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1. The KPZ universality class

All models in the 1-dimensional Kardar–Parisi–Zhang (KPZ ) universality class (random

growth models, last passage percolation and directed polymers, random stirred fluids)

have an analogue of the height function h(t, x) (free energy, integrated velocity) which

is conjectured to converge at large time and length scales (" 0), under the KPZ 1:2:3

scaling

"1/2h("�3/2t, "�1x)�C"t, (1.1)

to a universal fluctuating field h(t, x) which does not depend on the particular model,

but does depend on the initial data class. Since many of the models are Markovian, the

invariant limit process, the KPZ fixed point, will be as well. The purpose of this article

is to describe this Markov process, and how it arises from certain microscopic models.

The KPZ fixed point should not be confused with the KPZ equation [38],

@th=�(@xh)
2+⌫@2xh+�⇠, (1.2)

with ⇠ being a space-time white noise, which is a canonical continuum equation for

random growth, lending its name to the class. One can think of the space of models in

the class as having a trivial, Gaussian fixed point, the Edwards–Wilkinson fixed point,

given by (1.2) with �=0 and the 1:2:4 scaling "1/2h("�2t, "�1x)�C"t, and the non-

linear KPZ fixed point, conjecturally given by sending ⌫ 0 in (1.2) with �=⌫1/2. The

KPZ equation is just one of these many models, but it does play a distinguished role
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as the (conjecturally) unique heteroclinic orbit between the two fixed points. The KPZ

equation can be obtained from certain microscopic models in the weakly asymmetric or

intermediate disorder limits [1], [6], [18], [21], [22], [42] (which are not equivalent, see

[30]). Since some of these models are partially solvable (in particular the asymmetric

simple exclusion process, through the work of Tracy and Widom [62]–[64] exact 1-point

distributions are known for the KPZ equation for special initial data [2]. These issues

of the universality of the KPZ equation and its distributions comprise the weak KPZ

universality conjecture.

However, the KPZ equation is not invariant under the KPZ 1:2:3 scaling (1.1), which

is expected to send it, along with all other models in the class, to the true universal (strong

coupling, long time) fixed point. In modelling, for example, edges of bacterial colonies,

forest fires, or spread of genes, the non-linearities or noise are often not weak, and it is

really the fixed point that should be used in approximations and not the KPZ equation.

However, progress has been hampered by a complete lack of understanding of the time

evolution of the fixed point itself. Essentially all one had was fixed-time distributions of

a few special self-similar solutions, the Airy processes.

Under the KPZ 1:2:3 scaling (1.1), the coe�cients of (1.2) transform as

(⌫,�2) 7� "1/2(⌫,�2).

A naive guess would then be that the fixed point is nothing but the vanishing viscosity

(⌫ 0) solution of the Hamilton–Jacobi equation

@th=�(@xh)
2+⌫@2xh

given (for �>0) by the Hopf–Lax formula

h(t, x)= sup
y

⇢
� 1

4�t
(x�y)2+h0(y)

�
. (1.3)

It is not. One of the key features of the class is a stationary solution consisting of (non-

trivially) time-dependent Brownian motion height functions (or discrete versions of it).

But Brownian motions are not invariant for Hopf’s formula (see [27] for the computation).

Our story has a stronger parallel in the dispersionless (⌫ 0) limit of the (integrated)

Korteweg–de Vries (KdV) equation

@th=�(@xh)
2+⌫@3xh.

Brownian motions are invariant for all ⌫ (at least in the periodic case [52]). But, as far

as we are aware, the zero-dispersion limit has only been done on a case-by-case basis,
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with no general formulas. One can imagine that the various schemes lead to di↵erent

weak solutions of the ill-posed Hamilton–Jacobi equation

@th=�(@xh)
2,

with only the vanishing viscosity solution being characterized so far, through the entropy

condition in its various manifestations. However, in our situation, where h(t, x) is locally

Brownian in x, it is far from clear that the notion of weak solution can have any meaning

whatsoever.

The KPZ fixed point is given by a variational formula (see Theorem 4.18), analogous

to (1.3), but with a residual forcing noise, the Airy sheet. Unfortunately, our techniques

do not allow us to characterize this noise. Instead, we obtain a complete description of

the Markov field h(t, x) itself through the exact calculation of its transition probabilities.

These transition probabilities are given in (4.7) and define the invariant Markov process.

The strong KPZ universality conjecture (still wide open) is that this fixed point is the

limit under the scaling (1.1) for any model in the class, loosely characterized by having

(1) local dynamics, (2) smoothing mechanism, (3) slope dependent growth rate (lateral

growth), (4) space-time random forcing with rapid decay of correlations. Alternatively,

convergence to the fixed point can be taken as the definition of the KPZ universality

class.

Universal fixed points are a theme in probability and statistical physics: 2-dim-

ensional critical Ising model, Schramm–Loewner evolution, Liouville quantum grav-

ity/Brownian map, the Brownian web, and the continuum random tree have o↵ered

asymptotic descriptions for huge classes of models. In general, these have been obtained

as non-linear transformations of Brownian motions or Gaussian free fields, and their

description relies to a large degree on symmetry—often conformal invariance.

In the case of �4d [58], the main tool is perturbation theory. Even the recent theory

of regularity structures [29], which makes sense of the KPZ equation (1.2), does so by

treating the non-linear term as a kind of perturbation of the linear equation.

In our case, we have a non-perturbative 2-dimensional field theory with a skew

symmetry, and a solution should not in principle even be expected. What saves us

is the 1-dimensionality of the fixed-time problem, and the fact that several discrete

models in the class have an explicit description using non-intersecting paths. Here, we

work with TASEP, obtaining a complete description of the transition probabilities in a

form which allows us to pass transparently to the 1:2:3 scaling limit.(1) In a sense, a

recipe for the solution of TASEP has existed since the work of [54], who discovered a

(1) The method works for several variants of TASEP which also have a representation through
biorthogonal ensembles, such as discrete time TASEPs and PushASEP, see [41].
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highly non-obvious representation in terms of non-intersecting paths which can in turn

be studied using biorthogonal ensembles [10]. However, the biorthogonalization was only

implicit, and one had to rely on exact solutions for a couple of special initial conditions to

obtain the asymptotic Tracy-Widom distributions FGUE and FGOE [60], [61], the Baik–

Rains distribution FBR [5], and their spatial versions, the Airy processes [3], [9], [10],

[33], [34], [54]. In this article, motivated by the probabilistic interpretation of the path

integral forms of the kernels in the Fredholm determinant formulas for these processes,

and exploiting the skew time reversibility of TASEP, we are able to obtain a general

formula in which the TASEP kernel is given by a transition probability of a random walk

forced to hit the initial data.

We end this introduction with an outline of the paper and a brief summary of our

results. §2.1 recalls and solves the biorthogonal representation of TASEP, motivated by

the path integral representation, which is derived in the form we need it in Appendix D.2.

The biorthogonal functions appearing in the resulting Fredholm determinants are then

recognized as hitting probabilities in §2.2, which allows us to express the kernels in terms

of expectations of functionals involving a random walk forced to hit the initial data.

The determinantal formulas for TASEP with arbitrary right-finite initial conditions are

in Theorem 2.6. In §3, we pass to the KPZ 1:2:3 scaling limit to obtain determinantal

formulas for transition probabilities of the KPZ fixed point, which is defined formally

in Definition 3.12. This limit is computed using right-finite initial TASEP data, but

since we have exact formulas, we can obtain a very strong estimate (Lemma 3.4) on

the propagation speed of information which allows us to show that there is no loss of

generality in doing so. We then work in §3.5 to show that the Chapman–Kolmogorov

equations hold. This is done by obtaining a uniform bound on the local Hölder �< 1

2

norm of the approximating Markov fields. The proof is in Appendix C.2. §4 opens

with the introduction of the Brownian scattering transform, which is the main ingredient

in our Fredholm determinant formulas for the KPZ fixed point, while §4.2 gives the

general formulas for the transition probabilities of the KPZ fixed point (in (4.7) and

Proposition 4.3); readers mostly interested in the physical implications may wish to skip

directly there. The rest of §4 gives the key properties of the KPZ fixed point: regularity

in space and time and local Brownian behavior, various symmetries, variational formulas

in terms of the Airy sheet, and equilibrium space-time covariance; we also show how to

recover some of the classical Airy processes from our formulas. §3 and §4 are done at the

level of pointwise convergence of kernels. The convergence of the kernels is upgraded to

trace class in Appendix B, where the remaining technical details are filled in.

So, in a sense, everything follows once one is able to explictly biorthogonalize TASEP.

We begin there.
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2. TASEP

The totally asymmetric simple exclusion process (TASEP) consists of particles with posi-

tions

... <Xt(2)<Xt(1)<Xt(0)<Xt(�1)<Xt(�2)< ... on Z[{�1,1}

performing totally asymmetric nearest neighbour random walks with exclusion: Each

particle independently attempts jumps to the neighbouring site to the right at rate 1,

the jump being allowed only if that site is unoccupied (see [40] for the non-trivial fact

that the process with an infinite number of particles makes sense). Placing a (necessarily

infinite) number of particles at ±1 allows for left- or right-finite data with no change of

notation, the particles at ±1 playing no role in the dynamics. We follow the standard

practice of ordering particles from the right; for right-finite data the rightmost particle

is labelled 1, unless indicated otherwise. Let

X�1

t (u)=min{k2Z :Xt(k)6u}

denote the label of the rightmost particle which sits to the left of, or at, u at time t. The

TASEP height function associated with Xt is given, for z2Z, by

ht(z)=�2(X�1

t (z�1)�X�1

0
(�1))�z, (2.1)

which fixes h0(0)=0.

The height function is a simple random walk path

ht(z+1)=ht(z)+⌘̂t(z)

with

⌘̂t(z)=

⇢
1, if there is a particle at z at time t,

�1, if there is no particle at z at time t.

The dynamics of ht is that local maximums become local minimums at rate 1; i.e.,

if ht(z)=ht(z±1)+1 then ht(z) 7 ht(z)�2 at rate 1, the rest of the height function

remaining unchanged. One can think of independent rate-1 Poisson processes, one for

each site z2Z. At the jump time of the Poisson process at z, we check to see if the

height function has a local maximum there. If it is, we flip it to a local minimum. We

can also easily extend the height function to a continuous function of x2R by linearly

interpolating between the integer points. The evolution of an initial height function h

is a deterministic function of the underlying Poisson processes, providing a coupling of

the evolution from di↵erent initial conditions, which preserves the partial order h�h̃ if

h(x)6h̃(x) for all x.
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2.1. Biorthogonal ensembles

TASEP was first solved by Schütz [56] using the coordinate Bethe ansatz. He showed

that the transition probability for N particles has a determinantal form,

P(Xt(1)=x1, ..., Xt(N)=xN )=det(Fi�j(t, xN+1�i�X0(N+1�j)))16i,j6N , (2.2)

with

Fn(t, x)=
(�1)n

2⇡i

I

�0,1

dw
(1�w)�n

wx�n+1
et(w�1), (2.3)

where �0,1 is any positively oriented simple loop which includes w=0 and w=1. To

mesh with our convention of infinitely many particles, we can place particles X0(j),

j60 at 1 and X0(j), j>N at �1. Remarkable as it is, this formula is not conducive

to asymptotic analysis, where we want to consider the later positions of M⌧N of the

particles; one has to find an e↵ective way to sum over the positions of the other N�M

particles and, at the same time, to get rid of the dependence in N (which needs to go

to infinity) of the dimension of the determinant. This was overcome by [10], [54], who

were able to rewrite the right-hand side of (2.2) in terms of a certain Lindström–Gessel–

Viennot/Karlin–McGregor scheme [28], [39], involving a (signed) non-intersecting line

ensemble, and from that obtain the desired probabilities implicitly from the following

biorthogonalization problem.

First, for a fixed vector a2Rm and indices n1<...<nm, we introduce the functions

�a(nj , x)=1x>aj and �a(nj , x)=1x6aj , (2.4)

which we also regard as multiplication operators acting on the space `2({n1, ..., nm}⇥Z)
(and later on L2({x1, ...,xm}⇥R)). We will use the same notation if a is a scalar, writing

�a(x)= 1��a(x)=1x>a.

Theorem 2.1. ([10]) Suppose that TASEP starts with particles labeled 1, 2, ... (so

that, in particular, there is a rightmost particle)(2),(3) and let n1, ..., nm be distinct pos-

itive integers. Then, for t>0, we have

P(Xt(nj)>aj , j=1, ...,m)=det(I��aKt�a)`2({n1,...,nm}⇥Z), (2.5)

(2) We are assuming here that X0(1)<1 (and thus X0(j)<1 for all j>1 too); particles at �1
are allowed.

(3) The result in [10] is stated only for initial conditions with finitely many particles, but the
extension to right-finite (infinite) initial conditions is straightforward because, given fixed indices n1<
n2<...<nm, the distribution of (Xt(n1), ..., Xt(nm)) does not depend on the initial positions of the
particles with indices beyond nm.
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where det is the Fredholm determinant (see (A.1) for the definition),

Kt(ni, xi;nj , xj)=�Qnj�ni(xi, xj)1ni<nj+

njX

k=1

 ni
ni�k(xi)�

nj

nj�k(xj), (2.6)

and where(4)

Q(x, y)=
1

2x�y
1x>y

and,(5) for k6n�1,

 n
k (x)=

1

2⇡i

I

�0

dw
(1�w)k

2x�X0(n�k)wx+k+1�X0(n�k)
et(w�1), (2.7)

where �0 is any positively oriented simple loop including the pole at w=0, but not the

one at w=1. The functions �n
k (x), k=0, ..., n�1, are defined implicitly by

(1) the biorthogonality relation

X

x2Z
 n

k (x)�
n
` (x)=1k=`;

(2) the fact that 2�x�n
k (x) is a polynomial of degree at most n�1 in x for each k.

The initial data appear in a simple way in the  n
k , which can be computed explicitly.

The powers of Q are easily computed:

Qm(x, y)=
1

2x�y

✓
x�y�1

m�1

◆
1x>y+m.

Moreover, as operators on `2(Z), Q and Qm are invertible:

Q�1(x, y)= 2·1x=y�1�1x=y and Q�m(x, y)= (�1)y�x+m2y�x

✓
m

y�x

◆
. (2.8)

It is not hard to check [10, equation 3.22] that, for all m,n2Z,

Qn�m n
n�k = 

m
m�k, (2.9)

so, in particular,  n
k=Q�k n�k

0
. We introduce

Rt = e�(t/2)(I+r�
), with r�f(x)= f(x)�f(x�1),

(4) We have conjugated the kernel Kt from [10] by 2x for later convenience (see (2.12) and the
discussion following it). The additional X0(n�k) in the power of 2 in the  n

k ’s has also been added for

convenience, and is allowed because it just means that the �n
k ’s have to be multiplied by 2X0(n�k).

(5) Note that, from (2.3) and (2.7),  n
k (x)=(�1)k2X0(n�k)�xF�k(t, x�X0(n�k)) for k>0.
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which can also be defined through its integral kernel (valid for all t2R)

Rt(x, y)= e�t tx�y

2x�y(x�y)!
1x>y =

1

2⇡i

I

�0

dw
et(w�1)

2x�ywx�y+1
. (2.10)

Observe that  n
0
=Rt�X0(n), with �y(x)=1x=y. We have that Q and Rt commute, be-

cause the kernels Q(x, y) and Rt(x, y) only depend on x�y, and thus we obtain the

decomposition

 n
k =RtQ

�k�X0(n�k). (2.11)

The �n
k , on the other hand, are defined only implicitly through (1) and (2). Only

for a few special cases of initial data (step, see e.g. [24]; and periodic [9]–[11]) were they

known, and hence only for those choices asymptotics could be performed in the TASEP

and related cases, leading to the Tracy–Widom FGUE and FGOE 1-point distributions,

and then later to the Airy processes for multipoint distributions.

We are now going to solve for the �n
k for any initial data. Let us explain how

this can be done starting just from the solution for step initial data (X0(i)=�i, i>1).

The derivation is based on two main ingredients. The first is a path integral version of

the extended kernel formula (2.5) for the TASEP finite-dimensional distributions (see

Appendix D.2 for the proof):

P(Xt(nj)>aj for j=1, ...,m)

=det(I�K(nm)

t (I�Qn1�nm�a1Q
n2�n1�a2 ... Q

nm�nm�1�am))L2(Z)
(2.12)

for n1<n2<...<nm, where K(n)
t =Kt(n, · ;n, ·). Such formulas were first obtained in [45]

for the Airy2 process (see also [47, Appendix A]), and later extended to the Airy1 process

in [48], and then to a very wide class of processes in [8]. The key is to recognize the kernel

Q(x, y) as the transition probabilities of a random walk (which is why we conjugated the

[10] kernel by 2x), and then �a1Q
n2�n1�a2 ... Q

nm�nm�1�am(x, y) as the probability that

this walk goes from x to y in nm�n1 steps, staying above a1 at time n1, above a2 at

time n2, etc.

The second ingredient is the skew time reversibility of TASEP. From the description

just after (2.1), it is clear that the evolution rule for the height function backwards in

time is the same as that of minus the height function forward in time. We use it in the

form(6)

Pf (ht(x)6 g(x) for x2Z)=P�g(ht(x)6�f(x) for x2Z), (2.13)

(6) Evolve an initial height function f forward through a realization of the Poisson processes from
time 0 to t, and call the result h0 t(f) (see the paragraph right after (2.1)). Evolve g backwards through
the same realization from time t to 0 to obtain ht 0(g). Both maps preserve the partial order h�h̃,
so we have, for each fixed realization of the Poisson processes, h0 t(f)�g if and only if f�ht 0(g).
On the other hand, the standard time reversibility property for TASEP says that ht 0(g) has the same
distribution as �h0 t(�g). This proves (2.13).
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the subscript indicating the initial data.

Suppose that we have the solution (2.6) for step initial data centered at x0, which

means that h0(x) is the peak �|x�x0|. The multipoint distribution at time t is given

by (2.12), but we can use (2.13) to reinterpret it as the 1-point distribution of ht at x0,

starting from an initial condition built out of a series of m peaks centered at n1, ..., nm

with heights �a1, ...,�am. From this, we can guess a formula for the multipoint distri-

butions by extending the resulting kernel in the usual way, as in (2.6). This last step

is not fully justified at this stage, but we can use the resulting formula to simply guess

the form of the biorthogonal functions �n
k , based on the representation of the kernel in

(2.12) in terms of the hitting probability for a random walk. Theorem 2.1 is then set up

perfectly, because it allows us to easily prove that the guess is correct.

This gives us our key result.

Theorem 2.2. Fix 06k<n and consider particles at X0(1)>X0(2)>...>X0(n).

