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CHARACTERIZATION OF BROWNIAN GIBBSIAN LINE ENSEMBLES
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In this paper we show that a Brownian Gibbsian line ensemble is com-
pletely characterized by the finite-dimensional marginals of its top curve, that
is, the finite-dimensional sets of the top curve form a separating class. A par-
ticular consequence of our result is that the parabolic Airy line ensemble is the
unique Brownian Gibbsian line ensemble, whose top curve is the parabolic
Airy2 process.
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1. Introduction and main result.

1.1. Gibbs measures. Many problems in probability theory and mathematical physics
deal with random objects, whose distribution has a Gibbs property. The term “Gibbs” means
different things in different contexts; to illustrate what we mean by it and provide some
motivation for our work, we consider a simple model of lozenge tilings of the hexagon.
Consider three integers A,B,C ≥ 1 and the A × B × C hexagon drawn on the triangular
lattice; see the left part of Figure 1. By gluing two triangles along a common side, we obtain
three types of tiles (also called lozenges) that are depicted in red, blue and green in Figure 1.
There are finitely many possible ways to tile any given hexagon, and we can put the uniform
measure on all such tilings. The resulting random tiling model satisfies the following Gibbs
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FIG. 1. The left part depicts a 3 × 3 × 4 hexagon with a particular tiling. On the right side a tileable region K

is depicted in grey. There are two possible ways to tile K , given the tiling outside of it (they are drawn on the very
right of the picture). The Gibbs property says that conditioned on the tiling outside of K each of these two tilings
is equally likely.

property: if we fix a tileable region K in the hexagon and fix the tiling outside of it, then the
conditional distribution of the tilings of K is just the uniform measure on all possible tilings
of K ; see the right part of Figure 1.

An alternative way to represent the above hexagon tiling model is as a random triangular
array of interlacing signatures. Specifically, let

!k = {
λ ∈ Zk : λ1 ≥ λ2 ≥ · · · ≥ λk

}

denote the set of signatures of length k. Given N ∈ N, we let

GT(N) = {(
λ1, . . . ,λN ) : λk ∈ !k for k = 1, . . . ,N and λ1 $ λ2 $ · · · $ λN}

,

denote the set of Gelfand–Tsetlin patterns. The notation µ $ λ means that the signatures λ
and µ interlace; that is, we have λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ . . . . Finally, given a signature µ ∈ !N ,
we let GT(N)(µ) denote the set of elements in GT(N) such that λN = µ. With this notation
one can see that lozenge tilings of an A×B ×C hexagon are in a one-to-one correspondence
with elements in GT(B+C)(µ), where µ = (AC,0B) (the signature with first C entries equal
to A and last B entries equal to 0). The correspondence is depicted in Figure 2.

With the above correspondence we see that the uniform measure on the set of lozenge
tilings of the A × B × C hexagon is the same as the uniform measure on GT(B+C)(µ). In
this new notation the Gibbs property of the beginning of the section can be rephrased as
follows. Given any k ∈ {1, . . . ,B +C}, the conditional distribution of (λ1, . . . ,λk), given λk ,
is precisely the uniform measure on GT(k)(λk). Both of the Gibbs properties described so far
are equivalent to the statement that the lozenge tiling of the hexagon is uniform and are thus
equivalent to each other.

There is a natural continuous analogue of the above setting of interlacing triangular arrays
which, essentially, corresponds to replacing the state space Z with R. Specifically, let

Wk = {%x ∈ Rk : x1 ≥ x2 ≥ · · · ≥ xk
}
,

denote the Weyl chamber in Rk . For %x ∈ Rn and %y ∈ Rn−1, we write %y $ %x to mean that

x1 ≥ y1 ≥ x2 ≥ y2 ≥ · · · ≥ xn−1 ≥ yn−1 ≥ xn.

Given N ∈ N, we define the Gelfand–Tsetlin cone GT(N) to be

GT(N) = {
y ∈ RN(N+1)/2 : yj+1

i ≥ y
j
i ≥ y

j+1
i+1 ,1 ≤ i ≤ j ≤ N − 1

}
.
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FIG. 2. Given an element (λ1, . . . ,λN) ∈ GT(B+C)(µ) with µ = (AC,0B), we construct an array y
j
i for

1 ≤ i ≤ j and 1 ≤ j ≤ B + C through y
j
i = λ

j
i + j − i + 1/2 and then plot the points (i, y

j
i ) on the trian-

gular grid, denoted as red dots on the right side of the figure. The dots outside of the hexagon are fixed by the
interlacing conditions, and the positions of the dots inside are distinct for different elements of GT(B+C)(µ). The
positions of the red dots inside the hexagon specify the locations of the red lozenges which uniquely determine the
tiling.

Finally, given %x ∈ WN , we define the Gelfand–Tsetlin polytope

GT(N)(%x) = {
y ∈ RN(N+1)/2 : yN

i = xi for i = 1, . . . ,N
}
.

In this context we say that a probability measure µ on GT(N) is Gibbs or, equivalently,
satisfies the continuous Gibbs property [22], if the following condition is satisfied for a µ-
distributed random variable Y . Given any k ∈ {1, . . . ,N}, the conditional distribution of (Y

j
i :

1 ≤ i ≤ j ≤ k), given %Y k = (Y k
1 , . . . , Y k

k ), is uniform on GT(k)( %Y k).
Measures that have the continuous Gibbs property naturally appear in random matrix the-

ory, generally in the context of orbital measures on the space of Hermitian matrices under the
action of the unitary group; see; for example, [14]. We forgo stating the most general result
and illustrate a simple special case coming from the Gaussian Unitary Ensemble (GUE). Re-
call that the GUE of rank N is the ensemble of random Hermitian matrices X = {Xij }Ni,j=1

with probability density proportional to exp(−Trace(X2)/2) with respect to Lebesgue mea-
sure. For r = 1, . . . ,N , we let Y r

1 ≥ Y r
2 ≥ · · · ≥ Y r

r denote the eigenvalues of the top-left
r × r corner {Xij }ri,j=1. The joint distribution of (Y

j
i : 1 ≤ i ≤ j ≤ N) is known as the GUE-

corners process of rank N (sometimes called the GUE-minors process), and it satisfies the
continuous Gibbs property; see [1, 14]. The fact that the GUE-corners process satisfies the
continuous Gibbs property is not a lucky coincidence but is a manifestation of the Gibbs
property for tiling models. Indeed, the GUE-corners process is known to be a diffuse limit of
random lozenge tiling models; see [27, 33] and [36], and under this diffuse scaling the tiling
Gibbs property naturally becomes the continuous Gibbs property.

There is a different way to interpret lozenge tilings of the hexagon which is closer to the
topic of the present paper. Specifically, let us perform a simple affine transformation and draw
segments connecting the midpoints of the left and right sides of each of the green and blue
lozenges; see Figure 3. In this way a random lozenge tiling corresponds a set of A random
curves connecting the left and right side of the hexagon. A natural way to interpret these
curves is as trajectories of A Bernoulli random walks, whose starting and ending points are
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FIG. 3. Lozenge tiling of the hexagon and corresponding up-right path configuration. The dots represent the
location of the random walks at time t = 3.

equally spaced points on the two sides of the hexagon and which have been conditioned to
never intersect.

Let us number the random paths from top to bottom by L1,L2, . . . ,LA, and denote the
position of the kth random walk at time t by Lk(t). Then, the Gibbs property for the tiling
model can be seen to be equivalent to the following resampling invariance. Suppose that we
sample {Lm}Am=1 and fix two times 0 ≤ s < t ≤ B + C and k1, k2 ∈ {1, . . . ,A} with k1 ≤
k2. We can erase the part of the paths Lk between the points (s,Lk(s)) and (t,Lk(t)) for
k = k1, . . . , k2 and sample, independently, k2 − k1 + 1 up-right paths between these points
uniformly from the set of all such paths that do not intersect the lines Lk1−1 and Lk2+1 or
each other with the convention that L0 = ∞ and LA+1 = −∞. In this way we obtain a new
random collection of paths {L′

m}Am=1, and the essence of the Gibbs property is that the law of
{L′

m}Am=1 is the same as that of {Lm}Am=1.
There is a natural continuous analogue of the above random path formulation which, in this

case, corresponds to replacing the random walk trajectories with those of Brownian motions.
In this continuous context the random variables of interest take values in C(# × !)—the
space of continuous functions on # × !, where # = {1, . . . ,N} with N ∈ N or # = N and
! ⊂ R is an interval. We call C(# × !)-valued random variables L line ensembles (indexed
by # on !). A formal definition of this object is given in Section 2.1; presently, it will suffice
for us to know that a line ensemble is a collection of, at most, countably many continu-
ous functions on !, which we number using the index set #. For convenience we denote
Li (ω)(x) = L(ω)(i, x) the ith continuous function (or line) in the ensemble, and, typically,
we drop the dependence on ω from the notation as one usually does for Brownian motion.
The notion of a line ensemble is what replaces the collection of random walk trajectories from
the previous paragraph, and we next explain the continuous analogue of the Gibbs property.
The description we give is informal, and we postpone the precise formulation to Section 2.1,
as it requires more notation.

We say that a probability measure µ on C(# × !) satisfies the Brownian Gibbs property
if it has the following resampling invariance. Suppose we sample L, according to µ, and fix
two times s, t ∈ ! with s < t and a finite set K = {k1, . . . , k2} ⊂ # with k1 ≤ k2. We can
erase the part of the lines Lk between the points (s,Lk(s)) and (t,Lk(t)) for k = k1, . . . , k2
and sample, independently, k2 − k1 + 1 random curves between these points, according to
the law of k2 − k1 + 1 Brownian bridges, which have been conditioned to not intersect the
lines Lk1−1 and Lk2+1 or each other with the convention that L0 = ∞ and Lk2+1 = −∞ if
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k2 + 1 /∈ #. In this way we obtain a new random line ensemble L′, and the essence of the
Brownian Gibbs property is that the law of L′ is equal to µ.

While versions of the above definition have appeared earlier in the literature, the term
“Brownian Gibbs property” was first coined in [9]. One of the prototypical random models
that enjoy the Brownian Gibbs property is Dyson Brownian motion [20], as has been shown
in [9]. As in the case of the GUE-corners process, the latter can be seen as a consequence of
the fact that Dyson Brownian motion can be obtained as a diffuse limit of the noncolliding
Bernoulli walkers [21]; under this limit transition the path resampling interpretation of the
tiling Gibbs property naturally becomes the Brownian Gibbs property.

The present paper deals with Brownian Gibbsian line ensembles, that is, line ensembles
that satisfy the Brownian Gibbs property. Our main interest comes from the following basic
question:

How much information does one need in order to uniquely specify the law of a Brownian
Gibbsian line ensemble?

To begin understanding the latter question, let us go back to the case of random variables on
RN(N+1)/2, which satisfy the continuous Gibbs property, and recall the notion of a separating
class [2], page 9. Given a class of probability measures P on the same space (S,S), we call
a π -system of sets A ⊂ S a separating class for P if the following implication holds:

µ1,µ2 ∈ P and µ1(A) = µ2(A) for all A ∈ A =⇒ µ1 = µ2.

If P denotes the set of all probability measures on S = RN(N+1)/2 and Y is an S-valued
random variable, it is well known that the sets of the form

{
Y

j
i ≤ x

j
i : 1 ≤ i ≤ j ≤ N

}
for x

j
i ∈ R and 1 ≤ i ≤ j ≤ N,

form a separating class for P ; cf. [2], Example 1.1, page 9. However, if PGibbs denotes the
set of probability measures on S = RN(N+1)/2 that satisfy the continuous Gibbs property, one
can readily see that the sets

{
YN

i ≤ xN
i : 1 ≤ i ≤ N

}
for xN

i ∈ R and i = 1, . . . ,N,

form a separating class for PGibbs. Indeed, since conditionally on %YN = (YN
1 , . . . , YN

N ) the
law of (Y

j
i : 1 ≤ i ≤ j ≤ N) is uniform GT(N)( %YN), we see that two Gibbsian probability

measures on S are equal the moment their top rows have the same marginal distribution.
The essential observation here is that the continuous Gibbs property reduces the amount of
information one needs to specify the law of a random variable from order N2 to order N or
from dimension 2 to dimension 1.

The main result of the present paper is the analogue of the above statement for Brownian
Gibbsian line ensembles and is the content of the following theorem.

THEOREM 1.1. Let # = {1,2, . . . ,N} with N ∈ N or # = N, and let ! ⊂ R be an
interval. Suppose that L1 and L2 are #-indexed line ensembles on !, satisfying the Brownian
Gibbs property with laws P1 and P2, respectively. Suppose further that for every k ∈ N,
t1 < t2 < · · · < tk with ti ∈ ! and x1, . . . , xk ∈ R, we have that

P1
(
L1

1(t1) ≤ x1, . . . ,L1
1(tk) ≤ xk

) = P2
(
L2

1(t1) ≤ x1, . . . ,L2
1(tk) ≤ xk

)
.

Then, we have that P1 = P2.

REMARK 1.2. In plain words, Theorem 1.1 states that if two line ensembles both sat-
isfy the Brownian Gibbs property and have the same finite-dimensional distributions of the
top curve, then they have the same distribution as line ensembles. Equivalently, the finite-
dimensional sets of the top curve form a separating class for the space of probability measures
with the Brownian Gibbs property.
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REMARK 1.3. Theorem 1.1 is formulated slightly more generally after introducing some
necessary notation as Theorem 2.10 in the main text.

The proof of Theorem 1.1, or rather its generalization Theorem 2.10 in the text, is pre-
sented in Section 4 and is the main novel contribution of the present paper. The argument
is inductive, and one roughly shows that if two Brownian Gibbsian line ensembles L1 and
L2 have the same finite dimensional distributions when restricted to their top k curves, then
the same is true for when they are restricted to their top k + 1 curves. The difficulty lies in
establishing the induction step, since we are assuming the statement of the theorem for the
base case k = 1. In going from k to k + 1 the key idea of the proof is to use the available by
induction equality of laws of {L1

i }ki=1 and {L2
i }ki=1 to construct a family of observables which

are measurable with respect to the top k curves but which probe the (k +1)-st one. Informally
speaking, the law of {Lv

i }ki=1 is that of k Brownian bridges conditioned on nonintersecting
each other and staying above Lv

k+1 for v ∈ {1,2}. Then, the observables we construct mea-
sure the difference in the local behavior between {Lv

i }ki=1 and that of k Brownian bridges
conditioned on nonintersecting each other but being allowed to freely go below Lv

k+1. The
difference between these two ensembles (on infinitesimally short intervals) is negligible when
the curve Lv

k+1 is below a certain level and nonnegligible when it is above it; a careful analy-
sis of our observables show that they effectively approximate the joint cumulative distribution
of the k + 1-st curve. This allows us to conclude that the restrictions of L1 and L2 to their
top k + 1 curves also need to agree in the sense of finite dimensional distributions which
is enough to complete the induction step. The latter description of the main argument is, of
course, quite reductive and the full argument, presented in Section 4.1 for a special case and
Section 4.2 in full generality, relies on various technical statements and definitions that are
given in Sections 2 and 3. We remark that some of the results we establish in these two sec-
tions have appeared in earlier studies on Brownian Gibbsian line ensembles; however, we
could not always find complete proofs of them. We have thus opted to fill in the gaps in the
proofs of these statements in the literature, and this work is the content of the (somewhat)
technical Sections 3 and 4.3.

We end this section with a brief discussion of some of the motivation behind our work. Our
interest in Theorem 1.1 is twofold. First, Brownian Gibbsian line ensembles have become
central objects in probability theory and understanding their structure is an important area of
research. As mentioned earlier, Dyson Brownian motion is an example of these ensembles
and is a key object in random matrix theory. Other important examples of models that satisfy
the Brownian Gibbs property include Brownian last passage percolation, which has been
extensively studied recently in [23–26], and the Airy line ensemble (shifted by a parabola)
[9, 38]. The second and more important reason we believe Theorem 1.1 to be important is
that it can be used as a tool for proving KPZ universality for various models in integrable
probability. We elaborate on these points below.

Regarding the first point, there has been some interest in classifying the set of random
N-indexed line ensembles that satisfy the Brownian Gibbs property. Specifically, one has the
following open problem, which can be found as [9], Conjecture 3.2; see also [12], Conjec-
ture 1.7.

CONJECTURE 1.4. For an N-indexed line ensemble L, we define A by Ai(t) =
21/2Li (t) + t2 for i ∈ N. The set of extremal Brownian Gibbs N-indexed line ensem-
bles with horizontal shift-invariant A is given by {LAiry + y : y ∈ R}, where AAiry

i (t) =
21/2LAiry

i (t) + t2 and AAiry denotes the Airy line ensemble; cf. [38] and [9], Theorem 3.1.
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REMARK 1.5. Let us explain the terms horizontal shift-invariant and extremal in Con-
jecture 1.4. We say that an N-indexed line ensemble A is horizontal shift-invariant if A(s +·)
is equal in distribution to A for each s ∈ R. It is relatively easy to see that any convex com-
bination of two laws that satisfy the Brownian Gibbs property also satisfies it. Therefore, the
set of Brownian Gibbs measures naturally has the structure of a convex set in the space of
measures on N-indexed line ensembles on R. A measure that satisfies the Brownian Gibbs
property is then said to be extremal (or ergodic) if it cannot be written as a nontrivial convex
combination of two other measures that satisfy the Brownian Gibbs property.

REMARK 1.6. We mention that the analogue of Conjecture 1.4 in the context of the prob-
ability measures on triangular interlacing arrays we discussed earlier asks about the classifi-
cation of ergodic measures on the set of infinite triangular arrays that satisfy the continuous
Gibbs property. This classification result has been established in the remarkable paper [37]
and has important implications for asymptotic representation theory.

Beyond its intrinsic interest, Conjecture 1.4 is of considerable interest in light of its pos-
sible use as an invariance principle for deriving convergence of systems to the Airy line
ensemble; see [10], Section 2.3.3, for a discussion of this approach in the context of the KPZ
line ensemble. We also mention that in [12] the authors showed that {LAiry + y : y ∈ R} are
indeed ergodic which is a necessary condition for the validity of the above conjecture.

The relationship between Conjecture 1.4 and our Theorem 1.1 is somewhat indirect, and
in order to compare them we discuss how each classifies the Airy line ensemble AAiry, or,
equivalently, the parabolic Airy line ensemble LAiry. In this context, Conjecture 1.4 says
that if L is an extremal Brownian Gibbs N-indexed line ensemble such that A (given by
Ai (t) = 21/2Li (t) + t2 for i ∈ N) is horizontal shift-invariant and E[L1(0)] = E[LAiry

1 (0)],
then L has the same law as LAiry. On the other hand, Theorem 1.1 states that if L is a Brow-
nian Gibbs N-indexed line ensemble, and L1 has the same finite dimensional distribution as
LAiry

1 , then L has the same law as LAiry. While the conclusions of the two results are the same,
we emphasize that the assumptions are quite different. In the case of the conjecture, mostly
qualitative information for the ensemble (such as ergodicity and horizontal shift-invariance) is
required, and only a bit of quantitative information is needed (mostly to determine the vertical
shift y). On the other hand, our theorem requires significant quantitative information, specif-
ically the finite dimensional distribution of the top curve L1; however, it does not require any
information about the remaining curves in the ensemble. So, in a sense, Theorem 1.1 requires
a lot of quantitative information but only for L1, while Conjecture 1.4 requires only qualita-
tive information but for the full ensemble. In particular, one result does not imply the other.
While it is not clear if Theorem 1.1 brings us any closer to proving Conjecture 1.4, we do
want to emphasize that the two problems are naturally related, as they both characterize the
Airy line ensemble in terms of reduced information about the ensemble. In addition, similarly
to Conjecture 1.4, we also hope that Theorem 1.1 can serve as a tool for deriving convergence
of systems to the Airy line ensemble, as we explain next.

The Airy line ensemble, first introduced in [38] and later extensively studied in [9], is
believed to be a universal scaling limit for various models that belong to the so-called KPZ
universality class; see [7] for an expository review of this class. In [38] the convergence to
the Airy line ensemble (in the finite dimensional sense) was established for the polynuclear
growth model, and in [9] it was shown for Dyson Brownian motion (in a stronger uniform
sense). Very recently, [13] established the uniform convergence of various classical integrable
models to the parabolic Airy line ensemble, including noncolliding Bernoulli walks and ge-
ometric, Poisson and Brownian last passage percolation. We refer to the introduction of [13]
for a more extensive discussion of the history, motivation behind and progress on the problem
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of establishing convergence to the parabolic Airy line ensemble. We mention that the preprint
[13] uses a slightly different notation than what we use in the present paper. Our use of the
term Airy line ensemble (denoted by AAiry) agrees with the original definition in [38], and
the term parabolic Airy line ensemble (denoted by LAiry) agrees with [6]. On the other hand,
[13] calls AAiry the “stationary Airy line ensemble” and

√
2LAiry the “Airy line ensemble.”

We have chosen to follow the notation from [6] and not [13] in this paper, as it is more well
established in the field.

The approach taken in [13] relies on obtaining finite dimensional convergence to the
parabolic Airy line ensemble as a prerequisite for obtaining uniform convergence. Theo-
rem 1.1 paves a different way to showing uniform convergence to the parabolic Airy line en-
semble, where establishing finite dimensional convergence is required only for the top curve
of the ensemble. We believe that the latter approach is more suitable for models which natu-
rally have the structure of a line ensemble and for which the finite dimensional marginals
of the top curve are easier to access. The primary examples to which we are interested
in applying this approach come from the Macdonald processes [3] and include the Hall–
Littlewood processes [8, 15], the q-Whittaker processes [5], the log-gamma polymer [11,
40], the semidiscrete polymer [35] and the mixed polymer model of [4]. Each of the mod-
els we listed naturally has the structure of a line ensemble with a Gibbs property which can
be found for the Hall–Littlewood process in [8] and for the log-gamma polymer in [42]. If
we denote by {LN

i }∞i=1, the discrete line ensemble associated to one of the above models
and {LAiry

i }∞i=1 the parabolic Airy line ensemble, the proposed program for establishing the
uniform convergence of {LN

i }∞i=1 to {LAiry
i }∞i=1 goes through the following steps:

1. Show that LN
1 converges in the sense of finite dimensional distributions to LAiry

1 which
is the parabolic Airy2 process, as N → ∞;

2. Show that {LN
i }∞i=1 form a tight sequence of line ensembles and that every subsequen-

tial limit enjoys the Brownian Gibbs property;
3. Use the characterization of Theorem 1.1 to prove that all subsequential limits are given

by {LAiry
i }∞i=1.

The difference between the above program and the approach of [13] is that in the latter the
necessity of showing that any subsequential limit satisfies the Brownian Gibbs property is
omitted from step (2), but one is required to show the finite dimensional convergence in
step (1), not just for the top line LN

1 but for all of the lines. This approach is best suited for
determinantal point processes, for which the finite dimensional formulas are readily available
and their asymptotics fairly well understood. A common feature of all of the above models
coming from the Macdonald processes is that they are no longer determinantal, and formulas
suitable for taking asymptotics are unknown for all of the lines. One reason we are optimistic
that our proposed program has a better chance of establishing convergence to the parabolic
Airy line ensemble for these models is that there are nondeterminantal formulas that allow
one to study one-point marginals of LN

1 ; see, for example, [3, 4, 8, 15, 29], and, also, there
is some progress on understanding the multipoint asymptotics of LN

1 for the case of the log-
gamma polymer [32] and the Hall–Littlewood process [17]. Another reason we are optimistic
about our proposed program is that its analogue for the triangular interlacing arrays was
successfully implemented in [16] to prove the convergence of a class of six-vertex models to
the GUE-corners process.

