we expect that different genes bear varying burdens of DNA 
damage. Hence, different genes come to have different degrees of 
vulnerability toward mutations and epigenetic instability, which 
could lead to the large-scale perturbations to gene functions and 
trigger the development of diseases. It is greatly desired that we 
can accurately profile the distribution of DNA damage in the hu-
man genome and identify different vulnerable genes in different 
types of cells.

To date, the main approaches for measuring DNA damage are 
high-performance liquid chromatography–based and chromatin 
immunoprecipitation–based methods (1, 10–13). High-performance 
liquid chromatography provides a global assessment of nucleotide 
modifications; however, its accuracy is largely limited by the artifi-
cial damage introduced during the step of mononucleotide prepa-
ration. On the other hand, chromatin immunoprecipitation–based 
methods could provide sequence-based measurements of the damage 
distribution; however, DNA shearing and decross-linking can in-
troduce artificial damage to DNA templates, which directly limits 
the accuracy of measurement. We continue to lack a method that 
allows accurate damage profiling.

Here, instead of taking the bulk sample approach, we focus on 
developing a single-cell whole-genome amplification (WGA) assay 
to detect the DNA damage in single cells. So far, various types of 
single-cell WGA methods have been developed with the main focus 

on the detection of permanent genome changes including muta-
tions, copy number variations, and large structure variations 
(14–20). We believe that DNA damage could also be detected by a 
single-cell WGA method as damaged base can cause base misincor-
porations during the amplification process, which can then be de-
tected as de novo variants in the single-cell sequencing data. It is 
worth noting that detection of misincorporated bases caused by 
DNA damage has been successfully demonstrated in studies using 
bulk DNA samples (21–23).

The major advantage of using a single-cell WGA–based ap-
proach to profile DNA damage is that we can avoid the need for 
invasive treatments of DNA templates such as hydrolysis or 
decross-linking, leading to a substantial reduction in technical arti-
facts. However, it is worth pointing out that the major technical 
hurdle of the single-cell WGA approach is the amplification errors, 
and these technical artifacts have kept the accuracy in the detection of 
de novo mutations in single cells under intensive debate (18, 24–26). 
Therefore, for both accurate profiling of DNA damage and de novo 
mutations, a single-cell WGA method that allows for the efficient 
filtering of amplification errors remains greatly desired.

Here, we report a novel single-cell WGA method, termed “linear 
copy and split–based WGA” (LCS-WGA), that allows for nearly 
complete filtering of amplification errors. As a result, we achieved 
genome-wide detection of DNA damage at a single-cell resolution. 
For convenience, we denote damage-associated “de novo” single- 
nucleotide variants as damSNVs, and the entire genome character-
ization of damSNVs as the damagenome. It is worth noting that, 
with the single-cell WGA approach, the efficiency of detecting dam-
aged bases depends on the misincorporation rate. With the require-
ment of misincorporation for damage detection, our method 
mainly focuses on the types of DNA damage that are prone to base 
misincorporation. For DNA modifications that do not cause base 
misincorporations, it is not feasible to detect them using our method. 
It is worth emphasizing that, for the major types of DNA damage 
that are commonly detected in bulk assays, such as oxidized cyto-
sine and 8-oxoguanine, their misincorporation rate is high, which 
permits the reliable detection of these DNA damage.
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With the ability to characterize DNA damagenome in single 
cells, we investigated age-dependent changes in DNA damage levels 
in single human neurons. Next, using the damagenome data of sin-
gle human neurons, we successfully identified the genes with high 
levels of DNA damage in the human genome. We showed that these 
high-damage genes are significantly enriched in the differentially 
expressed genes (DEGs) of both individuals with Alzheimer’s dis-
ease (AD) and autism spectrum disorder (ASD), indicating that 
DNA damage is closely associated with the abnormal gene expres-
sion in these neurological conditions.

RESULTS
Reaction scheme of single-cell damagenome profiling
During LCS-WGA, preamplification was first performed to gener-
ate linear DNA copies from the original genomic DNA of the single 
cell (Fig. 1A). Specifically, we used a DNA polymerase without 
proofreading activity (i.e., large fragment of Bst polymerase) in the 
preamplification step to boost the rate of base misincorporation 
while using the damaged base as the template. During preamplifi-
cation, three cycles of annealing and extension reactions were 
performed. The semiamplicons were linearly copied from the ge-
nomic DNA, and full amplicons were nonlinearly produced from 

semiamplicons (fig. S1A). In this context, the amplification errors 
in semiamplicons were all independently produced as the semiam-
plicons are directly copied from the original genome template of the 
single cell. In contrast, amplification errors in the full amplicons are 
not independent because multiple copies of full amplicons can be 
produced from the same semiamplicons; therefore, different full 
amplicons may carry the same errors (fig. S1A).