Let hn
k (`, z) be the unique solution to the initial-boundary-value problem for the backwards

heat equation

8
><

>:

(Q⇤)�1hn
k (`, z)=hn

k (`+1, z), `<k, z 2Z, (2.14a)

hn
k (k, z)= 2z�X0(n�k), z 2Z, (2.14b)

hn
k (`, X0(n�`))= 0, `<k. (2.14c)

Then, the functions �n
k from Theorem 2.1 are given by

�n
k (z)= (R⇤

t )
�1hn

k (0, ·)(z)=
X

y2Z
hn
k (0, y)R

�1

t (y, z). (2.15)

Here, Q⇤(x, y)=Q(y, x) is the kernel of the adjoint of Q (and likewise for R⇤
t ).

Remark 2.3. It is not true in general that

Q⇤hn
k (`+1, z)=hn

k (`, z).

In fact, Q⇤hn
k (k, z) is divergent.

Proof. The existence and uniqueness of solutions of (2.14a)–(2.14c) is an elementary

consequence of the fact that ker(Q⇤)�1 has dimension 1 and it is spanned by the function

2z, which allows us to march forwards from the initial condition hn
k (k, z)=2z�X0(n�k)

uniquely solving the boundary value problem hn
k (`, X0(n�`))=0 at each step.(7)

(7) As a linear operator, Q⇤ acts on `1(Z), and it is there that Q⇤ is invertible, with inverse (Q⇤)�1

defined by (2.8). However, (2.14a)–(2.14c) are being solved in the space of all sequences, in which the
matrix (Q⇤)�1 does have a non-trivial kernel.
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Before turning to the proof of (2.15) we need to prove that 2�xhn
k (0, x) is a poly-

nomial of degree at most k. We proceed by induction. Note first that, by (2.14b),

2�xhn
k (k, x) is a polynomial of degree zero. Assume now that h̃n

k (`, x):=2�xhn
k (`, x) is a

polynomial of degree at most k�` for some 0<`6k. By (2.14a) and (2.8), we have

h̃n
k (`, y)= 2�y(Q⇤)�1hn

k (`�1, y)= h̃n
k (`�1, y�1)�h̃n

k (`�1, y). (2.16)

Taking x>X0(n�`+1) and summing (2.16) gives

h̃n
k (`�1, x)=�

xX

y=X0(n�`+1)+1

h̃n
k (`, y),

due to (2.14c), which by the inductive hypothesis is a polynomial of degree at most

k�`+1 in x. Similarly, taking x<X0(n�`+1), we get

h̃n
k (`�1, x)=

X0(n�`+1)X

y=x+1

h̃n
k (`, y),

which again is a polynomial of degree at most k�`+1. The two polynomials are the

same, and thus the claim follows.

We now check the biorthogonality condition (1). Using (2.11), we get
X

z2Z
 n

` (z)�
n
k (z)=

X

z1,z22Z

X

z2Z
Rt(z, z1)Q

�`(z1, X0(n�`))hn
k (0, z2)R

�1

t (z2, z)

=
X

z2Z
Q�`(z,X0(n�`))hn

k (0, z)

= (Q⇤)�`hn
k (0, X0(n�`)),

where, in the first equality, we have used the decay of Rt and the fact that 2�xhn
k (0, x) is

a polynomial together with the fact that the z1 sum is finite to apply Fubini. For `6k,

we use the boundary condition hn
k (`, X0(n�`))=1`=k, which is both (2.14b) and (2.14c),

to get

(Q⇤)�`hn
k (0, X0(n�`))=hn

k (`, X0(n�`))=1k=`.

For `>k, we use (2.14a), (2.14b), and 2z2ker (Q⇤)�1:

(Q⇤)�`hn
k (0, X0(n�`))= (Q⇤)�(`�k�1)(Q⇤)�1hn

k (k,X0(n�`))= 0.

To finish the proof, we need to show that �n
k satisfies condition (2) of Theorem 2.1.

By (2.10), we have

2�x�n
k (x)=

X

y>0

et

y!
(�t)y2�(x+y)hn

k (0, x+y).

It is enough to note then that, since 2�zhn
k (0, z) is a polynomial of degree at most k, this

sum is absolutely convergent and is a polynomial of degree at most k in x as well.
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2.2. Representation of the kernel as a hitting probability

Let

G0,n(z1, z2)=
n�1X

k=0

Qn�k(z1, X0(n�k))hn
k (0, z2) (2.17)

, where hn
k is the solution of (2.14). Then, from Theorems 2.1 and 2.2, and using (2.11),

we have

Kt(ni, · ;nj , ·)=�Qnj�ni1ni<nj+RtQ
�niG0,njR

�1

t . (2.18)

Below the “curve” (X0(n�`))n�1

`=0
, the functions hn

k (`, z) have an important physi-

cal interpretation. Q⇤(x, y) are the transition probabilities of a random walk B⇤
m with

Geom
⇥
1

2

⇤
jumps (strictly) to the right.(8) For 06`6k6n�1, define stopping times

⌧ `,n =min{m2 {`, ..., n�1} :B⇤
m >X0(n�m)},

with the convention that min?=1. Then, for z6X0(n�`), we have

hn
k (`, z)=PB⇤

`�1=z(⌧
`,n = k). (2.19)

This can be proved by checking that, with this definition, hn
k (`, z) satisfies (2.14b) and

(2.14c) while, for z6X0(n�`�1), it also satisfies (2.14a) and it is given by 2z times a

polynomial in z of degree at most n�1; the conclusion now follows from the fact, shown

in the proof of Theorem 2.2, that 2�zhn
k (`, z) is a polynomial of degree at most n�1.

From the memoryless property of the geometric distribution, we have for all z6X0(n)

that

PB⇤
�1=z(⌧

0,n = k,B⇤
k = y)= 2X0(n�k)�yPB⇤

�1=z(⌧
0,n = k),

and as a consequence we get, for z26X0(n),

G0,n(z1, z2)=
n�1X

k=0

PB⇤
�1=z2(⌧

0,n = k)(Q⇤)n�k(X0(n�k), z1)

=
n�1X

k=0

X

z>X0(n�k)

PB⇤
�1=z2(⌧

0,n = k,B⇤
k = z)(Q⇤)n�k�1(z, z1)

=PB⇤
�1=z2(⌧

0,n <n,B⇤
n�1

= z1),

(2.20)

which is the probability for the walk starting at z2 at time �1 to end up at z1 after n

steps, having hit the curve (X0(n�m))m=0,...,n�1 in between.

(8) We use the notation B⇤
m to distinguish it from the walk Bm with transition matrix Q which

will appear shortly.
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The next step is to obtain an expression along the lines of (2.20) which holds for

all z2, and not just z26X0(n). We begin by observing that, for each fixed y1 and n>1,

2�y2Qn(y1, y2) extends in y2 to a polynomial 2�y2Q(n)(y1, y2) of degree n�1 with

Q(n)(y1, y2)=
1

2⇡i

I

�0

dv
(1+v)y1�y2�1

2y1�y2vn
=

(y1�y2�1)n�1

2y1�y2(n�1)!
, (2.21)

where (x)k=x(x�1) ... (x�k+1) for k>0 and (x)0=1 is the Pochhammer symbol. Note

that

Q(n)(y1, y2)=Qn(y1, y2) for y1�y2 > 1. (2.22)

Using (2.8) and (2.21), we have

Q�1Q(n) =Q(n)Q�1 =Q(n�1) for n> 1, but Q�1Q(1) =Q(1)Q�1 =0. (2.23)

Note also that Q(n)Q(m) is divergent, so the Q(n) are no longer a group like the Qn. Let

⌧ =min{m> 0 :Bm >X0(m+1)}, (2.24)

where Bm is now a random walk with transition matrix Q (that is, Bm has Geom
⇥
1

2

⇤

jumps strictly in the negative direction). Using this stopping time and the extension of

Qm, we obtain the following result.

Lemma 2.4. For the kernel defined in (2.17) and all z1, z22Z, we have

G0,n(z1, z2)=EB0=z1 [Q
(n�⌧)(B⌧ , z2)1⌧<n]. (2.25)

Proof. For z26X0(n), (2.20) can be written as

G0,n(z1, z2)=PB⇤
�1=z2(⌧

0,n 6n�1, B⇤
n�1

= z1)

=PB0=z1(⌧ 6n�1, Bn = z2)

=
n�1X

k=0

X

z>X0(k+1)

PB0=z1(⌧ = k,Bk = z)Qn�k(z, z2)

=EB0=z1 [Q
n�⌧ (B⌧ , z2)1⌧<n].

(2.26)

We claim that the right-hand side of (2.25) equals G0,n(z1, z2) for all z26X0(n). To see

this, note from the last equality in (2.26) that we only need to check that

�X0(k+1)Q
(k+1)�X0(n) =�X0(k+1)Q

k+1�X0(n) for k=0, ..., n�1,

which, since X0(k+1)�X0(n)>n�k�1, follows from (2.22).

To complete the proof, recall that we showed that 2�z2hn
k (0, z2) is a polynomial of

degree at most k in z2, so from (2.17) we have that 2�z2G0,n(z1, z2) satisfies the same

(for every fixed z1). It is straightforward to check that the right-hand side of (2.25) also

satisfies this (because Q(m)(z1, z2) does), and thus, since it coincides with G0,n(z1, z2) at

infinitely many z2’s, we deduce the equality in (2.25).
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2.3. Formulas for TASEP with right-finite initial data

Let,(9) for n>1,

S�t,�n(z1, z2)= (e�(t/2)r�
Q�n)⇤(z1, z2)=

1

2⇡i

I

�0

dw
(1�w)n

2z2�z1wn+1+z2�z1
et(w�1/2), (2.27)

S�t,n(z1, z2)=Q(n)e(t/2)r
�
(z1, z2)=

1

2⇡i

I

�0

dw
(1�w)z2�z1+n�1

2z1�z2wn
et(w�1/2); (2.28)

the contour integral formulas come from (2.8), (2.10), and (2.21). As before, �0 is a

simple counterclockwise loop around 0 not enclosing 1. Define also, for n>0,

S epi(X0)

�t,n (z1, z2)=EB0=z1 [S�t,n�⌧ (B⌧ , z2)1⌧<n]. (2.29)

The superscript epi(X0) refers to the fact that ⌧ (defined in (2.24)) is the hitting time of

the strict epigraph(10) of the curve (X0(k+1))k=0,...,n�1 by the random walk Bk.

Remark 2.5. Mm=S�t,n�m(Bm, z2) is not a martingale, because QQ(n) is divergent.

So one cannot apply the optional stopping theorem to evaluate (2.29). The right-hand

side of (2.29) is only finite because the curve (X0(k+1))k=0,...,n�1 cuts o↵ the divergent

sum.

We are now in position to state the general solution of TASEP with right-finite

initial data.

Theorem 2.6. (TASEP formula for right-finite initial data) Assume that TASEP

initial condition X0 satisfies X0(j)=1 for all j60. Then, for any distinct positive

integers n1, ..., nm and t>0,

P(Xt(nj)>aj , j=1, ...,m)=det(I��aK
TASEP

t �a)`2({n1,...,nm}⇥Z), (2.30)

where KTASEP
t is the operator on `2({n1, ..., nm}⇥Z) with kernel given by

KTASEP

t (ni, · ;nj , ·)=�Qnj�ni1ni<nj+(S�t,�ni)
⇤S epi(X0)

�t,nj
. (2.31)

The path integral version (2.12) (with K(n)
t =KTASEP

t (n, · ;n, ·)) also holds.

(9) (S�t,n)⇤ should be thought of as a version of S�t,n (analytic in z2�z1) made from the other
pole in the contour integral in (2.3). In fact, if one changes variables w 7� 1�w in (2.27), and then
changes n to �n then one gets (2.28) (with z1 and z2 interchanged), except that the integration is along
a loop enclosing only 1 instead of only 0. Our choice of taking an adjoint in the definition in (2.27) is
made just for later convenience.

(10) The strict epigraph of a discrete curve (g(m))m>0 is the set epi(g)={(m, y):m>0 and y>g(m)}
(see also §3.1).
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Remark 2.7. (1) By shifting the indices of the particles, the theorem allows us to

write a formula for any right-finite initial data X0 with X0(j)=1 for j6`, any `2Z. In
fact, defining the shift operator

✓`g(u)= g(u+`), (2.32)

we have the trivial identity

PX0(Xt(nj)>aj for j=1, ...,m)=P✓`X0(Xt(nj�`)>aj for j=1, ...,m). (2.33)

(2) Note that, by definition, S epi(X0)

�t,nj
(y, z)=S�t,nj (y, z) for y>X0(1), so (2.31) can

also be written as

KTASEP

t (ni, · ;nj , ·)

=�Qnj�ni1ni<nj+(S�t,�ni)
⇤�X0(1)

S�t,nj+(S�t,�ni)
⇤�̄X0(1)

S epi(X0)

�t,nj
.

(2.34)

Proof. Consider first right-finite initial data. If X0(1)<1 then we are in the setting

of the above sections and formulas (2.30) and (2.31) follow directly from the above

definitions together with (2.18) and Lemma 2.4. IfX0(i)=1 for i=1, ..., ` andX0(`+1)<

1, then it is enough to consider nj>` for j=1, ...,m, and then, from (2.33), we have

PX0(Xt(nj)>aj for j=1, ...,m)=det(I��aK
(`)
t �a)`2({n1,...,nm}⇥Z),

with

K(`)
t (ni, · ;nj , ·)=�Qnj�ni1ni<nj+(S�t,�ni+`)

⇤S epi(✓`X0)

�t,nj�` .

Using now that, for ni, nj>`, (S�t,�ni+`)⇤=(S�t,�ni)
⇤Q` and

Q`S epi(✓`X0)

�t,nj�` =S epi(X0)

�t,nj
, (2.35)

which follows from the definition of S epi(X0)

�t,n , (2.23), and the fact that ✓`X0(j)=1 for

j=1, ..., `, we see that (2.31) still holds in this case.

The path integral formula (2.12) is proved in Appendix D.2, and follows from a

variant of [8, Theorem 3.3] proved in Appendix D.1.

Example 2.8. (Step initial data) Consider TASEP with step initial data, i.e.

X0(i)=�i for i> 1.

If we start the random walk in (2.29) from B0=z1 below the curve, i.e. z16�1, then the

random walk clearly never hits the epigraph. Hence, �X0(1)
S epi(X0)

�t,n ⌘0 and the last term

in (2.34) vanishes. For the second term in (2.34) we have, from (2.27) and (2.28),

(S�t,�ni)
⇤�X0(1)

S�t,nj (z1, z2)=
1

(2⇡i)2

I

�0

dw

I

�0

dv
(1�w)ni(1�v)nj+z2

2z1�z2wni+z1+1vnj

et(w+v�1)

1�v�w
.

Using this in (2.34) yields exactly the formula derived previously in the literature (see

e.g. [24, equation 82]), modulo the conjugation by 2z2�z1 .
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Example 2.9. (2-periodic initial data) We are interested now in TASEP with 2-

periodic initial data X0(i)=2i, i2Z (we consider more general periods in the next exam-

ple). To obtain a formula for the kernel in this case we will approximate by considering

first the finite periodic initial data X0(i)=2(N�i) for i=1, ..., 2N . For simplicity, we will

compute only K(n)
t =KTASEP(n, · ;n, ·).

We start by computing S epi(X0)

�t,n . Observe that, for �>� log(2), we have that

(e�Bm�m'(�))m>0,

with '(�)=� log(2e��1) being the logarithm of the moment generating function of a

negative Geom
⇥
1

2

⇤
random variable, is a martingale. Thus, if z62(N�1), we have

EB0=z[e
�B⌧�⌧'(�)] = e�z.

But it is easy to see from the definition of X0 that, if the walk starts below the curve,

then B⌧ is necessarily 2(N�(⌧+1))+1, so we have

EB0=z[e
�2�⌧ (2e��1)⌧ ] = e(z�2N+1)�.

Introducing a new variable ⌘2(0, 1) through �=log(⌘�1(1+
p
1�⌘ )) yields

EB0=z[⌘
⌧ ] = (⌘�1(1+

p
1�⌘ ))z�2N+1.

As a consequence, we obtain

PB0=z(⌧ = k)= lim
⌘ 0

1

k!

dk

d⌘k

✓
1+

p
1�⌘
⌘

◆z�2N+1

,

and then using Cauchy’s integral formula we can compute S epi(X0)

�t,n (z1, z2) from (2.28)

and (2.29) as

lim
⌘ 0

1

(2⇡i)2

I

�r

dw

I

⌘+�r

d⇠
n�1X

k=0

✓
1+

p
1�⇠
⇠

◆z1�2N+1 1

(⇠�⌘)k+1

(1�w)z2�2N+n+k

22(N�k)�1�z2wn�k
et(w�1/2),

where �r is a circle of radius r centered at the origin and we take ⌘<r< 3

4
. The ⌘ 0

limit is now straightforward to compute, and since the resulting integrand is analytic in

⇠ for k<0, we may extend the sum to k=�1, and then compute the sum (using that

|4⇠�1w(1�w)|>1 for our choice of r) to get

1

(2⇡i)2

I

�r

dw

I

�r

d⇠

✓
1+

p
1�⇠
⇠

◆z1�2N+1 (1�w)z2�2(N�n)

22(N�n)�1�z2⇠n
1

4w(1�w)�⇠ e
t(w�1/2).
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Now, we introduce the change of variables ⇠=4v(1�v), which is locally 1-to-one near

v=1. For small r, if v lies in 1+�r, then 4v(1�v) lies approximately in �4r, so we may

adjust the contours to get that the last integral equals

1

(2⇡i)2

I

�r

dw

I

1+�r0

dv
(1�w)z2�2(N�n)

2y�z2vn(1�v)z1�2N+n+1

1�2v

w(1�w)�v(1�v)
et(w�1/2),

with r0⇠ 1

4
r. From this and (2.27), we may compute the product

(St,�n)
⇤�2(N�1)S

epi(X0),⌘
t,n (z1, z2),

which equals

1

(2⇡i)3

I

�r

du

I

�r

dw

I

1+�r0

dv
(1�w)z2�2(N�n)(1�u)n

2z1�z2vn(1�v)n�1uz1�2N+n+2

⇥ 1�2v

(1�u�v)[w(1�w)�v(1�v)]
et(w+u�1).

Since 1�v lies inside �r, the w integral has a pole at w=1�v, and computing the residue

yields

1

(2⇡i)2

I

�r

du

I

1+�r0

dv
vz2�2N+n(1�u)n

2z1�z2(1�v)n�1uz1�2N+n+2

1

1�u�v
et(u�v). (2.36)

On the other hand, a simpler computation (as in the previous example) shows that the

other term making up

K(n)
t (z1, z2)=KTASEP

t (n, z1;n, z2)

in (2.34), namely (St,�n)⇤�2(N�1)St,n(z1, z2), equals

1

(2⇡i)2

I

�r

du

I

�r00

dv
(1�v)z2�2N+n+1(1�u)n

2z1�z2uz1�2N+n+2vn
1

1�u�v
et(u+v�1), (2.37)

where we take r00<r. Changing variables v 7 1�v in (2.36) and adding the result with

(2.37), we get

K(n)
t (z1, z2)=

1

(2⇡i)2

I

�r

du

I

�r00

dv
(1�v)z2�2N+n(1�u)n

2z1�z2uz1�2N+n+1vn
1�2v

(u�v)(1�u�v)
et(u+v�1).