Even beyond the above program, we believe that Theorem 1.1 will be useful in reducing
some of the work in showing convergence to the parabolic Airy line ensemble and is an
important result that furthers our understanding of Gibbsian line ensembles in general.
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1.2. Outline of the paper. The structure of this paper is as follows. In Section 2 we make
crucial definitions which are used throughout the paper. In particular, we define avoiding
Brownian line ensembles and introduce the standard and partial Brownian Gibbs properties.
The main result of this paper is stated in this section as Theorem 2.10. In Section 3 we collect
several properties of Brownian line ensembles, and in Section 4 a proof of Theorem 2.10 is
provided. In Section 4.3 we prove several technical results which include the construction of
monotonically coupled Brownian line ensembles and a proof of the statement that noninter-
secting Brownian bridges satisfy the Brownian Gibbs property.

2. Definitions, main result and basic lemmas. In this section we introduce the basic
definitions that are necessary for formulating our main result, given in Section 2.2 below. In
Section 2.3 we state several lemmas used later in the paper.

2.1. Line ensembles and the (partial) Brownian Gibbs property. In order to state our
main results, we need to introduce some notation as well as the notions of a line ensemble
and the (partial) Brownian Gibbs property. Our exposition in this section closely follows that
of [9], Section 2.

Given two integers p ≤ q , we let !p,q" denote the set {p,p + 1, . . . , q}. Given an in-
terval ! ⊂ R, we endow it with the subspace topology of the usual topology on R. We let
(C(!),C) denote the space of continuous functions f : ! → R with the topology of uniform
convergence over compacts; see [31], Chapter 7, Section 46, and Borel σ -algebra C. Given a
set # ⊂ Z, we endow it with the discrete topology and denote by # × ! the set of all pairs
(i, x) with i ∈ # and x ∈ ! with the product topology. We also denote by (C(# × !),C#)
the space of continuous functions on # × ! with the topology of uniform convergence over
compact sets and Borel σ -algebra C# . We will typically take # = !1,N " (we use the con-
vention # = N if N = ∞), and then we write (C(# × !),C|#|) in place of (C(# × !),C#).
The following defines the notion of a line ensemble.

DEFINITION 2.1. Let # ⊂ Z and ! ⊂ R be an interval. A #-indexed line ensemble L
is a random variable defined on a probability space (',F,P) that takes values in (C(# ×
!),C#). Intuitively, L is a collection of random continuous curves (sometimes referred to as
lines), indexed by #, each of which maps ! in R. We will often slightly abuse notation and
write L : # × ! → R, even though it is not L which is such a function, but L(ω) for every
ω ∈ '. For i ∈ #, we write Li (ω) = (L(ω))(i, ·) for the curve of index i and note that the
latter is a map Li : ' → C(!) which is (C,F)-measurable.

Given a sequence {Ln : n ∈ N} of random #-indexed line ensembles, we say that Ln con-
verge weakly to a line ensemble L and write Ln =⇒ L if for any bounded continuous
function f : C(# × !) → R we have that

lim
n→∞E

[
f

(
Ln)] = E

[
f (L)

]
.

We call a line ensemble nonintersecting if P-almost surely Li (r) > Lj (r) for all i < j and
r ∈ !.

We next turn to formulating the Brownian Gibbs property; we do this in Definition 2.5 after
introducing some relevant notation and results. If Wt denotes a standard one-dimensional
Brownian motion, then the process

B̃(t) = Wt − tW1, 0 ≤ t ≤ 1

is called a Brownian bridge (from B̃(0) = 0 to B̃(1) = 0) with diffusion parameter 1. For
brevity, we call the latter object a standard Brownian bridge.
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Given a, b, x, y ∈ R with a < b, we define a random variable on (C([a, b]),C) through

(1) B(t) = (b − a)1/2 · B̃
(

t − a

b − a

)
+

(
b − t

b − a

)
· x +

(
t − a

b − a

)
· y

and refer to the law of this random variable as a Brownian bridge (from B(a) = x to B(b) = y)
with diffusion parameter 1. Given k ∈ N and %x, %y ∈ Rk , we let Pa,b,%x,%y

free denote the law of k

independent Brownian bridges {Bi : [a, b] → R}ki=1 from Bi(a) = xi to Bi(b) = yi all with
diffusion parameter 1.

We next state a couple of results about Brownian bridges from [9] for future use.

LEMMA 2.2 ([9], Corollary 2.9). Fix a continuous function f : [0,1] → R such that
f (0) > 0 and f (1) > 0. Let B be a standard Brownian bridge, and let C = {B(t) >

f (t) for some t ∈ [0,1]} (crossing) and T = {B(t) = f (t) for some t ∈ [0,1]} (touching).
Then, P(T ∩ Cc) = 0.

LEMMA 2.3 ([9], Corollary 2.10). Let U be an open subset of C([0,1]) which contains
a function f such that f (0) = f (1) = 0. If B : [0,1] → R is a standard Brownian bridge,
then P(B[0,1] ⊂ U) > 0.

The following definition introduces the notion of an (f, g)-avoiding Brownian line en-
semble, which in plain words can be understood as a random ensemble of k independent
Brownian bridges, conditioned on not crossing each other and staying above the graph of g

and below the graph of f for two continuous functions f and g.

DEFINITION 2.4. Let k ∈ N and W ◦
k denote the open Weyl chamber in Rk , that is,

W ◦
k = {%x = (x1, . . . , xk) ∈ Rk : x1 > x2 > · · · > xk

}

(in [9] the notation Rk
> was used for this set). Let %x, %y ∈ W ◦

k , a, b ∈ R with a < b, and
f : [a, b] → (−∞,∞] and g : [a, b] → [−∞,∞) be two continuous functions. The latter
condition means that either f : [a, b] → R is continuous or f = ∞ everywhere and, similarly,
for g. We also assume that f (t) > g(t) for all t ∈ [a, b], f (a) > x1, f (b) > y1 and g(a) < xk ,
g(b) < yk .

With the above data we define the (f, g)-avoiding Brownian line ensemble on the inter-
val [a, b] with entrance data %x and exit data %y to be the #-indexed line ensemble Q with
# = !1, k" on ! = [a, b] and with the law of Q equal to Pa,b,%x,%y

free (the law of k independent
Brownian bridges {Bi : [a, b] → R}ki=1 from Bi(a) = xi to Bi(b) = yi ) conditioned on the
event

E = {
f (r) > B1(r) > B2(r) > · · · > Bk(r) > g(r) for all r ∈ [a, b]}.

Let us elaborate on the above formulation briefly. Let (',F,P) be a probability mea-
sure that supports k independent Brownian bridges {Bi : [a, b] → R}ki=1 from Bi(a) = xi

to Bi(b) = yi all with diffusion parameter 1. Notice that we can find ũ1, . . . , ũk ∈ C([0,1])
and ε > 0 (depending on %x, %y, f , g, a, b) such that ũi(0) = ũi(1) = 0 for i = 1, . . . , k

and such that if h̃1, . . . , h̃k ∈ C([0,1]) satisfy h̃i(0) = h̃i(1) = 0 for i = 1, . . . , k and
supt∈[0,1] |ũi(t) − h̃i(t)| < ε, then the functions

hi(t) = (b − a)1/2 · h̃i

(
t − a

b − a

)
+

(
b − t

b − a

)
· xi +

(
t − a

b − a

)
· yi
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satisfy f (r) > h1(r) > · · · > hk(r) > g(r). It follows from Lemma 2.3 that

P(E) ≥ P
(

max
1≤i≤k

sup
r∈[0,1]

∣∣B̃i(r) − ũi(r)
∣∣ < ε

)
=

k∏

i=1

P
(

sup
r∈[0,1]

∣∣B̃i(r) − ũi(r)
∣∣ < ε

)
> 0,

and so we can condition on the event E.
To construct a realization of Q, we proceed as follows. For ω ∈ E we define

Q(ω)(i, r) = Bi(r)(ω) for i = 1, . . . , k and r ∈ [a, b].
Observe that for i ∈ {1, . . . , k} and an open set U ∈ C([a, b]), we have that

Q−1({i} × U
) = {Bi ∈ U} ∩ E ∈ F,

and since the sets {i}×U form an open basis of C(!1, k" × [a, b]), we conclude that Q is F -
measurable. This implies that the law Q is indeed well defined and also it is nonintersecting
almost surely. Also, given measurable subsets A1, . . . ,Ak of C([a, b]), we have that

P(Qi ∈ Ai for i = 1, . . . , k) = Pa,b,%x,%y
free ({Bi ∈ Ai for i = 1, . . . , k} ∩ E)

Pa,b,%x,%y
free (E)

.

We denote the probability distribution of Q as Pa,b,%x,%y,f,g
avoid and write Ea,b,%x,%y,f,g

avoid for the ex-
pectation with respect to this measure.

The following definition introduces the notion of the Brownian Gibbs property from [9].

DEFINITION 2.5. Fix a set # = !1,N " with N ∈ N or N = ∞ and an interval ! ⊂ R,
and let K = {k1, k1 + 1, . . . , k2} ⊂ # be finite and a, b ∈ ! with a < b. Set f = Lk1−1
and g = Lk2+1 with the convention that f = ∞ if k1 − 1 /∈ # and g = −∞ if k2 + 1 /∈ #.
Write DK,a,b = K × (a, b) and Dc

K,a,b = (# × !) \ DK,a,b. A #-indexed line ensemble
L : # × ! → R is said to have the Brownian Gibbs property if it is nonintersecting and

Law(L|K×[a,b] conditional on L|Dc
K,a,b

) = Law(Q),

where Qi = Q̃i−k1+1 and Q̃ is the (f, g)-avoiding Brownian line ensemble on [a, b] with
entrance data (Lk1(a), . . . ,Lk2(a)) and exit data (Lk1(b), . . . ,Lk2(b)) from Definition 2.4.
Note that Q̃ is introduced because, by definition, any such (f, g)-avoiding Brownian line
ensemble is indexed from 1 to k2 − k1 + 1, but we want Q to be indexed from k1 to k2.

A more precise way to express the Brownian Gibbs property is as follows. A #-indexed
line ensemble L on ! satisfies the Brownian Gibbs property if and only if it is noninter-
secting, and for any finite K = {k1, k1 + 1, . . . , k2} ⊂ # and [a, b] ⊂ ! and any bounded
Borel-measurable function F : C(K × [a, b]) → R, we have P-almost surely

(2) E
[
F(L|K×[a,b]) | Fext

(
K × (a, b)

)] = Ea,b,%x,%y,f,g
avoid

[
F(Q̃)

]
,

where

Fext
(
K × (a, b)

) = σ
{
Li (s) : (i, s) ∈ Dc

K,a,b

}

is the σ -algebra generated by the variables in the brackets above, L|K×[a,b] denotes the re-
striction of L to the set K × [a, b], %x = (Lk1(a), . . . ,Lk2(a)), %y = (Lk1(b), . . . ,Lk2(b)),
f = Lk1−1[a, b] (the restriction of L to the set {k1 − 1} × [a, b]) with the convention that
f = ∞ if k1 − 1 /∈ # and g = Lk2+1[a, b] with the convention that g = −∞ if k2 + 1 /∈ #.
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REMARK 2.6. It is perhaps worth explaining why equation (2) makes sense. First, since
#×! is locally compact, we know by [31], Lemma 46.4, that L → L|K×[a,b] is a continuous
map from C(#×!) to C(K × [a, b]), so that the left side of (2) is the conditional expectation
of a bounded measurable function and is thus well defined. A more subtle question is why
the right side of (2) is Fext(K × (a, b))-measurable. In fact, we will show in Lemma 3.4 that
the right side is measurable with respect to the σ -algebra

σ
{
Li (s) : i ∈ K and s ∈ {a, b}, or i ∈ {k1 − 1, k2 + 1} and s ∈ [a, b]}.

In the present paper it will be convenient for us to use the following modified version
of the definition above, which we call the partial Brownian Gibbs property. We explain the
difference between the two definitions and why we prefer the second one in Remark 2.9.

DEFINITION 2.7. Fix a set # = !1,N " with N ∈ N or N = ∞ and an interval ! ⊂ R.
A #-indexed line ensemble L on ! is said to satisfy the partial Brownian Gibbs property
if and only if it is nonintersecting, and for any finite K = {k1, k1 + 1, . . . , k2} ⊂ # with
k2 ≤ N − 1 (if # 0= N), [a, b] ⊂ ! and any bounded Borel-measurable function F : C(K ×
[a, b]) → R, we have P-almost surely

(3) E
[
F(L|K×[a,b]) | Fext

(
K × (a, b)

)] = Ea,b,%x,%y,f,g
avoid

[
F(Q̃)

]
,

where we recall that DK,a,b = K × (a, b) and Dc
K,a,b = (# × !) \ DK,a,b, and

Fext
(
K × (a, b)

) = σ
{
Li (s) : (i, s) ∈ Dc

K,a,b

}

is the σ -algebra generated by the variables in the brackets above, L|K×[a,b] denotes the
restriction of L to the set K × [a, b], %x = (Lk1(a), . . . ,Lk2(a)), %y = (Lk1(b), . . . ,Lk2(b)),
f = Lk1−1[a, b] with the convention that f = ∞ if k1 − 1 /∈ #, and g = Lk2+1[a, b].

REMARK 2.8. Observe that if N = 1, then the conditions in Definition 2.7 become void.
That is, any line ensemble with one line satisfies the partial Brownian Gibbs property. We
also mention that (3) makes sense by the same reason that (2) makes sense; see Remark 2.6.

REMARK 2.9. Definition 2.7 is slightly different from the Brownian Gibbs property of
Definition 2.5, as we explain here. Assuming that # = N, the two definitions are equivalent.
However, if # = {1, . . . ,N} with 1 ≤ N < ∞, then a line ensemble that satisfies the Brown-
ian Gibbs property also satisfies the partial Brownian Gibbs property, but the reverse need not
be true. Specifically, the Brownian Gibbs property allows for the possibility that k2 = N in
Definition 2.7, and in this case the convention is that g = −∞. A distinct advantage of work-
ing with the partial Brownian Gibbs property, instead of the Brownian Gibbs property, is that
the former is stable under projections while the latter is not. Specifically, if 1 ≤ M ≤ N and L
is a !1,N "-indexed line ensemble on ! that satisfies the partial Brownian Gibbs property and
L̃ is obtained from L by projecting on (L1, . . . ,LM), then the induced law on L̃ also satisfies
the partial Brownian Gibbs property as a !1,M"-indexed line ensemble on !. Later in the
text, some of our arguments rely on an induction on N , for which having this projectional
stability becomes important. This is why we choose to work with the partial Brownian Gibbs
property instead of the Brownian Gibbs property.

2.2. Main result. In this section we formulate the main result of the paper. We continue
with the same notation, as in Section 2.1.
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THEOREM 2.10. Let # = !1,N " with N ∈ N or N = ∞, and let ! ⊂ R be an interval.
Suppose that L1 and L2 are #-indexed line ensembles on ! that satisfy the partial Brownian
Gibbs property with laws P1 and P2, respectively. Suppose further that for every k ∈ N,
t1 < t2 < · · · < tk with ti ∈ ! and x1, . . . , xk ∈ R, we have that

P1
(
L1

1(t1) ≤ x1, . . . ,L1
1(tk) ≤ xk

) = P2
(
L2

1(t1) ≤ x1, . . . ,L2
1(tk) ≤ xk

)
.

Then, we have that P1 = P2.

In plain words, Theorem 2.10 states that if two line ensembles both satisfy the partial
Brownian Gibbs property and have the same finite-dimensional distributions of the top curve,
then they have the same distribution as line ensembles. Equivalently, a Brownian Gibbsian
line ensemble is completely characterized by the finite-dimensional distribution of its top
curve.

One of the assumptions in Theorem 2.10 is that L1 and L2 have the same number of curves
N , and a natural question is whether this condition can be relaxed. That is, can two Brownian
Gibbsian line ensembles with a different number of curves have the same finite-dimensional
distributions of the top curve. The answer to this question is negative, and we isolate this
statement in the following corollary.

COROLLARY 2.11. Let #1 = !1,N1" with N1 ∈ N and #2 = !1,N2" with N2 ∈ N or
N2 = ∞ such that N2 > N1. In addition, let ! ⊂ R be an interval. Suppose that Li are #i-
indexed line ensembles on ! for i = 1,2 such that L1 satisfies the Brownian Gibbs property
and L2 satisfies the partial Brownian Gibbs property with laws P1 and P2, respectively. Then,
there exist k ∈ N, t1 < t2 < · · · < tk with ti ∈ ! and x1, . . . , xk ∈ R such that

P1
(
L1

1(t1) ≤ x1, . . . ,L1
1(tk) ≤ xk

) 0= P2
(
L2

1(t1) ≤ x1, . . . ,L2
1(tk) ≤ xk

)
.

REMARK 2.12. It is important that L1 satisfies the usual rather than the partial Brownian
Gibbs property in Corollary 2.11. Indeed, otherwise one could take L2 and project this line
ensemble to its top N1 curves. The resulting #1-indexed line ensemble on ! will have the
same top curve distribution as L2 and also satisfy the partial Brownian Gibbs property; see
Remark 2.9. In a sense, L1 can be understood as a line ensemble with N1 + 1 curves with
the (N1 + 1)-st curve sitting at −∞, while L2 has a (N1 + 1)-st curve that is finite-valued,
and the question that Corollary 2.11 answers in the affirmative is whether we can distinguish
between these two cases using only the top curve of the line ensemble. We are grateful to
Vadim Gorin who suggested this question after reading a preliminary draft of the paper.

2.3. Basic lemmas. In this section we present three lemmas, whose proof is postponed
until Section 4.3. Lemma 2.13 states that a line ensemble with distribution Pa,b,%x,%y,∞,−∞

avoid
from Definition 2.4 satisfies the Brownian Gibbs property. Although this result looks natural,
we were unable to find its proof in the literature, and so we provide it.

LEMMA 2.13. Assume the same notation as in Definition 2.4. If Q is a !1, k"-indexed
line ensemble on [a, b] with probability distribution Pa,b,%x,%y,∞,−∞

avoid , then it satisfies the Brow-
nian Gibbs property of Definition 2.5.

The following two lemmas provide couplings of two line ensembles of nonintersecting
Brownian bridges on the same interval which depend monotonically on their boundary data.
Schematic depictions of the couplings are provided in Figure 4.
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FIG. 4. Two diagrammatic depictions of the monotone coupling Lemma 2.14 (left part) and Lemma 2.15 (right
part).

LEMMA 2.14. Assume the same notation, as in Definition 2.4. Fix k ∈ N, a < b and a
continuous function g : [a, b] → R ∪ {−∞}, and assume that %x, %y, %x ′, %y′ ∈ W ◦

k . We assume
that g(a) < xk , g(b) < yk and xi ≤ x′

i , yi ≤ y′
i for i = 1, . . . , k. Then, there exists a probabil-

ity space (',F,P), which supports two !1, k"-indexed line ensembles Lt and Lb on [a, b],
such that the law of Lt (resp., Lb) under P is given by Pa,b,%x′,%y′,∞,g

avoid (resp., Pa,b,%x,%y,∞,g
avoid ) and

such that P-almost surely we have Lt
i (r) ≥ Lb

i (r) for all i = 1, . . . , k and r ∈ [a, b].

LEMMA 2.15. Assume the same notation as in Definition 2.4. Fix k ∈ N, a < b and two
continuous functions gt , gb : [a, b] → R∪{−∞}, and assume that %x, %y ∈ W ◦

k . We assume that
gt (r) ≥ gb(r) for all r ∈ [a, b] and gt (a) < xk , gt (b) < yk . Then, there exists a probability
space (',F,P), which supports two !1, k"-indexed line ensembles Lt and Lb on [a, b], such

that the law of Lt (resp., Lb) under P is given by Pa,b,%x,%y,∞,gt

avoid (resp., Pa,b,%x,%y,∞,gb

avoid ) and such
that P-almost surely we have Lt

i (r) ≥ Lb
i (r) for all i = 1, . . . , k and r ∈ [a, b].

In plain words, Lemma 2.14 states that one can couple two line ensembles Lt and Lb of
nonintersecting Brownian bridges, bounded from below by the same function g, in such a
way that if all boundary values of Lt are above the respective boundary values of Lb, then all
curves of Lt are almost surely above the respective curves of Lb; see the left part of Figure 4.
Lemma 2.15, states that one can couple two line ensembles Lt and Lb that have the same
boundary values, but the lower bound gt of Lt is above the lower bound gb of Lb in such a
way that all curves of Lt are almost surely above the respective curves of Lb; see the right
part of Figure 4.

Lemmas 2.14 and 2.15 can be found in [9], Section 2. The key idea behind their proof
is to approximate the Brownian bridges by random walk bridges, for which constructing the
monotone couplings is easier, and perform a limit transition. Since the details surrounding
that limit transition are only briefly mentioned in [9] and since these lemmas are central
results that will be used throughout Sections 3 and 4, we included their proofs in Section 4.3.

3. Preliminaries on Brownian Gibbsian line ensembles. In this section we summarize
several results about Brownian Gibbsian line ensembles which will be used in the arguments
later in the text. While some of the proofs in this section are a bit technical, the statements of
the various results are fairly intuitive. Consequently, readers can safely skip most of the proofs
in this section without this affecting their understanding of the main argument in Section 4
and only come back to them if interested.

3.1. Properties of line ensembles. In this section we prove a few results about general
line ensembles which state that the laws of line ensembles are characterized by their finite-
dimensional distributions.
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We continue with the same notation as in Section 2.1. In particular, we fix ! ⊂ R to be an
interval and # = !1,N " with N ∈ N or N = ∞. Given a, b ∈ ! with a < b and k ∈ #, we
define π

!1,k"
[a,b] : C(# × !) → C(!1, k" × [a, b]) through

(4) π
!1,k"
[a,b] (f )(i, x) = f (i, x) for i = 1, . . . , k and x ∈ [a, b].

In addition, given n1, . . . , nk ∈ # and t1, t2, . . . , tk ∈ !, we define π
n1,...,nk
t1,...,tk : C(#×!) → Rk

through

(5) π
n1,...,nk
t1,...,tk (f ) = (

f (n1, t1), . . . , f (nk, tk)
)
.

Observe that, since # × ! is locally compact, we know that the functions in (4) and (5) are
continuous; cf. [31], Lemma 46.4.

LEMMA 3.1. Suppose that A is a collection of measurable subsets of C(# × !) such
that for each k ∈ N, n1, . . . , nk ∈ #, t1, t2, . . . , tk ∈ ! and x1, . . . , xk ∈ R; we know that

[
π

n1,...,nk
t1,...,tk

]−1(
(−∞, x1] × (−∞, x2] × · · · × (−∞, xk]

) ∈ A.