A critical step of LCS-WGA is to split preamplification products 
into multiple tubes and conduct independent multiple displace-
ment amplification (MDA) using only the linearly copied semiam-
plicons produced in the preamplification described above and the 
original genomic DNA as templates for amplification (Fig. 1A). 
However, before splitting the preamplification product for inde-
pendent MDA reactions, we needed to perform 30 cycles of poly-
merase chain reaction (PCR) without the melting steps (which is 
denoted as the double-stranded conversion step in Fig. 1A). The 
reason for performing the double-stranded conversion step is to 
convert all the nonlinearly copied products (i.e., full amplicons 
produced in multiple annealing and extension cycles) into double- 
stranded DNA. Because double-stranded DNA cannot be primed 
by hexamers from the MDA reaction, the amplification of these 
nonlinear products is completely quenched during the MDA reac-
tion. We validated that the double-stranded full amplicons were 
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Fig. 1. Detection of damSNVs by LCS-WGA. (A) Reaction scheme of LCS-WGA. (B) Histogram of AF distribution of de novo variants in single MCF10A cells. The distribu-
tion center at the low AF value supports the detection of damage-associated single-nucleotide variants (damSNVs). (C) Histogram of AF distribution of heterozygous 
germline variants in single MCF10A cells. The Gaussian distribution centered at AF = 0.5 indicates the evenness in our amplification. (D) Gini plots for the three split sam-
ples of MCF10A SC1–5, respectively. The average value of the Gini coefficients is 0.624. The similar curves of the three split samples of each cell support that similar 
amplification performance can be achieved for MDA using pipetting mixing–based approach (Materials and Methods). (E) Total number of different types of damSNVs of 
single MCF10A cells. (F) DamSNV density ratios of the exon, promoter, intron, and intergenic regions over the total genome in the MCF10A cells. (G) Comparison of the 
total number of damSNVs between MCF10A cells with and without hydrogen peroxide treatment.
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effectively prohibited from amplification in MDA (please refer to 
Materials and Methods for detailed information).

During the double-stranded conversion step, the semiamplicons 
remained in single-stranded form. As a result, the amplification 
products in the MDA reaction were only amplified from the linearly 
produced semiamplicons and the original genomic DNA. Because 
the amplification errors in semiamplicons are independently pro-
duced, we can cross-compare the variants detected in different 
splits. By requiring the detection of the same variants in at least two 
split samples, we efficiently filter out the amplification errors exist-
ing in semiamplicons and, therefore, achieve an accurate detection 
of de novo variants in single cells (fig. S1B).

To evaluate the performance of LCS-WGA, we sequenced single 
cells isolated from a normal diploid breast epithelial cell line 
(MCF10A). Five single MCF10A cells were isolated from the cul-
ture in a serum-free medium for LCS-WGA. We first combined the 
sequencing data of three split samples and used the standard Ge-
nome Analysis Toolkit (GATK) pipeline (27) for variant calling. 
Next, we applied a two-split detection criterion (the variants need 
to be detected in at least two splits) to filter out amplification errors 
and identify the true variants. On the basis of the detected de novo 
variants using the combined splits, we determined that the average 
amplification error rate is ~5 × 10−5 per base, consistent with the 
error rate of Bst polymerase used in our preamplification reaction 
(4 × 10−5 per base) (18). When we conducted a cross-comparison of 
different splits and only kept the variants that were detected in at 
least two splits as the criterion for variant calling, we estimated 
that the error rate in our variant calling was approximately 
(5 × 10−5)2 × 0.333 ≈ 8.3 × 10−10 per base, where 5 × 10−5 is the am-
plification error rate described above and 0.333 is the probability 
for the two split samples to have the same type of error, respectively. 
Notably, the error rate of 8.3 × 10−10 per base corresponds to only 
five false positives per genome. Therefore, we concluded that LCS-
WGA can achieve nearly complete filtering of amplification errors.

For the detection of de novo variants, we defined the following 
stringent criterion: Only when the variants detected in single-cell 
data were not detected by any reads in the bulk sequencing data, 
were they defined as de novo variants in the single cell (i.e., the 
zero-read criterion) (Supplementary Materials). Next, we evaluated 
the levels of de novo variants existing in single MCF10A cells and 
detected 13,467 ± 1160 de novo variants per MCF10A cell (table S1). 
We expected that the vast majority of these de novo variants orig-
inated from the damaged DNA bases in the genomic DNA of the 
single cell because a single normal MCF10A cell likely cannot have 
such a high load of de novo mutations. To show that the vast major-
ity of the large number of de novo variants were not true de novo 
mutations, we plotted the numbers for de novo variants on the axis 
of the allele frequency (AF) and, indeed, observed that the histo-
gram peaks at a low AF value (Fig. 1B). As a control for the AF dis-
tribution of true mutations, when we plotted the distribution of 
the heterozygous germline variants, we observed that the histogram 
was centered at AF = 0.5 (Fig. 1C and table S2). With the drastic 
differences in AF distributions, we concluded that the vast majority 
of the detected de novo variants are not true mutations, instead rep-
resenting the misincorporated bases caused by DNA damage.

In Fig. 1B, we noticed that the AF distribution of de novo vari-
ants peaked between AF  =  0.1 and AF  =  0.2. With the damaged 
bases occurring on one strand, the theoretical AF value should be 
0.25. However, considering the boundary effect (i.e., half of the 

damSNVs have AF values less than 0.25) and the misincorporation 
rate, we expected instead that the AF distribution of damSNVs 
would peak at a lower value, as observed in Fig. 1B. It is also worth 
noting that the requirement of the detection of SNVs in at least two 
split samples could also introduce a minor skewness at the left-side 
boundary of AF distribution (i.e., AF = 0.1). To minimize this effect, 
we adopted AF = 0.03 as the cutoff for calling SNVs (Supplementary  
Materials).

We would like to point out that the consistent performance of 
MDA reactions for each split is also important for achieving efficient 
detection of damSNV, especially considering that MDA is notori-
ous for abrupt large bias. Here, we achieved the robust performance 
of MDA by limiting the amplification time together with frequent 
pipetting during the reaction. In Fig. 1D, the consistent Gini curves 
between different splits and cells show the robust performance of 
MDA. For 15 splits from five cells, we achieved an average genome 
coverage of ~84% per split. On the basis of the genome coverage in 
individual split samples, we could readily determine the strand 
dropout rate and the detection rate of damSNVs (table S1). The 
total level of damSNVs was then calculated for individual cells 
(please refer to the Supplementary Materials for detailed normaliza-
tion procedure).