In order to obtain the kernel which yields the distribution of the mth particle for the

full 2-periodic initial condition, K2-prd,(m)

t , we proceed as in [10], using the last formula

and focusing on particles which start at a fixed distance from the origin, that is n=N+m

with m fixed (which corresponds to the particle that started at �2m), and taking N 1.
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To this end, for fixed z1, take N>z1+m+2, so that u=0 is not a pole in both (2.36)

and (2.37). We see now that (2.37) vanishes, because the u integrand is analytic, given

our choice of contours. On the other hand, for (2.36) we have that 1�v lies inside �r so

the u integral has a pole at u=1�v, and computing the residue yields

K2-prd,(m)

t (z1, z2)=� 1

2⇡i

I

1+�r0

dv
vz2+2m

2z1�z2(1�v)z1+2m+1
et(1�2v). (2.38)

This is exactly the kernel derived (modulo the conjugation 2z2�z1 , and after a simple

change of variables) in [10, Theorem 2.2].

Example 2.10. (`-periodic initial data) Now, we turn to TASEP with `-periodic

initial data, given by X0(i)=�`i, i2Z, with `>2. In contrast to the last example, the

value of B⌧ is not fixed as a function of ⌧ if `>2, and thus computing S epi(X0)

t,�n becomes

more complicated. But the hitting probabilities for B⇤ can be computed in a way similar

to the last example, so in this case it is simpler to compute the biorthogonal functions

�n
k using (2.15) and (2.19), and then obtain the kernel K(n)

t =KTASEP
t (n, · ;n, ·) directly

from (2.6). We do this next.

As in the last example, we consider first the truncated initial data X0(i)=`(N�i),

for i=1, ..., 2N . For fixed 06k<n62N and z6X0(1), we want to compute

hn
k (z)=PB⇤

�1=z(⌧
⇤ = k),

where ⌧⇤ is the hitting time of the strict epigraph of (X0(n�m))m=0,...,n�1. Proceeding

as above, for �<log(2) and '⇤(�)=� log(2e���1), we have

EB⇤
�1=z[e

�B⇤
⌧⇤�⌧⇤'⇤

(�)] = e�z+'⇤
(�),

giving

e�z+'⇤
(�) =

X

k>0

X

m>1

PB⇤
�1=z(⌧

⇤ = k,B⇤
k =X0(n�k)+m)e�(X0(n�k)+m)�k'⇤

(�).

Using the memoryless property of the geometric distribution, we may rewrite the above

probability as PB⇤
�1=z(⌧⇤=k,B⇤

k=X0(n�k)+1)21�m. The sum over m is then just

X

m>1

✓
e�

2

◆m
= e'

⇤
(�),

and thus the right-hand side equals

2EB⇤
�1=z[e

�B⇤
⌧⇤�⌧⇤'⇤

(�)1B⇤
⌧⇤=X0(n�⌧⇤)+1]e

'⇤
(�)��,



the kpz fixed point 133

which leads to

2EB⇤
�1=z[e

(�`�'⇤
(�))⌧⇤

1B⇤
⌧⇤=X0(n�⌧⇤)+1] = e�[z+`(n�N)].

Setting v=1� 1

2
e�>0, we get

2EB⇤
�1=z[(2

`(1�v)`�1v)⌧
⇤
1B⇤

⌧⇤=X0(n�⌧⇤)+1] = (2(1�v))z+`(n�N).

The function v 7 p(v):=2`(1�v)`�1v is locally 1-to-one near zero, so

2PB⇤
�1=z(⌧

⇤ = k,B⇤
⌧⇤ =X0(n�⌧⇤)+1)= lim

v 0

1

k!

dk

dp(v)k
(2(1�v))z+`(n�N).

Using again the memorylessness of the walk, the left-hand side equals PB⇤
�1=z(⌧⇤=k),

while, by Cauchy’s formula, the right-hand side equals

1

2⇡i

I

�0

dv
1

p(v)k+1
p0(v)(2(1�v))z+`(n�N) =

1

2⇡i

I

�0

dv
(1�v)z+`(n�N)�1

2`(N�n+k)�z((1�v)d�1v)k
(1�`v)

v
,

where �0 goes around 0 but not 1. In principle, this is only valid for z6X0(1), but the

right-hand side is analytic in z, so we actually get a formula for hn
k (0, z) for all z2Z.

Using (2.10) and (2.15), we get

�n
k (z)=

1

2⇡i

I

�0

dv
(1�v)z+`(n�N)�1

2`(N�n+k)�z((1�v)`�1v)k
1�`v
v

etv.

These functions extend trivially to 0 for k<0, so we may now perform the summation in

(2.6) over k>1 (using the explicit formula (2.7) for  n
k ) to get the kernel for truncated

`-periodic initial data

K(n)
t,N (z1, z2)=

1

(2⇡i)2

I

�0

dw

I

�0
0

dv
(1�v)z2�`(N�1)+n�2(1�w)n

2z1�z2vnwz1�`N+n+1

(1�`v)et(v+w�1)

(1�w)w`�1�(1�v)`�1v
,

where the contours are such that

|(1�v)`�1v|< |(1�w)w`�1|.

Finally, and as in the 2-periodic case, we set n=N+m in the last kernel, which gives

1

(2⇡i)2

I

��1

dw

I

�0

dv
(1+v)z2�(`�1)N+`+m�2wN+m

2z1�z2vN+m(1+w)z1�(`�1)N+m+1

(1+`v)et(w�v)

(1+w)`�1w�(1+v)`�1v
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(where we have changed variables v 7 �v and w 7 1+w), and then take N 1 to get

the kernel for the full `-periodic initial condition. For fixed z1 and large enough N , the

w integral has no pole at �1. Let w1(v), ... w`�1(v) be the `�1 solutions of

(1+w)`�1w=(1+v)`�1v

other than w=v. One can check that all these `�1 roots are distinct and lie inside the w

contour, while w=v lies outside of it. The full `-periodic kernel then evaluates to a sum

over the residues of these `�1 simple poles, and after simplification (using the equation

satisfied by the w`(v)’s) we get

K`-prd,(m)

t (z1, z2)=
1

2⇡i

I

�0

dv
`�1X

j=1

1+`v

1+`wj(v)

(1+v)z2+`+m�2wj(v)m

2z1�z2vm(1+wj(v))z1+`+m�1
et(wj(v)�v)

=
1

(2⇡i)2

I

��1

dw

I

�0

dv
(1+v)z2+`+m�2wm

2z1�z2vm(1+w)z1+m+1

⇥ 1+`v

(1+w)`�1w�(1+v)`�1v
et(w�v).

These formulas are very similar to [9, equations 2.3 and 4.11] (which are for discrete-time

TASEP). In the case `=2, we have w1(v)=�1�v and we recover (2.38) after a simple

change of variables.

2.4. Integrability

There are many notions of classical integrable systems: Liouville integrability, algebraic

integrability, etc. Quantum integrability usually is used to mean that a quantum me-

chanical model possesses an infinite number of conserved quantities. Another notion of

integrable system is simply that one has a representation under which the flow is lin-

earized. Theorem 2.6 presents TASEP with right-finite initial data(11) as a new type of

stochastic integrable system, the dynamics being trivialized at the level of kernels, which

satisfy the Lax equation,(12)

@tK
TASEP

t = 1

2
[KTASEP

t ,r�]. (2.39)

(11) One also has a formula for 2-sided initial data, but because of the analytic extension it is
cumbersome, and the proof is quite lengthy; moreover, it is not clear to us yet that the formula can be
used for asymptotics. We leave it to a future paper.

(12) KTASEP
t acts on the Hilbert space `2({n1, ..., nm}⇥Z), and can be identified with an operator-

valued n⇥n matrix acting on M

n2{n1,...,nm}
`2(Z).

Under this identification, r� is identified with the diagonal matrix with the specified entries along the
whole diagonal.
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The m-point distributions at time t are obtained from KTASEP
t by projecting down via

the Fredholm determinant, and the full space-time field is recovered from these transition

probabilities using the Markov property.

TASEP has long been known to be solvable, by the coordinate Bethe ansatz, re-

sulting in Schütz’s formula (2.2). One also has the algebraic Bethe ansatz, in which

the eigenfunctions are computable [46]. However, the resulting formulas do not directly

integrate the dynamics—i.e., solve the problem starting from generic initial data—in a

useful way. One might refer to them as exact solvability versus the stochastic integrability

given in (2.39).

3. 1:2:3 scaling limit

For each ">0, the 1:2:3 rescaled TASEP height function is

h
"(t,x)= "1/2[h2"�3/2t(2"

�1x)+"�3/2t]. (3.1)

Remark 3.1. The KPZ fixed point has one free parameter,(13) corresponding to �

in (1.2). Our choice of the height function in TASEP moving downwards corresponds to

�>0.(14) The scaling of space and time by the factor 2 in (3.1) corresponds to the choice

|�|= 1

4
.

Note also that, for fixed t, the TASEP height function in (3.1) is being rescaled

di↵usively in space. In particular, this fixes our study of the scaling limit to perturbations

of density 1

2
. We could perturb o↵ any density ⇢2(0, 1) without extra di�culty by

observing the system in an appropriate moving frame, but in order to avoid heavier

notation we do not pursue it here.

Assume that we have initial data X"
0
chosen to depend on " in such a way that

h0 = lim
" 0

h
"(0, ·) (3.2)

(13) It was recently proposed that the KPZ fixed point is given by

@th=�(@xh)
2�⌫(�@2

x)
3/2h+⌫1/2(�@2

x)
3/4⇠, ⌫> 0,

the evidence being that formally it is invariant under the 1:2:3 KPZ scaling (1.1), and it preserves
Brownian motion. Besides the non-physical non-locality, and the inherent di�culty of making sense
of this equation, one can see that it is not correct, because it has two free parameters instead of one.
Presumably, it converges to the KPZ fixed point in the limit ⌫ 0. On the other hand, the model has
critical scaling, so it is also plausible that, if one introduces a cuto↵ (say, smooth the noise) and then
take a limit, the result has ⌫=0, and possibly even a renormalized �. So, it is possible that, in a rather
uninformative sense, the conjecture could still be true.

(14) To get some intuition, check that �x2/t is a solution of @th=
1
4 (@xh)

2; it corresponds to step
initial data. The bulk downward movement of the TASEP height function has been compensated by the
huge shift upward in (3.1).
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in distribution, in the UC topology described below. We will also choose the frame of

reference

X�1

0
(�1)= 1, (3.3)

i.e. the particle labeled 1 is initially the rightmost in Z<0. Because the X"
0
(k) are in

reverse order, and because of (3.3) and the inversion (2.1), we have that (3.2) is equivalent

to

"1/2(X"
0
("�1x)+2"�1x�1)���

" 0

�h0(�x) (3.4)

in distribution, in UC, where the left-hand side is interpreted as a linear interpolation to

make it a continuous function of x2R.
For fixed t>0, we will now show that the limit

h(t,x; h0)= lim
" 0

h
"(t,x) (3.5)

also exists in distribution, in UC. In §3.5 we will prove the Markov property, which gives

us, in principle, the multi-time and space distributions of the entire field. We take (3.5)

essentially as our definition of the KPZ fixed point h(t,x; h0). We will often omit h0

from the notation, when it is clear from the context.

3.1. State space and topology

The state space in which we will always work, and where (3.2) and (3.4) will be assumed

to hold and (3.5) will be proved, in distribution, will be(15) the set

UC= {h:R w[�1,1) such that h is upper semicontinuous and

h(x)6↵+�|x| for some ↵,�<1 and h(x)>�1 for some x},

with the topology of local UC convergence, which we now describe.

Recall that h is upper semicontinuous (UC) if and only if its hypograph

hypo(h)= {(x,y) :y6 h(x)}

is closed in [�1,1)⇥R. We endow [�1,1) with the distance(16)

d[�1,1)(y1,y2)= |ey1�ey2 |.

(15) The bound h(x)6↵+�|x| is not as general as possible. With work, one can extend to the class
h(x)6↵+�0|x|2, up to time t=��1

0 . At that time, initial data such as h0(x)=↵+�0|x|2 will actually
have an explosion.

(16) This allows continuity at time zero for initial data which takes values �1, such as half-flat
(see §4.4).
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Given h1, h22UC and M>0, we say that the hypographs H
M
1

of h1 and H
M
2

of h2

restricted to [�M,M ] are �-close if B�(HM
1
)✓H

M
2

and B�(HM
2
)✓H

M
1
, where

B�(H) :=
[

(t,x)2H

B�((t,x)),

B�((t,x)) being the ball of radius � around (t,x), i.e. we use the Hausdor↵ distance

on the restricted hypographs. We say then that (h")"✓UC converges locally in UC to

h2UC if there is a �>0 such that h"(x)6↵+�|x| for all ">0 and for every M>1 there

is a �=�(",M)>0 going to 0 as " 0 such that the hypographs H
M
" of h" and H

M of h

restricted to [�M,M ] are �-close.

Another characterization is that hn h locally in UC if and only if, for each x,

limsup
xn x

h
n(xn)6 h(x)

and there exists xn x with

liminf
xn x

h
n(xn)> h(x).

We will also use the space LC={g:�g2UC} (made of lower semicontinuous func-

tions), the topology now being defined in terms of epigraphs,

epi(g)= {(x,y) :y> g(x)}.

The Borel sets of UC will be denoted B(UC). It is fairly easy to see that UC is a

Polish space and the subspace B0(UC)✓B(UC) of sets A of the form

A= {h2UC : h(xi)6ai for i=1, ..., n}

defines a generating family for the �-algebra B(UC), as does the subspace B1(UC)✓
B(UC) of sets of the type

Ag = {h2UC : h(x)6 g(x) for x2R}, g2LC .

The UC topology is very natural for interface growth, incorporating the inherent

lateral growth mechanism and the h �h asymmetry.

One could alternatively consider the set C� of continuous functions in UC satisfying

h(x)6↵+�|x|,

and use

C =
[

�>0

C�
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as state space; the topology on UC, when restricted to C , is the topology of uniform

convergence on compact sets. Or we could consider the local Hölder spaces

C �
� = {h2C� : khk�,[�M,M ] <1 for each M =1, 2, ... },

defined by the family of semi-norms

khk�,[�M,M ] = sup
x1 6=x22[�M,M ]

|h(x2)�h(x1)|
|x2�x1|�

. (3.6)

These would su�ce for any t>0, but many natural initial data are not in these spaces.

For example, the UC function dx(x)=0, dx(y)=�1 for y 6=x, known as a narrow wedge

at x, plays a role in the theory somewhat analogous to Dirac’s delta function.

For our purposes, the following fact about UC is crucial. Recall that ⌧" ⌧ in

distribution if and only if limsup ⌧"6⌧ and liminf ⌧">⌧ in distribution, i.e.

limsupP(⌧" > r)6P(⌧ > r) and liminfP(⌧" >r)>P(⌧ >r).

The probability spaces on which they are defined need have nothing to do with each

other, but it can be conceptually easier to construct them all on the same probability

space, in which case the definitions are just the standard ones.

Proposition 3.2. Suppos g" g locally in LC. Let B(x), x>0, be a Brownian

motion starting at z<g(0), and let B"(x) be stochastic processes with B" B in UC, in

distribution. Let ⌧ "=inf{x>0:B"(x)>g"(x)} and ⌧=inf{x>0:B(x)>g(x)} be the first

hitting times of epi(g") and epi(g), respectively. Then, ⌧ " ⌧ in distribution. Further-

more, the convergence is uniform over g in sets of bounded Hölder �-norm, �2
�
0, 1

2

�
.

Proof. If there exists a subsequence ⌧ "n x, then

06 limsupB"n(⌧
"n)�g"n( ftau

"n)6B(x)�g(x),

because they are converging in UC, so x>⌧ , and thus liminf ⌧ ">⌧ . For the other

direction, let f�(0)=0, f�(x)=� for x>�, and linear in between. Let

⌧� = inf{x> 0 :B(x)> g(x)+f�(x)}.

By the Cameron–Martin formula, ⌧� ⌧ in distribution:

P(⌧� 2 I)=E
⇥
exp

�
B(�)�B(0)� 1

2
�
 
1⌧2I

⇤
P(⌧ 2 I),

since the integrands are uniformly integrable. Since B"�g" B�g in UC, there are

x" ⌧� with

liminf(B"(x")�g"(x"))> 0.
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So, ⌧ "<⌧�+� for " su�ciently small. This proves that limsup ⌧ "6⌧ in distribution.

To prove the uniformity, for any �>0, and restricting to [0,M ], we have

hypo(B"�g")⇢B�(hypo(B�g))

for su�ciently small ">0. There is a �>0 depending only on the Hölder �-norm of B�g

and going to zero, with � such that

B�(hypo(B�g))⇢ hypo(B�g+�).

Hence, ⌧ ">⌧z+� in distribution, where the subscript z+� indicates that the hitting time

⌧z+� is for the Brownian starting with B(0)=z+�. In the other direction, for any �>0

there exists �>0 depending only on the Hölder �-norm of B�g such that B(x)�g(x)>�

for any |x�⌧z�� |<�, and there exist |x��⌧z�� |<� for which

(B"�g")(x�)> (B�g)(⌧z��)��.

Hence, ⌧ "6x�<⌧z��+�. Now, let (B,B) be a pair of coalescing Brownian motions

starting at (z+�, z��) defined by letting B(y)=2z�B(y) until the first time �z they

meet, and B(y)=B(y) for y>�z. We have

P(⌧z+� 6T )�P(⌧z�� 6T )=P(B hit but B did not)6P(�z > ⌧z+�).

Recall that z<g(x). We also have

g(x+y)> g(x)�Cy�

for 06y6T by the uniform Hölder bound, so if we let ⌫z+� be the hitting time of

g(x)�Cy� by B, then we get ⌧z+�>⌫z+� . Hence,

P(⌧z+� 6T )�P(⌧z�� 6T )6P(�z >⌫z+�) 0

as � 0, with a rate depending only on C, � and �.

3.2. Approximation setup

For any h02UC, we can find initial data X"
0
so that (3.4) holds in the LC topology. This

is easy to see, because any h02UC is the limit of functions which are finite at finitely

many points, and �1 otherwise. In turn, such functions can be approximated by initial

data X"
0
, where the particles are densely packed in blocks. Note that there is a mild
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abuse here, as the left-hand side of (3.4) is a function on "Z. We can always extend

it to R in a simple way, say taking it piecewise constant on ("n, "(n+1)), and choosing

the endpoints so that it is lower semi-continuous. Similarly, (3.1) will be taken to be a

piecewise constant UC function.