Then, the σ -algebra generated by A, denoted by σ (A), equals C# . In particular, the collec-
tion of finite-dimensional sets of C(# × !) is a separating class; cf. [2], page 9.

PROOF. Since A ⊂ C# , we know that σ (A) ⊂ C# . In the remainder of the proof, we
show that C# ⊂ σ (A).

Since sets of the form (−∞, x1]× · · ·× (−∞, xk] generate the Borel σ -algebra on Rk , cf.
[2], Example 1.1, page 9, we know that σ (A) contains [πn1,...,nk

t1,...,tk ]−1(B) for any Borel set in
Rk . In particular, by [2], Example 1.3, page 11, we conclude that

(6)
[
π

!1,k"
[a,b]

]−1
(A) ∈ σ (A),

for any Borel set A ⊂ C(!1, k" × [a, b]). If # and ! are both compact, this proves the lemma.
Suppose that # or ! (or both) are not compact. Let !1, kn" × [an, bn] be a compact ex-

haustion of # × !, and define πn : C(# × !) → C(!1, kn" × [an, bn]) through

πn(f ) = π
!1,kn"
[an,bn](f ),

where the latter function was defined in (4). We also define for m ≥ n the functions πm,n :
C(!1, km" × [am,bm]) → C(!1, kn" × [an, bn]) through

πm,n(f )(i, x) = f (i, x) for i = 1, . . . , n and x ∈ [an, bn].
The latter functions are also continuous by the local compactness of !1,m" × [am,bm].

We consider the metric dn on the space C(!1, kn" × [an, bn]), given by

dn(f, g) = min

(

1,

kn∑

i=1

sup
x∈[an,bn]

∣∣f (i, x) − g(i, x)
∣∣
)

,

and observe that the metric space topology induced by dn is the same as that of the topology
of uniform convergence. We further define a metric on C(# × !) through

d(f, g) =
∞∑

n=1

2−n · dn
(
πn(f ),πn(g)

)

and observe that the metric space topology, induced by d on C(# × !), is the same as the
topology of uniform convergence over compacts. Moreover, (C(# × !), d) is easily seen to
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be a separable metric space, using that C([a, b]) with the uniform topology is separable; see,
for example, [2], Example 1.3, page 11.

Let f ∈ C(# × !) and ε ≥ 0 be given. For M ≥ 1, we define

AM =
{

g ∈ C(# × !) :
M∑

n=1

2−n · dn
(
πn(f ),πn(g)

) ≤ ε

}

.

Then, we observe that

AM = π−1
M

({

h ∈ C
(

!1, kM " × [aM,bM ]) :
M∑

n=1

2−n · dn
(
πn(f ),πM,n(h)

) ≤ ε

})

.

The continuity of πM,n and the functions dn(πn(f ), ·) on C(!1, kM " × [aM,bM ]) and
C(!1, kn" × [an, bn]), respectively, imply that the set in the brackets above is closed in
C(!1, kM " × [aM,bM ]), and so AM ∈ σ (A) by (6). On the other hand, we see that

{
g ∈ C(# × !) : d(f, g) ≤ ε

} =
⋂

M≥1

AM,

and so closed balls in C(# ×!) belong to σ (A). This means that open balls also lie in σ (A),
and by the separability of the space we conclude that all open sets in C(# × !) belong to
σ (A). This implies that C# ⊂ σ (A) and completes the proof. !

We next require the following elementary result from analysis.

LEMMA 3.2. Let Fi : R → R for i = 1,2 be increasing, right-continuous functions. Let
Ei denote the set of points in R, where Fi is continuous for i = 1,2, and suppose that F1(x) =
F2(x) for all x ∈ E1 ∩ E2. Then, F1(x) = F2(x) for all x ∈ R.

PROOF. Put S = Ec
1 ∪ Ec

2. From [39], Theorem 4.30, we know that S is an, at most,
countable subset of R. For any x ∈ R, we can find a sequence yk ∈ Sc such that yk > x for all
k ∈ N and yk → x as k → ∞. By the right continuity of Fi at x, we conclude that

F1(x) = lim
k→∞

F1(yk) = lim
k→∞

F2(yk) = F2(x). !

PROPOSITION 3.3. Let # and ! be as in Theorem 2.10. Suppose that L1 and L2 are #-
indexed line ensembles on ! with laws P1 and P2, respectively. Suppose further that for every
k ∈ N, t1 < t2 < · · · < tk with ti ∈ !o (the interior of !) for i = 1, . . . , k; n1, . . . , nk ∈ # and
x1, . . . , xk ∈ R, we have

(7) P1
(
L1

n1
(t1) ≤ x1, . . . ,L1

nk
(tk) ≤ xk

) = P2
(
L2

n1
(t1) ≤ x1, . . . ,L2

nk
(tk) ≤ xk

)
.

Then, we have that P1 = P2.

PROOF. For clarity, we split the proof in three steps:
Step 1. Let M ∈ #. In addition, suppose that k1, . . . , kM ∈ N be given. Let D = {(i, j) ∈

Z2 : j = 1, . . . ,M and i = 1, . . . , kj }. Finally, fix y
j
i ∈ R and t

j
i ∈ ! with t

j
1 < t

j
2 < · · · < t

j
kj

for (i, j) ∈ D. We claim that

(8) P1
(
L1

j

(
t
j
i

) ≤ y
j
i for (i, j) ∈ D

) = P2
(
L2

j

(
t
j
i

) ≤ y
j
i for (i, j) ∈ D

)
.

We prove (8) in the steps below. Here, we assume its validity and finish the proof of the
proposition.
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Let B denote the collection of sets A ∈ C# such that

P1
(
L1 ∈ A

) = P2
(
L2 ∈ A

)
.

By the monotone convergence theorem, we know that B is a λ-system. Further, by (8) we
know that B contains the π -system of sets of the form

[
π

n1,...,nk
t1,...,tk

]−1(
(−∞, x1] × (−∞, x2] × · · · × (−∞, xk]

)
,

where we used the notation from (5). By the π −λ Theorem, see [19], Theorem 2.1.6, we see
that B contains the σ -algebra generated by the above sets which by Lemma 3.1 is precisely
C# . Consequently, B = C# which proves the proposition.

Step 2. Let x
j
i ∈ R for (i, j) ∈ D be given. We claim that there exists a sequence {pw}∞w=1,

pw ∈ [0,1] such that, for v ∈ {1,2}, we have

Pv
(
Lv

j

(
t
j
i

)
< x

j
i for (i, j) ∈ D

) ≤ lim inf
w→∞ pw

≤ lim sup
w→∞

pw ≤ Pv
(
Lv

j

(
t
j
i

) ≤ x
j
i for (i, j) ∈ D

)
.

(9)

We will prove (9) in the next step. For now, we assume its validity and finish the proof of (8).
For r ∈ R and v ∈ {1,2}, we let

Gv(r) = Pv
(
Lv

j

(
t
j
i

) ≤ y
j
i + r for (i, j) ∈ D

)
.

Observe that by basic properties of probability measures we know that G1 and G2 are in-
creasing right-continuous functions. Moreover, if G1 and G2 are both continuous at a point
r , then from (9) applied to x

j
i = y

j
i + r for (i, j) ∈ D we know that G1(r) = G2(r). The latter

and Lemma 3.2 imply that G1 = G2. In particular, G1(0) = G2(0) which is precisely (8).
Step 3. In this final step we prove (9). Let t

j
i (w) for (i, j) ∈ D be a sequence such that:

1. for each w ∈ N we have t
j1
i1

(w) 0= t
j2
i2

(w) whenever (i1, j1) 0= (i2, j2);

2. for each w ∈ N and (i, j) ∈ D we have t
j
i (w) ∈ !o (the interior of !);

3. for each (i, j) ∈ D we have limw→∞ t
j
i (w) = t

j
i .

Then, by (7) we have, for each w ∈ N, that

P1
(
L1

j

(
t
j
i (w)

) ≤ x
j
i for (i, j) ∈ D

) = P2
(
L2

j

(
t
j
i (w)

) ≤ x
j
i for (i, j) ∈ D

)
.

We let pw denote the above probability.
For v ∈ {1,2}, we denote

Av = {
ω : Lv

j

(
t
j
i

)
< x

j
i for (i, j) ∈ D

}
and Bv = {

ω : Lv
j

(
t
j
i

) ≤ x
j
i for (i, j) ∈ D

}
.

By the almost sure continuity of Lv , we know that Pv-almost surely

lim
w→∞ 1

{
Lv

j

(
t
j
i (w)

) ≤ x
j
i for (i, j) ∈ D

} · 1Av = 1Av ,

lim
w→∞ 1

{
Lv

j

(
t
j
i (w)

) ≤ x
j
i for (i, j) ∈ D

} · 1Bc
v
= 0.

The second line above and the bounded convergence theorem imply that

lim sup
w→∞

pw ≤ lim sup
w→∞

Ev
[
1
{
Lv

j

(
t
j
i (w)

) ≤ x
j
i for (i, j) ∈ D

} · 1Bc
v
+ 1Bv

] = Pv(Bv).

On the other hand, the top line and the bounded convergence theorem imply that

lim inf
w→∞ pw ≥ lim inf

w→∞ Ev
[
1
{
Lv

j

(
t
j
i (w)

) ≤ x
j
i for (i, j) ∈ D

} · 1Av

] = Pv(Av).

The last two statements imply (9) which concludes the proof of the proposition. !
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3.2. Properties of avoiding Brownian line ensembles. In this section we prove several
results about the line ensembles from Definition 2.4.

Fix x, y, a, b ∈ R with a < b, and let B(t) denote the Brownian bridge from B(a) = x to
B(b) = y with diffusion parameter 1; see (1). Then, by [28], Eq. 6.28, page 359, we know that
the random vector (B(t1), . . . ,B(tn)) ∈ Rn with a ≤ t1 < t2 < · · · < tn ≤ b has the following
density function:

(10) fBB(x1, . . . , xn) =
n∏

i=1

p(ti − ti−1;xi−1, xi) · p(b − tn;xn, y)

p(b − a;x, y)
,

where p(t;x, y) = e−(x−y)2/2t√
2π t

, x0 = x, and we interpret p(0;x, y) dy = δx(y) as the delta
function at x (these expressions can occur if t1 = a or tn = b in (10)).

The following lemma explains why equation (2) makes sense; see, also, Remark 2.6.

LEMMA 3.4. Assume the same notation as in Definition 2.4, and suppose that F :
C(!1, k" × [a, b]) → R is a bounded Borel-measurable function. Let

St,b = {
(%x, %y,f, g) ∈ W ◦

k × W ◦
k × C

([a, b]) × C
([a, b]) : f (t) > g(t) for t ∈ [a, b],

f (a) > x1, f (b) > y1, g(a) < xk, g(b) < yk
}
,

St = {
(%x, %y,f ) ∈ W ◦

k × W ◦
k × C

([a, b]) : f (a) > x1, f (b) > y1
}
,

Sb = {
(%x, %y, g) ∈ W ◦

k × W ◦
k × C

([a, b]) : g(a) < xk, g(b) < yk
}

and S = W ◦
k × W ◦

k , where each of the above sets is endowed with the subspace topology
coming from the product topology and corresponding Borel σ -algebra. Then, the functions
GF : S → R, Gt

F : St → R, Gb
F : Sb → R and Gt,b

F : St,b → R given by

Gt,b
F (%x, %y,f, g) = Ea,b,%x,%y,f,g

avoid
[
F(Q)

]
, Gt

F (%x, %y,f ) = Ea,b,%x,%y,f,−∞
avoid

[
F(Q)

]
,

Gb
F (%x, %y, g) = Ea,b,%x,%y,∞,g

avoid
[
F(Q)

]
, GF (%x, %y) = Ea,b,%x,%y,∞,−∞

avoid
[
F(Q)

](11)

are all measurable.

PROOF. For clarity, we split the proof into four steps:
Step 1. We prove that Gt,b

F is measurable in the steps below. In this step we assume that
Gt,b

F is measurable and deduce that all the other functions in the statement of the lemma are
measurable.

Let N0 be sufficiently large that N0 > max(x1, y1) and −N0 < min(xk, yk). We also de-
note by fN : [a, b] → R the functions such that fN(x) = N and set gN = −fN . From Defi-
nition 2.4 we know that, for N ≥ N0, we have that

Gt,b
F (%x, %y,fN,g) = Ea,b,%x,%y,∞,g

avoid [F(Q) · 1{Q(x) < N}]
Ea,b,%x,%y,∞,g

avoid [1{Q(x) < N}]
.

Since Gt,b
F is measurable, we know that the above functions are measurable on Sb for

all N ≥ N0. By the bounded convergence theorem the above functions converge to Gb
F ,

and so the latter is also measurable on Sb. Analogous arguments applied to the functions
Gt,b

F (%x, %y,f, gN) and Gt,b
F (%x, %y,fN,gN) show that Gt

F and GF are measurable as well.
Step 2. Here, we show Gt,b

F is measurable. Fix K ∈ N and n1, . . . , nK ∈ !1, k", t1, . . . , tK ∈
[a, b] and z1, . . . , zK ∈ R. We define with this data the function H : C(!1, k" × [a, b]) → R
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through

H(h) =
K∏

i=1

1
{
h(ni, ti) ≤ zi

}
.

We claim that the function

(12) Gs,t
H (%x, %y,f, g) = Ea,b,%x,%y,f,g

avoid
[
H(Q)

]

is measurable. We establish the latter statement in the steps below. For now, we assume its
validity and conclude the proof of the lemma.

Let H denote the set of bounded Borel-measurable functions F for which Gt,b
F as in (11) is

measurable. It is clear that H is closed under linear combinations (by linearity of the expecta-
tion). Furthermore, if Fn ∈ H is an increasing sequence of nonnegative measurable functions
that increase to a bounded function F , then F ∈ H by the monotone convergence theorem.
Finally, in view of (12) we know that 1A ∈ H for any set A ∈ A, where A is the π -system of
sets of the form

{
h ∈ C

(
!1, k" × [a, b]) : h(ni, ti) ≤ zi for i = 1, . . . ,K

}
.

By the monotone class theorem (see, e.g., [19], Theorem 5.2.2), we have that H contains
all bounded measurable functions with respect to σ (A), and the latter is C!1,k" in view of
Lemma 3.1. This proves the measurability of Gt,b

F in (11) for any bounded measurable F .
Step 3. Let B be the !1, k"-indexed line ensemble on [a, b] with distribution Pa,b,%x,%y

free (the
law of k independent Brownian bridges {Bi : [a, b] → R}ki=1 from Bi(a) = xi to Bi(b) = yi

with diffusion parameter 1, where we have rewritten B(i, ·) = Bi(·)). Let E be the event

E = {
f (r) > B1(r) > B2(r) > · · · > Bk(r) > g(r) for all r ∈ [a, b]}.

From Definition 2.4 we know that

Gt,b
H (%x, %y,f, g) = Pa,b,%x,%y

free ({Bni (ti) ≤ zi for i = 1, . . . ,K} ∩ E)

Pa,b,%x,%y
free (E)

,

from which we conclude that it suffices to show that

(13) Pa,b,%x,%y
free

({
Bni (ti) ≤ zi for i = 1, . . . ,K

} ∩ E
)

is a measurable function. Indeed, if we can establish the above, then taking zi → ∞ for i =
1, . . . ,K would imply that Pa,b,%x,%y

free (E) is positive and measurable, and then GH(%x, %y,f, g)
is measurable as the ratio of two measurable functions with a nonvanishing denominator. In
the remainder we focus on proving that (13) is measurable.

Let N0 be sufficiently large that 3/N0 < mini=0,...,k[xi − xi+1] and 3/N0 <
mini=0,...,k[yi − yi+1], where %x = (x1, . . . , xk), %y = (y1, . . . , yk), and we used the convention
x0 = f (a), xk+1 = g(a), y0 = f (b) and yk+1 = g(b). Then, for w ≥ N0, we define

Ew = {
f (r) − w−1 ≥ B1(r) + w−1 > B1(r) − w−1 ≥ B2(r) + w−1 > B2(r) − w−1 ≥ · · ·

≥ Bk(r) + w−1 > Bk(r) − w−1 ≥ g(r) + w−1 for all r ∈ [a, b]}.
Notice that by the monotone convergence theorem we have that

Pa,b,%x,%y
free

({
Bni (ti) ≤ zi for i = 1, . . . ,K

} ∩ E
)

= lim
w→∞Pa,b,%x,%y

free
({

Bni (ti) ≤ zi for i = 1, . . . ,K
} ∩ Ew

)
,
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and so it suffices to prove that Pa,b,%x,%y
free ({Bni (ti) ≤ zi for i = 1, . . . ,K} ∩ Ew) are mea-

surable functions for w ≥ N0. Let {qn : n ∈ N} be an enumeration of the rationals in
(a, b) \ {t1, . . . , tK}. Using the almost sure continuity of Brownian bridges, we see that

Pa,b,%x,%y
free

({
Bni (ti) ≤ zi for i = 1, . . . ,K

} ∩ Ew
)

= lim
N→∞

Pa,b,%x,%y
free

({
Bni (ti) ≤ zi for i = 1, . . . ,K

} ∩ EN
w

)
,

where

EN
w = {

f (r) − w−1 ≥ B1(r) + w−1 > B1(r) − w−1 ≥ B2(r) + w−1 > B2(r) − w−1 ≥ · · ·
≥ Bk(r) + w−1 > Bk(r) − w−1 ≥ g(r) + w−1 when r = qn with 1 ≤ n ≤ N

}
.

Combining the last few statements, we see that we have reduced the proof that (13) is mea-
surable to showing that

Pa,b,%x,%y
free

({
Bni (ti) ≤ zi for i = 1, . . . ,K

} ∩ EN
w

)

is measurable for all w ≥ N0 and N ∈ N. We prove this in the next step.
Step 4. Let SN = {t1, . . . , tK} ∪ {qn : 1 ≤ n ≤ N}, and let a ≤ s1 < s2 < · · · < sN+K ≤ b be

an ordering of the elements of S in increasing order. In view of (10), we know that

Pa,b,%x,%y
free

({
Bni (ti) ≤ zi for i = 1, . . . ,K

} ∩ EN
w

)

=
∫

R
· · ·

∫

R

k∏

j=1

p(b − sN+K;xj
N+K,yj )

p(b − a;xj , yj )

N+K∏

i=1

Hi
(
x1
i , . . . , xk

i

)

×
N+K∏

i=1

k∏

j=1

p
(
si − si−1;xj

i−1, x
j
i

)
dx

j
i ,

(14)

where x
j
0 = xj for j = 1, . . . , k, and the functions Hi are given by

Hi
(
x1
i , . . . , xk

i

) =
{

1Fw,qn
if si = qn for n = 1, . . . ,N,

1
{
x

nu
i ≤ zu

}
if si = tu for u = 1, . . . ,K,

with

Fw,q(x1, . . . , xk) = {
f (q) − w−1 ≥ x1 + w−1 > x1 − w−1 ≥ x2 + w−1 > x2 − w−1 ≥ · · ·

≥ xk + w−1 > xk − w−1 ≥ g(q) + w−1}
.

From equation (14) we see that Pa,b,%x,%y
free ({Bni (ti) ≤ zi for i = 1, . . . ,K} ∩ EN

w ) is the inte-
gral of a nonnegative measurable function and is thus itself measurable; cf. [41], Chapter 2,
Theorem 3.2. !

The following lemma explains how the law of Pa,b,%x,%y,∞,−∞
avoid from Definition 2.4 behaves

under affine transformations.

LEMMA 3.5. Assume the same notation as in Definition 2.4, and suppose that Q is a

!1, k"-indexed line ensemble on [a, b] with probability distribution Pa,b,%x,%y,∞,−∞
avoid . Suppose

that r, u ∈ R and c > 0 are given. With this data we define the random !1, k"-indexed line
ensemble Q̃ on [a′, b′] = [c2a + u, c2b + u] through

Q̃(i, x) = c · Q(
i, c−2(x − u)

) + r for i = 1, . . . , k and x ∈ [
a′, b′].

Then, the law of Q̃ under Pa,b,%x,%y,∞,−∞
avoid is Pa′,b′,%x′,%y′,∞,−∞

avoid , where x′
i = xi · c + r and y′

i =
yi · c + r for i = 1, . . . , k.
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PROOF. We split the proof into two steps. In the first we show that if we perform the
affine transformations in the statement of the lemma to the line ensemble of independent
Brownian bridges, then we have a similar result with Pfree replacing Pavoid. In the second part
we prove the lemma for the laws Pavoid by appealing to the definition of these laws through
Pfree, as in Definition 2.4:

Step 1. Let B be the !1, k"-indexed line ensemble on [a, b] with distribution Pa,b,%x,%y
free (the

law of k independent Brownian bridges {Bi : [a, b] → R}ki=1 from Bi(a) = xi to Bi(b) = yi

with diffusion parameter 1, where we have rewritten B(i, ·) = Bi(·)). In addition, let B′ be
the !1, k"-indexed line ensemble on [a′, b′] with distribution Pa′,b′,%x′,%y′

free (the law of k indepen-
dent Brownian bridges {B ′

i : [a′, b′] → R}ki=1 from B ′
i (a) = x′

i to B ′
i (b) = y′

i with diffusion
parameter 1, where we have rewritten B′(i, ·) = B ′

i (·)). Finally, we define the !1, k"-indexed
line ensemble B̃ on [a′, b′] through

B̃(i, x) = c · B(
i, c−2(x − u)

) + r for i = 1, . . . , k and x ∈ [
a′, b′].

We first claim that the law of B̃ under Pa,b,%x,%y
free is the same as that of B′ under Pa′,b′,%x′,%y′

free .
To see the latter, fix K ∈ N and n1, . . . , nK ∈ !1, k", t1, . . . , tK ∈ [a′, b′] and z1, . . . , zK ∈ R.
We then have from (10) that

Pa,b,%x,%y
free

(
B̃ni (ti) ≤ zi for i ∈ !1,K"

)

= Pa,b,%x,%y
free

(
Bni

(
c−2(ti − u)

) ≤ zi − r

c
for i ∈ !1,K"

)

=
∫

R
· · ·

∫

R

k∏

j=1

p(b − [c−2(tK − u)]; x̃j
K, yj )

p(b − a;xj , yj )

K∏

i=1

Hi
(
x̃

ni
i

)

×
K∏

i=1

k∏

j=1

p
(
c−2[ti − ti−1]; x̃j

i−1, x̃
j
i

)
dx̃

j
i ,

(15)

where x̃
j
0 = xj for j = 1, . . . , k and Hi(x) = 1{x ≤ c−1[zi − r]} for i = 1, . . . ,K . On the

other hand,

Pa′,b′,%x′,%y′
free

(
B ′

ni
(ti) ≤ zi for i ∈ !1,K"

)

=
∫

R
· · ·

∫

R

k∏

j=1

p(b′ − tK;xj
K, y′

j )

p(b′ − a′;x′
j , y

′
j )

K∏

i=1

H ′
i

(
x

ni
i

) ·
K∏

i=1

k∏

j=1

p
(
ti − ti−1;xj

i−1, x
j
i

)
dx

j
i ,

(16)

where x
j
0 = x′

j for j = 1, . . . , k and H ′
i (x) = 1{x ≤ zi} for i = 1, . . . ,K . Upon performing

the change of variables x̃
j
i = x

j
i −r

c in (15) and using the scaling property of the heat kernel,

we obtain precisely the expression in the second line of (16). Consequently, B̃ under Pa,b,%x,%y
free

and B′ under Pa′,b′,%x′,%y′
free have the same finite-dimensional distributions. By Proposition 3.3

we conclude that the laws of these line ensembles are the same.
Step 2. Continuing with the notation from Step 1, we define

E = {
B1(r) > B2(r) > · · · > Bk(r) for all r ∈ [a, b]},

Ẽ = {
B̃1(r) > B̃2(r) > · · · > B̃k(r) for all r ∈ [

a′, b′]},

E′ = {
B ′

1(r) > B ′
2(r) > · · · > B ′

k(r) for all r ∈ [
a′, b′]}.