Next, we plotted the complete array of different types of damSNVs 
for MCF10A (Fig. 1E). Among all six types of damSNVs, the major 
contributions to damSNVs stemmed from the transition variants as 
follows: C➔T/G➔A and A➔G/T➔C. On the basis of prior knowl-
edge of the major forms of DNA damage that occur to the genome, 
we reasoned that the damSNVs of the C➔T/G➔A type are associ-
ated with cytosine oxidation (28, 29); the damSNVs of the A➔G/
T➔C type are associated with adenine oxidation, followed by de-
amination (1); and the damSNVs of the G➔T/C➔A type are as-
sociated with 8-oxoguanine (30, 31).

In Fig. 1F, we demonstrate that different functional regions (e.g., 
promoter, exon, intron, and intergenic regions) have different 
degrees of damSNV abundance, which further supports that the 
damSNVs detected in LCS-WGA are biologically authentic. The 
potential mechanisms for these differences include different levels 
of genotoxic exposure and variable DNA repair efficiency in differ-
ent functional regions of the genome.

Here, we choose alkaline lysis to lyse single cells to avoid the 
various types of oxidative DNA damage caused by heating at high 
temperatures. While alkaline lysis will not induce various oxidation- 
related damages, the main drawback of this lysis is that it could 
induce cytosine deamination in the genomic template, which then 
leads to the detection of C➔T damSNVs. To remove this technical 
artifact, we performed uracil DNA glycosylase (UDG) treatment 
before preamplification to convert the deaminated C into AP sites 
and therefore prevent them from downstream amplification. The 
efficiency of this treatment has been validated (fig. S2 and Materials 
and Methods). To quantify the level of deaminated cytosine re-
moved by the UDG treatment, we performed LCS-WGA for a sin-
gle MCF10A cell without UDG treatment and observed a significant 
increase in C➔T damSNVs (fig. S3).

It is worth pointing out that, because of the UDG treatment, de-
tection of biologically authentic deaminated cytosines becomes in-
feasible. However, on the basis of a recent study (32), the frequency 
of cytosine deamination events is low at only 400 to 600 lesions per 
cell. In contrast, most C➔T damSNVs are derived from oxidized 
cytosines. Therefore, the exclusion of the deaminated cytosines will 
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not substantially alter our quantification of the total level of C➔T 
damSNVs.

For further validation of damage detection, we also applied LCS-
WGA to the MCF10A cells treated with hydrogen peroxide (H2O2), 
and we observed that DNA damage levels drastically increased in 
the H2O2-treated cells (Fig. 1G). Here, we only performed a 5-min 
treatment of H2O2 to avoid introducing notable mutagenesis. 
The increase in damSNVs in all six subtypes of variants is also con-
sistent with the known DNA lesion pattern caused by H2O2 treat-
ment (fig. S4) (33).

Damagenome profiling of single human cortical 
and hippocampus neurons
To investigate the age-dependent changes of DNA damage levels, 
next we profiled the damagenome of postmortem human neurons. 
Here, we performed LCS-WGA on a total of 52 prefrontal cortical 
neurons isolated from 10 brain samples in three age groups (3 in the 
young- and middle-age groups and 4 in the old-age group; table S3) 
and 17 hippocampus neurons from six samples in the three age 
groups (two brain samples per age group; table S3). Each cell was 
sequenced at 30× depth with ~10× for each split sample (table S4). 
On average, we achieved genome coverage of ~83% per split, simi-
lar to MCF10A result. For single neurons, the distribution of germ-
line variants and damSNVs was similar to that of MCF10A cells, in 
that the AF distribution of germline variants was centered at 
AF = 0.5 (Fig. 2A and fig. S5), while the AF distribution of de novo 
variants was centered between AF = 0.1 and AF = 0.2 (Fig. 2B and 
fig. S6). We also observed that the distributions of different types of 

damSNVs were similar to those of MCF10A cells (Fig.  2C and  
fig. S7).

In Fig. 2D, we plotted the average levels of damSNVs for dif-
ferent age groups. We observed that the average level of damSNVs 
increases from young age to middle age. The average level of 
damSNVs in the middle-age samples was slightly higher than that 
in the old-age samples. We also observed a similar trend in the 
mean levels of DNA damage changes along with advancing age in 
hippocampus neurons (Fig. 2D). Although a widely held concept is 
that DNA damage accumulates with age, reports in the scientific 
literature remain inconsistent (34), and here, our results suggest 
that the level of DNA damage in the brain may reach to the highest 
levels in middle age. It is worth noting that, despite that consistent 
trends were observed in both cortical and hippocampus neurons, 
because of the large variations in damSNVs among single cells, the 
differences between different age groups did not reach statistical 
significance.

It is known that mosaic copy number variations frequently 
occur in frontal cortical neurons (35), which could limit the accura-
cy in our estimation of the total level of damSNVs in single cells. 
However, we noticed that the regions with mosaic copy number 
variations are relatively limited (i.e., <10% of the genome size for 
the vast majority of neurons with mosaic copy number variations). 
Therefore, their effect on our quantification of damSNV levels is 
likely minor. On the other hand, we suspect that these genomic 
mosaicisms could affect the physiology of the neurons, which 
directly contributes to the large cell-to-cell variations in terms of 
the damage levels observed in single cells.
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Fig. 2. Levels of damSNVs in individual neurons at different ages. (A) Histogram of AF distribution of heterozygous germline variants in single cortical neurons of 
sample p5554. (B) Histogram of the AF distribution of damSNVs in individual cortical neurons of sample p5554. The distribution center at a low AF value supports the 
detection of damSNVs. (C) Fraction of different types of damSNVs for single neurons of p5554. (D) Plot of the average level of damSNVs of individual neurons on the axis 
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damSNV levels of single neurons are significantly higher than that of MCF10A cells.
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Furthermore, we did not observe any correlation between the 
number of damSNVs and the postmortem intervals (Fig.  2E). 
Therefore, we concluded that the damSNVs we detected were 
biologically authentic and were not generated during the sample 
collection process. We also noticed that the damage level in neurons 
was significantly higher than that of the cultured MCF10A cells 
(Fig. 2F).