Our goal is to take such a sequence of initial data X"
0
and compute

Ph0(h(t,xi)6ai for i=1, ...,m),

which, from (2.1), (3.1), (3.3) and (3.5), is the limit as " 0 of

PX0

�
X2"�3/2t

�
1

2
"�3/2t�"�1xi� 1

2
"�1/2ai+1

�
> 2"�1xi�2 for i=1, ...,m

�
. (3.7)

We therefore want to consider Theorem 2.6 with

t=2"�3/2t, ni =
1

2
"�3/2t�"�1xi� 1

2
"�1/2ai+1 and ai =2"�1xi�2, (3.8)

where we will always assume that " is small enough so that ni>0 for each i.

The formula (2.31) for the TASEP kernel requires initial data which is right-finite.

While one can build a formula which holds without this restriction, it is not nice for

passing to limits. But there is no loss of generality in considering right-finite data because

of the next lemma, which says that we can safely cut o↵ our data far to the right. It also

tells us how fast information is transmitted in the fixed point (see Theorem 4.6).

Definition 3.3. (Cuto↵ data) For each integer L, the cuto↵ data is

X",L
0

(n)=

⇢
X"

0
(n), if n>�b"�1L0c,

1, if n6�b"�1L0c,

where L0⇠ 1

2
L is chosen so that "X"

0
(�b"�1L0c)=L. This corresponds to replacing h

"
0
(x)

by h
",L
0

(x), with a straight line with slope �2"�1/2 to the right of L. This is the UC

cuto↵ at L. The LC cuto↵ of g at L is just minus the UC cuto↵ of g.

The following will be proved in Appendix C.1.

Lemma 3.4. (Finite propagation speed) Suppose X"
0
satisfies (3.4), with h02UC.

There are "0>0 and C<1, �>0 independent of "2(0, "0) such that the di↵erence of (3.7)

computed with initial data X"
0
and with initial data X",L

0
is bounded by Ce�(2/3��)L3

.

3.3. Limiting operators

The limits are stated in terms of an (almost) group of operators

St,x =exp
�
x@2+ 1

3
t@3

 
, x, t2R2\{x< 0, t=0}, (3.9)
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satisfying Ss,xSt,y=Ss+t,x+y, as long as all subscripts avoid {x<0, t=0}. We can think

of them as unbounded operators with domain C1
0

(R). It is somewhat surprising that

they even make sense for x<0, t 6=0, but it is just an elementary consequence of the

following explicit kernel and basic properties of the Airy function(17)

Ai(z)=
1

2⇡i

Z

h
dw ew

3/3�zw.

The St,x act by convolution:

St,xf(z)=

Z 1

�1
dy St,x(z, y)f(y)=

Z 1

�1
dy St,x(z�y)f(y)

where, for t>0,

St,x(z)=
1

2⇡i

Z

h
dw etw

3/3+xw2
+zw = t�1/3e2x

3/3t2�zx/t Ai(�t�1/3z+t�4/3x2), (3.10)

and S�t,x=(St,x)⇤, or S�t,x(z, y)=S�t,x(z�y)=St,x(y�z). From this, we get directly

the identity (St,x)⇤St,�x=I, which we will use often without reference.

In addition to St,x, we need to introduce the limiting version of S epi(X0)

t,n . It will

actually be more convenient for us to introduce the hypograph variant of this operator

first, since it is the one that will show up more often in our formulas: for h2UC, we

define

Shypo(h)

t,x (v, u)=EB(0)=v[St,x�⌧ (B(⌧ ), u)1⌧<1], (3.11)

where B(x) is a Brownian motion with di↵usion coe�cient 2, and ⌧ is the hitting time

of the hypograph of h.(18),(19) Note that, trivially, Shypo(h)

t,x (v, u)=St,x(v, u) for v6h(0).

The fact that the expectation in (3.11) is finite will be proved in Appendix A. We have

that Shypo(h)

t,x really depends only on the values of h on [0,1), and we will sometimes

evaluate it at functions defined only there.

One way to think of Shypo(h)

t,x (v, u) is as a sort of asymptotic transformed transition

density for the Brownian motion B to go from v to u hitting the hypograph of h. To see

(17) h is the positively oriented contour going from e�i⇡/31 to ei⇡/31 through zero.
(18) It is important that we use B(⌧ ) in (3.11) and not h(⌧ ) which, for discontinuous initial data,

could be strictly larger.
(19) We have that St,x�y(B(y), u) is a martingale in y>0. However, it is not uniformly integrable

and one cannot apply the optional stopping theorem to conclude that EB(0)=v [St,x�⌧ (B(⌧ ), u)1⌧<1]=
St,x(v, u). For example, if h⌘0, one gets instead

EB(0)=v [St,x�⌧ (B(⌧ ), u)1⌧<1] =St,x(�v, u)

for v>0 (see [51, Proposition 3.6]).
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what we mean, write

Shypo(h)

t,x = lim
T 1

Shypo(h)

[0,T]
St,x�T

with Shypo(h)

[0,T]
(v, u)=EB(0)=v[S0,T�⌧ (B(⌧ ), u)1⌧6T],

(3.12)

and note that Shypo(h)

[0,T]
(v, u) is nothing but the transition density for B to go from v at

time zero to u at time T hitting hypo(h) in [0,T].

The epi version of the operator is defined similarly: for g2LC,

Sepi(g)

t,x (v, u)=EB(0)=v[St,x�⌧ (B(⌧ ), u)1⌧<1], (3.13)

where ⌧ is now defined as the hitting time of the epigraph of g (the meaning of ⌧ will

always be clear from the context); now we have Sepi(h)

t,x (v, u)=St,x(v, u) for v>g(0). As

a consequence of (3.12), one can see that the epi and hypo operators are related through

Sepi(g)

�t,x (v, u)=Shypo(�g)

t,x (�v,�u). (3.14)

Lemma 3.5. Under the scaling (3.8) (dropping the i subscripts) and assuming that

(3.4) holds in LC, if we set z=2"�1x+"�1/2(u+a)�2 and y0="�1/2v, then we have for

t>0 as " 0,

S"
�t,x(v, u) := "�1/2S�t,�n(y

0, z) S�t,x(v, u), (3.15)

S"
�t,�x(v, u) := "�1/2S�t,n(y

0, z) S�t,�x(v, u), (3.16)

S
",epi(�(h

"
0)

�
)

�t,�x (v, u) := "�1/2S epi(X0)

�t,n (y0, z) S
epi(�h

�
0 )

�t,�x (v, u) (3.17)

pointwise, where h
�(x)=h(�x) for x>0. Here, S�t,�n, S�t,n are defined in (2.27) and

(2.28).

Note that the kernels on the left-hand side also depend on a, but we will not write

the dependence explicitly.

The pointwise convergence does not actually su�ce for our purposes; it will be

suitably upgraded in Appendix B. The asymptotics in Lemma 3.5 is elementary, and not

really a steepest descent. Where steepest descent is needed is in Appendix B, to study

the asymptotics in x, v amd ui of the approximating functions on the left-hand sides of

(3.15)–(3.17), in order to bound the kernels in trace norm (see §B).

Proof. First, we give a heuristic proof using operators, which helps one understand

where the third derivative comes from. As Q�1=I+2r+, with r+f(x)=f(x+1)�f(x),

and dropping lower-order terms, the left-hand side of (3.15) is

e�"�3/2tr�
Q�"�3/2t/2 = e"

�3/2t[�r�
+(1/2) log(I+2r+

)].
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The scaled lattice is "1/2Z, so r±⇠"1/2, and therefore

�r�+ 1

2
log(I+2r+)=�r�+r+�(r+)2+ 4

3
(r+)3+O("2).

Now,

(�r�+r+�(r+)2+ 4

3
(r+)3)f(x)

= 4

3
(f(x+3"1/2)�3f(x+2"1/2)+3f(x+"1/2)�f(x))

� 1

2
(f(x+2"1/2)�3f(x+"1/2)+3f(x)�f(x�"1/2))

⇠ 1

3
"3/2@3f(x).

We also have Q"�1x⇠ex@
2

under our scaling, by the central limit theorem. This explains

how (3.9) arises.

Now we switch to the rigorous proof, which uses the contour integral representations.

Note that S"
�t,x(v, u) and S"

�t,x(v, u) only depend on v�u. Writing

S"
�t,x(u)=S"

�t,x(u, 0) and S"
�t,x(u)=S"

�t,x(u, 0),

changing variables w 7 1

2
(1�"1/2 ew) in (2.27) and (2.28), and using the scaling (3.8), we

have

S"
�t,x(u)=

1

2⇡i

I

C"

d ew e"
�3/2tF ("1/2 ew,"1/2x"/t,"u"/t), (3.18)

S"
�t,x(u)=

1

2⇡i

I

C"

d ew e"
�3/2tF ("1/2 ew,"1/2x"/t,"ū"/t), (3.19)

F (w, x, u)= arctanhw�w�x log(1�w2)�u arctanhw, (3.20)

where

x" =x� 1

2
"1/2(u�a)� 1

2
", u" =u�"1/2,

x" =x+ 1

2
"1/2(u�a)+ 3

2
", ū" =u+"1/2.

We have that C" is a circle of radius "�1/2 centered at "�1/2, and

arctanhw= 1

2
[log(1+w)�log(1�w)].

It is striking how similar the formulas are in this representation and scaling, even if

S"
�t,x(u) comes from an analytic extension of S"

�t,x(u). Note that

@wF (w, x, u)= (w�w+)(w�w�)(1�w2)�1,
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with

w± =w±(x, u) :=�x±
p
x2+u,

so, in particular,

@wF

✓
"1/2 ew, "

1/2x"

t
,
"u"

t

◆
= "3/2( ew�w"

+)( ew�w"
�)(1�" ew2)�1,

with

w"
± =w±

⇣x"

t
,
u"

t

⌘
.

Keeping in mind that S�t,x=(St,x)⇤, from (3.10) we see then that, as " 0, the exponents

in (3.18) and (3.19) converge to the correct exponents in (3.16) and (3.17). Deform C" to

the contour h"[ C⇡/3
" , where h" is the part of the Airy contour h (see footnote 17) within

the ball of radius "�1/2 centered at "�1/2, and C⇡/3
" is the part of C" to the right of h.

As " 0, we have h" h, and it is easy to see that the integral over the part of h which is

not in h" goes to zero. So, it only remains to show that the integral over C⇡/3
" converges

to zero. To see this, note that the real part of the exponent of the integral over C" in

(3.18), parameterized as ew="�1/2(1+ei✓), is given by

"�3/2t[�1�cos(✓)+( 1
4
+O("1/2)) log(5+4 cos(✓))].

Using log(1+x)6x for x>0, this is bounded by 1

2
"�3/2t[�1�cos(✓)�log(2)] for su�-

ciently small ". The ew2C⇡/3
" correspond to |✓|6 1

3
⇡, so the exponent there is less than

�"�3/2t for some >0. Hence, this part of the integral vanishes.

Now, define the scaled walk

B"(x)= "1/2(B"�1x+2"�1x�1)

for x2"Z>0, interpolated linearly in between, and let ⌧ " be the hitting time by B" of

epi(�(h"
0
)�). By Donsker’s invariance principle [7], B"(x) converges locally uniformly in

distribution to a Brownian motion B(x) with di↵usion coe�cient 2, and therefore (using

(3.4) and Proposition 3.2) the hitting time ⌧ " converges to ⌧ as well.

We will next compute the limit of (3.7), using (2.30) under the scaling (3.8). To this

end, we change variables in the kernel as in Lemma 3.5, so that, for

zi =2"�1xi+"
�1/2(ui+ai)�2,

we need to compute the limit of

"�1/2(�2"�1x�2Kt�2"�1x�2)(zi, zj).
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Note that the change of variables turns �2"�1x�2(z) into ��a(u). We have ni<nj for

small " if and only if xj<xi, and in this case we have, under our scaling,

"�1/2Qnj�ni(zi, zj) e(xi�xj)@
2

(ui, uj),

as " 0. The rescaled second term in (2.31), "�1/2(S�t,�ni)
⇤S epi(X0)

�t,nj
(zi, zj), can be

written as (S"
�t,xi

)⇤S
",epi(�(h

"
0)

�
)

�t,�xj
(ui, uj), and we can read o↵ from Lemma 3.5 that this

can be expected to converge to (S�t,xi)
⇤S

epi(�h
�
0 )

�t,�xj
(ui, uj). The limiting kernel

Klim := e(xi�xj)@
2

1xj<xi+(S�t,xi)
⇤S

epi(�h
�
0 )

�t,�xj
(3.21)

would be surrounded by projections ��a. For aesthetic reasons, it is nicer to have

projections �a, so we change variables ui 7 �ui and replace the Fredholm determinant

of the kernel by that of its adjoint to get

det(I��aK
hypo(h0)

t,ext �a),

with

Khypo(h0)

t,ext (ui, uj)=Klim(xj ,�uj ;xi,�ui).

The choice of superscript hypo(h0) in the resulting kernel comes from (3.14), which

together with S�t,x(�u, v)=(St,x)⇤(�v, u) yield

Proposition 3.6. (One-sided fixed point formula) Let h02UC with h0(x)=�1 for

x>0. Assume that we start TASEP with right-finite initial data X0 such that the rescaled

height function h
"(t,x) given by (3.1) satisfies h

"
0
(x):=h

"(0,x) h0(x) in distribution in

UC as " 0. Then, for any distinct x1, ...,xm2R and any a1, ...,am2R, we have

lim
" 0

Ph
"
0
(h"(t,x1)6a1, ..., h

"(t,xm)6am)=det(I��aK
hypo(h0)

t,ext �a)L2({x1,...,xm}⇥R)

with

Khypo(h0)

t,ext (xi, · ;xj , ·)=�e(xj�xi)@
2

1xi<xj+(S
hypo(h

�
0 )

t,�xi
)⇤St,xj . (3.22)

Our computations here only give pointwise convergence to each of the factors in

(3.22); even pointwise convergence of the kernels does not follow, as there is an integration

in the middle of (S
hypo(h

�
0 )

t,�xi
)⇤St,xj . In Appendix B we prove that the operators actually

converge in trace class, which yields convergence of the Fredholm determinants.

Remark 3.7. A remarkable thing has happened in the limiting operation, showing

how non-trivial the limit is. From the biorthogonality condition, the 1-point TASEP

kernel Kt(n, · ;n, ·) for any initial data is easily seen to be a projection. This property is

lost in the limit; Khypo(h0)

t,ext (x, · ;x, ·) is not a projection in general. In the special case of

narrow wedge, it is. But for typical examples, such as half-flat, or flat (with the 2-sided

formula to appear) it is readily checked that it is not a projection.
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3.4. From 1-sided to 2-sided formulas

The formula for the KPZ fixed point with general initial data h0 is obtained in the

L 1 limit of the formula with truncated initial data h
L
0
(x)=h0(x)1x6L�1·1x>L,

which is derived from the previous proposition by translation invariance. The fact that

the L 1 and " 0 limits commute follows from the fact that the bound in Lemma 3.4

is independent of ">0.

Given any function g, we write

g
±(y)= g(±y)

for y>0. The shift invariance of TASEP, (2.33), tells us that

h(t,x; hL
0
)
dist
= h(t,x�L; ✓Lh

L
0
),

where ✓L is the shift operator from (2.32), extended to real L. With these shifts, Propo-

sition 3.6 tells us that, for UC cuto↵ data h
",L
0

(see Definition 3.3),

lim
" 0

P
h
",L
0

(h"(t,x1)6a1, ..., h
"(t,xm)6am)

=det(I��a
eK✓Lh

L
0

L,ext�a)L2({x1,...,xm}⇥R),
(3.23)

with

eK✓Lh
L
0

L,ext(xi, · ;xj , ·)=�e(xj�xi)@
2

1xi<xj+(S
hypo((✓Lh

L
0 )

�
)

t,�xi+L )⇤St,xj�L. (3.24)

Use (3.9) to write the second term as

exi@
2

((S
hypo((✓Lh

L
0 )

�
)

t,L )⇤St,�L)e
�xj@

2

.

Since (✓LhL0 )
+(y)=�1 for all y>0, we have S

hypo((✓Lh
L
0 )

+
)

t,�L ⌘0, and then we may rewrite

(S
hypo((✓Lh

L
0 )

�
)

t,L )⇤St,�L as

I�(St,L�S
hypo((✓Lh

L
0 )

�
)

t,L )⇤(St,�L�S
hypo((✓Lh

L
0 )

+
)

t,�L ).

The crucial fact, first discovered in [51], is that the last expression depends on L only

through h
L
0
, and it actually equals K

hypo(h
L
0 )

t with

Khypo(h0)

t = I�(St,0�S
hypo(h

�
0 )

t,0 )⇤(St,0�S
hypo(h

+
0 )

t,0 ), (3.25)

see (4.2) below and the proof sketch that follows it (note also that in this formula the

function h
+

0
appearing in the last operator no longer needs to be truncated in any way).
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Furthermore, it was shown in [51] (for a more restricted class of h0) that we can take

L 1 on K
hypo(h

L
0 )

t . More precisely, and in the context of the initial data h02UC of the

present paper, since h
L
0

h0 in UC, by Theorem 4.1 this kernel converges in trace norm

to Khypo(h0)

t . The limiting (extended) Brownian scattering operator can then be written

as(20)

Khypo(h0)

t,ext =�e(xj�xi)@
2

1xi<xj+e�xi@
2

Khypo(h0)

t exj@
2

. (3.26)

We sometimes also refer to the 1-point kernel (3.25) as the Brownian scattering operator

since it is clear how to obtain one from the other. As we mentioned, by Lemma 3.4 we

can interchange limits on the left-hand side of (3.23). So, we have shown the following

result.

Theorem 3.8. Let h02UC and let h
"
0
be rescaled TASEP height functions converg-

ing to h0 in UC. Let yx1, ...,xm,a1, ...,am2R. Then,

lim
" 0

Ph
"
0
(h"(t,x1)6a1, ..., h

"(t,xm)6am)

=det(I��aK
hypo(h0)

t,ext �a)L2({x1,...,xm}⇥R).
(3.27)

3.5. Tightness and Markov property

The local Hölder spaces C �
� , with �2

�
0, 1

2

�
and �<1, defined just after (3.6) are compact

subsets of our state space UC.

Theorem 3.9. (Hölder 1

2
-regularity in space) Fix t>0, h02UC and initial data X"

0

for TASEP such that, as " 0, h"(0, ·) h0 in distribution, in UC. Let h
"(t, ·)2UC be

given by (3.1). Then, for each �2
�
0, 1

2

�
and M<1,

lim
A 1

limsup
" 0

P(kh"(t)k�,[�M,M ] >A)= 0. (3.28)

Consequently, if P" represents the law of the functions h
"(t, ·)2UC given by (3.1), then

the family of probability measures {P"}0<"<1 on UC is tight (precompact in the topology

of weak convergence of measures).

The Hölder regularity (3.28) will be proved in Appendix C.2 using the exact formulas.