We also let Q′ be a !1, k"-indexed line ensemble on [a′, b′] with law Pa′,b′,%x′,%y′,∞,−∞
avoid .
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If we fix K ∈ N and n1, . . . , nK ∈ !1, k", t1, . . . , tK ∈ [a′, b′] and z1, . . . , zK ∈ R, we have

Pa,b,%x,%y,∞,−∞
avoid

(
Q̃ni (ti) ≤ zi for i ∈ !1,K"

)

= Pa,b,%x,%y,∞,−∞
avoid

(
Qni

(
c−2(ti − u)

) ≤ zi − r

c
for i ∈ !1,K"

)

= Pa,b,%x,%y
free ({Bni (c

−2(ti − u)) ≤ c−1 · [zi − r] for i ∈ !1,K"} ∩ E)

Pa,b,%x,%y
free (E)

= Pa,b,%x,%y
free ({B̃ni (ti) ≤ zi for i ∈ !1,K"} ∩ Ẽ)

Pa,b,%x,%y
free (Ẽ)

= Pa′,b′,%x′,%y′
free ({B ′

ni
(ti) ≤ zi for i ∈ !1,K"} ∩ E′)

Pa′,b′,%x′,%y′
free (E′)

= Pa′,b′,%x′,%y′,∞,−∞
avoid

(
Q′

ni
(ti) ≤ zi for i ∈ !1,K"

)
,

where the first equality follows from the definition of Q̃; the second and last equality follow
from Definition 2.4; the third one follows from the definition of B̃ , and the fourth one follows
from the equality of laws for B̃ and B′ established in Step 1. The above equation shows that
the finite dimensional distributions of Q̃ under Pa,b,%x,%y,∞,−∞

avoid agree with those of Q′ under

Pa′,b′,%x′,%y′,∞,−∞
avoid which by Proposition 3.3 implies that the laws of these line ensembles are

the same. !

The following lemma explains how Pa,b,%x,%y,∞,−∞
avoid behaves under reflection.

LEMMA 3.6. Assume the same notation as in Definition 2.4, and suppose that Q is a
!1, k"-indexed line ensemble on [a, b] with probability distribution Pa,b,%x,%y,∞,−∞

avoid . Let Q̃ be
the random !1, k"-indexed line ensemble on [a, b], defined through

Q̃(i, x) = −Q(k − i + 1, x) for i = 1, . . . , k and x ∈ [a, b].

Then, the law of Q̃ under Pa,b,%x,%y,∞,−∞
avoid is Pa,b,−%x,−%y,∞,−∞

avoid .

PROOF. Similarly, to the proof of Lemma 3.5 we split the proof into two steps. In the first
we show that if we perform the reflections in the statement of the lemma to the line ensemble
of independent Brownian bridges, then we have a similar result with Pfree replacing Pavoid. In
the second part we prove the lemma for the laws Pavoid by appealing to the definition of these
laws through Pfree, as in Definition 2.4.

Step 1. Let B be the !1, k"-indexed line ensemble on [a, b] with distribution Pa,b,%x,%y
free (the

law of k independent Brownian bridges {Bi : [a, b] → R}ki=1 from Bi(a) = xi to Bi(b) = yi

with diffusion parameter 1, where we have rewritten B(i, ·) = Bi(·)). In addition, let B′ be the
!1, k"-indexed line ensemble on [a, b] with distribution Pa,b,−%x,−%y

free (the law of k independent
Brownian bridges {B ′

i : [a, b] → R}ki=1 from B ′
i (a) = −xk−i+1 to B ′

i (b) = −yk−i+1 with
diffusion parameter 1, where we have rewritten B′(i, ·) = B ′

i (·)). Finally, we define the !1, k"-
indexed line ensemble B̃ on [a, b] through

B̃(i, x) = −B(k − i + 1, x) for i = 1, . . . , k and x ∈ [a, b].
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We first claim that the law of B̃ under Pa,b,%x,%y
free is the same as that of B′ under Pa,b,−%x,−%y

free .
To see the latter, fix K ∈ N and n1, . . . , nK ∈ !1, k", t1, . . . , tK ∈ [a, b] and z1, . . . , zK ∈ R.
We then have from (10) that

Pa,b,%x,%y
free

(
B̃ni (ti) ≤ zi for i ∈ !1,K"

)

= Pa,b,%x,%y
free

(−Bk−ni+1(ti) ≤ zi for i ∈ !1,K"
)

=
∫

R
· · ·

∫

R

k∏

j=1

p(b − tK; x̃j
K, yj )

p(b − a;xj , yj )

×
K∏

i=1

Hi
(
x̃

k−ni+1
i

) ·
K∏

i=1

k∏

j=1

p
(
ti − ti−1; x̃j

i−1, x̃
j
i

)
dx̃

j
i ,

(17)

where x̃
j
0 = xj for j = 1, . . . , k and Hi(x) = 1{−x ≤ zi} for i = 1, . . . ,K . On the other hand,

Pa,b,−%x′,−%y
free

(
B ′

ni
(ti) ≤ zi for i ∈ !1,K"

)

=
∫

R
· · ·

∫

R

k∏

j=1

p(b − tK;xj
K,−yk−j+1)

p(b − a;−xk−j+1,−yk−j+1)

×
K∏

i=1

H ′
i

(
x

ni
i

) ·
K∏

i=1

k∏

j=1

p
(
ti − ti−1;xj

i−1, x
j
i

)
dx

j
i ,

(18)

where x
j
0 = −xk−j+1 for j = 1, . . . , k and H ′

i (x) = 1{x ≤ zi} for i = 1, . . . ,K . Upon per-
forming the change of variables x̃

j
i = −x

k−j+1
i in (17) and using symmetry of the heat kernel,

we obtain precisely the expression in the second line of (18). Consequently, B̃ under Pa,b,%x,%y
free

and B′ under Pa,b,−%x,−%y
free have the same finite-dimensional distributions. By Proposition 3.3

we conclude that the laws of these line ensembles are the same.
Step 2. Continuing with the notation from Step 1, we define

E = {
B1(r) > B2(r) > · · · > Bk(r) for all r ∈ [a, b]},

Ẽ = {
B̃1(r) > B̃2(r) > · · · > B̃k(r) for all r ∈ [a, b]},

E′ = {
B ′

1(r) > B ′
2(r) > · · · > B ′

k(r) for all r ∈ [a, b]}.

We also let Q′ be a !1, k"-indexed line ensemble on [a, b] with law Pa,b,−%x,−%y,∞,−∞
avoid .

If we fix K ∈ N and n1, . . . , nK ∈ !1, k", t1, . . . , tK ∈ [a, b] and z1, . . . , zK ∈ R, we have

Pa,b,%x,%y,∞,−∞
avoid

(
Q̃ni (ti) ≤ zi for i ∈ !1,K"

)

= Pa,b,%x,%y,∞,−∞
avoid

(−Qk−ni+1(ti) ≤ zi for i ∈ !1,K"
)

= Pa,b,%x,%y
free ({−Bk−ni+1(ti) ≤ zi for i ∈ !1,K"} ∩ E)

Pa,b,%x,%y
free (E)

= Pa,b,%x,%y
free ({B̃ni (ti) ≤ zi for i ∈ !1,K"} ∩ Ẽ)

Pa,b,%x,%y
free (Ẽ)

= Pa,b,−%x,−%y
free ({B ′

ni
(ti) ≤ zi for i ∈ !1,K"} ∩ E′)

Pa,b,−%x,−%y
free (E′)
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= Pa,b,−%x,−%y,∞,−∞
avoid

(
Q′

ni
(ti) ≤ zi for i ∈ !1,K"

)
,

where the first equality follows from the definition of Q̃; the second and last equality follow
from Definition 2.4; the third one follows from the definition of B̃ , and the fourth one follows
from the equality of laws for B̃ and B′ established in Step 1. The above equation shows that
the finite dimensional distributions of Q̃ under Pa,b,%x,%y,∞,−∞

avoid agree with those of Q′ under

Pa,b,−%x,−%y,∞,−∞
avoid which by Proposition 3.3 implies that the laws of these line ensembles are

the same. !

3.3. Auxiliary results. In this section we summarize some auxiliary results which will be
useful in the proof of Theorem 2.10.

LEMMA 3.7. Let # = !1,N " with N ∈ N, N ≥ 2 and ! = [a, b] ⊂ R. Suppose L is a #-
indexed line ensembles on !, defined on a probability space with measure P, and assume that
it satisfies the partial Brownian Gibbs property of Definition 2.7. Fix t ∈ (a, b), n ∈ !1,N −1"
and s ∈ R. Then,

P
(
Ln(t) = s

) = 0.

PROOF. Fix %x, %y ∈ W ◦
N−1, and let g : [a, b] → R be a continuous function such that

g(a) < xN−1 and g(b) < yN−1. From Definition 2.4 we know that Pa,b,%x,%y,∞,g
avoid is absolutely

continuous with respect to Pa,b,%x,%y
free . Since Brownian bridges have no atoms, we conclude that

Ea,b,%x,%y,∞,g
avoid

[
1
{
Qn(t) = s

}] = 0.

Consequently, by the partial Brownian Gibbs property and the tower property for conditional
expectations, we deduce that

P
(
Ln(t) = s

) = E
[
E

[
1
{
Ln(t) = s

} | Fext
(
K × (a, b)

)]]

= E
[
Ea,b,%x,%y,∞,g

avoid
[
1
{
Qn(t) = s

}]] = E[0] = 0,

where K = !1,N − 1", %x = (L1(a), . . . ,LN−1(a)), %y = (L1(b), . . . ,LN−1(b)), and g =
LN [a, b]. !

Let *(x) be the cumulative distribution function of a standard normal random variable
and φ(x) denote its density. The following result can be found in [30], Section 4.2.

LEMMA 3.8. There is a constant c0 > 1 such that, for all x ≥ 0, we have

(19)
1

c0(1 + x)
≤ 1 − *(x)

φ(x)
≤ c0

1 + x
.

The following result can be found in [28], Chapter 4, equation 3.40.

LEMMA 3.9. Let a ∈ R, T > 0 and β > 0. Let B : [0, T ] → R denote a Brownian bridge
from B(0) = 0 to B(T ) = a with diffusion parameter 1. Then, we have

P0,T ,0,a
free

(
max

0≤t≤T
B(t) ≥ β

)
= P0,T ,0,−a

free

(
min

0≤t≤T
B(t) ≤ −β

)
= e−2β(β−a)/T .
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LEMMA 3.10. Assume the same notation as in Definition 2.4, and suppose that Q is a
!1, k"-indexed line ensemble on [a, b] with probability distribution Pa,b,%x,%y,∞,−∞

avoid . Then, we
have, for r ≥ 0,

(20) Pa,b,%x,%y,∞,−∞
avoid

(
Qk

(
(a + b)/2

) ≥ max(xk, yk) + (b − a)1/2r
) ≤ c0e

−2r2

√
2π(1 + 2r)

,

where c0 is as in Lemma 3.8.

PROOF. Let A denote the left side of (20). Define %z ∈ W ◦
k through zi = max(xi, yi). By

Lemma 2.14 we have that

A ≤ Pa,b,%z,%z,∞,−∞
avoid

(
Qk

(
(a + b)/2

) ≥ zk + (b − a)1/2r
)

= Pa,b,−%z,−%z,∞,−∞
avoid

(
Q1

(
(a + b)/2

) ≤ −zk − (b − a)1/2r
)
,

(21)

where the equality follows from Lemma 3.6. By Lemma 2.13 we know that !1, k"-indexed
line ensembles distributed according to Pa,b,−%z,−%z,∞,−∞

avoid satisfy the Brownian Gibbs prop-
erty, and so by Definition 2.5 we have

Pa,b,−%z,−%z,∞,−∞
avoid

(
Q1

(
(a + b)/2

) ≤ −zk − (b − a)1/2r
)

= Ea,b,−%z,−%z,∞,−∞
avoid

[
E

[
1
{
Q1

(
(a + b)/2

) ≤ −zk − (b − a)1/2r
} | Fext

({1} × (a, b)
)]]

= Ea,b,−%z,−%z,∞,−∞
avoid

[
Ea,b,−zk,−zk,∞,Q2[a,b]

avoid
[
1
{
Q1

(
(a + b)/2

) ≤ −zk − (b − a)1/2r
}]]

≤ Ea,b,−%z,−%z,∞,−∞
avoid

[
Ea,b,−zk,−zk,∞,−∞

avoid
[
1
{
B

(
(a + b)/2

) ≤ −zk − (b − a)1/2r
}]]

= Ea,b,−%z,−%z,∞,−∞
avoid

[
*(−2r)

] = *(−2r) = 1 − *(2r),

(22)

where, in going from the third to the fourth line, we use Lemma 2.15 and, in going from
the fourth to the fifth line, we used that under Pa,b,−zk,−zk,∞,−∞

avoid the curve B is precisely a
Brownian bridge from B(a) = −zk to B(b) = −zk with diffusion parameter 1. The latter and
(10) imply that B((a + b)/2) is distributed like a Gaussian random variable with mean 0 and
variance (b − a)/4 which implies the formulas above. Combining (21), (22) and (19), we
conclude (20). !

LEMMA 3.11. Assume the same notation as in Definition 2.4, and suppose that Q is a
!1, k"-indexed line ensemble on [a, b] with probability distribution Pa,b,%x,%y,∞,−∞

avoid . Then, we
have, for r ≥ 0,

(23) Pa,b,%x,%y,∞,−∞
avoid

(
Qk

(
(a + b)/2

) ≤ max(xk, yk) − (b − a)1/2r
) ≥ e−2r2

c0
√

2π(1 + 2r)
,

where c0 is as in Lemma 3.8.

PROOF. Let A denote the left side of (23). Define %z ∈ W ◦
k through zi = max(xi, yi). By

Lemma 2.14 we have that

A ≥ Pa,b,%z,%z,∞,−∞
avoid

(
Qk

(
(a + b)/2

) ≤ zk − (b − a)1/2r
)

= Pa,b,−%z,−%z,∞,−∞
avoid

(
Q1

(
(a + b)/2

) ≥ −zk + (b − a)1/2r
)
,

(24)
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where the equality follows from Lemma 3.6. By Lemma 2.13 we know that !1, k"-indexed
line ensembles distributed according to Pa,b,−%z,−%z,∞,−∞

avoid satisfy the Brownian Gibbs prop-
erty, and so by Definition 2.5 we have

Pa,b,−%z,−%z,∞,−∞
avoid

(
Q1

(
(a + b)/2

) ≥ −zk + (b − a)1/2r
)

= Ea,b,−%z,−%z,∞,−∞
avoid

[
E

[
1
{
Q1

(
(a + b)/2

) ≥ −zk + (b − a)1/2r
} | Fext

({1} × (a, b)
)]]

= Ea,b,−%z,−%z,∞,−∞
avoid

[
Ea,b,−zk,−zk,∞,Q2[a,b]

avoid
[
1
{
Q1

(
(a + b)/2

) ≥ −zk + (b − a)1/2r
}]]

≥ Ea,b,−%z,−%z,∞,−∞
avoid

[
Ea,b,−zk,−zk,∞,−∞

avoid
[
1
{
B

(
(a + b)/2

) ≥ −zk + (b − a)1/2r
}]]

= Ea,b,−%z,−%z,∞,−∞
avoid

[
1 − *(2r)

] = 1 − *(2r),

(25)

where, in going from the third to the fourth line, we use Lemma 2.15 and, in going from
the fourth to the fifth line, we used that under Pa,b,−zk,−zk,∞,−∞

avoid the curve B is precisely a
Brownian bridge from B(a) = −zk to B(b) = −zk with diffusion parameter 1. The latter and
(10) imply that B((a + b)/2) is distributed like a Gaussian random variable with mean 0 and
variance (b − a)/4 which implies the formulas above. Combining (24), (25) and (19), we
conclude (23). !

The following result can be found in [23], Lemma 2.25. We give a proof for the sake of
completeness.

LEMMA 3.12. Assume the same notation as in Definition 2.4, and suppose that Q is a
!1, k"-indexed line ensemble on [a, b] with probability distribution Pa,b,%x,%y,∞,−∞

avoid . Then, we
have, for r ≥ 0, that

Pa,b,%x,%y,∞,−∞
avoid

(
inf

x∈[a,b]
Qk(x) ≤ min(xk, yk) −

√
2(b − a)1/2(k + r − 1)

)

≤ (
1 − 2e−1)−k

e−4r2
.

(26)

PROOF. Let A denote the left side of (26). Define %z ∈ W ◦
k through zi = min(xi, yi) −√

2(b − a)1/2(i − 1). By Lemma 2.14 we have that

(27) A ≤ Pa,b,%z,%z,∞,−∞
avoid

(
inf

x∈[a,b]
Qk(x) ≤ min(xk, yk) −

√
2(b − a)1/2(k + r − 1)

)
.

Let B be the !1, k"-indexed line ensemble on [a, b] with distribution Pa,b,%z,%z
free (the law of

k independent Brownian bridges {Bi : [a, b] → R}ki=1 from Bi(a) = zi to Bi(b) = zi with
diffusion parameter 1, where we have rewritten B(i, ·) = Bi(·)). Let

E = {
B1(r) > B2(r) > · · · > Bk(r) for all r ∈ [a, b]}.

Then, from (27) and Definition 2.4 we have that

A ≤ Pa,b,%z,%z
free (infx∈[a,b] Bk(x) ≤ min(xk, yk) −

√
2(b − a)1/2(k + r − 1))

Pa,b,%z,%z
free (E)

= Pa,b,%z,%z
free (infx∈[a,b] Bk(x) ≤ zk −

√
2(b − a)1/2r)

Pa,b,%z,%z
free (E)

= e−4r2

Pa,b,%z,%z
free (E)

,

(28)

where in the first equality we used the definition of zk , while in the second one we used
Lemma 3.9 and the fact that B̃(x) = Bk(x − a) − zk has law P0,b−a,0,0

free , as follows from
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Step 1 in the proof of Lemma 3.5. Finally, we observe that

Pa,b,%z,%z
free (E) ≥ Pa,b,%z,%z

free

(
sup

x∈[a,b]

∣∣Bi(x) − zi

∣∣ <
[
(b − a)/2

]1/2 for i = 1, . . . , k
)

=
k∏

i=1

[
1 − Pa,b,%z,%z

free

(
sup

x∈[a,b]

∣∣Bi(x) − zi

∣∣ ≥ [
(b − a)/2

]1/2
)]

≥
k∏

i=1

[
1 − Pa,b,%z,%z

free

(
sup

x∈[a,b]
Bi(x) − zi ≥ [

(b − a)/2
]1/2

)

− Pa,b,%z,%z
free

(
inf

x∈[a,b]
Bi(x) − zi ≤ −[

(b − a)/2
]1/2

)]
= (

1 − 2e−1)k
,

where in the last equality we used Lemma 3.9 and the fact that B̃i(x) = Bi(x −a)−zi has law
P0,b−a,0,0

free , as follows from Step 1 in the proof of Lemma 3.5. Combining the last inequality
with (28), we arrive at (26). !

4. Proof of Theorem 2.10 and Corollary 2.11. The purpose of this section is to prove
Theorem 2.10 and Corollary 2.11. We first state the main result of this section as Proposi-
tion 4.1 and deduce Theorem 2.10 from it. In Section 4.1 we present the proof of a basic case
of Proposition 4.1 to illustrate some of the key ideas, and we give the full proof in Section 4.2.
In Section 4.3 we prove Corollary 2.11.

PROPOSITION 4.1. Let # = !1,N " with N ∈ N and ! = [a, b] ⊂ R. Suppose that L1

and L2 are #-indexed line ensembles on ! that satisfy the partial Brownian Gibbs property
with laws P1 and P2, respectively. Suppose further that for every k ∈ N, a = t0 < t1 < t2 <

· · · < tk < tk+1 = b and x1, . . . , xk ∈ R, we have that

(29) P1
(
L1

1(t1) ≤ x1, . . . ,L1
1(tk) ≤ xk

) = P2
(
L2

1(t1) ≤ x1, . . . ,L2
1(tk) ≤ xk

)
.

Then, for every k ∈ N, a = t0 < t1 < t2 < · · · < tk < tk+1 = b, n1, . . . , nk ∈ !1,N " and
x1, . . . , xk ∈ R, we have

(30) P1
(
L1

n1
(t1) ≤ x1, . . . ,L1

nk
(tk) ≤ xk

) = P2
(
L2

n1
(t1) ≤ x1, . . . ,L2

nk
(tk) ≤ xk

)
.

The proof of Proposition 4.1 is given in Section 4.2 below. In the remainder of this section,
we assume its validity and prove Theorem 2.10.

PROOF OF THEOREM 2.10. We assume the same notation as in Theorem 2.10. Let a, b ∈
! with a < b and K ∈ # be given. Let π

!1,K"
[a,b] be as in (4), and note that by Definition 2.7

we have that under Pv the !1,K"-indexed line ensembles π
!1,K"
[a,b] (Lv) on [a, b] satisfies the

partial Brownian Gibbs property, where v ∈ {1,2}. Here, it is important that we work with the
partial Brownian Gibbs property and not the usual Brownian Gibbs property; cf. Remark 2.9.
Consequently, by Proposition 4.1 we conclude that, for every k ∈ N, a = t0 < t1 < t2 < · · · <
tk < tk+1 = b, n1, . . . , nk ∈ !1,K" and x1, . . . , xk ∈ R, we have

P1
(
L1

n1
(t1) ≤ x1, . . . ,L1

nk
(tk) ≤ xk

) = P2
(
L2

n1
(t1) ≤ x1, . . . ,L2

nk
(tk) ≤ xk

)
.

Since [a, b] ⊂ ! and K ∈ # were arbitrary, we conclude that the latter equality holds for any
k ∈ N; t1 < t2 < · · · < tk , with ti ∈ !o for i = 1, . . . , k; n1, . . . , nk ∈ # and x1, . . . , xk ∈ R,
and then from Proposition 3.3 we conclude that P1 = P2. !
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4.1. Basic case of Proposition 4.1. In this section we work under the same assumptions
as in Proposition 4.1 when N = 2 and prove (30) in the simplest nontrivial case when k = 1
and n1 = 2. As we will see, many of the key ideas that go into the proof of Proposition 4.1 are
already present in this simple case. The goal is to illustrate the main arguments and explain
the meaning and significance of different constructions so that the reader is better equipped
before proceeding with the general proof in the next section.

The special case above consists of proving that for t1 ∈ (a, b) and y1 ∈ R, we have

(31) P1
(
L1

2(t1) ≤ y1
) = P2

(
L2

2(t1) ≤ y1
)
.