Nonuniform distribution of the damagenome is associated 
with three-dimensional genome topology
Beyond comparing the total DNA damage levels in different brain 
samples, sequencing-based measurement also allows us to investi-
gate local DNA damage distribution in the genome. We first sought 
to examine whether significant changes in the local damSNV densi-
ties exist because of aging. We calculated genome-wide damSNV 
densities in 200-kb windows for the young-age, middle-age, and 
old-age neuron groups, respectively. The local coverage in each 
window was used for the normalization of damSNVs. Next, we 
plotted scatterplots between different age groups and observed sig-
nificant correlations (Fig. 3, A to C). No local regions with statisti-
cally significant changes in DNA damage levels between different 
age groups were identified. Because there were no significant 
changes in damagenome distribution with age, we combined the 
cortical neurons at different ages to generate the damagenome pro-
file of cortical neurons. We also generated the damagenome profile 
of hippocampus neurons. When we compared these two damage-
nome profiles, we also did not observe any significant difference 
between them. Supported by this result, we combined all the neu-
rons and plotted the distribution of damSNV densities in the ge-
nome (Fig. 3D and table S5). The histogram of damSNV densities is 
shown in fig. S8.

In Fig. 3D, we observed that damSNV density is nonuniformly 
distributed in the genome, which suggests that different damage 
burdens could exist for different genes. To investigate gene-specific 
effects, we adopted the local damSNV density to represent the dam-
age burden of the genes from the same window. In Fig. 3E, we found 
that the damSNV densities associated with the essential genes 
(36–39) were significantly lower than those associated with non-
essential genes. Furthermore, we showed that protein-coding genes 
have the lowest damSNV densities, followed by antisense genes and 
pseudogenes, while long intergenic noncoding RNAs (lincRNAs) 
have the highest damSNV densities (Fig. 3F).

Recently, Ochs et al. (40) have shown that genome topology 
plays a vital role in safeguarding genome integrity in response to 
double-stranded breaks. To investigate the possible association 
between the genome topology and single-nucleotide DNA damage, 
we compared the damSNV densities in A compartments versus B 
compartments identified previously by Hi-C experiments (41). Note 
that the A compartments are associated with open chromatin, and 
the B compartments are associated with more closed chromatin. 
Here, we observed that the damSNV densities in B compartments 
were significantly higher than those in A compartments (Fig. 3G). 
To further demonstrate the local association between the topologi-
cal compartments and damSNV abundance, next we calculated the 
Z score of the damSNV density for each 200-kb binning window of 
the genome (Fig. 3H). We colored each window based on the com-
partment (A compartments are colored blue, and B compartments 
are colored red). As a result, we observed that 75% of the binning 
windows with positive Z scores (high damSNV density) belong to B 

compartments, and 69% of the binning windows with negative Z 
scores (low damSNV density) belong to A compartments. The odds 
ratio for the association between the damSNV Z scores and topo-
logical compartments was 6.63, and the P value was less than 2.2 × 
10−16 according to Fisher’s exact test. This result confirms that there 
is a significant association between the density of spontaneous DNA 
damage and the topological compartments of the genome.

Next, we examined whether the variations of damSNV densi-
ties depend on the GC (Guanine and Cytosine) percentage variations 
on the genome. We observed a negative correlation between the 
GC percentage and damSNV density in 200-kb windows on the 
genome (fig. S9). Because the A compartments had a significantly 
higher GC percentage than the B compartments (fig. S10), when we 
normalized the damSNV densities by the corresponding GC per-
centages, the difference in damSNV density between the A and B 
compartments became become further enlarged (fig. S11). In addi-
tion, we showed that, for both GC- and AT-related damSNVs, the 
average damage density in the A compartment group was signifi-
cantly lower than that in the B compartment group (figs. S12 and 
S13), indicating that the differences in damSNV densities between 
compartment A and B did not depend on damage types.

García-Nieto et al. (9) recently profiled the genome-wide sus-
ceptibility of the human genome to ultraviolet damage and ob-
served that the susceptibility to ultraviolet damage in gene-enriched 
and euchromatic regions is significantly lower than that in heter-
ochromatin with repressed transcription activity. Consistent with 
this observation, we also detected a negative correlation between 
gene density and DNA damage abundance (fig. S14). This result 
further supports that the damagenome we characterized is biologi-
cally genuine.

Similar functional enrichments exist in high-damage genes 
and DEGs in AD and ASD
Given the nonuniformly distributed damagenome, we aimed to 
examine the potential enrichment of any functionals among the 
high-damage genes. Here, we ranked genes based on their local 
damSNV density and then used the top 2000 genes to perform func-
tional enrichment analysis using the UniProtKB Knowledgebase in 
DAVID algorithm (42). For convenience, we refer to these high–
damage density genes as the high-damage genes hereafter. The total 
group of protein-coding genes was used as the gene background in 
the functional enrichment analysis. We observed significant enrich-
ment of different functionals (Fig. 4A). Next, we conducted STRING 
analysis (43) and observed a large protein interaction network (fig. 
S15). We observed that, among the high-damage genes, protein- 
protein interactions were significantly more common than the 
average level of protein-protein interactions in the human genome. 
This result suggests that the effects of DNA damage on cells are not 
exerted in small isolated networks but instead through a large and 
well-connected protein-protein interaction network.