The method is the Kolmogorov continuity theorem, which reduces regularity to 2-point

(20) There is a slight abuse of notation here, and in our earlier rewriting of the second term of (3.24),

when we write exj@
2
for xj<0. But note that, in (3.26), exj@

2
appears to the right of K

hypo(hL0 )
t , and

the action of the backwards heat kernel is well defined when applied to the second variable of K
hypo(h0)
t ;

the same is true for the earlier formula. Whenever we write K
hypo(h)
t ey@

2
for y<0, we mean that the

backwards heat kernel is applied to this second variable first. In other words, K
hypo(h)
t ey@

2
is shorthand

for the cumbersome (ey@
2
(K

hypo(h)
t )⇤)⇤.
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functions, which we can estimate using trace norms following the proof for the Airy1
process in [48]. To prove the tightness, we need to find compact sets K� in UC such that

limsup
� 0

limsup
" 0

P(h"(t) /2K�)= 0.

Since the spaces C �
� are compact in UC, tightness follows from (3.28) as long as we

can show that, if for all ">0, h"(0,x)6↵+�|x| for some �<1 almost surely, then, for

some (possibly random) �t<1, h"(t,x)6�t(1+|x|) for all ">0 with probability 1. From

the preservation of max property for TASEP (the analog of Theorem 4.5 (vii) below), it

su�ces to show that

lim
A 1

limsup
" 0

P(h"(t,x;�(1+x)1x>0)6A(1+|x|) for x2R)= 1.

Let h̄",B
0

be a rescaled simple asymmetric random walk path with h̄
",B
0

(0)=B and drift B.

Then,

lim
B 1

limsup
" 0

P(h̄",B
0

(x)>�(1+x)1x>0 fos x2R)= 1.

Since the asymmetric random walk is invariant, and the drift under rescaling is conver-

gent, the height shift is as well. Therefore,

lim
A 1

P(h"(t,x; h̄",B
0

(x))6A(1+|x|) for x2R)= 1,

and the result follows from the ordering.

From the above arguments, it follows that any fixed t distributional limit h(t, ·)
has finite-dimensional distributions given by the right-hand side of (3.27). In particular,

it is unique in distribution. We upgrade to multiple times using the Markov property.

However, while one expects the limit of Markov processes to be Markov, this is not

always the case. Note that the limiting transition probabilities given by (3.30) are Feller

(continuous functions of h2UC), by Theorem 4.1 and the fact that B0(UC), introduced

in §3.1, is a generating family for B(UC).

Lemma 3.10. Let P"
h
(t, A) be Feller Markov kernels on a Polish space S for each

">0, and Ph(t, A) be a measurable family of Feller probability kernels on S , such that

for each t>0 and �>0 there is a compact subset K� of S such that P"
h
(t,Kc

�)<�,

Ph(t,Kc
�)<� and lim" 0 P"

h
(t, A)=Ph(t, A) uniformly over h2K� for each A in a gen-

erating family. Then, Ph(t, A) satisfies the Chapman–Kolmogorov equations

Z
Ph(t, dg)Pg(s,A)=Ph(t+s,A). (3.29)
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Proof. Fix s, t>0, h2S , �>0 and A2B(S ), choose a compact K�✓S , and choose

"0 such that, for all "<"0, P"
h
(t,Kc

�)+Ph(t,Kc
�)<

1

3
�, |P"

g
(s,A)�Pg(s,A)|< 1

3
� for all

g2K�, and
��R

S (P"
h
(t, dg)�Ph(t, dg))Pg(s,A)

��< 1

3
�. Then,

Z

S
[P"

h
(t, dy)P"

g
(s,A)�Ph(t, dg)Pg(s,A)]

is bounded in absolute value by P"
h
(t,Kc

�)+Ph(t,Kc
�) plus

����
Z

K�

P"
h
(t, dg)(P"

g
(s,A)�Pg(s,A))

����+
����
Z

S
(P"

h
(t, dg)�Px(t, dg))Pg(s,A)

����,

all three of which are < 1

3
�.

In Appendix B we will show the following result.

Proposition 3.11. The convergence in Theorem 3.8 is uniform over initial data

h
"(0, ·) in sets of locally bounded Hölder � norm, �2

�
0, 1

2

�
.

As a consequence, we can make the following definition.

Definition 3.12. (KPZ fixed point) The KPZ fixed point is the (unique) Markov

process taking values on UC with transition probabilities given by the extension from

the cylindrical subalgebra B0(UC) to the Borel sets B(UC) (see §3.1) of

Ph0(h(t,x1)6a1, ..., h(t,xm)6am)=det(I��aK
hypo(h0)

t,ext �a)L2({x1,...,xm}⇥R). (3.30)

The transition probabilities are Feller.

In the next section we describe its properties. We complete this section by recording

the statement we have obtained about the convergence of TASEP to this process from

Theorem 3.8, Lemma 3.10 and Proposition 3.11.

Theorem 3.13. (Convergence of TASEP) Let h
"(t,x) be the rescaled height function

of TASEP given by (3.1). Let h0 be a element of UC. Assume that we have initial data

for TASEP chosen to depend on ">0 in such a way that h
"(0,x) h0(x) in UC as

" 0. Then, for each 0<t1<...<tm, the rescaled (multi-time) TASEP height function

(h"(t1, ·), ..., h"(tm, ·)) converges in distribution in UCm
to the (multi-time) KPZ fixed

point (h(t1, ·), ..., h(tm, ·)) with initial condition h(0, ·)=h0. The initial data can be

random, and converging in distribution in UC, provided that it is independent of the

randomness used to evolve each Markov process.
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4. The invariant Markov process

4.1. Brownian scattering theory

For height functions h in our state space UC of upper semi-continuous functions (see

§3.1), define local “hit” and “no-hit” operators by

Pno-hit h

`1,`2
(u1, u2)du2 =PB(`1)=u1

(B(y)> h(y) on [`1, `2],B(`2)2 du2)

and

Phit h

`1,`2
= I�Pno-hit h

`1,`2
,

where B is a Brownian motion with di↵usion coe�cient 2.

The Brownian scattering transform is the map which takes h to the t>0 dependent

operator (acting on suitable subspaces of L2(R)) introduced in (3.25), which can be

written

Khypo(h)

t = lim
`1 �1
`2 1

(St,`1)
⇤Phit h

`1,`2
St,�`2 , (4.1)

where St,x=exp
�
x@2+ 1

3
t@3

 
are defined by the kernels in (3.10). Before the limit,

the right-hand side of (4.1) is exactly K
hypo(h`1,`2 )

t , where h`1,`2 is h in [`1, `2] and �1
otherwise. The existence of the limit was first proved for a more restricted class in [51].

Since h`1,`2 h in UC, the limit in (4.1) follows from Theorem 4.1 below,(21) in trace

class in L2([a,1)) for any fixed a2R.
It was proved in [51] that the limit can also be represented as(22),(23)

Khypo(h)

t =(Shypo(h
x,�

)

t,x )⇤St,�x+(St,x)
⇤Shypo(h

x,+
)

t,�x �(Shypo(h
x,�

)

t,x )⇤Shypo(h
x,+

)

t,�x (4.2)

for any choice of splitting point x, where

h
x,±(y)= h(x±y) (4.3)

(21) Theorem 4.1 also asks for the kernel to be conjugated by #, but as can be seen from the
arguments in Appendix A, this is not necessary for the single-time kernel.

(22) The derivation in [51] takes a di↵erent route, starting with known path integral kernel formulas
for the Airy2 process and passing to limits. These known formulas themselves arise from the exact TASEP

formulas for step initial data. Here we have started from general initial data and derived K
hypo(h)
t in

a multi-point formula at a later time. Specializing the present derivation to the 1-point case, the two
routes are linked through time inversion, as explained around (2.12).

(23) [51] works with the epi version of K
hypo(h)
t , which is defined by considering the hitting prob-

abilities of the epigraph of a lower semicontinuous function (see (3.13)), and only in the case t=1, but
the proof can be adapted straightforwardly. That paper also works under an additional regularity as-
sumption on the barrier function; the more general setting which we work with here can be handled as
in Appendix A.
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for y>0; the case x=0 is just a rewriting of (3.25), while in [51] it is shown that the

right-hand side does not depend on x. We sketch the idea:

Pno-hit h

`1,`2
(u1, u2)= p`1,u1(`2, u2)p`1,u1,`2,u2(no hit), (4.4)

where p`1,u1(`2, u2) is the transition density for Brownian motion to be at u2 at time `2
given that it started at u1 at time `1, and where the second factor is the probability for

a Brownian bridge with the same endpoints not to hit hypo(h), which we can write for

x2[`1, `2] as
Z 1

h(x)
p`1,u1,`2,u2(B(x)2 dz)p0,z,x�`1,u1(no hit hx,� on [0,x�`1])p0,z,`2�x,u2(no hit hx,+ on [0, `2�x]).

Now,

p`1,u1(`2, u2)p`1,u1,`2,u2(B(x)2 dz)= p0,z(x�`1, u1)p0,z(`2�x, u2)dz,

so (4.4) becomes

Z 1

h(x)
dz p0,z(no hit hx,� on [0,x�`1],x�`1, u1)p0,z(no hit hx,+ on [0, `2�x], `2�x, u2),

where the notation is meant to indicate that the factors in the integrand are now densities.

Again, we can write p0,z(no hit h on [0, `], `, u) as

p0,z(`, u)�p0,z(hit h on [0, `], `, u),

which is just

e`@
2

(z, u)�
Z `

0

pz(⌧ 2 ds)e(`�s)@2

(B(⌧ ), u).

Therefore, the right-hand side of (4.1) goes to the right-hand side of (4.2) as `1 1 and

`2 1.

In (3.26) we defined the extended version of the Brownian scattering transform,

which, in view of (4.2), can be written

Khypo(h)

t,ext =�e(xj�xi)@
2

1xi<xj+(Shypo(h
x,�

)

t,x�xi
)⇤St,�x+xj

+(St,x�xi)
⇤Shypo(h

x,+
)

t,�x+xj
�(Shypo(h

x,�
)

t,x�xi
)⇤Shypo(h

x,+
)

t,�x+xj
.

(4.5)

For fixed t, and after conjugating by

#f(xi, u)=#i(u)f(xi, u), with #i(u)= (1+u2)2i, (4.6)

and cutting o↵ by �a (see (2.4)), the Brownian scattering transform is continuous on

UC, as we state in the following theorem.
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Theorem 4.1. For fixed a1, ...,am>�1 and t>0, we have that

h 7� #�aK
hypo(h)

t,ext �a#
�1

is a continuous map from UC into the trace class operators on L2({x1, ...,xm}⇥R).

Moreover, a UC function h can be recovered from its Brownian scattering transform

Khypo(h)

t,ext .

Theorem 4.2. (Inversion formula) For any h2UC,

lim
t 0

det(I��aK
hypo(h)

t,ext �a)L2({x1,...,xm}⇥R) =
mY

j=1

1h(xj)6aj
.

The fact that the kernel appearing in Theorem 4.1 is trace class will be proved in Ap-

pendix A; the continuity stated in the result follows from the arguments in Appendix B.2.

Theorem 4.2 follows directly from the Chapman–Kolmogorov equations (3.29).

4.2. KPZ fixed point formula

The Brownian scattering transform linearizes the time evolution of the fixed point tran-

sition probabilities: at the level of Brownian scattering operators, the time flow is linear,

satisfying the Lax equation

@tK
hypo(h)

t,ext =
⇥
� 1

3
@3,Khypo(h)

t,ext

⇤
.

As shown in §3, the Fredholm determinant maps this linear flow to the Markov transition

probabilities given by the KPZ fixed point formula

Ph0(h(t,x1)6a1, ..., h(t,xm)6am)=det(I��aK
hypo(h0)

t,ext �a)L2({x1,...,xm}⇥R). (4.7)

The resulting Markov process, the KPZ fixed point (see Definition 3.12), is thus a sto-

chastic integrable system in the sense discussed in the TASEP case (§2.4).
As for TASEP, we also have a version of the fixed point formula in terms of the

Fredholm determinant of a kernel acting on L2(R)) (as opposed to an “extended kernel”

acting on L2({x1, ...,xm}⇥R)).

Proposition 4.3. (Path integral formula for the KPZ fixed point) Given h02UC,

t>0, and x1<...<xm, we have

Ph0(h(t,x1)6a1, ..., h(t,xm)6am)

=det(I�Khypo(h0)

t,x1
+�a1e

(x2�x1)@
2

�a2 ... e
(xm�xm�1)@

2

�ame(x1�xm)@2

Khypo(h0)

t,x1
)L2(R),

(4.8)

where Khypo(h0)

t,x ( · , ·)=Khypo(h0)

t,ext (x, ·,x, ·).
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This results from an application of [8, Theorem 3.3], and is proved in Appendix D.1.

Taking a continuum limit gives a very symmetric version of the fixed point formula, from

which the skew time reversal symmetry, Theorem 4.5 (iii), follows by the cyclicity of the

determinant.

Proposition 4.4. (Continuum statistics) For any h02UC, g2LC and t>0,

Ph0(h(t,x)6 g(x) for x2R)=det(I�Khypo(h0)

t/2 Kepi(g)

�t/2 )L2(R), (4.9)

with Kepi(g)

�t (u, v)=Khypo(�g)

t (�u,�v).

We have that Kepi(g)

�t is just an upside-down version of the Brownian scattering

transform introduced in (4.2), and is built in an analogous way out of hitting probabilities

of the epigraph of lower semicontinuous functions (replacing Shypo(h)

t,x by Sepi(g)

�t,x , which

was defined in (3.13).) In Appendix A, we show that the operator inside the above

Fredholm determinant is trace class after an appropriate conjugation.

Proof. Consider first g2LC which is 1 outside of some interval [�R,R]. The left-

hand side of (4.9) is then Ph0(h(t,x)6g(x) for x2[�R,R]), which we may obtain by

computing Ph0(h(t,xi)6g(xi) for i=1, ...,m) on a mesh x1<...<xm of [�R,R] and let-

ting the mesh size go to zero as m 1. To this end, we use Proposition 4.3 with

ai=g(xi). Since St/2,x1
Khypo(h0)

t,x1
(St/2,�x1

)⇤=Khypo(h0)

t/2 , we can conjugate the kernel in-

side the determinant in (4.8) by St/2,x1
, to get

Khypo(h0)

t/2 �[St/2,x1
�g(x1)

e(x2�x1)@
2

�g(x2)
... e(xm�xm�1)@

2

�g(xm)(St/2,�xm
)⇤]Khypo(h0)

t/2 .

(4.10)

Taking x1=�R and xm=R, let g
(m)2LC be given as g

(m)(xi+R)=g(xi), i=1, ...,m,

and g
(m)(x)=�1 for all other values of x, and note that

�g(x1)
e(x2�x1)@

2

�g(x2)
... e(xm�xm�1)@

2

�g(xm) = e2R@2

�Sepi(g
(m)

)

0,2R

(because the Brownian motion B inside the epi operator can only hit epi(g(m)) at zero,

x2�x1, ...,xm�x1, and the left-hand side is simply the transition probability for B in

[0, 2R] staying below the same epigraph). Then, the term in brackets in (4.10) equals

St/2,�R(S0,2R�Sepi(g
(m)

)

0,2R )(St/2,�R)
⇤ =(S�t/2,0)

⇤(S�t/2,0�Sepi(g
(m)

)

�t/2,0 )= I�Kepi(g
m
)

�t/2 ,

where the last equality follows from using the epi version of the expansion (4.2) split at

x=0. As a consequence, the right-hand side of (4.7) can be written as

det(I�Khypo(h0)

t/2 Kepi(g
(m)

)

�t/2 )L2(R)
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(after using the cyclic property of the determinant). Since �g
(m) �g in UC, one would

like to use Theorem 4.1 to pass to the limit and obtain (4.9). The di�culty is that in this

Fredholm determinant we are missing the necessary conjugations, but this is resolved by

using (A.3) and the comment that follows it, which implies that the trace-norm estimates

of Appendix A are strong enough to yield continuity in exactly the form we need.

In order to extend the result to all g2LC, it is enough to truncate g to a function

which is 1 outside [�R,R], apply the result we just proved, and then take R 1. The

left-hand side clearly converges to Ph0(h(t,x)6g(x) for x2R), while the right-hand side

converges to the desired Fredholm determinant using again Theorem 4.1 and the same

argument as above.

Analogously to Theorem 4.2 we also have the inversion formula

lim
t 0

det(I�Khypo(h)

t/2 Kepi(g)

�t/2 )=1h(x)6g(x) for all x2R.

4.3. Properties of the KPZ fixed point

The KPZ fixed point satisfies a number of additional properties, which can be proved

based both on the explicit formula and on approximation from TASEP.

Theorem 4.5. (Symmetries) Let h(t,x; h0) denote the KPZ fixed point with initial

data h02UC.

(i) (1:2:3 scaling invariance) For any ↵>0,

↵h(↵�3t,↵�2x;↵�1
h0(↵

2x))
dist
= h(t,x; h0).

(ii) (Invariance of Brownian motion) If B(x) is a 2-sided Brownian motion, then,

for each t>0, h(t,x;B)�h(t, 0;B) is a 2-sided Brownian motion in x with di↵usion

coe�cient 2.

(iii) (Skew time reversibility) For any f, g2UC,

P(h(t,x; g)6�f(x))=P(h(t,x; f)6�g(x)).

(iv) (Stationarity in space) h(t,x+u; h0(x�u))
dist
= h(t,x; h0).

(v) (Reflection invariance) h(t,�x; h0(�x))
dist
= h(t,x; h0).

(vi) (A�ne invariance) h(t,x; h0(x)+a+cx)
dist
= h

�
t,x+ 1

2
ct; h0(x)

�
+a+cx+ 1

4
c2t.

(vii) (Preservation of max) For any f1, f22UC,

h(t,x; f1_f2)
dist
= h(t,x; f1)_h(t,x; f2).
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These properties follow from Theorem 3.13; (i) since h is a limit and therefore a

fixed point of the 1:2:3 rescaling and (ii)–(vii) from the analog properties for TASEP.

(iii)–(vi) can alternatively be seen to follow directly from the fixed point formula (4.7)

(see also Theorem 4.4 in the case of (iii)), and the a�ne invariance can also be proved

from the variational formul (Theorem 4.18). Note that in (ii) there is a non-trivial global

height shift, and the Brownian motion measure itself is not invariant. Combining (ii)

and (vi), one sees that drifted Brownian motion B(x)+⇢x is also invariant.

Another property which follows by approximation from TASEP (see Lemma 3.4) is

the following.

Theorem 4.6. (Finite propagation speed) Let h02UC with h0(x)6↵+�|x| and let

x1, ...,xm2R. For any �>0 there exists C<1 depending only on ↵, �, L and maxi |xi|,
such that, for any h̃02UC with h̃0(x)6↵+�|x| and h0(x)=h̃0(x) for |x|6L,

|Ph0(h(t,xi)6ai for i=1, ...,m)�P
h̃0
(h(t,xi)6ai for i=1, ...,m)|6Ce�(2/3��)L3

.