Equation (29) implies by virtue of Proposition 3.3 that L1
1 under P1 has the same law

as L2
1 under P2 as {1}-indexed line ensembles on [a, b] or, equivalently, as random variables

taking values in (C([a, b]),C). In particular, if H : C([a, b]) → R is any bounded measurable
function, we have

(32) E
[
H

(
L1

1
)] = E

[
H

(
L2

1
)]

,

where we will use E to denote the expectation with respect to P1 or P2. It will be clear which
measure is meant by the expression inside of the expectation.

The main idea of the argument is to construct a sequence of measurable functions Hw :
C([a, b]) → R, w ∈ N, for which the equality in (32) holds and such that the left (resp.,
right) side of (32) approximates the left (resp., right) side of (31) as w → ∞. Specifically, we
will construct sequences Hw such that, for a given x1 ∈ R, we have

pw = E
[
Hw

(
L1

1
)] = E

[
Hw

(
L2

1
)]

for w ∈ N and

Pv
(
Lv

2(t1) < x1
) ≤ lim inf

w→∞ pw ≤ lim sup
w→∞

pw ≤ Pv
(
Lv

2(t1) ≤ x1
)

where v ∈ {1,2}.(33)

The second line in (33) is what we mean by “approximate.”
The hard part of the proof is finding functions Hw that satisfy (33), but once we have them,

concluding (31) is easy. Indeed, if we set for x1 ∈ R and v ∈ {1,2}
Gv(x1) = Pv

(
Lv

2(t1) ≤ x1
)
,

then by basic properties of probability measures we know that G1 and G2 are increasing
right-continuous functions. Moreover, if G1 and G2 are both continuous at a point x1, then
from (33) we know that G1(x1) = G2(x1). The latter and Lemma 3.2 imply that G1 = G2. In
particular, G1(y1) = G2(y1) which is precisely (31).

In the remainder of the section, we detail our choice of Hw and show that it satisfies (33).
Given s, t, r, x, y ∈ R with s < t , we define

F(r; s, t, x, y) = Ps,t,x,y
free

(
B

(
(s + t)/2

) ≤ r
)

which is the probability that a Brownian bridge from B(s) = x to B(t) = y with diffusion
parameter 1 has its midpoint below r . We also let aw = t1 − w−1 and bw = t1 + w−1 for
w ≥ W0, where W0 is sufficiently large that aw, bw ∈ (a, b). Here, it is important that t1 ∈
(a, b) and is not one of the end points. With the latter data we define, for f ∈ C([a, b]), the
functions

Hw(f ) = 1{f (t1) ≤ x1}
F(x1;aw, bw,f (aw), f (bw))

where w ≥ W0.

This is the choice of Hw that satisfies (33). In order to see why this choice of functions
is suitable for proving (33), we need to apply the partial Brownian Gibbs property, and a
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technical aspect of the latter is that it requires that we work with bounded functions, and the
Hw are not bounded. Consequently, we define the sequence

HM
w (f ) = 1

{
f (t1) ≤ x1

} · min
(
M,

1
F(x1;aw, bw,f (aw), f (bw))

)

for M ∈ N. For each M ∈ N, we have from (32) that

E
[
HM

w

(
L1

1
)] = E

[
HM

w

(
L2

1
)]

.

We remark that the measurability of HM
w is a consequence of Lemma 3.4. Taking the limit as

M → ∞ and applying the monotone convergence theorem gives

(34) pw = E
[
Hw

(
L1

1
)] = lim

M→∞
E

[
HM

w

(
L1

1
)] = lim

M→∞
E

[
HM

w

(
L2

1
)] = E

[
Hw

(
L2

1
)]

.

On the other hand, by the partial Brownian Gibbs property, cf. Definition 2.7, and the tower
property, we have for v ∈ {1,2} that

E
[
HM

w

(
Lv

1
)] = E

[
E

[
HM

w

(
Lv

1
) | Fext

({1} × (aw, bw)
)]]

= E
[
Pv,w

avoid
(
Q(t1) ≤ x1

) · min
(
M,

1
F(x1;aw, bw,Lv

1(aw),Lv
1(bw))

)]
,

where we wrote Pv,w
avoid in place of Paw,bw,Lv

1(aw),Lv
1(bw),∞,Lv

2[aw,bw]
avoid to simplify the expres-

sion and where Q is a Brownian bridge, going from Lv
1(aw) to Lv

1(bw) on the time interval
[aw, bw] and staying above Lv

2[aw, bw]. Taking the limit as M → ∞ and utilizing the mono-
tone convergence theorem again, we see that, for v ∈ {1,2},

pw = E
[ Pv,w

avoid(Q(t1) ≤ x1)

F (x1;aw, bw,Lv
1(aw),Lv

1(bw))

]
.

The key observation that motivates much of the proof and will become precise later is that,
for large enough w,

(35) 1
{
Lv

2(t1) ≤ x1
} ≈ Pv,w

avoid(Q(t1) ≤ x1)

F (x1;aw, bw,Lv
1(aw),Lv

1(bw))
.

To begin understanding (35), we note that if Lv
2(t1) > x1, we know that Pv,w

avoid(Q(t1) ≤ x1) =
0, since Q(t1) ≥ Lv

2(t1) > x1. In addition, by Lemma 2.15 applied to a = aw , b = bw , %x =
Lv

1(aw), %y = Lv
1(aw), gt = Lv

2[aw, bw] and gb = −∞, we know that

Pv,w
avoid

(
Q(t1) ≤ x1

) ≤ F
(
x1;aw, bw,Lv

1(aw),Lv
1(bw)

)
.

Explained in simple words, the quantities on the left and right side of the above inequal-
ity both measure the probability that a Brownian bridge from B(aw) = Lv

1(aw) to B(bw) =
Lv

1(bw) has its midpoint below x1, with the difference that on the left side the Brownian
bridge is conditioned on staying above the curve Lv

2[aw, bw]. The content of Lemma 2.15
is that such a conditioning stochastically pushes the bridge up, making it less likely to fall
below the point x1. Combining the last two arguments, we conclude that Pv-almost surely we
have

(36)
Pv,w

avoid(Q(t1) ≤ x1)

F (x1;aw, bw,Lv
1(aw),Lv

1(bw))
≤ 1

{
Lv

2(t1) ≤ x1
}
.

This establishes a one-sided inequality for (35). The reverse inequality will be weaker in two
ways. First, we will replace {Lv

2(t1) ≤ x1} with {Lv
2(t1) < x1 − ε}, and second, the inequality

will not be in the almost sure sense but in some average sense for large enough w. We will
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FIG. 5. The left figure represents schematically the situation when Lv
1[aw,bw] < x1 − 2ε2/5. We remark that

to make the picture comprehensible we have distorted it, and, in fact, one has that bw − aw is much smaller
than ε2. In addition, to ease the notation we have removed the dependence on v ∈ {1,2}. The curve Q2 (in gray)
is a Brownian bridge between the points L1(aw) and L1(bw) conditioned on staying above L2. The curve Q1

(in black) is a Brownian bridge between the points L1(aw) and L1(bw) that is free to move below L2. With
this notation the numerator in (37) is the probability that the midpoint of Q2 is below x1, while the denomi-
nator is the probability that the midpoint of Q1 is below x1. In this case, both of the probabilities are close
to 1, since the end points of these bridges are very low and that implies that their midpoints are also very
low with high probability. Indeed, the fluctuation scale for these bridges is (bw − aw)1/2, which is tiny com-
pared to ε2. This suggests that we expect the bridges to stay in a window of width (bw − aw)1/2 around the
straight line connecting their endpoints which ensures that their midpoint is below x1.The right figure repre-
sents schematically the situation when Lv

1[aw,bw] > x1 + 2ε2/5. The curves Q2 and Q1 (in gray and black,
resp., are as before) and the curve Q3 (represented by a dashed line) is an independent curve that has the same
law as Q1. In this case, both of the probabilities that Q1 and Q2 have a midpoint below x1 are tiny; however,
their ratio is very close to 1. To simplify the situation, let us assume that L1(aw) = L1(bw) = x1 + A where
A > 0 is fixed (i.e., does not depend on w) and recall that t1 is the midpoint of [aw,bw]. Then, a direct com-
putation for the free bridge gives P(Q1(t1) ≤ x1) = exp(−A2w + O(logw)). On the other hand, again by a
direct computation, one gets P(Q1 falls below x1 − ε2) = exp(−[A + ε2]2w + O(logw)). The dashed line Q3

on the right depicts a path in the last event. The latter computation shows that even among bridges whose mid-
point is below x1, those that fall (anywhere on [aw,bw]) below x1 − ε2 are extremely unlikely. This implies
that the conditioning of Q2 to stay above L2 is not felt when computing P(Q2(t1) ≤ x1). In fact, one can show
that P(Q2(t1) ≤ x1) ≤ P(Q1(t1) ≤ x1) ≤ P(Q2(t1) ≤ x1) + exp(−[A + ε2]2w + O(logw)) so that the ratio of
P(Q1(t1) ≤ x1) and P(Q2(t1) ≤ x1) is close to 1.

make these statements precise later and continue discussing the heuristics behind the fact that
on the event {Lv

2(t1) < x1 − ε} the right side of (35) is approximately 1 with high probability.
Suppose that Lv

2(t1) < x1 − 2ε2 for some small ε2. Then, the continuity of Lv
2 implies

that with high probability the whole curve Lv
2[aw, bw] lies below x1 − ε2 (as long as w is

sufficiently large). In addition, by making ε2 small we can make the event Lv
1(t1) ∈ (x1 −

ε2, x1 + ε2) very unlikely. The latter is true since by Lemma 3.7 the random variable Lv
1(t1)

has no atoms. Also, since Lv
1 is continuous, we know that the whole curve Lv

1[aw, bw] will be
bounded away from x1 for large enough w. We are thus naturally split into the two situations
of arguing that

(37)
Pv,w

avoid(Q(t1) ≤ x1)

F (x1;aw, bw,Lv
1(aw),Lv

1(bw))
≈ 1,

when Lv
1[aw, bw] stays above x1 + 2ε2/5 or below x1 − 2ε2/5. We give an informal descrip-

tion of why the above ratio is close to 1 in Figure 5 and its caption.
Summarizing the work done so far, we have that pw , as defined in (34), satisfy the first line

in (33) and the third inequality of the second line in (33). What remains to be seen is that, for
v ∈ {1,2},

Pv
(
Lv

2(t1) < x1
) ≤ lim inf

w→∞ pw where v ∈ {1,2}.(38)
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We will establish (38) in the four steps below, but first we make a couple of remarks. The
work done above corresponds to the first three steps in the general proof of Proposition 4.1
in the next section. The arguments we present below correspond to Steps 4–7. The main flow
of the argument of our work here is the same as the general proof, except that the functions
F(r; s, t, x, y) get replaced by more involved expressions that are necessary from the fact
that we work with general N ∈ N and not just N = 2. Also, in the end of Steps III and IV we
will use some exact results about Brownian bridges which in the general proof get replaced
with Lemmas 3.10, 3.11 and 3.12 in Steps 6 and 7:

Step I. In this step we state a simple reduction of (38). Afterward, we define two sequences
pv

w for v ∈ {1,2} which will play an important role in our arguments.
First, we claim that, for any ε3 > 0 and v ∈ {1,2}, we have

(39) Pv
(
Lv

2(t1) < x1
) − ε3 ≤ lim inf

w→∞ pw.

It is clear that if (39) is true, then (38) would follow. We thus focus on establishing (39) and
fix ε3 > 0 in the sequel.

We know by Lemma 3.7 that Pv(Lv
1(t1) = x1) = 0. Consequently, we can find ε2 > 0

(depending on ε3) such that

(40) Pv
(
Lv

1(t1) ∈ [x1 − ε2/2, x1 + ε2/2]) < ε3/8.

In addition, by possibly making ε2 smaller, we can also ensure that

(41) Pv
(
Lv

2(t1) < x1
) − Pv

(
Lv

2(t1) < x1 − 2ε2
)
< ε3/8.

This fixes our choice of ε2.
For a function f ∈ C([a, b]), we define the modulus of continuity by

w(f, δ) = sup
x,y∈[a,b]
|x−y|≤δ

∣∣f (x) − f (y)
∣∣.

Since Lv
1 and Lv

2 are continuous on [a, b] almost surely, we conclude that there exists W−1
0 >

ε1 > 0 (depending on ε3 and ε2) such that

(42) if Ev = {
w

(
Lv

i , ε1
)
> ε2/10 for some i ∈ {1,2}} then Pv(Ev) < ε3/8.

For v ∈ {1,2}, we define the event

Fv = {
Lv

2(x) < x1 − ε2 for x ∈ [t1 − ε1, t1 + ε1]
}
.

Define sequences pv
w for v ∈ {1,2} through

pv
w = E

[
1Ec

v
· 1Fv · Pv,w

avoid(Q(t1) ≤ x1)

F (x1;aw, bw,Lv
1(aw),Lv

1(bw))

]
.

We claim that

(43) Pv(Fv) − ε3/2 ≤ lim inf
w→∞ pv

w.

We will prove (43) in the steps below. For now, we assume its validity and prove (39). Observe
that by definition we have pw ≥ pv

w , and so by (43) we have

Pv(Fv) − 3ε3/4 ≤ lim inf
w→∞ pw.

In addition, by the definition of ε1 we know that

Pv(Fv) = Pv(Fv ∩ Ev) + Pv
(
Fv ∩ Ec

v

) ≥ Pv
(
Fv ∩ Ec

v

)

≥ Pv
({

Lv
2(t1) < x1 − 2ε2

} ∩ Ec
v

) ≥ Pv
(
Lv

2(t1) < x1
) − ε3/4,

where in the last inequality we used (41) and (42). The last two inequalities imply (39).
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Step II. Our focus in the remaining steps is to prove (43). We define the events

Av = {
Lv

1(t1) ∈ [x1 − ε2/2, x1 + ε2/2]}.

We claim that Pv-almost surely for all w sufficiently large we have

(44) 1Ec
v∩Fv∩Ac

v
· Pv,w

avoid(Q(t1) ≤ x1)

F (x1;aw, bw,Lv
1(aw),Lv

1(bw))
≥ 1Ec

v∩Fv∩Ac
v
· (1 − ε3/4).

We will prove (44) in the steps below. For now, we assume its validity and conclude the proof
of (43). In view of (44), we know that

lim inf
w→∞ pv

w ≥ Pv
(
Ec

v ∩Fv ∩Ac
v

)−ε3/4 ≥ Pv(Fv)−Pv(Ev)−Pv(Av)−ε3/4 ≥ Pv(Fv)−ε3/2,

where in the last inequality we used (40) and (42). The above clearly implies (43).
Step III. We claim that Pv-almost surely

lim
w→∞ 1Ec

v∩Fv∩Ac
v
· Pv,w

avoid(Q(t1) ≤ x1)

F (x1;aw, bw,Lv
1(aw),Lv

1(bw))
= 1Ec

v∩Fv∩Ac
v

which clearly implies (44). In view of (36), the fraction inside the limit is bounded from
above by 1, and so the right side dominates the terms on the left for each w. Consequently, it
suffices to show that Pv-almost surely

(45) lim inf
w→∞ 1Ec

v∩Fv∩Ac
v
· Pv,w

avoid(Q(t1) ≤ x1)

F (x1;aw, bw,Lv
1(aw),Lv

1(bw))
≥ 1Ec

v∩Fv∩Ac
v
.

Let ω ∈ Ec
v ∩Fv ∩Ac

v be fixed. Then, ω ∈ Ac
v and so Lv

1(t1) > x1 +ε2/2 or Lv
1(t1) < x1 −ε2/2,

which we treat separately. We will handle the case when Lv
1(t1) < x1 − ε2/2 in this step and

postpone the other case to the next step; see, also, Figure 6.
Suppose then that ω ∈ Ec

v ∩ Fv ∩ Ac
v is such that Lv

1(t1) < x1 − ε2/2, and let W1 ≥ W0 be
sufficiently large that W−1

1 < ε1. Then, for w ≥ W1, we have

Pv,w
avoid(Q(t1) ≤ x1)

F (x1;aw, bw,Lv
1(aw),Lv

1(bw))
≥ Paw,bw,Lv

1(aw),Lv
1(bw),∞,Lv

2[aw,bw]
avoid

(
Q(t1) ≤ x1

)

≥ Paw,bw,x1−2ε2/5,x1−2ε2/5,∞,Lv
2[aw,bw]

avoid
(
Q(t1) ≤ x1

)

≥ Paw,bw,x1−2ε2/5,x1−2ε2/5,∞,x1−ε2
avoid

(
Q(t1) ≤ x1

)
.

(46)

In the first inequality we used that F ∈ (0,1] and the definition of Pv,w
avoid. To see the second

inequality, we note that, since ω ∈ Ec
v , we know that

∣∣Lv
1(aw) − Lv

1(t1)
∣∣ ≤ ε2/10 and

∣∣Lv
1(bw) − Lv

1(t1)
∣∣ ≤ ε2/10

which implies that

Lv
1(aw) ≤ x1 − 2ε2/5 and Lv

1(bw) ≤ x1 − 2ε2/5.

The above inequalities and Lemma 2.14 imply the second inequality in (46). In deriving the
third inequality, we used that on Fv the curve Lv

2[aw, bw] is upper bounded by x1 − ε2 and
Lemma 2.15.
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FIG. 6. The figure represents schematically the situation when ω ∈ Ec
v ∩ Fv ∩ Ac

v and Lv
1(t1) < x1 − ε2/2. We

remark that to make the picture comprehensible we have distorted it, and, in fact, one has that bw − aw is much
smaller than ε2. In addition, to ease the notation we have removed the dependence on v ∈ {1,2}. The curve Q1 is
a Brownian bridge between the points L1(aw) and L1(bw), conditioned on staying above L2 and proving (45) in
the case we consider in Step III boils down to showing that P(Q1(t1) ≤ x1) converges to 1 as w → ∞ (recall that
t1 = (bw + aw)/2). This reduction is the first line of (46). What one observes further is that if Lv

1(t1) < x1 − ε2/2
and ω ∈ Ec

v , then Lv
1(aw) ≤ x1 − 2ε2/5 and Lv

1(bw) ≤ x1 − 2ε2/5. If we thus construct a Brownian bridge Q2

starting and ending at x1 − 2ε2/5 and conditioned to stay above L2, then this bridge can be coupled with Q1 in
view of Lemma 2.14 so that it sits above it. Finally, on the event Fv the curve Lv

2 lies below the line x1 − ε2. This
means that we can construct a bridge Q3 with the same starting and ending points as Q2 but conditioned to stay
above the line x1 − ε2, and this bridge can be coupled with Q2 in view of Lemma 2.15 so that it sits above it. Since
each construction pushes the curves upward, the probability P(Q3(t1) ≤ x1) is a lower bound for P(Q1(t1) ≤ x1),
and, hence, it suffices to show that the former is going to 1 as w → ∞. This reduction is the content of (46), where
Q is used to denote all three of the above random curves the distinction being obvious from the notation used for
P. Showing that P(Q3(t1) ≤ x1) converges to 1 can be seen as follows. The curve Q3 is a Brownian bridge that is
pinned at level x1 − 2ε2/5, and is conditioned to stay above x1 − ε2. The order of its typical fluctuation is w−1/2,
and this is much lower than ε2 which, effectively, means that Q3 does not feel its conditioning on staying above
x1 − ε2 (as this level is extremely low in the scale of the fluctuations) and behaves like a regular Brownian bridge.
But a regular Brownian bridge started very low is very likely to have a low midpoint as well. The latter heuristic
can be justified with simple exact computations which are done in (47).

We consequently observe that

Paw,bw,x1−2ε2/5,x1−2ε2/5,∞,x1−ε2
avoid

(
Q(t1) ≤ x1

)

= Paw,bw,x1−2ε2/5,x1−2ε2/5
free (Q(t1) ≤ x1 and infx∈[aw,bw] Q(x) ≥ x1 − ε2)

Paw,bw,x1−2ε2/5,x1−2ε2/5
free (infx∈[aw,bw] Q(x) ≥ x1 − ε2)

≥ 1 − Paw,bw,x1−2ε2/5,x1−2ε2/5
free (Q(t1) > x1)

Paw,bw,x1−2ε2/5,x1−2ε2/5
free (infx∈[aw,bw] Q(x) ≥ x1 − ε2)

= 1 − P−1,1,0,0
free (Q(0) > 2q

√
w)

P−1,1,0,0
free (infx∈[−1,1] Q(x) ≥ −3q

√
w)

= 1 − 1 − *(2q
√

2w)

1 − exp(−9q2w)
,

(47)

where in the first equality we used Definition 2.4 and the next-to-last equality follows from a
simple change of variables (here, q = ε2/5); cf. Lemma 3.5 for k = 1. In the last equality the
denominators are equal by Lemma 3.9, and the numerators are equal, since Q(0) is normally
distributed with mean 0 and variance 1/2 (recall that * was the cdf of a standard Gaussian
random variable). Combining (46) and (47), we conclude (45) when ω ∈ Ec

v ∩ Fv ∩ Ac
v is

such that Lv
1(t1) < x1 − ε2/2.

Step IV. Suppose that ω ∈ Ec
v ∩ Fv ∩ Ac

v is such that Lv
1(t1) > x1 + ε2/2, and let W1 ≥ W0

be sufficiently large that W−1
1 < ε1; see, also, Figure 7.
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FIG. 7. The figure represents schematically the situation when ω ∈ Ec
v ∩ Fv ∩ Ac

v and Lv
1(t1) > x1 + ε2/2.

We remark that to make the picture comprehensible we have distorted it, and, in fact, one has that bw − aw is
much smaller than ε2. In addition, to ease the notation we have removed the dependence on v ∈ {1,2}. The curve
Q1 is a Brownian bridge between the points L1(aw) and L1(bw) and Q2 is a Brownian bridge between the
same points but conditioned on staying above L2. Proving (45) in the case we consider in Step IV boils down to
showing that P(Q2(t1) ≤ x1)/P(Q1(t1) ≤ x1) is lower bounded by 1 as w → ∞ (recall that t1 = (bw + aw)/2).
On the event Fv the curve Lv

2 lies below the line x1 − ε2. This means that we can construct a bridge Q3 with
the same starting and ending points as Q2 but conditioned to stay above the line x1 − ε2, and this bridge can
be coupled with Q2 in view of Lemma 2.15 so that it sits above it. Since this construction pushes the curve
upward, the probability P(Q3(t1) ≤ x1) is a lower bound for P(Q2(t1) ≤ x1), and, hence, it suffices to show that
P(Q3(t1) ≤ x1)/P(Q1(t1) ≤ x1) is lower bounded by 1 as w → ∞. This reduction is the content of (48). The
curve Q3 is a Brownian bridge that is pinned at level x1 + ε2/2 and is conditioned to stay above x1 − ε2. The
order of its typical fluctuation is w−1/2, and this is much lower than ε2 which effectively means that Q3 does not
feel its conditioning on staying above x1 − ε2 (as this level is extremely low in the scale of the fluctuations) and
behaves like Q1. Of course, P(Q3(t1) ≤ x1) and P(Q1(t1) ≤ x1) are tail probabilities, but one can still show that
their ratio is close to 1. This is done in (49) and the equations that follow it.