Given the recent endeavors of high-throughput, single-cell tran-
scriptome profiling of AD (44, 45) and ASD (46), we investigated 
the potential connection between high-damage genes and gene 
expression alternations that occur in the neurons of patients with 
neurological conditions. To do so, we performed the Kolmogorov- 
Smirnov (KS) test to examine whether the high-damage genes are 
significantly enriched among the DEGs in the neurons between the 
diseased samples and the normal samples. The lists of DEGs of both 
AD and ASD were downloaded from the data of Grubman et al. 
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(44) and Velmeshev et al. (46) (table S6). In the KS plots for AD 
(Fig. 4B) and ASD (Fig. 4C), we observed large gaps between two 
cumulative curves, indicating that significant enrichment of the high- 
damage genes existed among the DEGs. This result directly shows 

that the alternation of gene expression in patients with neurological 
conditions is significantly associated with DNA damage density.

For the DEGs of AD and ASD, we conducted functional enrich-
ment analysis using the UniProt Knowledgebase in DAVID algorithm, 
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Fig. 3. Distribution of damSNV on the genome. (A) The scatter plot between damSNV densities of the young-age neurons and the middle-age neurons. (B) The scatter 
plot between damSNV densities of the young-age neurons and the old-age neurons. (C) The scatter plot between damSNV densities of the middle-age neurons and the 
old-age neurons. (D) Distribution of damSNV density in 200-kb binning windows on the genome. (E) Comparison of damSNV densities of essential genes versus non-
essential genes. ****P < 0.0001. (F) Comparison of damSNV densities of different types of genes, including protein-coding genes, antisense genes, pseudogenes, and 
lincRNA. (G) Comparison of damSNV densities in A compartment versus B compartment of three-dimensional genome topology. (H) The Z score of the damSNV density 
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and we used the total detected genes in normal samples as the gene 
set background in the analysis. We observed that many enriched 
functionals (see Fig. 4D for AD and Fig. 4E for ASD, indicated by 
the star) overlap with the enriched functionals from the high-damage 
gene–based analysis (Fig. 4A). Specifically, the top seven hits for AD 
and the top five hits for ASD are among the enriched functionals 
from the high-damage gene–based analysis. The significant overlap 
of enriched functionals is consistent with the result of the KS test, 
indicating that high-damage genes contribute to differential gene 
expressions in both diseases.

The damage density–based functional enrichment analysis de-
scribed above corresponds to the scenario of that the DNA damage 
effect is mainly exerted on promoter regions, assuming that the sizes 
of promoter regions are similar between different genes. It is worth 
noting that Lu et al. (47) showed that damage that occurs in pro-
moter regions affects the gene expression. On the other hand, we 
reason that the effect of DNA damage may also be exerted through 
gene bodies. Next, we ranked the genes based on the DNA damage 
load (which corresponds to the product of damage density and gene 
length). We also used the top 2000 genes to perform a functional 

enrichment analysis using the DAVID algorithm (48), and the total 
group of protein-coding genes was used as the background. We 
observed significant enrichment of splicing and phosphoproteins in 
terms of protein functions of the UniProt Knowledgebase (42) (fig. 
S16). This result indicates that DNA damage could play impor-
tant roles by perturbing the functions of alternative splicing and 
phosphoproteins through the high–damage load genes. Consistent 
with this analysis, Raj et al. (49) have successfully identified hun-
dreds of aberrant pre–messenger RNA splicing events in AD that 
are reproducibly associated with the disease. Hsieh et al. (50) also 
observed that cryptic splicing errors are associated with neurofibril-
lary tangle burden. In the protein-protein interaction analysis using 
the STRING algorithm, we also observed a well-connected network, 
indicating a large-scale, systems-level effect on the cells (fig. S17). It 
is worth noting that the functionals of alternative splicing and 
phosphoproteins were not enriched in the high–damage density 
genes, indicating that the large-size genes are enriched in these 
functionals.

While the damage density– and damage load–based analyses 
suggest different mechanisms for DNA damage’s effects on gene 
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Fig. 4. Functional enrichment analyses of the high-damage genes. (A) Significant functional enrichment for the top 2000 high-damage genes ranked by damage 
density. (B) The KS tests of the damSNV distributions of the DEGs (DEGs between AD and normal brain samples) and the total genes. (C) The KS tests of the damSNV dis-
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expression, these two mechanisms do not need to be mutually exclu-
sive. As described above, we observed evidence supporting both models of 
damage effect. We reason that, for genes of small or medium length, 
the effects of DNA damage on the regulatory regions are important, 
while for genes of substantially large sizes, the total damage load will 
weigh more in terms of the effects on changes in gene expression.

In AD, it is well known that amyloid formation can cause neuro-
toxicity and lead to an increase in oxidative radicals and other free 
radicals (51). Other potential mechanisms include mitochondria 
dysfunction and metal homeostasis caused by amyloid formation 
(52–54). We performed LCS-WGA for single neurons isolated from 
diseased samples to examine whether the DNA damage levels in 
these cells are indeed elevated. As a result, we observed that the 
DNA damage levels in the AD neurons were significantly higher 
than those of normal old-age neurons (Fig. 4F).

Significant enrichment of high-damage genes in DEGs 
of non-neuron cell types for both AD and ASD
It has been shown that large-scale genome topological domains 
between different cell types share significant similarities (at the level 
of ~80% similarity) (41, 55–58). Considering the direct association 
between damSNV densities and genome topological structures, we 
reason that the damagenome distribution between different cell 
types could also be similar. Supported by this rationale, we per-
formed the KS tests for the DEGs detected in oligodendrocytes, as-
trocytes, microglia, and endothelial cells. We observed statistically 
significant enrichment of high-damage genes in DEGs for endothe-
lial cells (Fig. 5A), astrocytes (Fig. 5B), and microglia (Fig. 5C), 
indicating that the DNA damage could also exert effects on gene 
expression across different cell types. However, we did not observe 
enrichment of high-damage genes in the DEGs of oligodendrocytes 
(Fig. 5D). The different levels of statistical significance in different 

cell types could be due to variations in the damagenome distributions 
or the total damage levels, or both in different cell types. There-
fore, direct characterization of the genome topology and the dam-
agenome of different types of cells is highly desired in the future.