By bounding above and below by known cases, we obtain rather easily the following

result.(24)

Proposition 4.7. (Tail estimates) Let h02UC, h0 6⌘�1. Then, for fixed t>0, we

have

1�e�(1/12)t�1|maxi ai|3(1+o1(1)) 6Ph0(h(t,xi)>ai for i=1, ...,m)

6 e�(4/3)t�1/2|maxi ai|3/2(1+o2(1)),

where o1(1) 0 as maxi ai �1, o2(1) 0 as maxi ai 1, and both depend only on h0,

t and the xi’s.

Proof. Fix x1, ...,xm2R and let

pm(a1, ...,am)=Ph0(h(t,xi)6ai for i=1, ...,m).

To see that pm(a1, ...,am) 0 at the desired speed as any of the ai’s goes to �1, we use

the trivial fact that pm(a1, ...,am)6p1(ai) for any i. By the skew time reversal symmetry

and the a�ne invariance of the fixed point (Theorem 4.5 ((iii) and (vi)), together with

(4.14), we know the 1-dimensional marginals

p1(ai)=P(A2(x)�(x�xi)
2 6�h0(x)+ai for x2R),

(24) These estimates are sharp, as ai 1 (ignoring lower-order terms), and do not depend on the
initial data (within UC), but they are not sharp as ai �1. In fact, the left tail depends on the initial

data; for instance, P(h(t,x)6a) is of order e�(1/12)t�1|a|3 for narrow wedge, but of order e�(1/6)t�1|a|3

for flat.



156 k. matetski, j. quastel and d. remenik

where A2(x) is the Airy2 process (see §4.4), and we have taken t=1 (general t>0 follows

by scaling invariance). Choosing x so that h0(x)>�1, we can bound p1(ai) by

P(A2(x)�(x�xi)
2 6�h0(x)+ai),

which is a shifted FGUE. Hence, we have

pm(a1, ...,am). exp
�
� 1

12
|ai|3

 
,

as any ai �1, proving the lower bound of Proposition 4.7.

To show that pm(a1, ...,am) 1 at the desired speed as all ai 1, one can use (4.7)

together with the estimate

|det(I�K)�1|6 kKk1ekKk1+1

(with k · k1 denoting trace norm, see (A.2)). Computing carefully, this gives the desired

limit and the upper bound of Proposition 4.7. On the other hand, there is a simple trick

using the preservation of max property, Theorem 4.5 (vii) (whose proof is independent),

which yields the same estimate. Fix time t=1 again for simplicity. Since

h0(x)6�(1+|x|),

we have by preservation of max that

h(1,x)
dist

6 max{h(1,x;�(1+x)), h(1,x;�(1�x))}.

By a�ne invariance, Theorem 4.5 (vi), we have

h(1,x;�(1+x))
dist
= h

�
1,x+ 1

2
�; 0

�
+�(1+x)+ 1

4
�2,

h(1,x;�(1�x))
dist
= h

�
1,x� 1

2
�; 0

�
+�(1�x)+ 1

4
�2.

So, using (4.15), we get

P(h(1,xi; h0)>ai)6P
�
h
�
1,xi+

1

2
�; 0

�
+�(1+xi)+

1

4
�2 >ai

�

+P
�
h
�
1,xi� 1

2
�; 0

�
+�(1�xi)+

1

4
�2 >ai

�

=2�FGOE

�
41/3

�
ai��(1+xi)� 1

4
�2
��

�FGOE

�
41/3

�
ai��(1�xi)� 1

4
�2
��

& e�(4/3)(t�1/3
mini ai)

3/2

,

which is what we want.
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Remark 4.8. (Replicas and factorization ansatz) An earlier attempt [20] based on

non-rigorous replica methods gave a formula which does not appear to be the same

(though there is room for two apparently di↵erent Fredholm determinants to coincide).

The replica derivation uses both divergent series and an asymptotic factorization as-

sumption [47] for the Bethe eigenfunctions of the delta Bose gas. The divergent series

are regularized through the Airy trick, which uses the identity

Z
dxAi(x)enx = en

3/3

to obtain

1X

n=0

(�1)nen
3/3 “=”

Z
dxAi(x)

1X

n=0

(�1)nenx =

Z
dxAi(x)

1

1+ex
.

Although there is no justification, it is widely accepted in the field that the Airy trick

gives consistently correct answers in KPZ. The factorization assumption, on the other

hand, has only been justified by the fact that it has led to the correct result in a few

previously known cases.

Remark 4.9. (Extension in time) TASEP has the unusual property that the initial

value problem where we start with h0(z), and solve for the process ht(z), t>0, can also

be done backwards in time. This is just because the backwards-in-time dynamics is

nothing but the forward-in-time dynamics for �h. So, we can immediately extend the

process to ht(z), �1<t<1. Of course, for some initial data, such as step h0(z)=|z|,
there will be no movement on (�1, 0]. The same property is inherited by the KPZ fixed

point, except for the not technical point that, even if �h0 were upper-semicontinuous,

it might no longer lie in UC if it violates the linear growth condition. For example,

h0(x)=�x2, >0, is good initial data for the KPZ fixed point, but �h0 has a finite

lifetime [0, 1/), after which it “explodes” to +1. So, the initial value problem for the

fixed point on UC has an extension to (t0,1), where t060. The narrow wedge initial

data is an example where t0=0. Continuous h0, with �h0 satisfying the linear growth

condition, have t0=�1.

Remark 4.10. (Domain Markov property) (Suggested by M. Hairer) The KPZ fixed

point inherits a stronger space-time Markov property from TASEP, which we describe

informally and without complete proofs.

First, we state the domain Markov property of the space-time TASEP height function

ht(z). It is clear from the definition of TASEP that, given the height function at z2Z over

some time interval [t1, t2], what happens to the height function strictly to the right of z

over that time interval is independent of what happens strictly to the left. Bootstrapping
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from this, we see that if A is any connected open subset of (�1,1)⇥Z which is a finite

union of rectangles (t1, t2)⇥(x1,x2) (some of which could be infinite), then ht(z) has

the domain Markov property: If we call the boundary of a subset of the integers those at

distance exactly 1 from the set, then {ht(z):(t, z)2A} and {ht(z):(t, z)2(A[@A)c} are

independent, given {ht(z):(t, z)2@A}.
Now, let h(t,x) be the KPZ fixed point on (t0,1)⇥R, and let A be a connected

open subset of this domain with a regular boundary @A. Let

G@A =
\

O�@A
O open

�{h(t,x) : (t,x)2O}

be the germ field of the boundary. Taking limits from TASEP we see that

{h(t,x) : (t,x)2A} and {h(t,x) : (t,x)2 (A[@A)c}

are independent, given G@A. One expects that G@A actually equals

�({h(t,x) : (t,x)2 @A}),

but it is not immediately clear how to prove this.

An important consequence is that the fixed point is not just a Markov process in t,

it is also a Markov process sideways in x. This may partially explain results like the

recent 2-time formulas [4], [35]–[37]. At any rate, it means that, while our description of

the KPZ fixed point as a Markov process in t is the first characterization of the field, it

is far from a complete description (see also Remark 4.23).

Remark 4.11. (Locality) There are various notions of locality, the domain Markov

property above being one; an even stronger statement of locality would follow if we knew

the sharp version G@A=�({h(t,x):(t,x)2@A}).
More concretely, one could ask whether

|Ph0(h(t,xi)6ai for i=1, ...,M)�P
h
�
0
(h(t,xi)6ai for i=1, ...,M)|= o(t) (4.11)

as t 0, whenever h
�
0
2UC is such that h

�
0
(y)=h0(y) if |y�xi|<� for each i. From the

variational formula (4.18), it is fairly straightforward to bound the left-hand side of

(4.11) by exp{�C�3/t2} providing a strong statement of locality. Presumably, this could

di↵erentiate between the true fixed point and the non-local stochastic partial di↵erential

equation suggested in footnote 13. The functions have to be in UC; if they are allowed

to grow quadratically, then there are counterexamples.
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Remark 4.12. (Uniqueness and strong KPZ universality conjectures) The KPZ fixed

point is expected to be the unique non-trivial (i.e. non-zero) space-time field satisfying

locality in the sense of (4.11) and Theorem 4.5 (i), (iii) and (iv) (the inviscid limit given

by (1.3) satisfies all but (iii)).

The strong KPZ universality conjecture states that the KPZ fixed point is the limit

under the 1:2:3 scaling of all models in the KPZ universality class. This last statement

can alternately be interpreted as the definition of the universality class. Note that it

appears to exclude models such as vicious walkers and random matrices, which have

KPZ-type fluctuations, but seem to lack a meaningful analogue of a large class of initial

conditions.

From Theorem 3.9, we obtain the following result.

Theorem 4.13. (Hölder 1

2
� regularity in space) Fix t>0, h02UC, and let h(t)

denote the fixed point at time t. Then, for each �2
�
0, 1

2

�
and M<1, we have

lim
A 1

P(kh(t)k�,[�M,M ] >A)= 0. (4.12)

The bounds on the trace norms used to prove Theorem 4.13 also yield the local Brow-

nian property for the fixed point (the proof is exactly the same as [48], with Khypo(h0)

t

replacing B0 there).

Theorem 4.14. (Local Brownian behavior) For any t>0 and any initial condi-

tion h02UC, h(t,x) is locally Brownian in x, in the sense(25) that, for each y2R, the
finite-dimensional distributions of b"(x)="�1/2(h(t,y+"x)�h(t,y)) converge, as " 0,

to those of a double-sided Brownian motion B with di↵usion coe�cient 2 and B(0)=0.

By the 1:2:3 scaling invariance, Theorem 4.5 (i), we have

h(t,x; h0)
dist
= t1/3h(1, t�2/3x; t�1/3

h0(t
2/3x)).

Hence, the local Brownian behaviour of the fixed point is essentially equivalent to ergod-

icity. Recall (see the comment after Theorem 4.5) that, for any ⇢2R, drifted Brownian

motion B(x)+⇢x is invariant for the fixed point. The following gives a fairly general

condition on initial data in UC to see B(x)+⇢x locally after a long time.

Theorem 4.15. (Ergodicity) For any (possibly random) initial condition h02UC

such that, for some ⇢2R,
"1/2(h0("

�1x)�⇢"�1x)

(25) Since the first version of this article was posted, there has been progress on the stronger
statement of absolute continuity with respect to Brownian motion on finite intervals [15], [31], [53]. This
uses a di↵erent class of approximating models which are shown to converge to the fixed point in [43].
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is convergent, in distribution, in UC, the finite-dimensional distributions of the process

h(t,x; h0)�h(t, 0; h0)�⇢x (4.13)

converge, as t 1, to those of a double-sided Brownian motion B with di↵usion coe�-

cient 2.

A similar result was first proved by Pimentel [44] using coupling, in an article which

appeared after the first version of this paper was posted. The present theorem was added

in the second version.

Proof. By the 1:2:3 scaling and a�ne invariance properties, Theorem 4.5 (i) and

(vi), (4.13) is equal in distribution to

t1/3(h(1, t�2/3x; t�1/3(h0(t
2/3x)�⇢t2/3x))�h(1, 0; t�1/3(h0(t

2/3x)�⇢t2/3x))).

Since the initial condition converges in UC, one can repeat the proof of local Brownian

behaviour from [48], using now the fact that, if h" h in UC, then Khypo(h
"
)

t Khypo(h)

t

in trace norm.

4.4. Recovery of the Airy processes

Although the determinantal formula (4.7) used in the definition of the KPZ fixed point

looks imposing, we easily recover several of the classical Airy processes(26) by starting

with special initial data for which the hitting times are explicit, and observing the spatial

process at time t=1.

Start by considering the UC function du(u)=0, du(x)=�1 for x 6=u, known as a

narrow wedge at u. It leads to the Airy2 process (sometimes simply the Airy process):

h(1,x; du)+(x�u)2 =A2(x) (sometimes simply A(x)). (4.14)

Flat initial data h0⌘0, on the other hand, leads to the Airy1 process:

h(1,x; 0)= 21/3A1(2
�2/3x). (4.15)

(26) Besides the ones we treat here, there are three more basic Airy processes Astat, A1 BM and
A2 BM, obtained respectively by starting from a 2-sided Brownian motion, a 1-sided Brownian motion
to the right of the origin and zero to the left of the origin, and a 1-sided Brownian motion to the right
of the origin and �1 to the left of the origin [3], [12], [16], [32]. However, using (4.7), in these cases
involves averaging over the initial randomness, and hence verifying directly that the resulting formulas
coincide with those in the literature is more challenging.
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Finally, the UC function hh-f(x)=�1 for x<0, hh-f(x)=0 for x>0, called wedge or

half-flat initial data, leads to the Airy2 1 process:

h(1,x; hh-f)+x21x<0 =A2 1(x).

Formulas for the m-point distributions of these special solutions were obtained in

the 2000s in [9]–[11], [34], [45], [54], [55], in terms of Fredholm determinants of extended

kernels, and later in terms of path-integral kernels in [8], [19], [48]. The Airy2 1 process

interpolates between the other two in the limits x �1 and x 1.

We now show how the formula for the Airy2 1 process arises from the KPZ fixed

point formula (4.7). The Airy1 and Airy2 processes can be obtained analogously (or in

the limits x ±1). We have to take

h0(x)=

⇢
�1, for x< 0,

0, for x> 0,

in (4.7). It is straightforward to check that S
hypo(h

�
0 )

t,0 =�0St,0, so that

(St,0�S
hypo(h

�
0 )

t,0 )⇤ =(St,0)
⇤�0.

On the other hand, an application of the reflection principle based on (3.12) (see [51,

Proposition 3.6] for the details in the case t=1) yields that, for v>0 (using (3.14) and

writing ⌧0 for the hitting time of zero by B),

S
hypo(h

+
0 )

t,0 (v, u)=S
epi(�h

+
0 )

�t,0 (�v,�u)=

Z 1

0

P�v(⌧0 2 dy)S�t,�y(0,�u)=St,0(�v, u),

which gives

Khypo(h0)

t = I�(St,0)
⇤�0[St,0�%St,0] = (St,0)

⇤(I+%)�̄0St,0,

where % is the reflection operator %f(x)=f(�x). Hence,

Khypo(h0)

t,ext (xi, · ;xj , ·)=�e(xj�xi)@
2

1xi<xj+(St,�xi)
⇤(I+%)�0St,xj .

Setting t=1, we get

Khypo(h0)

1,ext (xi, ui�x2

i1xi60;xj , uj�x2

j1xj60)=K2 1(xi, ui;xj , uj),

where K2 1 is the extended kernel for the Airy2 1 process, as given in [49, equation 1.8]

(see also [11]). Therefore,

P(h(1,xi; h0)6ai for i=1, ...,m)=P(A2 1(xi)�x2

i1xi60 6ai for i=1, ...,m).
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Remark 4.16. Theorem 3.8 gives a much stronger statement about universality of

the Airy processes with respect to initial conditions than was previously known (for

1-point marginals this appears in [17], and to some extent [51]): if we start with two

rescaled TASEP height functions h
",1
0

and h
",2
0

which converge in distribution in UC to

the same limit h0 as " 0, then, for any t>0, h
",1(t, ·) and h

",2(t, ·) have the same

(distributional) limit.

For example, for some fixed >0, one could consider a TASEP initial condition

obtained from the periodic case X0(i)=2i, i2Z, by taking, for each j>1, the particle at

the position j̄ which is closest to 2|j|1/, and moving it to �j̄�1, which leads to an initial

TASEP height function h0(i)⇡�|i|. If < 1

2
, then h

"(0, ·) 0 as " 0, and thus h"(1, ·)
converges to the Airy1 process, while if > 1

2
, then h

"(0, ·) d0 and h
"(1, ·) converges

to the Airy2 process. A statement like this appears to have been outside of the scope of

previous arguments.

4.5. Variational formulas

The KPZ fixed point satisfies a version (see (4.18) below) of the Hopf–Lax variational

formula (1.3) with a new noise.

Example 4.17. (Airy sheet) The 2-parameter process

A(x,y)= h(1,y; dx)+(x�y)2

is called the Airy sheet (here, dx is the narrow wedge defined in the last section). In

some contexts it is better to include the parabola, so one writes

Â(x,y)=A(x,y)�(x�y)2.

Several remarks are in order:

– The KPZ fixed point formula does not give explicit joint probabilities

P(A(xi,yi)6ai for i=1, ...,m)

for the Airy sheet,(27) and we presently have no method to obtain them.

(27) The most general formula we can get from the results in §4.2 comes from Theorem 4.4 and
reads

P(Â(x,y)6 f(x)+g(y) for x,y2R)=det(I�K
hypo(�g)
1/2 K

epi(f)
�1/2 ).

Even in the case when f and g take two non-infinite values, it gives a formula for

P(Â(xi,yj)6 f(xi)+g(yj) for i, j=1, 2),

but f(xi)+g(yj) only span a 3-dimensional linear subspace of R4. So, it does not determine the joint

distribution of Â(xi,yj), i, j=1, 2.
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– Existence of the Airy sheet is obtained in our context from subsequential limits;

see Remark 4.21. While our methods leave open the question of uniqueness, this has

been proved since the present article was submitted in [23]; see Remark 4.23. Since they

start from a di↵erent model, one needs to combine their result with [43].

– By stationarity in space, Theorem 4.5 (iv),

h(1,y; dx)
dist
= h(1,y�x; d0),

and by reflection invariance, Theorem 4.5 (v), since d0(�x)=d0(x) we have

h(1,y�x; d0)
dist
= h(1,x�y; d0).

This gives the permutation symmetry

A(x,y)
dist
= A(y,x). (4.16)

– Fixing either variable x or y, A(x,y) is an Airy2 process in the other.

– The Airy sheet is stationary :(28) for any fixed x0,y0,

A(x+x0,y+y0)
dist
= A(x,y). (4.17)

– New non-obvious distributional symmetries of the Airy sheet have been discovered

and conjectured recently (see [13, §1.5 and §1.6]).

By repeated application of Theorem 4.5 (vii) to initial data which take finite values

h0(xi) at xi, i=1, ..., n, and �1 everywhere else), and then taking limits, we obtain the

following result.

Theorem 4.18. (Airy sheet variational formula) For each t>0,

h(t,x; h0)
dist
= sup

y2R

⇢
t1/3A(t�2/3x, t�2/3y)� 1

t
(x�y)2+h0(y)

�
(4.18)

as processes in x. In particular, A satisfies the semi-group property: if Â1
and Â2

are

independent copies (with parabolas included) and t1+t2=t are all positive, then

sup
z
{t1/3

1
Â1(t�2/3

1
x, t�2/3

1
z)+t1/3

2
Â2(t�2/3

2
z, t�2/3

2
y)} dist

= t1/3Â1(t�2/3x, t�2/3y).

(4.19)

(28) Using the methods of this paper one can very easily prove (4.17) in the case x0=y0; a proof
of the general statement can be found in [23] (see Remark 4.23).
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Remark 4.19. The equalities in distribution (4.18) and (4.19) hold only for fixed

t1, t2 and t, and not as processes in t. If t1/3A(t�2/3x, t�2/3y) on the right-hand side

of (4.18) is replaced by t1/3A2(t�2/3(x�y)), the equality in distribution holds for each

fixed x and t, but no longer as processes in x.