For w ≥ W1, we have

(48)
Pv,w

avoid(Q(t1) ≤ x1)

F (x1;aw, bw,Lv
1(aw),Lv

1(bw))
≥ Paw,bw,Lv

1(aw),Lv
1(bw),∞,x1−ε2

avoid (Q(t1) ≤ x1)

F (x1;aw, bw,Lv
1(aw),Lv

1(bw))
,

where we used that on Fv the curve Lv
2[aw, bw] is upper bounded by x1 −ε2 and Lemma 2.15.

We next notice that by Definition 2.4 the numerator on the right side equals

Paw,bw,Lv
1(aw),Lv

1(bw)

free (infx∈[aw,bw] Q(x) ≥ x1 − ε2 and Q(t1) ≤ x1)

Paw,bw,Lv
1(aw),Lv

1(bw)

free (infx∈[aw,bw] Q(x) ≥ x1 − ε2)
.

Combining the last two statements and performing a change of variables (we use Lemma 3.5
for k = 1), we conclude that

Pv,w
avoid(Q(t1) ≤ x1)

F (x1;aw, bw,Lv
1(aw),Lv

1(bw))

≥ P̃v,w(infx∈[−1,1] Q̃(x) ≥ −ε2 · √w and Q̃(0) ≤ 0)

P̃v,w(Q̃(0) ≤ 0) · P̃v,w(infx∈[−1,1] Q̃(x) ≥ −ε2 · √w)

≥ P̃v,w(infx∈[−1,1] Q̃(x) ≥ −ε2 · √w and Q̃(0) ≤ 0)

P̃v,w(Q̃(0) ≤ 0)

≥ 1 − P̃v,w(infx∈[−1,1] Q̃(x) < −ε2 · √w)

P̃v,w(Q̃(0) ≤ 0)
,

(49)

where P̃v,w denotes P−1,1,A,B
free with Av,w = [Lv

1(aw) − x1] · √w and Bv,w = [Lv
1(bw) − x1] ·√

w and Q̃ is a P̃v,w-distributed Brownian bridge.
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We now have by the Gaussianity of Q̃(0) that

P̃v,w
(
Q̃(0) ≤ 0

) = 1 − *

(
Av,w + Bv,w√

2

)
.

Also, we have since ω ∈ Ec
v that Av,w ≥ (2ε2/5)

√
w, Bv,w ≥ (2ε2/5)

√
w. Consequently,

P̃v,w

(
inf

x∈[−1,1]
Q̃(x) < −ε2 · √w

)
= exp

(−[ε2
√

w + Av,w][ε2
√

w + Bv.w]),

where the last equality follows from Lemma 3.9. Let Mv,w = max(Av,w,Bv,w) and mv,w =
min(Av,w,Bv,w). Since ω ∈ Ec

v , we know that Mv,w −mv,w ≤ (ε2/5)
√

w. Consequently, the
above two equalities imply that

P̃v,w
(
Q̃(0) ≤ 0

) ≥ exp(−M2
v,w)

c0
√

2π [1 +
√

2Mv,w]
,

P̃v,w

(
inf

x∈[−1,1]
Q̃(x) < −ε2 · √w

)
≤ exp

(−[Mv,w + 5q
√

w][Mv,w + 4q
√

w]),

where in the first inequality we used Lemma 3.8 (here, c0 is as in this lemma and is a universal
constant), and also q = ε2/5. Combining the last two inequalities with (49), we see that

Pv,w
avoid(Q(t1) ≤ x1)

F (x1;aw, bw,Lv
1(aw),Lv

1(bw))

≥ 1 − c0[1 +
√

2Mv,w] · exp
(−[Mv,w + 5q

√
w][Mv,w + 4q

√
w] + M2

v,w

)
.

Since Mv,w ≥ 2q
√

w, we see that the above expression converges to 1 as w → ∞ which
proves (45) when ω ∈ Ec

v ∩ Fv ∩ Ac
v is such that Lv

1(t1) > x1 + ε2/2. This concludes the
proof of (45) and hence the proposition in this basic case.

4.2. Proof of Proposition 4.1. Here, we present the proof of Proposition 4.1. We as-
sume the same notation as in Sections 2 and 3. We proceed by induction on N with the base
case N = 1 being obvious. Suppose that we know the result for N − 1 and wish to prove it
for N . Suppose that k ∈ N and a = t0 < t1 < · · · < tk < tk+1 = b, n1, . . . , nk ∈ !1,N " and
y1, . . . , yk ∈ R are all given. The variables n1, . . . , nk and y1, . . . , yk are allowed to have
repeated values. We wish to prove that

(50) P1
(
L1

n1
(t1) ≤ y1, . . . ,L1

nk
(tk) ≤ yk

) = P2
(
L2

n1
(t1) ≤ y1, . . . ,L2

nk
(tk) ≤ yk

)
.

For clarity we split the proof into seven steps. In Step 1 we reduce the proof to establishing
the existence of a sequence pw (indexed by w ∈ N) whose subsequential limits satisfy certain
inequalities, detailed in (51). The sequence pw is defined in Step 2 (see (54) and constitutes
the multilevel and multipoint analogue of the observables pw , which we introduced in Sec-
tion 4.1 for the basic case. Step 3 establishes one of the inequalities in (51); this is analogous
to how we established one of the inequalities in (33) using (36) in the base case which ulti-
mately boils down to an application of Lemma 2.15. Steps 4–7 mimic Steps I–IV in the basic
case, and we give more details within those steps:

Step 1. Let x1, . . . , xk ∈ R be fixed. We claim that there exists a sequence {pw}∞w=1 with
pw ∈ [0,1] such that, for v ∈ {1,2}, we have

Pv
(
Lv

n1
(t1) < x1, . . . ,Lv

nk
(tk) < xk

) ≤ lim inf
w→∞ pw

≤ lim sup
w→∞

pw ≤ Pv
(
Lv

n1
(t1) ≤ x1, . . . ,Lv

nk
(tk) ≤ xk

)
.

(51)
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We will prove (51) in the steps below. For now, we assume its validity and finish the proof of
(50). For x1, . . . , xk ∈ R and v ∈ {1,2}, we let

Fv(x1, . . . , xk) = Pv
(
Lv

n1
(t1) ≤ x1, . . . ,Lv

nk
(tk) ≤ xk

)
.

We also define for v ∈ {1,2} and r ∈ R

Gv(r) = Fv(y1 + r, y2 + r, . . . , yk + r).

Observe that by basic properties of probability measures we know that G1 and G2 are in-
creasing right-continuous functions. Moreover, if G1 and G2 are both continuous at a point
r , then from (51) applied to xi = yi + r for i = 1, . . . , k we know that G1(r) = G2(r). The
latter and Lemma 3.2 imply that G1 = G2. In particular, G1(0) = G2(0) which is precisely
(50).

Step 2. In this step we define the sequence pw that satisfies (51). We also introduce some
notation that will be used in the rest of the proof.

Given points s, t, r ∈ R with s < t and %x, %y ∈ W ◦
N−1, we define

F̄ (r; s, t, %x, %y) = Ps,t,%x,%y,∞,−∞
avoid

(
QN−1

(
(s + t)/2

) ≤ r
)
,

where (Q1, . . . ,QN−1) is Ps,t,%x,%y,∞,−∞
avoid -distributed. Observe that, for fixed s, t , r , the func-

tion F̄ (r; s, t, %x, %y) is a measurable function of %x, %y, as follows from Lemma 3.4. For M ∈ N,
we denote

GM(r; s, t, %x, %y) = min
(
M,

1

F̄ (r; s, t, %x, %y)

)

and note that GM is a nonnegative bounded measurable function. Let S = {s ∈ {1, . . . , k} :
ns = N}. For w ∈ N and s ∈ S, we define aw

s = ts − w−1 and bw
s = ts + w−1. We also fix

W0 ∈ N sufficiently large that w ≥ W0 implies 2w−1 ≤ min1≤i≤k+1(ti − ti−1).
By the induction hypothesis we know that (50) holds provided n1, . . . , nk ∈ !1,N − 1".

The latter and Proposition 3.3 imply that π
!1,N−1"
[a,b] (L1) under P1 and π

!1,N−1"
[a,b] (L2) under P2

have the same distribution as !1,N − 1"-indexed line ensembles on [a, b]. We conclude that,
for w ≥ W0,

(52) E
[
HM

w

(
L1; %t, %n, %x)] = E

[
HM

w

(
L2; %t, %n, %x)]

with

HM
w

(
Lv; %t, %n, %x) =

∏

s∈Sc

1
{
Lv

ns
(ts) ≤ xs

}

×
∏

s∈S

1
{
Lv

N−1(ts) ≤ xs
}
GM

(
xs;aw

s , bw
s , %xs,v,w, %ys,v,w)

,

where %xs,v,w = (Lv
1(a

w
s ), . . . ,Lv

N−1(a
w
s )) and %ys,v,w = (Lv

1(b
w
s ), . . . ,Lv

N−1(b
w
s )) for v =

1,2. Some of the notation we defined above is illustrated in Figure 8.
For s ∈ S, define F s,w

ext = Fext(!1,N −1" × (aw
s , bw

s )) as in Definition 2.7, and observe that
by the tower property for conditional expectations and the partial Brownian Gibbs property

E
[
HM

w

(
Lv; %t, %n, %x)] = E

[
E

[· · ·E[
HM

w

(
L1; %t, %n, %x) | F s1,w

ext
] · · · | F sm,w

ext
]]

= E
[ ∏

s∈Sc

1
{
Lv

ns
(ts) ≤ xs

} ∏

s∈S

Ps,v,w
avoid

(
QN−1(ts) ≤ xs

)

× GM
(
xs;aw

s , bw
s , %xs,v,w, %ys,v,w)]

,

(53)
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FIG. 8. The figure schematically represents Lv where we have suppressed v from the notation. In the figure,
N = 3, S = {1,3} and n1 = 3, n2 = 2, n3 = 3, n4 = 1.

where v ∈ {1,2} and we have written Ps,v,w
avoid in place of Paw

s ,bw
s ,%xs,v,w,%ys,v,w,∞,Lv

N [aw
s ,bw

s ]
avoid to

simplify the expression; note also that (Q1, . . . ,QN−1) is Ps,v,w
avoid -distributed. In addition,

s1, . . . , sm is an enumeration of the elements of S, and, in deriving the above expression, we
also used Lemma 3.4, which implies that Ps,v,w

avoid (QN−1(ts) ≤ xs) is measurable with respect
to the σ -algebra,

σ
{
Lv

i (s) : i ∈ !1,N − 1" and s ∈ {
aw
s , bw

s

}
, or s ∈ [

aw
s , bw

s

]
and i = N

}
.

Taking the limit as M → ∞ in (53) (using the monotone convergence theorem), we con-
clude that, for any w ≥ W0, we have

lim
M→∞

E
[
HM

w

(
Lv; %t, %n, %x)] = E

[∏

s∈S

Ps,v,w
avoid (QN−1(ts) ≤ xs)

F̄ (xs;aw
s , bw

s , %xs,1,w, %ys,v,w)
·

∏

s∈Sc

1
{
Lv

ns
(ts) ≤ xs

}]
.

In view of (52), the above limits are the same for v = 1 and v = 2, and we denote them by
pw so that

pw = E
[∏

s∈S

Ps,1,w
avoid (QN−1(ts) ≤ xs)

F̄ (xs;aw
s , bw

s , %xs,1,w, %ys,1,w)
·

∏

s∈Sc

1
{
L1

ns
(ts) ≤ xs

}]

= E
[∏

s∈S

Ps,2,w
avoid (QN−1(ts) ≤ xs)

F̄ (xs;aw
s , bw

s , %xs,2,w, %ys,2,w)
·

∏

s∈Sc

1
{
L2

ns
(ts) ≤ xs

}]
.

(54)

Equation (54) defines the sequence pw , and we show that it satisfies (51) in the steps below.
Step 3. In this step we prove the second line in (51). By Lemma 2.15 applied to a = aw

s ,
b = bw

s , %x = %xs,v,w , %y = %ys,v,w , gt = Lv
N [aw

s , bw
s ] and gb = −∞ we know that

Ps,v,w
avoid

(
QN−1(ts) ≤ xs

) ≤ Paw
s ,bw

s ,%xs,v,w,%ys,v,w,∞,−∞
avoid

(
QN−1(ts) ≤ xs

)

= F̄
(
xs;aw

s , bw
s , %xs,v,w, %ys,v,w)

.
(55)

In addition, we observe that on the event {Lv
N(ts) > xs}, we have Ps,v,w

avoid (QN−1(ts) ≤ xs) = 0.
The latter two statements imply that, for any w ≥ W0 and v ∈ {1,2}, we have that

pw ≤ E
[∏

s∈S

1
{
Lv

N(ts) ≤ xs
} ·

∏

s∈Sc

1
{
Lv

ns
(ts) ≤ xs

}]

which clearly implies the second line in (51).
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Step 4. In this step we state a simple reduction of the first line of (51). Afterward, we define
two sequences pv

w for v ∈ {1,2} which will play an important role in our arguments.
First, we claim that, for any ε3 > 0 and v ∈ {1,2}, we have

(56) Pv
(
Lv

n1
(t1) < x1, . . . ,Lv

nk
(tk) < xk

) − ε3 ≤ lim inf
w→∞ pw.

It is clear that, if (56) is true, then the first line of (51) would follow. We thus focus on
establishing (56) and fix ε3 > 0 in the sequel.

We know by Lemma 3.7 that, for any s ∈ S, we have Pv(Lv
N−1(ts) = xs) = 0. Conse-

quently, we can find ε2 > 0 (depending on ε3) such that

(57)
∑

s∈S

Pv
(
Lv

N−1(ts) ∈ [xs − ε2/2, xs + ε2/2]) < ε3/8.

In addition, by possibly making ε2 smaller we can also ensure that

(58)
Pv

(
Lv

n1
(t1) < x1, . . . ,Lv

nk
(tk) < xk

)

− Pv
(
Lv

n1
(t1) < x1 − 2ε2, . . . ,Lv

nk
(tk) < xk − 2ε2

)
< ε3/8.

This fixes our choice of ε2.
Recall that for f ∈ C([a, b]) its modulus of continuity is given by

w(f, δ) = sup
x,y∈[a,b]
|x−y|≤δ

∣∣f (x) − f (y)
∣∣.

Since Lv
1, . . . ,Lv

N are continuous on [a, b] almost surely, we conclude that there exists
W−1

0 > ε1 > 0 (depending on ε3 and ε2) such that

(59) if Ev = {
w

(
Lv

i , ε1
)
> ε2/10 for some i ∈ !1,N "

}
then Pv(Ev) < ε3/8.

For v ∈ {1,2}, we define the event

Fv = {
Lv

ni
(x) < xi − ε2 for x ∈ [ti − ε1, ti + ε1] for i = 1, . . . , k

}
.

Define sequences pv
w for v ∈ {1,2} through

pv
w = E

[
1Ec

v
· 1Fv ·

∏

s∈S

Ps,v,w
avoid (QN−1(ts) ≤ xs)

F̄ (xs;aw
s , bw

s , %xs,v,w, %ys,v,w)

]
.

We claim that

(60) Pv(Fv) − ε3/2 ≤ lim inf
w→∞ pv

w.

We will prove (60) in the steps below. For now, we assume its validity and prove (56). Observe
that by definition we have pw ≥ pv

w , and so by (60) we have

Pv(Fv) − 3ε3/4 ≤ lim inf
w→∞ pw.

In addition, by the definition of ε1 we know that

Pv(Fv) = Pv(Fv ∩ Ev) + Pv
(
Fv ∩ Ec

v

) ≥ Pv
(
Fv ∩ Ec

v

)

≥ Pv
({

Lv
n1

(t1) < x1 − 2ε2, . . . ,Lv
nk

(tk) < xk − 2ε2
} ∩ Ec

v

)

≥ Pv
(
Lv

n1
(t1) < x1, . . . ,Lv

nk
(tk) < xk

) − ε3/4,

where in the last inequality we used (58) and (59). The last two inequalities imply (56).
Step 5. Our focus in the remaining steps is to prove (60). We define the events

Av = {
Lv

N−1(ts) ∈ [xs − ε2/2, xs + ε2/2] for some s ∈ S
}
.
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We claim that Pv-almost surely we have for all w sufficiently large that

(61) 1Ec
v∩Fv∩Ac

v
·
∏

s∈S

Ps,v,w
avoid (QN−1(ts) ≤ xs)

F̄ (xs;aw
s , bw

s , %xs,v,w, %ys,v,w)
≥ 1Ec

v∩Fv∩Ac
v
· (1 − ε3/4).

We will prove (61) in the steps below. For now, we assume its validity and conclude the proof
of (60). In view of (61), we know that

lim inf
w→∞ pv

w ≥ Pv
(
Ec

v ∩Fv ∩Ac
v

)−ε3/4 ≥ Pv(Fv)−Pv(Ev)−Pv(Av)−ε3/4 ≥ Pv(Fv)−ε3/2,

where in the last inequality we used (57) and (59). The above clearly implies (60).
Step 6. We claim that, for each s ∈ S, we have Pv-almost surely

lim
w→∞ 1Ec

v∩Fv∩Ac
v
· Ps,v,w

avoid (QN−1(ts) ≤ xs)

F̄ (xs;aw
s , bw

s , %xs,v,w, %ys,v,w)
= 1Ec

v∩Fv∩Ac
v

which clearly implies (61). In view of (55), the fraction inside the limit is bounded from
above by 1 which implies that the right side above is greater than or equal to each term on
the left. Consequently, it suffices to show that Pv-almost surely

(62) lim inf
w→∞ 1Ec

v∩Fv∩Ac
v
· Ps,v,w

avoid (QN−1(ts) ≤ xs)

F̄ (xs;aw
s , bw

s , %xs,v,w, %ys,v,w)
≥ 1Ec

v∩Fv∩Ac
v
.

Let ω ∈ Ec
v ∩ Fv ∩ Ac

v be fixed. Then, ω ∈ Ac
v , and so Lv

N−1(ts) > xs + ε2/2 or Lv
N−1(ts) <

xs − ε2/2, which we treat separately. We will handle the case when Lv
N−1(ts) < xs − ε2/2 in

this step and postpone the other case to the next step.
Suppose that ω ∈ Ec

v ∩ Fv ∩ Ac
v is such that Lv

N−1(ts) < xs − ε2/2, and let W1 ≥ W0 be
sufficiently large that W−1

1 < ε1. Then, for w ≥ W1, we have

Ps,v,w
avoid (QN−1(ts) ≤ xs)

F̄ (xs;aw
s , bw

s , %xs,v,w, %ys,v,w)
≥ Paw

s ,bw
s ,%xs,v,w,%ys,v,w,∞,Lv

N [aw
s ,bw

s ]
avoid

(
QN−1(ts) ≤ xs

)
,(63)

where we used that F̄ ∈ (0,1] and the definition of Ps,v,w
avoid .

In the remainder of this step, we show that the right side of (63) converges to 1 as w → ∞,
and here we briefly explain how this is accomplished. We first replace the boundary values
%xs,v,w , %ys,v,w with new ones %λs,v,w , %ρs,v,w . These new boundaries are higher in the case
we are presently considering and also satisfy %λs,v,w

N−1 = %ρs,v,w
N−1 = xs − 2ε2/5. In addition, we

replace Lv
N [aw

s , bw
s ] by the flat line xs − ε2 which is higher. Doing these two substitutions

stochastically raises the line ensemble by Lemmas 2.14 and 2.15 which makes the probability
on the right side (63) go down. Consequently, it suffices to show that this lower probability
converges to 1, and then the same would follow for the higher one. The particular way we
lift the boundary allows us to easily apply Lemmas 3.10 and 3.12 and get, for all large w, a
lower bound for the right side of (63), converging to 1 as w → ∞. We now turn to filling in
the details of this sketch.

Since ω ∈ Ec
v , we know

∣∣Lv
N−1

(
aw
s

) − Lv
N−1(ts)

∣∣ ≤ ε2/10 and
∣∣Lv

N−1
(
bw
s

) − Lv
N−1(ts)

∣∣ ≤ ε2/10

which implies that

lws = xs − 2ε2/5 − Lv
N−1

(
aw
s

) ≥ 0 and rw
s = xs − 2ε2/5 − Lv

N−1
(
bw
s

) ≥ 0.
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Let %λs,v,w be defined as %λs,v,w
i = %xs,v,w

i + lws and %ρs,v,w be defined as %ρs,v,w
i = %ys,v,w

i + rw
s

for i = 1, . . . ,N − 1. In particular, we obtain

Paw
s ,bw

s ,%xs,v,w,%ys,v,w,∞,Lv
N [aw

s ,bw
s ]

avoid
(
QN−1(ts) ≤ xs

)

≥ Paw
s ,bw

s ,%λs,v,w, %ρs,v,w,∞,Lv
N [aw

s ,bw
s ]

avoid
(
QN−1(ts) ≤ xs

)

≥ Paw
s ,bw

s ,%λs,v,w, %ρs,v,w,∞,xs−ε2
avoid

(
QN−1(ts) ≤ xs

)

= Paw
s ,bw

s ,%λs,v,w, %ρs,v,w,∞,−∞
avoid (QN−1(ts) ≤ xs and infx∈[aw

s ,bw
s ] QN−1(x) ≥ xs − ε2)

Paw
s ,bw

s ,%λs,v,w, %ρs,v,w,∞,−∞
avoid (infx∈[aw

s ,bw
s ] QN−1(x) ≥ xs − ε2)

≥ 1 − Paw
s ,bw

s ,%λs,v,w, %ρs,v,w,∞,−∞
avoid (QN−1(ts) > xs)

Paw
s ,bw

s ,%λs,v,w, %ρs,v,w,∞,−∞
avoid (infx∈[aw

s ,bw
s ] QN−1(x) ≥ xs − ε2)

,

(64)

where in the first inequality we used Lemma 2.14 and in the second one we used Lemma 2.15
and the fact that on Fv we have that Lv

N [aw
s , bw

s ] lies below xs − ε2. The equality in going
from the third to the fourth line uses Definition 2.4 twice. It follows from Lemma 3.12 applied
to a = aw

s , b = bw
s , %x = %λs,v,w , %y = %ρs,v,w , k = N − 1 and r = r1,w = 3ε2w

1/2

10 − k + 1 that if
w is sufficiently large (so that r ≥ 0), we have

Paw
s ,bw

s ,%λs,v,w, %ρs,v,w,∞,−∞
avoid

(
inf

x∈[aw
s ,bw

s ]
QN−1(x) ≥ xs − ε2

)

≥ 1 − (
1 − 2e−1)−N+1 · e−4r2

1,w .

(65)

In addition, it follows from Lemma 3.10 applied to a = aw
s , b = bw

s , %x = %λs,v,w , %y = %ρs,v,w ,

k = N − 1 and r = r2,w =
√

2ε2w
1/2

5 that if w is sufficiently large (so that r ≥ 0), we have

(66) Paw
s ,bw

s ,%λs,v,w, %ρs,v,w,∞,−∞
avoid

(
QN−1(ts) > xs

) ≤ c0e
−2r2

2,w

√
2π [1 + 2r2,w]

.