In ASD, we also observed significant enrichment in various cell 
types besides neurons (Fig. 6). Similar to that in AD, significant en-
richment of high-damage genes was observed in endothelial cells, 
astrocytes, and microglia (Fig. 6, A to C). With the limited number of 
DEGs in oligodendrocytes, no significant enrichment of high-damage 
genes was observed (Fig. 6D). The consistent enrichment of high- 
damage genes in the DEGs of endothelial, astrocytes, and microglia 
for both AD and ASD indicates that the effects of DNA damage are 
not only genome-wide but also general across different cell types, 
which demands future investigation.

DISCUSSION
While it is well known that DNA damage could induce mutations, 
DNA damage can also influence gene expression. For example, 
Lu et al. (47) reported that an accumulation of oxidative lesions in 
the promoter regions can cause down-regulation of the correspond-
ing gene expression. Changes in gene expression could be induced 
by an altered epigenetic landscape, which could be induced by fre-
quent DNA damage and repair of genes with high damage frequency 
(5). Several recent studies have shown that DNA damage can cause 
changes in epigenetic markers and chromatin organization (59, 60). 
For example, frequent DNA damage could lead to the opening of 
compact chromatin and, as a result, changes in gene expression. 
Furthermore, the overall trend of reduction in epigenetic stability 
has also been proven in both aging and neural degeneration (6, 61–65). 
Recently, Klein et al. (66) observed genome-wide changes of histone 
acetylation driven by tau pathology.
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To characterize the genome-wide effects of DNA damage in 
alternating gene expression and epigenetic landscape, we first needed 
to profile the distribution of DNA damage on the genome. Here, we 
report a new single-cell WGA method, which enables us to detect 
the DNA damage as de novo variants in the sequencing data with 
high accuracy. First, it is worth noting that this method allows us to 
directly quantify the levels of the major types of DNA damage exist-
ing in single human cells. Second, with this genome sequencing–
based approach, we successfully characterized the damage distribution 
in the human genome. As a result, we observed that DNA damage 
is nonuniformly distributed within the genome, and this nonuniform 
distribution is significantly associated with the compartment distri-
bution of three-dimensional genome structures.

With the uneven damagenome, we identified the genes with 
high damage density (i.e., high–damage density genes). Among the 
top 2000 most high-damage genes, we observed significant func-
tional enrichments. Considering that these high-damage genes are 
the Achilles’ heel of the genome, we hypothesized that these genes 
and their associated functional vulnerability could play important 
roles in the development of neurological diseases. When we consid-
ered AD and ASD in concert with the recently published single-cell 
transcriptome data, we observed significant enrichment of high- 
damage genes in the DEGs of both diseases. Furthermore, the func-
tionals enriched in the DEGs of neurons for both diseases are also 
similar to the functionals enriched in the high-damage genes. Con-
sidering the significant dependence of the damagenome on the 
large scale of genome topology, which exhibits around 80% similarity 
between different cell types, we also examined whether high-damage 
genes are also significantly enriched in the DEGs of other cell types. 
We confirmed significant enrichment in endothelial cells, microglia, 
and astrocytes, but not in oligodendrocytes. These findings strongly 
suggest that the effects of DNA damage are not confined to only 
neurons in both neurological conditions.

Overall, as the first single-cell, whole-genome sequencing method 
for accurate measurement of DNA damage existing in individual 
cells, we believe that LCS-WGA will be broadly applied in future 
biological research. The identification of high-damage genes as the 
potential Achilles’ heel of the human genome offers new insights 
into the potentially important roles of DNA damage in increasing 
individual’s susceptibility toward complex diseases and disorders 
such as AD and ASD. Furthermore, a dual-omics approach that 
combines LCS-WGA and single-cell transcriptome is under devel-
opment, which can provide new mechanistic insights into the vari-
ations in damage levels among different single cells.

MATERIALS AND METHODS
Cell line and culture
MCF10A (CRL-10317; American Type Culture Collection, Manassas, 
VA, USA) cells were cultured in Dulbecco’s modified Eagle’s 
medium/F12 (no. 11330-032, Invitrogen, Carlsbad, CA, USA) supple-
mented with 5% horse serum (no. 16050-122, Invitrogen), epidermal 
growth factor (EGF) (20 ng/ml; PeproTech, Rocky Hill, NJ, USA), 
hydrocortisone (0.5 mg/ml; Sigma-Aldrich, no. H-0888), cholera 
toxin (100 ng/ml; no. C-8052; Sigma-Aldrich, St, Louis, MO, USA), 
insulin (10 mg/ml; no. I-1882, Sigma-Aldrich), penicillin (100 IU/ml), 
and streptomycin (100 mg/ml) at 37°C and 5% CO2. To induce cells 
into the G0 phase, we cultured MCF10A cells in serum-free medium 
(i.e., medium without horse serum, EGF, and insulin) for 48 hours.

Human tissues and DNA samples
All human tissues were obtained from the NeuroBioBank of the 
National Institutes of Health (Bethesda, MD, USA) under the super-
vision of the guidelines. The sample indices were 5554,1740, 4925, 
5818, 5844, 4643, 4546, 5246, 5671, and 5182. Prefrontal cortex BA 
8–10 regions were used.