Example 4.20. From (4.15) and (4.18), we deduce that the Airy1 process satisfies

21/3A1(2
�2/3x)

dist
= sup

y2R
{A(x,y)�(x�y)2},

generalizing the famous identity of Johansson [34] that the GOE Tracy–Widom distri-

bution can be written as the sup of the Airy2 process minus a parabola. The odd factors

of 21/3 on the left-hand side are the result of a mismatch in natural normalization be-

tween the original interpretation from random matrices, and the present one from growth

models.

Remark 4.21. (Existence of Airy sheets) In TASEP there is a canonical coupling

between the process starting from di↵erent initial conditions. Take independent Poisson

processes of rate 1, one for each site x. When the Poisson process at x jumps, the

TASEP height function jumps down by 2 if and only if h(x) is a local maximum. The

coupling just means to use the same background Poisson processes for several di↵erent

evolving height functions. It is clear that, under such a coupling, the TASEP version

of the preservation of max property (Theorem 4.5 (vii)) holds. This seems to have been

first exploited by [57], and leads to the result for the KPZ fixed point in the 1:2:3 limit.

Indeed, let A"(x,y) denote the 1:2:3 rescaled and recentered (as in (3.1)) TASEP

version of the Airy sheet: ATASEP(x, y)=h(1, y;�| ·�x|), i.e. the TASEP height function

at y at time 1 starting with packed particles to the left of x. Let p"
(x1,y1),...,(xn,yn)

denote

the joint distribution of A"(x1,y1), ...,A"(xn,yn). These are a consistent family of finite-

dimensional distributions, and the corresponding distributions P" of the approximating

Airy sheets A"(x,y) are tight in C (R2), since they satisfy the Hölder bounds (3.28)

uniformly in ", in each variable separately, from the permutation symmetry (which holds

at the TASEP level), and therefore in both variables, since the Hölder norm of a function

of two variables is easily controlled by the sum of the Hölder norms in each variable. Any

limiting process is called an Airy sheet, and clearly satisfies (4.16)–(4.19).(29)

Either through (4.18), or using a similar construction to the previous paragraph,

one produces a basic coupling of the KPZ fixed point starting with di↵erent initial data.

So the KPZ fixed point can be thought of as a stochastic flow.

(29) It is interesting that although we are unable to prove uniqueness, the variational formulas
(4.18) and (4.19) hold for any such limit, especially since the left-hand side of (4.18) is unique.



the kpz fixed point 165

Example 4.22. As a direct consequence of the variational formulas we deduce that

if h"(0, ·) h0 in distribution in UC, then the asymptotic fluctuations of the rescaled

TASEP height function h"(1,x) at a single point x (and time t=1) have the same dis-

tribution as supy2R{A2(x�y)�(x�y)2+h0(y)}. This is the result proved in [17] in the

context of discrete time TASEP with sequential update (although their assumptions on

the convergence of the initial data are di↵erent). It also coincides, in essence,(30) with

the result proved in [51] about the 1-point fluctuations for the KPZ equation with general

initial data, providing further evidence for the strong KPZ universality conjecture.

Remark 4.23. The directed landscape was recently constructed in [23] as a (non-

explicit) functional of the Airy line ensemble. This process was earlier called the space-

time Airy sheet in [20]. This nails down the right-hand side of the variational formula

(4.18), or, alternatively, one can think of the variational formula as defining the KPZ

fixed point in terms of the Airy sheet. Such a definition can be useful to obtain qualitative

properties of the fixed point, though, as we see in this section, many of them do not rely

on uniqueness of the Airy sheet, but only its local, Brownian behaviour. Qualitative

properties of the sheet/landscape are obtained in [23], but the key point of the present

article, the integrability of the fixed point, does not (at the present time) appear to

extend to the sheet.

4.6. Regularity in time

We have seen that the fixed point is locally Hölder 1

2
� regular in space, and thus from

the 1:2:3 scaling variance (Theorem 4.5 (i)) one expects that it is also locally Hölder 1

3
�

regular in time. This can be proved as an application of the variational formula (4.18); in

fact, for this purpose, one only needs the pointwise, and not process level, version of the

variational formula, so on the right-hand side we can replace the Airy sheet by an Airy

process (see Remark 4.19). To see this, fix 0<s<t, x02R, and ↵< 1

3
, and choose �< 1

2

such that �/(2��)=↵. We want to compare h(t,x0) and h0(s,x0), but from the Markov

property and the fact that at time s the process is in C � , we may assume without loss

of generality that s=0 and h02C � . There is an R<1 a.s. such that

|A(x)|6R(1+|x|�) and |h0(x)�h0(x0)|6R(|x�x0|�+|x�x0|).

(30) The precise connection with the result in [51] rests on an assumption which is widely believed
to hold, but which currently escapes rigorous treatment (namely that the partially asymmetric exclusion
process with step initial data converges to the Airy2 process); see Theorem 1.5 in that paper and the
discussion preceding it for more details.



166 k. matetski, j. quastel and d. remenik

From the variational formula (4.18), |h(t,x0)�h(0,x0)| is then bounded by

sup
x2R

✓
R(|x�x0|�+|x�x0|+t1/3+t(1�2�)/3|x|�)� 1

t
(x0�x)2

◆
6 eRt�/(2��).

In view of our choice of �, this yields the desired result.

Proposition 4.24. (Hölder 1

3
� regularity in time) For any 0<↵< 1

3
and any x02R,

h(t,x0) is locally Hölder ↵-regular in t>0.

Remark 4.25. One does not really expect Proposition 4.24 to be true at t=0, unless

one starts with Hölder 1

2
� regular initial data, because of the lateral growth mechanism.

For example, we can take h0(x)=x�1x>0 with �2
�
0, 1

2

�
and check using the variational

formula that h(t, 0)�h(0, 0)⇠t�/(2��) for small t>0, which can be much worse than

Hölder 1

3
� regularity. On the other hand, the narrow wedge solution does satisfy

h(t, 0; d0)�h(0, 0; d0)⇠ t1/3.

At other points, h(0,x; d0)=�1, while h(t,x; d0)>�1, so there is not much sense to

time continuity at a point. It should be measured instead in UC, which we leave for

future work.

4.7. Equilibrium space-time covariance

White noise plus an arbitrary height shift ⇢2R is invariant for the distribution-valued

spatial derivative process u=@xh (see the remarks after Theorem 4.5) which could be

called the stochastic Burgers fixed point, since it is expected to be the 1:2:3 scaling limit

of the stochastic Burgers equation (introduced by [14])

@tu= ⌫@xu
2+�@2xu+�@x⇠

satisfied by u=@xh from (1.2). Dynamic renormalization was performed by [26] leading

to the dynamic scaling exponent 3

2
. The equilibrium space-time covariance function was

computed in [25] by taking a limit from TASEP: with �=⌫= 1

4
and �=1, and setting

⇢= 1

2
, one has

E[u(t,x)u(0, 0)]= 1

2
t�2/3g00

sc
(t�2/3x), (4.20)

where gsc(w)=
R
s2 dFw(s), with Fw(s)=@s(FGUE(s+w2)g(s+w2, w)), and where

g(s, w)= e�w3/3

Z

R2
�

dx dy ew(x+y) Ai(x+y+s)+h�̂w,s, (I�KAi,s)
�1 ̂w,siL2(R+)

�
,
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with

�̂w,s(x)=

Z

R+

dz ewzKAi,s(z, x)e
ws,

 ̂w,s(y)=

Z

R�

dz ewz Ai(y+z+s),

KAi,s(x, y)=

Z

R+

d�Ai(�+x+s)Ai(�+y+s).

Since u(t,x) is essentially a white noise in x for each fixed t, one may wonder how

the left-hand side of (4.20) could even make sense. In fact, everything is easily made

rigorous: for smooth functions ' and  with compact support we define

E[h', @xh"(t, ·)ih , @xh"(0, ·)i]

through

h', @xh"(t, ·)i=�
Z

dx'0(x)h"(t,x).

From our results, they converge to

E[h', @xh(t, ·)ih , @xh(0, ·)i].

From [25, equation (1.10)] they converge to(31)

1

4

Z

R2

dx dy'

✓
1

2
(y+x)

◆
 

✓
1

2
(y�x)

◆
t�2/3g00

sc
(t�2/3x).

This gives the equality (4.20) in the sense of distributions. But since the right-hand side

is a regular function, the left is as well, and the two sides are equal.

The novelty over [25] is the existence of the stationary Markov process having this

space-time covariance.

Appendix A. Trace norm of the fixed point kernel

If K is an integral operator acting on the Hilbert space H=L2(X, dµ) through its kernel

(Kf)(x)=

Z

X
dµ(y)K(x, y)f(y),

(31) The 1
4 prefactor comes from a minor correction in the final arXiv version of [25]; we thank

Patrik Ferrari and Leandro Pimentel for bringing to our attention the correct scaling in this formula.
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its Fredholm determinant is defined by

det(I+K)=
1X

n=0

tr(⇤n(K))=
1X

n=0

1

n!

Z

Xn

dµ(x1) ... dµ(xn) det[K(xi, xj)]
n
i,j=1

, (A.1)

where ⇤n(K) denotes the action of the n-fold tensor product K⌦...⌦K on the antisym-

metric subspace of H⌦...⌦H. One has tr(⇤n(K))6(kKk1)n/n!, where

kKk1 =tr
p
K⇤K

is the trace norm, so the Fredholm determinant is finite for trace class operators; in fact,

it is also continuous with respect to the trace norm:

|det(I�A)�det(I�B)|6 kA�Bk1e1+kAk1+kBk1 . (A.2)

While the trace and the Fredholm determinant are invariant under conjugations

K 7 ��1K�, the trace norm is not. So, bounds on (and convergence in) trace norm,

after appropriate conjugations, will allow us to justify the missing technical steps in §3
and §4. (For more background on the Fredholm determinant, including the definition

and properties of the Hilbert–Schmidt and trace norms, we refer to [59] or [50, §2]).

A.1. Proof of Theorem 4.1

In this section, we prove that the kernel Khypo(h0)

t,ext in the fixed point formula (4.7) is trace

class (after conjugation by #, defined in (4.6)) and depends continuously on the initial

data h02UC. The arguments in this section will provide us also with a blueprint for

the much harder proof of the fact, to be used crucially in the proof of Proposition 3.6,

that the approximating kernels from TASEP are trace class uniformly in the scaling

parameter " (this is proved in Appendix B).

Our kernels appear in a number of di↵erent forms throughout the article. Since the

approximating kernels from TASEP come naturally in the epi form we will prove the

result for the epi version; the hypo version will just follow by reflection. We also have

the continuum statistics formula of Theorem 4.4, which is apparently harder than the

extended kernel formulas because those are always surrounded by explicit cuto↵s �a (in

the hypo case; or �a in the epi case) but this one does not seem to have them; in a sense,

in Theorem 4.4, the second Kepi(g)

�t has to act as the cuto↵. To see how this could work,

use the definition ofKepi(g)

t given in Theorem 4.4, and for f2L2(R) let �f(u)=eG(u)f(u),

where G is antisymmetric, i.e. it produces a cuto↵ satisfying ��1%=%�, with % being the

reflection operator %f(x)=f(�x). Then, after conjugating the kernel by �, we have
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(using the definition of the epi version of the Brownian scattering transform after (4.9),

which gives Kepi(g)

�t =(Khypo(�%g)
t )⇤)

�Khypo(h)

t Kepi(g)

�t ��1 =(�Khypo(h)

t �)(��1(%Khypo(�%g)
t %)⇤��1)

= (�Khypo(h)

t �)(%�Khypo(�%g)
t �%)⇤.

(A.3)

Since the trace class operators form an ideal and % is bounded, it su�ces to prove that

�Khypo(h)

t � is trace class for h2UC. It will be clear from the argument that the cuto↵s

�a can be replaced by such � with G(u)= sgn(u)|u|3/2 with a su�ciently small >0,

and we will not comment further on this.

The form of the kernel for g2LC can be written explicity using the right-hand side

of (4.5),

Kepi(g)

t,ext =�e(xj�xi)@
2

1xi<xj+(Sepi(g
x0,�

)

�t,x0�xi
)⇤S�t,�x0+xj

+(S�t,x0�xi)
⇤Sepi(g

x0,+
)

�t,�x0+xj
�(Sepi(g

x0,�
)

�t,x0�xi
)⇤Sepi(g

x0,+
)

�t,�x0+xj
,

(A.4)

with x0 the splitting point. We want to prove that #�aK
epi(g)

t,ext �a#�1 is trace class. We

will show that each of the three last terms is trace class after surrounding by �a. The

argument for the first term using the conjugation by # is in [9, Lemma A.2](32) and

works the same way here. In the other terms, one can check through the argument that

the conjugation by # does not present any real di�culty, so to make the proof readable

we leave them out. Note also that, by shifting the height and rescaling h, we may assume

that a=0 and t=1. We will always assume this in the proof, in order to make it easier

to follow.

The proof uses the classical bound on the Airy functions, |Ai(x)|6Ce�2/3(x_0)
3/2

,

which in our context yields

|S�1,x(u)|6C exp bF0(x, u), (A.5)

with
bF0(x, u)=xy� 1

3
x3� 2

3
(y_0)3/2 and y=x2+u.

By checking various cases, it is elementary to see from (A.5) that we also have

Z
0

�1
d⌘ |S�1,x(u�⌘)|2 6C exp{2F0(x, u)}, (A.6)

(32) Note that there is a typo in the statement of this result, where the ratio corresponding to the
#i’s should be inverted.
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where F0= bF0 unless x>0 and u<0, in which case F0=0, or x=0 and u<0, in which

case the bound is F0=log(1+|u|). Note that the constant C, and all the bounds here,

do depend on x.

It is enough to control the trace norm of the third term in (A.4), since the second

term takes the form of a transpose of that one, and the fourth term is the product of two

such terms. Call x0�xi=x1 and �x0+xj=�x2. We write our kernel explicitly as

(S�1,x1)
⇤Sepi(g

x,+
)

�1,�x2
(z1, z2)

=

Z

s>0

b,z2R

dz PB(0)=z(⌧ 2 ds,B(⌧ )2 db)S�1,x1(z, z1)S�1,�x2�s(b, z2),
(A.7)

where ⌧ is the hitting time of epi(gx,+). We can think of the right-hand side as an

integral of operator kernels in z1 and z2 over some extra parameters z, b and s, and we

can estimate its trace norm k · k1 by the integral of those trace norms:

k(S�1,x1)
⇤Sepi(g

x,+
)

�1,�x2
k1

6
Z

s>0

b,z2R

dz PB(0)=z(⌧ 2 ds,B(⌧ )2 db) kS�1,x1(z, z1)S�1,�x2�s(b, z2)k1. (A.8)

The advantage of the expression on the right-hand side is that it isolates very clearly

the dependence of the trace norm on the function g through the Brownian hitting time

and position (see also Remark A.1). Because of the cuto↵s �a, a=0, the trace norm is

computed on L2((�1, 0]). The operator inside the norm above has rank 1, so its trace

norm is now just the product of L2 norms, and using also (A.6), we get

kS�1,x1(z, z1)S�1,�x2�s(b, z2)k1

=

sZ
0

�1
dz1 |S�1,x1(z�z1)|2

Z
0

�1
dz2 |S�1,�x2�s(b, z2)|2

6C exp{F0(x1, z)+F0(�x2�s,b)}.

(A.9)

Now, we use our key assumption g(x)>�↵��|x|. Observing from x0, we have

g(x0+x)>�↵��|x0+x|>�e↵�e�|x|

for some new positive constants, which do depend on the xi. So, we obtain

b>�e↵�e�s. (A.10)

From this, it is not hard to see that there are constants 1>0 and C<1 depending on

x2 such that

F0(�x2�s,b)6�1s3+C. (A.11)
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Furthermore, there is a C<1 depending on x1 such that

F0(x1, z)6C+C|z|3/21z6� e↵� 1

3
|z|3/21z>� e↵. (A.12)

Let � be the hitting time of the epigraph of �e↵�e�|x| by the Brownian motion B.

Clearly, ⌧>�. We have Pz(�6s)=Pz(sup06x6s B(x)+ e↵+e�x>0). For z<�e↵, we can

bound this by Pz(sup06x6s B(x)+ e↵+e�s>0), which can be computed by the reflection

principle, to give the bound

Pz(⌧ 6 s)6C exp{�2s�1(z+ e↵+e�s)2}.

Putting it all together, we have that k(S�1,x1)
⇤Sepi(g

x,+
)

�1,�x2
k1 is bounded by a constant

multiple of

Z � e↵

�1
dz

Z 1

0

ds e�2s
�1

(z+ e↵+e�s)2+C|z|3/2�1s
3

+

Z 1

� e↵
dz

Z 1

0

ds e�|z|3/2/3�1s
3

,

which converge. This finishes proving that #�aK
epi(g)

t,ext �a#�1 is trace class.

The method also allows us to show continuity with respect to g2LC of the above

kernel, which yields Theorem 4.1. In fact, consider a sequence of functions (gn)n>0

converging to g in LC. The measures PB(0)=z(⌧
n2ds,B(⌧n)2db), where ⌧n is the

hitting time of epi(gn), converge to PB(0)=z(⌧2ds,B(⌧ )2db) as n 1, analogously to

the last paragraph of the proof of Lemma 3.5. This can be used, together with the above

estimates, to show that

Z

s>0

b,z2R

dz PB(0)=z(⌧
n 2 ds,B(⌧n)2 db)S�1,x1(z, z1)S�1,�x2�s(b, z2)

converges in trace norm to

Z

s>0

b,z2R

dz PB(0)=z(⌧ 2 ds,B(⌧ )2 db)S�1,x1(z, z1)S�1,�x2�s(b, z2);

see §B.2 (and in particular Proposition B.6), where this argument is implemented in the

more complicated case of convergence of the TASEP kernels to their fixed point limit.

Remark A.1. Control of the Fredholm determinant is usually achieved either by

Hadamard’s inequality, or through a trace-norm estimate. Many articles in the field skip

this step and only prove pointwise convergence of the integral kernel. Earlier complete

arguments were in special cases where all objects in an equation like (A.7) were com-

pletely explicit, and Hadamard’s inequality is easier to apply. The trace norm is natural
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(and yields precise estimates) for Fredholm determinants due to (A.2), but has the disad-

vantage that it is in general di�cult to compute. Usually, one tries to write the operator

as product K=AB, and bound the trace norm by the product of the Hilbert–Schmidt

norms of its factors kABk16kAk2kBk2, the latter being easy to compute. In our case

the left-hand side of (A.7) is obviously a product, but one has to take

A=(S�1,x1)
⇤T�1 and B=TSepi(g

x,+
)

�1,�x2
,

where T is a carefully chosen multiplication operator, depending heavily on the initial

data and x and z through PB(0)=z(⌧2ds,B(⌧ )2db). While writing a proof along these

lines, we noticed that it was suggesting that we could just take the trace norm inside the

integration, as in (A.8). It is far from obvious, but true, that the estimate does not give

away too much. Once inside, the trace norm is that of a rank-1 operator, and easy to

compute. The resulting method, besides working in general, is much easier than earlier

proofs.