Since r1,w and r2,w both converge to ∞ as w → ∞, we see that (63), (64), (65) and (66)
together imply (62) when ω ∈ Ec

v ∩ Fv ∩ Ac
v is such that Lv

N−1(ts) < xs − ε2/2.
Step 7. Suppose that ω ∈ Ec

v ∩Fv ∩Ac
v is such that Lv

N−1(ts) > xs +ε2/2, and let W1 ≥ W0

be sufficiently large that W−1
1 < ε1. Then, for w ≥ W1, we have

Ps,v,w
avoid (QN−1(ts) ≤ xs)

F̄ (xs;aw
s , bw

s , %xs,v,w, %ys,v,w)
≥ Paw

s ,bw
s ,%xs,v,w,%ys,v,w,∞,xs−ε2

avoid (QN−1(ts) ≤ xs)

F̄ (xs;aw
s , bw

s , %xs,v,w, %ys,v,w)
,

where we used that on Fv the curve Lv
N [aw

s , bw
s ] is upper bounded by xs − ε2 and

Lemma 2.15. We next notice that

Paw
s ,bw

s ,%xs,v,w,%ys,v,w,∞,xs−ε2
avoid

(
QN−1(ts) ≤ xs

)

= Paw
s ,bw

s ,%xs,v,w,%ys,v,w,∞,−∞
avoid (QN−1(ts) ≤ xs and infx∈[aw

s ,bw
s ] QN−1(x) ≥ xs − ε2)

Paw
s ,bw

s ,%xs,v,w,%ys,v,w,∞,−∞
avoid (infx∈[aw

s ,bw
s ] QN−1(x) ≥ xs − ε2)

.
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Combining the last two statements and performing a change of variables, we conclude that

Ps,v,w
avoid (QN−1(ts) ≤ xs)

F (xs;aw
s , bw

s , %xs,v,w, %ys,v,w)

≥ P̃v,w(infx∈[−1,1] Q̃N−1(x) ≥ −ε2 · √w and Q̃N−1(0) ≤ 0)

P̃v,w(Q̃N−1(0) ≤ 0) · P̃v,w(infx∈[−1,1] Q̃N−1(x) ≥ −ε2 · √w)

≥ P̃v,w(infx∈[−1,1] Q̃N−1(x) ≥ −ε2 · √w and Q̃N−1(0) ≤ 0)

P̃v,w(Q̃N−1(0) ≤ 0)

≥ 1 − P̃v,w(infx∈[−1,1] Q̃N−1(x) ≤ −ε2 · √w)

P̃v,w(Q̃N−1(0) ≤ 0)
,

(67)

where P̃v,w = P−1,1, %A, %B,−∞,∞
avoid with %Av,w = [%xs,v,w − xs · %1] · √w and %Bv,w = [%ys,v,w − xs ·

%1] · √
w and %1 is the vector in RN−1 with all entries equal to 1 (in words, P̃v,w is the law

of N − 1 avoiding Brownian bridges started from %A at time −1 and ending at %B at time 1).
The change of variables we used above comes from Lemma 3.5 applied to r = xs , u = ts ,
c = √

w, a = −1, b = 1, %x = %Av,w and %y = %Bv,w .
Put %Av,w = (Av,w

1 , . . . ,Av,w
N−1) and %Bv,w = (Bv,w

1 , . . . ,Bv,w
N−1). We also let Mv,w =

max(Av,w
N−1,B

v,w
N−1) and mv,w = min(Av,w

N−1,B
v,w
N−1). Since ω ∈ Ec

v and by assumption
Lv

N−1(ts) > xs + ε2/2, we know that mv,w ≥ √
w · (2ε2/5) and Mv,w − mv,w ≤ √

w(ε2/5).
It follows from Lemma 3.12, applied to a = −1, b = 1, %x = %Av,w , %y = %Bv,w , k = N − 1

and r = r1,w = ε2
√

w+mv,w

2 − k + 1, that if w is sufficiently large (so that r ≥ 0), we have

(68) P̃v,w

(
inf

x∈[−1,1]
Q̃N−1(x) ≤ −ε2 · √w

)
≤ (

1 − 2e−1)−N+1 · e−4r2
1,w .

In addition, it follows from Lemma 3.11 applied to a = −1, b = 1, %x = %Av,w , %y = %Bv,w ,
k = N − 1 and r = r2,w = Mv,w√

2
that

(69) P̃v,w
(
Q̃N−1(0) ≤ 0

) ≥ c0e
−2r2

2,w

√
2π [1 + 2r2,w]

.

Combining (67), (68) and (69), we see that, for all w sufficiently large, we have

Ps,v,w
avoid (QN−1(ts) ≤ xs)

F̄ (xs;aw
s , bw

s , %xs,v,w, %ys,v,w)

≥ 1 − [
1 − 2e−1]−N+1

e−4r2
1,w+2r2

2,w ·
√

2π [1 + 2r2,w]
c0

= 1 −
√

2π [1 − 2e−1]−N+1

c0
· [1 +

√
2Mv,w]e−[ε2

√
w+mv,w−2N+4]2+M2

v,w

≥ 1 −
√

2π [1 − 2e−1]−N+1

c0
· [1 +

√
2Mv,w]e−[(4ε2/5)

√
w+Mv,w−2N+4]2+M2

v,w

≥ 1 − [1 +
√

2Mv,w]e−[(ε2/2)
√

w+Mv,w]2+M2
v,w ≥ 1 − [1 +

√
2Mv,w]e−ε2Mv,w,

(70)

where the first equality used the definition of r1,w and r2,w; in going from the second to the
third line, we used that Mv,w − mv,w ≤ √

w(ε2/5), and the inequalities at the end of the
second and third lines hold for all large enough w. Since Mv,w ≥ √

w(2ε2/5), we know it
converges to infinity as w → ∞, and so we that (70) implies (62) when ω ∈ Ec

v ∩ Fv ∩ Ac
v is

such that Lv
N−1(ts) > xs + ε2/2. This concludes the proof of (62) and hence the proposition.
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4.3. Proof of Corollary 2.11. In this section we give the proof of Corollary 2.11. We will
use the same notation as in the statement of the corollary and Section 4.2 above.

The proof is by contradiction, and we assume that for every k ∈ N, t1 < t2 < · · · < tk with
ti ∈ ! and x1, . . . , xk ∈ R, we have

(71) P1
(
L1

1(t1) ≤ x1, . . . ,L1
1(tk) ≤ xk

) = P2
(
L2

1(t1) ≤ x1, . . . ,L2
1(tk) ≤ xk

)
.

We know that the projection of L2 to the top N1 curves is a #1-indexed line ensemble on !
that satisfies the partial Brownian Gibbs property; cf. Remark 2.9. By our assumption above
we have that this line ensemble under P2 has the same top curve distribution as L1 under
P1, and so by Theorem 2.10 we conclude that for any a < b with a, b ∈ !, we have that
π

!1,N1 "
[a,b] (L1) under P1 has the same distribution as π

!1,N1 "
[a,b] (L2) under P2 as #1-indexed line

ensembles. This allows us to repeat the arguments in Step 2 of Section 4.2, and we let pw

be as in (54) for the case k = 1, t1 = (b + a)/2, N − 1 = N1, S = {1}, x1 ∈ R and W0 is
sufficiently large that aw = t1 − 1/w ∈ [a, b] and bw = t1 + 1/w ∈ [a, b] for w ≥ W0. In
particular, we have

pw = E
[ P1,1,w

avoid (QN1(t1) ≤ x1)

F (x1;aw, bw, %x1,1,w, %y1,1,w)

]
= E

[ P1,2,w
avoid (QN1(t1) ≤ x1)

F (x1;aw, bw, %xs,2,w, %y1,2,w)

]
,(72)

where in the left expectation L1
N1+1[aw, bw] = −∞ (here, we used that L1 satisfies the Brow-

nian Gibbs rather than the partial Brownian Gibbs property). In particular, we have by defi-
nition

P1,1,w
avoid

(
QN1(t1) ≤ x1

) = F
(
x1;aw, bw, %x1,1,w, %y1,1,w)

,

and so pw = 1. On the other hand, by repeating the arguments in Step 3 of Section 4.2, we
have the second line of (51), namely, that

lim sup
w→∞

pw ≤ P2
(
L2

N1+1(t1) ≤ x1
)
.

This shows that P2(L2
N1+1(t1) ≤ x1) = 1 for all x1 ∈ R which is our desired contradiction.

Hence, (71) cannot hold for every k ∈ N, t1 < t2 < · · · < tk with ti ∈ ! and x1, . . . , xk ∈ R
which is what we wanted to prove.

APPENDIX

In this section we prove the three lemmas stated in Section 2.3. Our approach goes through
proving analogous results for nonintersecting symmetric random walks and taking scaling
limits. We first isolate some preliminary results in Section A.1. The proof of Lemma 2.13 is
given in Section A.2, and the ones for Lemmas 2.14 and 2.15 are given in Section A.3.

A.1. Preliminaries. Let Xi be i.i.d. random variables such that P(X1 = −1) = P(X1 =
0) = P(X1 = 1) = 1/3. In addition, we let SN = X1 +· · ·+XN , and for z ∈ !−N,N ", we let
S(N,z) = {S(N,z)

m }Nm=0 denote the process {Sm}Nm=0 with law conditioned so that SN = z. We
extend the definition of S

(N,z)
t to noninteger values of t by linear interpolation.

We have the following theorem which is a special case of [18], Theorem 2.6, when p = 0.

THEOREM A.1. There exist constants 0 < C,c,α < ∞ such that, for every positive in-
teger N , there is a probability space on which are defined a standard Brownian bridge B̃(t)
and a family of processes S(N,z) for z ∈ !−N,N " such that

E
[
ec/(N,z)] ≤ Ceα(logN)ez2/N ,

where /(n, z) = sup0≤t≤N |√2N/3 · B̃(t/N) + t
N z − S

(N,z)
t |.
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We summarize some useful notation in the following definition.

DEFINITION A.2. Fix a, b ∈ R with b > a and a scaling parameter n ∈ N. With the
latter data we define two quantities /t

n = (b − a)/n2 and /x
n =

√
3/t

n/2. Furthermore, we
introduce two grids Rn = (/x

n) · Z and !n2 = {a + m · /t
n : m ∈ Z}. Given u, v ∈ !n2 with

u < v and x, y ∈ Rn with |x − y| ≤ /x
n

/t
n

· (v − u), we define the C([u, v])-valued random
variable

Y(t) = x + /x
n · S((v−u)//t

n,(y−x)//x
n)

(t−u)//t
n

for t ∈ [u, v].
As defined, Y(t) is a continuous function on [u, v] such that Y(u) = x and Y(v) = y. We
denote the law of Y by Pu,v,x,y

free,n .

The following result roughly states that the laws Pu,v,x,y
free,n weakly converge to the law of a

Brownian bridge as n → ∞ if the quantities u, v, x, y converge.

LEMMA A.3. Let x, y, a′, b′ ∈ R with a′ < b′. In addition, let a < b, and for n ∈ N, let
xn, yn ∈ Rn and an, bn ∈ !n2 with an ≤ a′, bn ≥ b′ and |xn − yn| ≤ /x

n
/t

n
· [bn − an] (here,

we used the notation from Definition A.2). Suppose an → a′, bn → b′, xn → x and yn → y

as n → ∞. Let Yn be a random variable with law Pan,bn,xn,yn

free,n , and let Zn be a C([a′, b′])-
valued random variable, defined through Zn(t) = Yn(t) for t ∈ [a′, b′]. Then, the law of Zn

converges weakly to Pa′,b′,x,y
free as n → ∞.

PROOF. Let zn = [/x
n]−1 · (yn − xn), and note that zn ∈ !−N,N ", where N = [bn−an]

/t
n

.

Let B̃ be a standard Brownian bridge, and define random C([a′, b′])-valued random variables
Bn and B through

Bn(t) =
√

bn − an · B̃
(

t − an

bn − an

)
+ t − an

bn − an
· yn + bn − t

bn − an
· xn,

B(t) =
√

b − a · B̃
(

t − a

b − a

)
+ t − a

b − a
· y + b − t

b − a
· x.

Clearly, B has law Pa,b,x,y
free and Bn =⇒ B as n → ∞. It follows from [2], Theorem 3.1, that

to conclude that Zn =⇒ B as n → ∞, it suffices to show that we can construct a sequence
of probability spaces that support Yn, Bn so that

(73) ρ
(
Yn,Bn) =⇒ 0 as n → ∞, where ρ(f, g) = sup

x∈[an,bn]

∣∣f (x) − g(x)
∣∣.

From Theorem A.1 we can construct a probability space that supports Yn and Bn (for each
fixed n ∈ N) such that

(74) E
[
ec/̃(N,xn,yn)] ≤ Ceα(logN)ez2

n/N ,

where

/̃(N,xn, yn) = [
/x

n

]−1 · ρ(
Bn,Y n)

.

Let ε > 0 be given. Since yn − xn → y − x as n → ∞, we know that we can find N1 ∈ N and
C1 > 0 such that if n ≥ N1, we have |zn| ≤ C1 ·

√
N . Using (74) and Chebyshev’s inequality,

we see that, for n ≥ N1, we have

P
(
ρ

(
Bn,Y n)

> ε
) ≤ e−cε[/x

n]−1 · Ceα(logN)eC2
1
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which converges to 0 as n → ∞. The latter implies (73) and concludes the proof of the
lemma. !

We next introduce the multiline generalization of Definition A.2.

DEFINITION A.4. Continue with the same notation as in Definition A.2, and fix k ∈ N.
Suppose that S(N,z),i for i = 1, . . . , k and z ∈ !−N,N " are k independent processes with the
same law as S(N,z). In addition, let %x, %y ∈ Rk

n be such that |xi − yi | ≤ /x
n

/t
n

· [v − u]. With this
data we define the !1, k"-indexed line ensemble on [u, v] through

(75) Yn(i, t) = xi + /x
n · S((v−u)//t

n,(yi−xi)//
x
n),i

(t−u)//t
n

for t ∈ [u, v] and i ∈ !1, k".

We call the law of the resulting !1, k"-indexed line ensemble Pa,b,%x,%y
free,n .

Suppose that %x, %y ∈ Rk
n ∩ W ◦

k . By analogy with Definition 2.4, given continuous func-
tions f : [u, v] → (−∞,∞] and g : [u, v] → [−∞,∞), we define the probability measure
Pu,v,%x,%y,f,g

avoid,n to be the distribution of Yn from (75), conditioned on the event

En = {
f (r) > Yn(1, r) > Yn(2, r) > · · · > Yn(k, r) > g(r) for r ∈ [u, v]}.

This measure is well defined, if the set of trajectories satisfying the latter conditions is
nonempty.

We need the following convergence result for nonintersecting random walk bridges.

LEMMA A.5. Fix k ∈ N and a, b ∈ R with a < b, and assume the same notation as in
Definition A.4. Suppose that f : [a, b] → (−∞,+∞], g : [a, b] → [−∞,+∞) are contin-
uous functions such that f (t) > g(t) for t ∈ [a, b]. Let a′, b′ ∈ [a, b] be such that a′ < b′,
and suppose that %x, %y ∈ W ◦

k are such that f (a′) > x1, f (b′) > y1, g(a′) < xk , g(b′) < yk .
Suppose further that %xn, %yn ∈ W ◦

k ∩ Rk
n are such that limn→∞ %xn = %x, limn→∞ %yn = %y,

and fn : [a, b] → (−∞,+∞], gn : [a, b] → [−∞,+∞) are sequences of continuous func-
tions such that fn → f and gn → g uniformly as n → ∞ on [a, b]. (If f = ∞, the latter
means that fn = ∞ for all large enough n, and, similarly, if g = −∞, the latter means
that gn = −∞ for all large enough n.) Finally, suppose that an, bn ∈ !n2 are such that
an ≤ a′, bn ≥ b′, and an is maximal while bn is minimal subject to these conditions (no-
tice that this implies limn→∞ an = a′, limn→∞ bn = b′). Then, there exists N0 ∈ N such that

Pan,bn,%xn,%yn,f n,gn

avoid,n are well defined for n ≥ N0. Moreover, if Yn are !1, k"-indexed line en-

sembles with laws Pan,bn,%xn,%yn,f n,gn

avoid,n and Zn are the !1, k"-indexed line ensembles on [a′, b′]
defined through

(76) Zn(i, t) = Yn(i, t) for n ≥ N0, i ∈ !1, k", t ∈ [
a′, b′],

then Zn converge weakly to Pa′,b′,%x,%y,f,g
avoid as n → ∞.

PROOF. Observe that we can find ε > 0 and continuous functions h1, . . . , hk : [a′, b′] →
R (all depending on %x, %y, f , g, a′, b′) such that hi(a

′) = xi , hi(b
′) = yi for i =

1, . . . , k, such that the following holds. If ui : [a′, b′] → R are continuous and ρ(ui, hi) =
supx∈[a′,b′] |ui(x) − hi(x)| < ε, then

f (x) − ε > u1(x) + ε > u1(x) − ε > u2(x) + ε

> · · · > uk(x) + ε > uk(x) − ε > g(x) for all x ∈ [
a′, b′].
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Observe that by Lemma 2.3, we know that

Pa′,b′,%x,%y
free

(
ρ(Qi , hi) < ε for all i = 1, . . . , k

)
> 0,

where (Q1, . . . ,Qk) above are the random curves that are Pa′,b′,%x,%y
free -distributed.

Since %xn − %yn → %x − %y, we know that there exists N1 ∈ N such that, if n ≥ N1, we have
|xn

i − yn
i | ≤ /x

n
/t

n
· [bn − an]. For n ≥ N1, we know from Lemma A.3 that if Yn has law

Pan,bn,%xn,%yn

free,n and Zn is as in (76), then Zn converges weakly to Pa′,b′,%x,%y
free as n → ∞. Con-

sequently, there exists N2 such that for n ≥ max(N1,N2), we have

Pan,bn,%xn,%yn

free,n
(
ρ

(
Zn

i , hi
)
< ε for all i = 1, . . . , k

)
> 0.

We remind that the function hi is defined on [a′, b′] ⊂ [an, bn], and in the definition of 0 the
supremum is over [a′, b′]. Suppose further that N3 is sufficiently large that supx∈[a,b] |fn(x)−
f (x)| < ε/4 and supx∈[a,b] |gn(x)− g(x)| < ε/4. If f = ∞ or g = −∞ (or both), we choose
N3 sufficiently large that fn = ∞ or gn = −∞ (or both). We also let N4 be sufficiently
large that if n ≥ N4 and |x − y| ≤ /t

n, then |f (x) − f (y)| < ε/4 and |g(x) − g(y)| < ε/4
(if f = ∞, we ignore the first condition, and if g = −∞, we ignore the second condition).
Finally, we let N5 be sufficiently large that n ≥ N5 implies /x

n < ε/4. Overall, if n ≥ N0 =
max(N1,N2,N3,N4,N5), we see that

{
fn(r) > Yn(1, r) > Yn(2, r) > · · · > Yn(k, r) > gn(r) for r ∈ [an, bn]

}

⊃ {
ρ

(
Zn

i , hi
)
< ε for all i = 1, . . . , k

}
.

The above implies that Pan,bn,%xn,%yn,f n,gn

avoid,n is well defined as long as n ≥ N0 which proves the
first part of the lemma.

Let !′ = [a′, b′] and # = !1, k", we need to show that for any bounded continuous func-
tion F : C(# × !′) → R, we have

(77) lim
n→∞ E

[
F

(
Zn)] = E

[
F(Q)

]
,

where Q is a #-indexed line ensembles whose distribution is Pa′,b′,%x,%y,f,g
avoid .

We define the functions Hf,g : C(# × !′) → R and Hn
f,g : C(# × [an, bn]) → R as

Hf,g(L) = 1
{
f (r) > L1(r) > L2(r) > · · · > Lk(r) > g(r) for r ∈ [

a′, b′]},

Hn
f,g(L) = 1

{
f (r) > L1(r) > L2(r) > · · · > Lk(r) > g(r) for r ∈ [an, bn]

}
.

Using these functions, we can write, for n ≥ N0,

(78) E
[
F

(
Zn)] = E[F(π[a′,b′](Ln))Hfn,gn(Ln)]

E[Hfn,gn(Ln)] ,

where Ln is a line ensemble of independent random walk bridges with distribution
Pan,bn,%xn,%yn

free,n . Also, if L ∈ C(# × [an, bn]), we define π[a′,b′](L) to be the element in
C(# × [a′, b′]) defined through

π[a′,b′](L)(i, x) = L(i, x) for i = 1, . . . , k and x ∈ [
a′, b′].

We remark that the choice of N0 makes the denominator in (78) strictly positive.
By Definition 2.4 we also have

(79) E
[
F(Q)

] = E[F(L)Hf,g(L)]
E[Hf,g(L)] ,
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where L is a line ensemble of independent random walk bridges with distribution Pa′,b′,%x,%y
free .

In view of (78) and (79), we see that to prove (77) it suffices to prove that, for any bounded
continuous function F : C(# × !′) → R, we have

(80) lim
n→∞ E

[
F

(
π[a′,b′]

(
Ln))

Hf n,gn
(
Ln)] = E

[
F(L)Hf,g(L)

]
.

By Lemma A.3 we know that π[a′,b′](Ln) =⇒ L as n → ∞. In addition, using that
C([a, b]) with the uniform topology is separable; see, for example, [2], Example 1.3, page 11.
We know that C(# × !′) is also separable. In particular, we can apply the Skorohod Rep-
resentation Theorem (see [2], Theorem 6.7), from which we conclude that there exists a
probability space (',F,P), which supports C(# × [an, bn])-valued random variables Ln

and a C(# × !′)-valued random variable L such that π[a′,b′](Ln) → L for every ω ∈ ' and

such that under P the law of Ln is Pan,bn,%xn,%yn

free,n , while under P the law of L is Pa′,b′,%x,%y
free . Here,

we implicitly used the maximality of an and the minimality of bn which imply that Ln is
completely determined from π[a′,b′](Ln).

It follows from the continuity of F that on the event

E1 = {
ω : f (r) > L1(ω)(r) > L2(ω)(r) > · · · > Lk(ω)(r) > g(r) for r ∈ [

a′, b′]},

we have F(π[a′,b′](Ln))Hf n,gn(Ln) → F(L). In addition, on the event

E2 = {
ω : Li (ω)(r) < Li+1(ω)(r) for some i ∈ !0, k" and r ∈ [

a′, b′]

with L0 = f,Lk+1 = g
}

we have that F(π[a′,b′](Ln))Hf n,gn(Ln) → 0. By Lemma 2.2 we know that P(E1 ∪ E2) =
1, and so P-almost surely we have F(π[a′,b′](Ln))Hf n,gn(Ln) → F(L)Hf,g(L). By the
bounded convergence theorem, we conclude (80) which finishes the proof of the lemma.

!