Single-cell isolation for cell culture and alkaline lysis
Cultured cells were dissociated with 0.05% trypsin at 37°C for 
15 min. Then, cell culture medium was added to inactivate trypsin. 
Following several washes with phosphate-buffered saline (PBS), 
single MCF10A cells were picked into a PCR tube containing 2 ml of 
alkaline lysis buffer [400 mM KOH, 100 mM dithiothreitol (DTT), 
2 mM EDTA] by mouth pipetting. After briefly spinning down, the 
lysis was performed by incubating at 30°C for 1.5 hours. After cell 
lysis, 2 ml of stop solution [600 mM tris-HCl (pH 7.5) treated by 
ultraviolet light and 400 mM HCl] was added into each PCR tube to 
neutralize the lysis buffer. The lysed cells were ready for UDG treat-
ment and LCS-WGA.

Preparation of neuronal nuclei from brain tissues
Nuclei were isolated using the protocol of Krishnaswami et al. (67). 
Briefly, frozen tissue was first sectioned on ice and was then trans-
ferred to a precooled Dounce homogenizer by 1500 ml of homoge-
nization buffer [250 mM sucrose, 25 mM KCl, 5 mM MgCl2, 10 mM 
tris buffer (pH 8.0), 1 mM DTT, 1× Halt protease inhibitor cocktail 
(Thermo Fisher Scientific, Waltham, MA, USA), and 0.1% Triton 
X-100]. The tissue section was then homogenized on ice with 
5 strokes of the loose pestle and 12 strokes of the tight pestle. Next, 
the homogenate was passed through a 40-mm filter and transferred 
to a 1.7-ml tube. The isolated neuronal nuclei were then pelleted by 
centrifugation at 4°C (1000g for 8 min) and then resuspended in 
500 ml of PBS with 0.5% bovine serum albumin (BSA) (166099A, 
Thermo Fisher Scientific).

Blocking of nonspecific binding was performed on ice for 15 min. 
Then, 100 ml of nuclei was transferred to a new tube as an isotype 
control, while the rest of the nuclei were incubated with anti-NeuN 
antibody (ab177487; Abcam, Cambridge, England) at room tem-
perature for 30 min on a tube rotator. To wash the samples, we added 
500 ml of PBS with 0.5% BSA into the samples and then performed 
centrifugation at 4°C (500g for 5 min). After removing the superna-
tant, the nuclei were resuspended in 500 ml of PBS with 0.5% BSA 
and then incubated with goat anti-rabbit Alexa Fluor 488–conjugated 
secondary antibody at room temperature for 30 min on a tube rota-
tor. Following the incubation, the nuclei were washed with 500 ml of 
PBS with 0.5% BSA and pelleted by centrifugation at 4°C (500g for 
5 min). We then resuspended the nuclei in cold PBS and used 
Hoechst 33342 for DNA staining. Neuronal nuclei were identifiable 
by green and blue fluorescence under a fluorescence microscope. 
Single neuronal nuclei were picked into PCR tubes with lysis buffer 
by mouth pipetting. After briefly spinning down, lysis of single cells 
was performed at 30°C for 1.5 hours. Then, 2 ml of stop solution was 
added to neutralize the lysis buffer. The lysed single cells were ready 
for UDG treatment and LCS-WGA.

UDG enzyme treatment
UDG enzyme treatment was performed before the preamplification 
as follows: 0.2 ml of UDG enzyme [New England Biolabs (NEB)] and 
1× ThermoPol reaction buffer (NEB) were added into the single-cell 
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lysate. The single-cell lysate was then incubated at 37°C for 30 min. 
To evaluate the efficiency of UDG treatment in converting U base 
to AP site, we have designed a U-containing oligo. DNA oligo was 
first treated with UDG at 37°C for 30 min—the same treatment 
used in LCS-WGA. Then, we designed a pair of primers at both 
ends of this DNA oligo for quantitative PCR (qPCR) quantification, 
as UDG will leave an AP site on the oligo after it removes U, and the 
Taq polymerase cannot read through the AP site. Therefore, we 
could measure the UDG efficiency based on the DCt value between 
UDG-treated and no-treatment groups. As a result, the oligos with 
UDG treatment was eight cycles behind relative to the control 
experiment (fig. S3), which corresponds to an efficiency of 99.5% 
(~200-fold change). The DNA oligo with a uracil base and the qPCR 
primers are given as follows: U-containing oligo, GATGT-
G A G T GATGGTTGAGGATGTGTGCTAGAGTUATGT-
GACCTGGATGTGAGTGAGATGAG; forward primer for qPCR, 
GATGTGAGTGATGGTTGAGGATGTGTGC; reverse primer for 
qPCR, CTCATCTCACTCACATCCAG.

Even if all the U are coming from deamination caused by cell 
lysis, there will be only 80,000 × 0.5% = 400 U that were not pro-
cessed by UDG. Therefore, 400 U is the upper bound of artifact due 
to alkaline lysis. In comparison to the total level of C➔T based on 
the estimation from the MCF10A cells (20,845 ± 2520), this level of 
technical artifact due to the residual deaminated cytosine can be 
ignored. To further quantify the artifact levels of deaminated cyto-
sine caused by alkaline lysis, we tested one MCF10A cell without 
UDG treatment (fig. S2). As a result, we observed the significant 
increase in the variants of C➔T/G➔A type (~80,000 C➔T de novo 
variants), indicating that a substantial number in cytosine deamina-
tion was introduced during the alkaline lysis. UDG treatment is 
therefore required to remove these technical artifacts.

Linear copy and split–based whole-genome amplification
The LCS-WGA starts with multiple annealing cycles as described 
below. Deoxynucleotide triphosphate (dNTP) (300 mM) and 380 nM 
GAT27NT/NG primers are added into each PCR tube containing 
the lysed cell: GAT27NG, GTG AGT GAT GGT TGA GGA TGT 
GTG GAG NNN NNG GG; GAT27NT, GTG AGT GAT GGT TGA 
GGA TGT GTG GAG NNN NNT TT.

In this first cycle, DNA was melted at 94°C for 50 s. Next, 2.8 U 
of Bst large fragment polymerase (NEB) was added at 65°C. We 
then transferred the reaction onto the ice for 30 s to allow the prim-
er hybridization at low temperature. After putting back to the PCR 
machine, the reaction was performed with the following program: 
10°C for 40 s, 20°C for 40 s, 25°C for 40 s, 30°C for 40 s, 40°C for 
1 min, 45°C for 1 min, 55°C for 40 s, and 65°C for 4 min.

In the second cycle, DNA was denatured at 94°C for 20 s. Next, 
2.8 U of Bst large fragment polymerase (NEB) and 0.25 ml of GAT27 
primer (GTGAGTGATGGTTGAGGATGTGTGGAG; 10 mM) were 
added at 65°C. To convert the full amplicons into double-stranded 
DNA, eight cycles of double-stranded conversion (63°C for 15 s and 
65°C for 20 s) were then performed. After incubating at 65°C for 
1 min, the reaction was transferred onto the ice for 30 s for primer 
hybridization. The following program was then performed: 10°C 
for 40 s, 20°C for 40 s, 25°C for 40 s, 30°C for 40 s, 40°C for 1 min, 
45°C for 1 min, 55°C for 40 s, 65°C for 4 min 30 s. In the third cycle, 
DNA was first denatured at 94°C for 20 s. Next, 2.8 U of Bst large 
fragment polymerase was then added at 65°C. The following proce-
dures were the same as the second cycle.

After the three steps of multiple annealing and extension cycles, 
0.2 ml of GAT27 primer (10 mM) and 3.8 ml of H2O were added at 
78°C, and then DNA was denatured at 94°C for 20 s. After that, 
3.6 U of Bst large fragment (NEB) polymerase was added into each 
tube at 65°C. Next, 30 cycles of double-stranded conversion (63°C 
for 15 s and 65°C for 20 s) were then performed, followed by one 
step of 2-min incubation at 65°C. This double stand conversion step 
warrants the efficient conversion of all full amplicons into the 
double-stranded DNA before the MDA reaction. Bst large frag-
ment polymerase was inactivated at 72°C for 25 min.

After the preamplification step, qPCR [5 ml of iTaq Universal 
SYBR Green Supermix, 0.5 ml of GAT27 primers (10 mM), 4 ml of 
H2O, and 0.5 ml of preamplification products] was performed to 
quantify the preamplification yield of full amplicons. The Ct values 
and the melting curves of the qPCR result were used to validate the 
success of the preamplification. The qPCR program is as follows: 
94°C for 2 min for denaturation, 28 cycles of 94°C for 20 s, 60°C for 
25 s, and 72°C for 2 min 20 s.

After qPCR quantification, single-cell preamplified products 
were split into three tubes (about 4.7 ml per split) after 10-s vortex at 
600 rpm. MDA master mix (24.6 ml), including 1X phi29 buffer, 
1 mM dNTP, 100 mM random hexamer, 0.5% Tween 20, BSA 
(0.2 mg/ml), and 10 U of phi29 DNA polymerase, was added into 
each PCR tube. After brief pipetting mixing and centrifuging, the 
tubes were put on ice for 3 min to increase the efficiency of primer 
binding. MDA is performed at 30°C for 25 to 30 min with frequent 
mixing by pipetting. Phi29 DNA polymerase was then inactivated 
at 65°C for 10 min. After the MDA reaction, the products were 
purified by using 1X AMPure XP beads and eluted into 6.5 ml of 
H2O. The yield was quantified by Qubit High Sensitivity dsDNA kit 
(Invitrogen Life Science). The yield was expected to be around 1 ng 
per split reaction.

To prove the efficiency of double-stranded conversion, we per-
formed the MDA reaction using only double-stranded full ampli-
cons. With a 100-pg pure full amplicon sample, no detectable DNA 
product was produced after MDA reaction.

Library construction procedures
We first carried out the tagmentation reaction as follows: 6.3 ml of 
2X Illumina Tagment DNA buffer and 0.2 ml of 10-fold diluted 
TDE1 enzyme were added into the MDA product. The solution was 
incubated for 2  min at 55°C, followed by adding 1.5 ml of 0.2  M 
EDTA to release transposase at 50°C for 30 min. Mg(Ac)2 (0.2 M; 
1.5 ml) was then added to quench EDTA. NEBNext Ultra II Q5 
Master Mix (18.7 ml), 1.5 ml of Index 1 primers (N5), and 1.5 ml of 
Index 2 primers (N7) were then added to the reaction. The PCR was 
performed with the following steps: 5 min at 72°C and 30 s at 98°C 
and then 12 cycles of 10 s at 98°C, 30 s at 58°C, 1 min at 72°C, and 
5  min at 72°C. The products were purified by 0.8X AMPure XP 
beads and eluted to 20 ml of tris-Cl buffer.

The library yield was quantified by using Qubit High Sensitivity 
dsDNA kit (Invitrogen Life Science), and the library size was exam-
ined by using the TapeStation (Agilent). In general, the library size 
ranges from 300 to 1500 base pairs (bp), and the yield is around 
100 ng per split.

Loci test and whole-genome sequencing
Before performing whole-genome sequencing, we also perform qPCR 
of randomly selected loci to validate the amplification evenness. 
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Here, we randomly select six loci from six chromosomes. For each 
split reaction, if two or more locus drop out, we will discard the cell. 
Paired-end sequencing (150 bp × 2) was performed on a HiSeq X10 
instrument, with each split having around 10X sequencing depth.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/27/eabf3329/DC1

View/request a protocol for this paper from Bio-protocol.
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