A.2. Proof of Lemma 2.13. We assume the same notation as in Lemma 2.13 and Def-
inition 2.5. Put ! = [a, b] and # = !1, k". We fix a set K = {k1, k1 + 1, . . . , k2} ⊂ !1, k"
and a′, b′ ∈ [a, b] with a′ < b′. Furthermore, we take a bounded Borel-measurable function
F : C(K × [a, b]) → R. Our goal in this section is to prove that P-almost surely

(81) E
[
F(L|K×[a′,b′]) | Fext

(
K × (

a′, b′))] = Ea′,b′,%x,%y,f,g
avoid

[
F(Q̃)

]
,

where

Fext
(
K × (

a′, b′)) = σ
{
Li (s) : (i, s) ∈ Dc

K,a′,b′
}

is the σ -algebra generated by the variables in the brackets above, L|K×[a′,b′] denotes the
restriction of L to the set K × [a′, b′], %x = (Lk1(a

′), . . . ,Lk2(a
′)), %y = (Lk1(b

′), . . . ,Lk2(b
′)),

f = Lk1−1[a′, b′] with the convention that f = ∞ if k1 − 1 /∈ #, g = Lk2+1[a′, b′] with the
convention that g = −∞ if k2 + 1 /∈ #.

We split the proof of (81) in two steps for the sake of clarity:
Step 1. Let m ∈ N, n1, . . . , nm ∈ #, t1, . . . , tm ∈ [a, b] and f1, . . . , fm : R → R be bounded

continuous functions. We let S = {i ∈ !1,m" : ni ∈ K and ti ∈ [a′, b′]}. We claim that

(82) E
[

m∏

i=1

fi
(
L(ni, ti)

)
]

= E
[ ∏

s∈Sc

fs
(
L(ns, ts)

) · Ea′,b′,%x,%y,f,g
avoid

[∏

s∈S

fs
(
Q̃(ns, ts)

)]]
.

We show (82) in the step below. Here, we assume its validity and conclude the proof of the
lemma.
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Define the functions

hn(x; r) =






0 if x > r + n−1,

1 − n(x − r) if x ∈ [
r, r + n−1]

,

1 if x < r.

Let us fix m1,m2 ∈ N, n1
1, . . . , n

1
m1

, n2
1, . . . , n

2
m2

∈ #, t1
1 , . . . , t1

m1
, t2

1 , . . . , t2
m2

∈ [a, b] so that
(n1

i , t
1
i ) /∈ K × [a′, b′] for i = 1, . . . ,m1 and (n2

i , t
2
i ) ∈ K × [a′, b′] for i = 1, . . . ,m2. It fol-

lows from (82) that for any ai ∈ R for i = 1, . . . ,m1 and bi ∈ R for i = 1, . . . ,m2, we have

E
[ m1∏

i=1

hn
(
L

(
n1

i , t
1
i

);ai
) m2∏

i=1

hn
(
L

(
n2

i , t
2
i

);bi
)
]

= E
[ m1∏

i=1

hn
(
L

(
n1

i , t
1
i

);ai
)
Ea′,b′,%x,%y,f,g

avoid

[ m2∏

i=1

hn
(
Q̃

(
n2

i , t
2
i

);bi
)
]]

.

Taking the limit as n → ∞, we conclude by the bounded convergence theorem that

E
[ m1∏

i=1

ĥ
(
L

(
n1

i , t
1
i

);ai
) m2∏

i=1

ĥ
(
L

(
n2

i , t
2
i

);bi
)
]

= E
[ m1∏

i=1

ĥ
(
L

(
n1

i , t
1
i

);ai
)
Ea′,b′,%x,%y,f,g

avoid

[ m2∏

i=1

ĥ
(
Q̃

(
n2

i , t
2
i

);bi
)
]]

,

where ĥ(x;a) = 1{x ≤ a}. Let H denote the space of bounded Borel-measurable functions
H : C(K × [a, b]) → R such that

E
[ m1∏

i=1

ĥ
(
L

(
n1

i , t
1
i

);ai
)
H(L|K×[a′,b′])

]

= E
[ m1∏

i=1

ĥ
(
L

(
n1

i , t
1
i

);ai
)
Ea′,b′,%x,%y,f,g

avoid
[
H(Q̃)

]
]

.

(83)

Our work so far shows that 1A ∈ H for any set A ∈ A, where A is the π -system of sets of the
form

{
h ∈ C

(
K × [

a′, b′]) : h(
n2

i , t
2
i

) ≤ bi for i = 1, . . . ,m2
}
.

It is clear that H is closed under linear combinations (by linearity of the expectation). Further-
more, if Hn ∈ H is an increasing sequence of nonnegative measurable functions that increase
to a bounded function H , then H ∈ H by the monotone convergence theorem. By the mono-
tone class theorem (see, e.g., [19], Theorem 5.2.2), we have that H contains all bounded
measurable functions with respect to σ (A), and the latter is CK in view of Lemma 3.1. In
particular, F ∈ H.

Let B denote the collection of sets B ∈ Fext(K × (a′, b′)) such that

E
[
1B · F(L|K×[a′,b′])

] = E
[
1B · Ea′,b′,%x,%y,f,g

avoid
[
F(Q̃)

]]
.(84)

The bounded convergence theorem implies that B is a λ-system, and (83), being true for all
bounded CK -measurable functions H , implies that B contains the π -system P of sets of the
form

{
h ∈ C

(
# × [a, b]) : h(ni, ti) ≤ ai for i = 1, . . . ,m, where (ni, ti) ∈ Dc

K,a′,b′
}
.



2524 E. DIMITROV AND K. MATETSKI

By the π − λ Theorem (see [19], Theorem 2.1.6), we see that B contains σ (P ) which is pre-
cisely Fext(K × (a′, b′)). We conclude that (84) holds for all B ∈ Fext(K × (a′, b′)). Since by
Lemma 3.4 we know that Ea′,b′,%x,%y,f,g

avoid [F(Q̃)] is Fext(K × (a′, b′))-measurable, we conclude
(81) by the defining properties of conditional expectations.

Step 2. In this step we prove (82). Following the notation from Definitions A.2 and A.4,
we let %xn, %yn ∈ Rk

n ∩ W ◦
k be such that |xn

i − yn
i | ≤ /x

n
/t

n
[b − a] and %xn → %x and %yn → %y.

It follows from Lemma A.5 applied to a′ = a, b′ = b, f = fn = ∞, g = gn = −∞ that
the !1, k"-indexed line ensembles Yn, whose laws are Pa,b,%xn,%yn,∞,−∞

avoid,n , converge weakly to

Pa,b,%x,%y,∞,−∞
avoid as n → ∞. In particular, we conclude that

(85) E
[

m∏

i=1

fi
(
L(ni, ti)

)
]

= lim
n→∞ E

[
m∏

i=1

fi
(
Yn(ni, ti)

)
]

.

Using that C([a, b]) with the uniform topology is separable (see, e.g., [2], Example 1.3,
page 11), we know that C(# × [a, b]) is also separable. In particular, we can apply the
Skorohod Representation Theorem (see [2], Theorem 6.7), from which we conclude that
there exists a probability space (',F,P), which supports C(# × [a, b])-valued random vari-
ables Yn and L such that Yn → L for every ω ∈ ' and such that under P the law of Yn is
Pa,b,%xn,%yn∞,−∞

avoid,n , while under P the law of L is Pa,b,%x,%y,∞,−∞
avoid .

We now let an, bn ∈ !n2 be such that an ≤ a′, bn ≥ b′ and an is maximal, while bn is
minimal subject to these conditions. We also fix N0 sufficiently large that n ≥ N0 implies
that ts < an or ts > bn for s ∈ Sc such that ns ∈ K . Let %Xn, %Yn be defined through

%Xn
i = Yn(k1 + i − 1, an) and %Yn

i = Yn(k1 + i − 1, bn) for i ∈ !1, k2 − k1 + 1".

Since Yn is uniformly distributed on all (finitely many) avoiding trajectories from %xn to %yn,
we conclude that the restriction of Yn to K × [an, bn] is precisely uniformly distributed
on all (finitely many) avoiding trajectories from %Xn to %Yn, conditioned on staying below
fn = Yn

k1−1 and above gn = Yn
k2+1 with the usual convention that fn = ∞ if k1 = 1 and

gn = −∞ if k2 = k. The latter observation allows us to deduce that

E
[

m∏

i=1

fi
(
Yn(ni, ti)

)
]

= E
[ ∏

s∈Sc

fs
(
Yn(ns, ts)

) · Eavoid,n

[∏

s∈S

fs
(
Zn(ns − k1 + 1, ts)

)]]
,

(86)

where we have written Eavoid,n in place of Ean,bn, %Xn, %Yn,fn,gn

avoid,n to ease the notation.
In view of our Skorohod embedding space (',F,P), we know that almost surely fn → f

on [a, b], where f (x) = L(k1 − 1;x) if k1 ≥ 2 or f = ∞ if k1 = 1. Analogously, gn → g on
[a, b], where g(x) = L(k2 + 1;x) if k2 ≤ k − 1 or g = −∞ if k2 = k. In addition, %Xn → %X
and %Yn → %Y , where

%Xi = L
(
k1 + i − 1, a′) and %Yi = Ln(

k1 + i − 1, b′) for i ∈ !1, k2 − k1 + 1".

Furthermore, by Definition 2.4 and Lemma 2.2 we know that P-almost surely %X, %Y ∈ W ◦
k .

Consequently, from Lemma A.5 we conclude that P-almost surely

(87) lim
n→∞Eavoid,n

[∏

s∈S

fs
(
Zn(ns − k1 + 1, ts)

)] = Ea′,b′,%x,%y,f,g
avoid

[∏

s∈S

fs
(
Q̃(ns, ts)

)]
.
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Finally, the continuity of fi and and the ω-wise convergence of Yn to L implies that for every
ω ∈ ', we have

(88) lim
n→∞

∏

s∈Sc

fs
(
Yn(ns, ts)

) =
∏

s∈Sc

fs
(
L(ns, ts)

)
.

Equation (82) is now a consequence of (85), (86), (87) and (88) after an application of the
bounded convergence theorem.

A.3. Proofs of Lemmas 2.14 and 2.15. The main result of this section is as follows.

LEMMA A.6. Assume the same notation as in Definition 2.4. Fix k ∈ N, a < b and two
continuous functions gt , gb : [a, b] → R ∪ {−∞} such that gt (x) ≥ gb(x) for all x ∈ [a, b].
We also fix %x, %y, %x ′, %y′ ∈ Rk

> such that gb(a) < xk , gb(b) < yk , gt (a) < x′
k , gt (b) < y′

k and
xi ≤ x′

i , yi ≤ y′
i for i = 1, . . . , k. Then, there exists a probability space (',F,P) which

supports two !1, k"-indexed line ensembles Lt and Lb on [a, b] such that the law of Lt (resp.,

Lb) under P is Pa,b,%x′,%y′,∞,gt

avoid (resp., Pa,b,%x,%y,∞,gb

avoid ) and such that P-almost surely we have
Lt

i (x) ≥ Lb
i (x) for all i = 1, . . . , k and x ∈ [a, b].

It is clear that Lemmas 2.14 and 2.15 both follow from Lemma A.6. The reason we keep
the statements of the two lemmas separate earlier in the paper is that it makes their application
a bit more transparent in the main body of text.

PROOF OF LEMMA A.6. We assume the same notation as in Lemma A.6 and also Defi-
nition A.4. Specifically, we fix # = !1, k" and ! = [a, b]. For clarity, we split the proof into
three steps:

Step 1. We choose any sequences %xn, %yn, %un, %vn ∈ W ◦
k ∩ Rk

n such that for each n ∈ N, we
have xn

i ≤ un
i , yn

i ≤ vn
i for i = 1, . . . , k and also such that limn→∞ %xn = %x, limn→∞ %yn = %y,

limn→∞ %un = %x′ and limn→∞ %vn = %y′. It follows from Lemma A.5 applied to a′ = a, b′ = b

that there exists N0 ∈ N such that if n ≥ N0 we have that Pa,b,%xn,%yn,∞,gb

avoid,n and Pa,b,%un,%un,∞,gt

avoid,n
are well defined.

We claim that we can construct sequences of probability spaces ('n,Fn,Pn) for n ≥ N0

that support !1, k"-indexed line ensembles Yn and Zn, whose laws are Pa,b,%xn,%yn,∞,gb

avoid,n and

Pa,b,%un,%vn,∞,gt

avoid,n , respectively, such that, for each ω ∈ 'n, we have

(89) Yn(ω)(i, x) ≤ Zn(ω)(i, x) for i = 1, . . . , k and x ∈ [a, b].
We show (89) in the next step. Here, we assume its validity and conclude the proof of the
lemma.

It follows from Lemma A.5 that Yn converge weakly to Pa,b,%x,%y,∞,gb

avoid and Zn converge
weakly to Pa,b,%x′,%y′,∞,gt

avoid as n → ∞. In particular, the latter sequences of measures are rela-
tively compact which by the separability and completeness of C(!1, k" × [a, b]) implies that
these sequences are tight; cf. [2], Theorem 5.2. In particular, the sequence of random variables
(Yn,Zn) on ('n,Fn,Pn) (viewed as C(!1, k" × [a, b]) × C(!1, k" × [a, b])-valued random
variables with the product topology and corresponding Borel σ -algebra) are also tight.

By Prohorov’s theorem (see [2], Theorem 5.1) we conclude that the sequence of laws of
(Yn,Zn) is relatively compact. Let nm be a subsequence such that (Ynm,Znm) converge
weakly. By the Skorohod Representation Theorem (see [2], Theorem 6.7) we conclude that
there exists a probability space (',F,P), which supports C(# × [a, b])-valued random vari-
ables Ynm , Znm and Y , Z such that:
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1. Ynm → Y for every ω ∈ ' as m → ∞;
2. Znm → Z for every ω ∈ ' as m → ∞;

3. under P the law of Ynm is Pa,b,%xnm,%ynm∞,gb

avoid,nm
;

4. under P the law of Znm is Pa,b,%unm,%vnm∞,gt

avoid,nm
;

5. P-almost surely we have Ynm(i, x) ≤ Znm(i, x) for m ≥ 1, i = 1, . . . , k and x ∈ [a, b].

Since Yn converge weakly to Pa,b,%x,%y,∞,gb

avoid and Zn converge weakly to Pa,b,%x′,%y′,∞,gt

avoid , we

conclude that under P the variables Y and Z have laws Pa,b,%x,%y,∞,gb

avoid and Pa,b,%x′,%y′,∞,gt

avoid ,
respectively. Also, conditions (1), (2) and (5) above imply that P-almost surely we have

Y(i, x) ≤ Z(i, x) for i = 1, . . . , k and x ∈ [a, b].
Consequently, taking the above probability space (',F,P) and setting (Lt ,Lb) = (Y,Z),
we obtain the statement of the lemma.

Step 2. In this step we prove (89). Our approach will closely follow the one in [9], Sec-
tion 6.

Let Yn and Zn denote the (finite) sets of possible elements in C(!1, k" × [a, b]) that the
line ensembles Yn and Zn can take with positive probability. We will construct a continuous
time Markov chain (At ,Bt ) taking values in Yn × Zn, such that:

1. At and Bt are each Markov in their own filtration;
2. At is irreducible and has invariant measure Pa,b,%xn,%yn,∞,gb

avoid,n ;

3. Bt is irreducible and has invariant measure Pa,b,%un,%vn,∞,gt

avoid,n ;
4. for every t ≥ 0, we have At(i, x) ≤ Bt(i, x) for i ∈ !1, k" and x ∈ [a, b].

We will construct the Markov chain (At ,Bt ) in the next step. Here, we assume we have such
a construction and conclude the proof of (89).

From [34], Theorems 3.5.3 and 3.6.3, we know that AN weakly converges to

Pa,b,%xn,%yn,∞,gb

avoid,n and BN weakly converges to Pa,b,%un,%vn,∞,gt

avoid,n as N → ∞. In particular, we
see that AN , BN are tight and then so is the sequence (AN,BN). By Prohorov’s theorem (see
[2], Theorem 5.1) we conclude that the sequence of laws of (AN,BN) is relatively compact.
Let Nm be a subsequence such that (ANm,BNm) converge weakly. By the Skorohod Repre-
sentation Theorem (see [2], Theorem 6.7) we conclude that there exists a probability space
(',F,P), which supports C(# × [a, b])-valued random variables Am, Bm and A, B such
that:

• Am → A for every ω ∈ ' as m → ∞;
• Bm → B for every ω ∈ ' as m → ∞;
• under P the law of (Am,Bm) is the same as that of (ANm,BNm).

The weak convergence of AN , BN implies that A has law Pa,b,%xn,%yn,∞,gb

avoid,n and B has law

Pa,b,%un,%vn,∞,gt

avoid,n . Furthermore, the fourth condition in the beginning of the step shows that
A(i, x) ≤ B(i, x) for i ∈ !1, k" and x ∈ [a, b]. Consequently, we can take ('n,Fn,Pn) to be
the above space (',F,P) and set (Yn,Zn) = (A,B). This proves (89).

Step 3. In this final step we construct the chain (At ,Bt ), satisfying the four conditions
in the beginning of Step 2. We first describe the initial state of the Markov chain (A0,B0).
Notice that if y ∈ Yn, there is a natural way to encode y(i, x) for i ∈ !1, k" by a list of n2

symbols {−1,0,1}, where the j th symbol is precisely

y(i, a + j · /t
n) − y(i, a + (j − 1) · /t

n)

/x
n

.



CHARACTERIZATION OF BROWNIAN GIBBSIAN LINE ENSEMBLES 2527

We define the lexicographic ordering on the set of all such lists of symbols (where, of course,
1 > 0 > −1). If we look at y(i, x), we see that there is a maximal sequence of n2 symbols,
which consists of 41

2 · (
yn
i −xn

i
/x

+ n2)5 symbols 1, followed by a 0 if 1
2 · (

yn
i −xn

i
/x

+ n2) /∈ Z,

followed by 41
2 · (

xn
i −yn

i
/x

+ n2)5 symbols −1. We call the curve corresponding to this list
ymax(i, ·). One directly checks that ymax = (ymax(1, ·), . . . , ymax(k, ·)) ∈ Yn. In showing the

last statement, we implicitly used that n ≥ N0 so that Pa,b,%xn,%yn,∞,gb

avoid,n is well defined.
We analogously define zmax ∈ Zn by replacing everywhere above xn

i , yn
i with un

i , vn
i ,

respectively. Again, one needs to use that n ≥ N0 so that Pa,b,%un,%vn,∞,gt

avoid,n is well defined. One
further checks directly that ymax(i, x) ≤ zmax(i, x) for all i ∈ !1, k" and x ∈ [a, b]. The state
(ymax, zmax) is the initial state of our chain.

We next describe the dynamics. For each point r ∈ !n2 ∩ (a, b), each i ∈ !1, k" and each
δ ∈ {−1,0,1} we have an independent Poisson clock, ringing with rate 1. When the clock
corresponding to (r, i, δ) rings at time T , we update (AT −,BT −) as follows. We erase the
part of AT −(i, x) (resp., BT −(i, x)) for x ∈ [r − /t

n, r + /t
n] and replace that piece with two

linear pieces connecting the points (r − /t
n,AT −(i, r − /t

n)) and (r + /t
n,AT −(i, r + /t

n))
with (r,AT −(i, r) + δ · /x

n) (resp., (r − /t
n,BT −(i, r − /t

n)) and (r + /t
n,BT −(i, r + /t

n))
with (r,BT −(i, r) + δ · /x

n)). If the resulting C(# × [a, b])-valued element is in Yn (resp.,
Zn), we set AT (resp. BT ) to it. Otherwise, we set AT (resp., BT ) to AT − (resp. BT −). This
defines the dynamics.

It is clear from the above definition that (At ,Bt ) is a Markov chain and that At and Bt are
individually Markov in their own filtration. Moreover, one directly verifies that the uniform
measure on Yn (resp., Zn) is invariant under the above dynamics. The latter observations
show that conditions (1), (2) and (3) in the beginning of Step 2 all hold. We are thus left with
verifying condition (4). By construction we know that At(i, x) ≤ Bt(i, x) for all i ∈ !1, k"
and x ∈ [a, b] when t = 0. What remains to be seen is that the update rule, explained in the
previous paragraph, maintains this property for all t ≥ 0.

For the sake of contradiction, suppose that AT − ∈ Yn, BT − ∈ Zn are such that AT −(i, x) ≤
BT −(i, x) for all i ∈ !1, k" and x ∈ [a, b], but that, after the (r, i, δ)-clock has rung at time
T , we no longer have that AT (i, x) ≤ BT (i, x) for all i ∈ !1, k" and x ∈ [a, b]. By the for-
mulation of the dynamics, the latter implies that AT (i, r) > BT (i, r) and is only possible if
AT −(i, r) = BT −(i, r). In particular, we distinguish two cases: (C1) δ = 1 and AT (i, r) =
AT −(i, r)+/x

n, while BT (i, r) = BT −(i, r) or (C2) δ = −1 and AT (i, r) = AT −(i, r), while
BT (i, r) = BT −(i, r) − /x

n.
In the case (C1) the fact that BT (i, r) = BT −(i, r) means that the C(#× [a, b])-valued ele-

ment obtained from BT − by erasing the part of BT −(i, x) for x ∈ [r −/t
n, r +/t

n] and replac-
ing it with two linear pieces connecting (r − /t

n,BT −(i, r − /t
n)) and (r + /t

n,BT −(i, r +
/t

n)) with (r,BT −(i, r) + /x
n) is not in Zn. This means that

BT (i, r) + /x
n ≥ max

(
BT (i − 1, r),BT

(
i, r − /t

n

) + 2/x
n,BT

(
i, r + /t

n

) + 2/x
n

)
.

Here, the convention is BT (0, x) = ∞. But then since

AT −(i, r) = BT −(i, r) and AT −(i, x) ≤ BT −(i, x) for all i ∈ !1, k" and x ∈ [a, b],
we conclude that

AT −(i, r) + /x
n ≥ max

(
AT (i − 1, r),AT

(
i, r − /t

n

) + 2/x
n,AT

(
i, r + /t

n

) + 2/x
n

)
,

again with the convention AT (0, x) = ∞. The latter contradicts the fact that AT (i, r) =
AT −(i, r) + /x

n since it implies AT /∈ Yn.
In the case (C2), the fact that AT (i, r) = AT −(i, r), means that the C(# × [a, b])-valued

element obtained from AT − by erasing the part of AT −(i, x) for x ∈ [r − /t
n, r + /t

n]
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and replacing it with two linear pieces connecting (r − /t
n,AT −(i, r − /t

n)) and (r +
/t

n,AT −(i, r + /t
n)) with (r,AT −(i, r) − /x

n) is not in Yn. This means that

AT (i, r) − /x
n ≤ min

(
AT (i + 1, r),AT

(
i, r − /t

n

) − 2/x
n,AT

(
i, r + /t

n

) − 2/x
n

)
,

where AT (k + 1, x) = gb(x). But then since

AT −(i, r) = BT −(i, r) and AT −(i, x) ≤ BT −(i, x) for all i ∈ !1, k" and x ∈ [a, b],
we conclude that

BT −(i, r) − /x
n ≤ min

(
BT (i − 1, r),BT

(
i, r − /t

n

) − 2/x
n,BT

(
i, r + /t

n

) − 2/x
n

)
,

where BT (k + 1, x) = gt (x) and we used that gt (x) ≥ gb(x) for all x ∈ [a, b]. The latter,
however, contradicts the fact that BT (i, r) = BT −(i, r) − /x

n, as it implies that BT /∈ Zn.
Overall, we see that we reach a contradiction in both cases. This means that (At ,Bt ) satisfies
all four conditions in Step 2 which concludes the proof of the lemma. !
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