A.2. Proof of Proposition 4.3

In order to check the path integral formula (4.8), we will apply [8, Theorem 3.3] to

the extended kernel formula det(I��a
eKhypo(h0)

t,ext �a), where eKhypo(h0)

t,ext is the conjugated

kernel #Khypo(h0)

t,ext #�1. Here, we are using the fact that # and #�1 commute with �a

to see that this determinant is the same as the one in (4.7); the conjugation by # will

enable us to check that the analytical assumptions in the [8] result are satisfied. In the

notation of that theorem, we haveQxi=�ai as well asWxi,xj=#ie
(xj�xi)@

2

#�1

j for xi<xj ,

Kxi=#ie
�xi@

2

Khypo(h0)

t exi@
2

#�1

i andWxj ,xiKxi=#je
�xj@

2

Khypo(h0)

t exi@
2

#�1

i for xi<xj .

Additionally, we set Vxi=I, V 0
xi
=I, Uxi=� and U 0

xi
=��1 (see (A.3)). Note, however,

that in [8] the operators Qti appear multiplying only on the left of Khypo(h0)

t,ext . While we

could use the cyclic property of the determinant to remove the second projection �a in our

extended kernel formula, it is more convenient to leave it there and note instead that [8,

Theorem 3.3] applies in this case just as well, with only a minor modification: assuming

that the operators Qti appearing in [8] have a square root, then Assumption 1 (i) of the

theorem is now the boundedness in L2(R) of Q1/2
ti Wti,tjQ

1/2
tj for i<j, and of Q1/2

ti KtiQ
1/2
ti

and Q1/2
tj Wtj ,tiKtjQ

1/2
tj for all i and j, and similarly Assumption 3 (ii) is the fact that

the same operators are trace class when surrounded by Vti and V 0
ti (these modifications

are analogous to part of what we do in Appendix D.1, where we multiply by N1/2 on

both sides in the left-hand side of (D.4), and their validity can be checked simply by

inspecting the proof of Theorem D.1).
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We turn now to checking that the three assumptions of [8, Theorem 3.3] hold in our

setting. Assumption 3 (ii) (with the modification discussed above) corresponds exactly to

the verifying that each of the entries �a
eKhypo(h0)

t,ext �a(xi, · ;xj , ·) of our extended kernel are

trace class in L2(R), which is what we just proved above. This also yields (the modified)

Assumption 1 (i), which corresponds to asking only that these operators are bounded.

Assumption 1 (ii), on the other hand, actually does not hold in our setting. We note,

however, that the assumption is never really used in the proof of [8, Theorem 3.3]. In

fact, the assumption appears there only because that paper worked in a setting where all

Fredholm determinants under consideration involved bounded operators in L2(R), but
all that actually matters in the proof is that the operator in that assumption is trace class

after an appropriate conjugation, and this is exactly the content of Assumption 3 (iii),

which can be seen to hold using the above arguments (see the comment after (A.3)).

Assumption 3 (i) holds trivially. Finally, Assumption 2 follows directly from the definition

of Khypo(h0)

t and the group property of the operators St,x.

Having checked all the assumptions, we may now apply the [8] result, which yields

the path integral formula (4.8) conjugated by #�1

1
.

Appendix B. Trace-norm convergence of the rescaled TASEP kernels

B.1. Estimates

In this section, we obtain uniform in " bounds on the trace norm of the discrete approxi-

mations of the fixed point kernel. We always assume that g" g in LC and, in particular,

that they satisfy the linear bound g
"(y), g(y)>�↵��|y| for y2R, uniformly in ".

The proof somewhat follows the lines of the continuum version, but there are several

new di�culties. The first is that the continuum proof used many asymptotics of the

functions S�t,x, each of which has to be done separately now using steepest descent on

the contour integrals defining the functions S"
�t,x and S"

�t,x. A more serious problem is

that we do not have a split formula at the TASEP level, i.e. a formula of the type (3.25).

In other words, we do not really have a usable formula for 2-sided data for TASEP. Such

a formula appeared in the first version of this article on the arXiv, but it does not seem

to be usable, and, in particular, we have not succeeded so far to employ it to control the

trace norm of the kernel. Because of this, and as we discussed in §3, we need estimates

for the TASEP kernel for the LC cuto↵s of g" at L<1 (see Definition 3.3), uniformly

in L, so that the cuto↵ can later be removed (through the finite propagation speed result

proved in Appendix C.1). The same type of estimates are needed to prove the uniform

bounds on the Hölder norms of the fixed point (see Appendix C.2). More precisely, we

need to prove the following result.
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Proposition B.1. Consider g
"
as above and let g

"
L denote its LC cuto↵ at L>0.

Then, the trace norm of (S"
�t,x1�L)

⇤S
", epi((g"

L)
L,�

)

�t,�x2+L on L2((�1,a]) is bounded uniformly

in " and L.

By definition of the notation g
L,� (see (4.3)) we have (g"L)

L,�(y)=(g")L,�(y) for all

y>0, so in the proposition we could have written g
" without the cuto↵. We have chosen

this formulation to stress the role of L in this result and our interest in it.

From the proof of the continuum case, one can see already that proving this is going

to be di�cult. In the proof, we first take care of the case L=0 and then, after (B.9),

extend to all L>0, using that crucial identity as the main tool.

From the continuum proof, we see that the key point is to bound the trace norm

by the integral of trace norms of rank-1 operators, which become L2 norms. So, we

introduce the notation

exp 2F"(x, u)=

Z
0

�1
d⌘ |S"

�1,x(u�⌘)|2 and exp 2F"(x, u)=

Z
0

�1
d⌘ |S"

�1,x(u�⌘)|2,

Here and below, we write S"
�1,x(u�z)=S"

�1,x(u, z) and S"
�1,x(u�z)=S"

�1,x(u, z). Going

back to (2.27) and (2.28) to compute these integrals as summations, we obtain

Z
0

�1
d⌘ |S"

�1,x(u�⌘)|2 =
1

(2⇡i)2

I

Co
"

d ew1

I

Co
"

d ew2

e"
�3/2 P2

i=1 F ("1/2 ewi,"
1/2x","u")

ew1+ ew2�"1/2 ew1 ew2

, (B.1)

with x"=x� 1

2
"1/2u� 1

2
" and u"=u�"1/2, and F defined in (3.20), as well as

Z
0

�1
d⌘ |S"

�1,x(u�⌘)|2

=
1

(2⇡i)2

I

Co
"

d ew1

I

Co
"

d ew2

e"
�3/2 P2

i=1 F ("1/2 ewi,"
1/2x","ū")(1+"1/2 ew1)(1+"1/2 ew2)

ew1+ ew2+"1/2 ew1 ew2

,

(B.2)

with x"=x+ 1

2
"1/2u+ 3

2
" and ū"=u+"1/2; the notation Co

" means that the singularity at

zero is outside the contour.

The following lemma replaces (A.6) in the discrete case. The function bF0 is replaced

by F (w+,x, u), which we call

bF"(x, u)

=Re
⇥
(1+⌫1("

1/2w+))
�
xy� 1

3
x3� 2

3
y3/2

�
+⌫2("

1/2w+)
�
xy� 1

2
x2y1/2� 1

2
y3/2

�⇤
,
(B.3)

where w+=�x+
p
y, as before y=x2+u, and

⌫1(w)=w�3(3(1+w2) arctanhw+3w log(1�w2)�3w)�1,

⌫2(w)=w�3(�2(3+w2) arctanhw�4w log(1�w2)+6w).
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These two functions are analytic in w2C\(�1,�1][[1,1), uniformly bounded in ab-

solute value everywhere, vanish at zero like w2, and are non-negative on (�1, 1), since

they have convergent series expansions

⌫1(w)=
X

n>2

n even

6

(n+1)(n+2)(n+3)
wn and ⌫2(w)=

X

n>2

n even

4n

(n+1)(n+2)(n+3)
wn

there. Here and below,
p
y always refers to the positive square root.

The following lemma covers di↵erent regions in the asymptotics of the functions

F"(x, u) and F"(x, u). Unfortunately, there does not appear to be one argument which

covers all regions, as we have complicated functions of several variables converging in ".

On the other hand, we do not need all regions and the estimates we actually need are

far from the optimal ones.(33)

Lemma B.2. In the following all constants are independent of everything including

", unless noted.

(i) Suppose that x2
"+u">0 and �x"+

p
x2
"+u">"�1/2

. Then, F"(x, u)=�1.

(ii) Suppose that x2
"+u">0. There is �>0 such that, for

��6�x"+
p

x2
"+u" < "�1/2,

and "1/2x"2(1�
p
5, 1+

p
5 ), we have F"(x, u)6 bF"(x", u"). Under the same conditions

on x" and ū", we have F"(x, u)6 bF"(x", ū").

(iii) Suppose that x,x">0. Then, F"(x, u)6C log(2+|u|+|x|). The same holds for

F"(x, u) under the conditions x">0 and u>�"�1/2x.

(iv) Suppose that x2
"+u"<0, �C"�1/46x"<0 and |u"|6C"�1/2

. Then, there is C 0

depending on |u"|1/2/|x"| such that, for any �>0,

F"(x, u)6�
�
2

3
��

�
|x|3+C��1|u|3/2+C 0.

(v) Suppose that x2
"+ū"<0, �C<x"<0, and |ū"|6C. Then, F"(x, u)6C.

(33) The estimates and arguments which we require in this lemma and in the rest of this section are
much more involved than those appearing in earlier proofs of convergence to the classical Airy processes.
One reason for this is that, whereas exact contour integral formulas were available in those special cases,
our formulas involve expectations over random walk hitting times, and in order to handle them, we need
to control the behavior of the contour integrals in some additional, complicated regions. But even if this
were not a problem, we are in a situation where we need to obtain much finer estimates on our integrals
in order to prove the uniform bounds on the Hölder norms of the fixed point, which play a crucial role
in our arguments.
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Proof. Recall that, in (B.1) and (B.2) the contour Co
" is C", a circle of radius "�1/2

centered at "�1/2, with a little blip taken at its left so that zero lies outside the contour.

Recall also that the function F appearing in the exponents there is given by

F (w, x, u)= arctanhw�w�x log(1�w2)�u arctanhw.

We note that the real part of this function is symmetric in the imaginary part of w, so in

the proof it will be enough to estimate the integrand along the upper half of the contour.

Proof of (i). Squaring both sides of
p
x2
"+u">"�1/2+x" and using x2

"+u">0 gives

↵" :=
1

2
"�3/2+"�1x"� 1

2
"�1/2u" 6 0.

But looking at the contour integral defining S"
�1,x(u) through (3.15) and (2.27), we see

that the pole at w=0 disappears exactly when ↵"60, which shows that the integrand is

analytic, and thus S"
�1,x(u)=0 in this case.

Proof of (ii). We are trying to estimate (B.1) and (B.2), and the term in the

exponent is the same, except in one case evaluated at x" and u", and in the other at

x" and ū". So, the proofs will be the same and we just call the value in the exponent

ex" and ũ" to stand for one or the other (we will use this convention also in the proof

of the other cases). We deform the contour C" to a contour w"
++re±i⇡/4, with r going

from zero until it hits the right arc of the old contour C" (so that r2[0, c"�1/2] with

c⇠
p
2 ), together with that right arc of the old contour C" with angles 6 1

4
⇡. Note that,

during the deformation, we do not pass through any zeros of the denominator in either

(B.1) or (B.2). The contour we have described is a “steep descent curve”, in the sense

that it is close enough to the steepest descent curve for our purposes. In this case, it

does actually pass through the critical point w"
+. Our estimate is simply the value of the

integrand at this point, times a constant estimating the integration along the rest of the

curve. To prove it, we therefore have to show that the rest of the integration is bounded

independently of ". In particular, we need to show that the real part of the exponent is

decreasing along the curve uniformly in ", as we move away from the critical point. The

computation is not di�cult, because we have

@wF =(w�w+)(w�w�)(1�w2)�1.

We get

@r Re["
�3/2F ("1/2(w"

++re±i⇡/4), "1/2ex", "ũ")] =�Kr2,

where

K =

p
2(1�w2+r̃2+[4w(w+x)+2

p
2r̃(w+x)])

(w2+
p
2r̃w�1)2+2r̃2w2+2

p
2r̃3w+r̃4

,
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with w="1/2w"
+, x="

1/2ex", u="ũ" and r̃="1/2r. We will show that K> 1

20

p
2. In the

numerator, if w>0, the term in square brackets is non-negative by assumption, so we

can drop it to get a lower bound. In the denominator we can use

(1�w2+
p
2r̃w)2 6 2(1�w2)2+4r̃2w2 and r̃3w6 1

2
r̃2+ 1

2
r̃4w2,

as well as r̃462r̃2 to bound it by

10((1�w2)2+r̃2w2+r̃2)= 20
�
1

2
(1�w2)(1�w2�r̃2)+r̃2

�
.

So, we just have to show that

1�w2+r̃2 > 1

2
(1�w2)(1�w2�r̃2)+r̃2,

which, since w2[0, 1), is easily seen to be true. It is not hard to see that these inequalities

remain true for w+>�� for some �>0.

Next, we check that the exponent is decreasing along the arc of C" ending at 2"�1/2.

Using now @wF=(w2+2xw�u)(1�w2)�1, we have to show that

Re[((ei✓+1)2+2"1/2ex"(e
i✓+1)�"u)(1�(ei✓+1)2)�1iei✓]> 0

for ✓2(0,↵⇡) for some ↵6 1

2
. The real part is easily computed to be

(5+4 cos ✓)�1(4(cos ✓+1)+2"1/2ex"+"ũ) sin ✓,

so we only need to show that 4(cos ✓+1)+2"1/2ex"+"ũ">0 in this region. Now, cos ✓>0,

so this is at least 4+2"1/2ex"+"ũ". We have ũ">�x2
", so the exponent is decreasing, as

long as

ex" 2 ("�1/2(1�
p
5 ), "�1/2(1+

p
5 )).

Proof of (iii). The situation now is a little di↵erent because we may not be able to

move to the critical point without passing through a pole. On the other hand, we do not

really need to because we are not trying to get an optimal estimate. Instead we deform

the contour so that it passes through the real line at

q := (1+|ũ"|+|ex"|)�1 2 (0, "�1/2),

then move in the vertical direction until we hit the straight line from the proof of (ii)

coming at angle 1

4
⇡ out of the critical point, and then continue until hitting the curve

C" as before. Along the vertical part, we have

@r Re["
�3/2F ("1/2(q+ir, "1/2ex", "ũ")] = (�2(q+ex")+O("))r.
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Since ex">0, the real part is decreasing along this verticle piece. Along the straight piece

at angle 1

4
⇡, the proof of (ii) still works to prove the uniform decrease. The proof of

uniform decrease along the arc of C" is di↵erent for F" and F", and depends on the

precise dependence of u", x", ū" and x" on the bare variables u and x. In the first case,

Re["�3/2F ("1/2w, "1/2x", "u")]

=Re["�3/2(arctanh "1/2w�"1/2w)]�"�1xRe[log(1+"1/2w)]

does not even depend on u, and decreases uniformly along the arc of C" as long as x>0.

In the second case,

Re["�3/2F ("1/2w, "1/2x", "ū")]

=Re["�3/2(arctanh "1/2w�"1/2w)]�"�1(x+"1/2u)Re[log(1+"1/2w)],

so we require u>�"�1/2x. Now that we have checked that the exponent is decreasing

uniformly along the curve, we end up with an estimate in terms of the value of the

integrands in (B.1) and (B.2) at ewi=(1+|ũ"|+|ex"|)�1, i=1, 2. The exponent is bounded

and we pick up a term log(2+|ex"|+|ũ"|) from the denominator.

Proof of (iv) and (v). The critical points are complex now, and we deform C" to a

contour passing through both w"
+ and w"

�. The contour consists of a straight line from

zero to w"
+, then a straight line moving out from w"

+ at angle 1

4
⇡ until it hits C", and

then it continues along C" in the usual clockwise direction until it hits the real axis, after

which it follows the reflected curve across the real axis, back to zero. However, to avoid

the singularity at zero from the denominator in (B.1) and (B.2), we cut o↵ the tip of the

curve just to the right of zero.

The first thing we need to check is that the real part of the exponent is increasing

uniformly in " along the linear piece between zero and w"
+. Using

@wF =(w�w+)(w�w�)(1�w2)�1,

we compute

@r"
�3/2F ("1/2rw"

+, "
1/2ex", "ũ")= (r�1)(w"

+)
2(rw"

+�w"
�)v,

where v=(1�"r2(w"
+)

2)�1. Here, r2(0, 1) so r�1<0. From the assumptions w"
±=Re±i✓

with R>0 and ✓2
�
0, 1

2
⇡
�
, so

(w"
+)

2(rw"
+�w"

�)=R3(re3i✓�e�i✓)=R0ei✓
0
,



the kpz fixed point 179

with R0>0 and ✓02
�
1

2
⇡, 3

2
⇡
�
. Now, since |w"

+|6C"�1/4, for " small enough we have

✓0+arg v2
�
1

2
⇡, 3

2
⇡
�
, and hence Re[(w"

+)
2(rw"

+�w"
�)v] is strictly positive, uniformly in

"2[0, "0]. Note this argument is not uniform in ✓0 and hence we end up with a constant

which blows up with |ũ"|1/2/|ex"|.
Next, we have to check that the real part of the exponent is decreasing uniformly

in " along the line at angle 1

4
⇡ coming out of w"

+, so that this piece of the integral is

bounded uniformly in ". Using the formula for @wF above,

@r"
�3/2F ("1/2(w"

++rei⇡/4), "1/2ex", "ũ")= "�1@wFei⇡/4|w="1/2(w"
++rei⇡/4)

=�r(2|ỹ"|1/2�rei3⇡/4)v,

where ỹ"=ex2
"+ũ" and v=(1�"(w"

++rei⇡/4)2)�1. Hence, the real part is less than or

�Cr|y"|1/2 as long as arg v2
�
� 1

4
⇡, 1

2
⇡
�
, i.e. it is enough that

arg(1�"(w"
++rei⇡/4)2)2

�
� 1

2
⇡, 1

4
⇡
�
,

which is true for small enough " since r is less than
p
2"�1/2, and |w"

+|6C"�1/4. Finally,

we need to check that the exponent is still decreasing as we move along the arc of the

curve C", but the proof given in case (ii) above works in the same way here.

Hence, we have an estimate F"(x, u)6 bF"(x", u").

To prove (iv) we need to estimate bF"(x", u"). We use (B.3). First of all, since

|w"
+|6C"�1/4, one has |⌫i("1/2w"

+)|6C"1/2. Furthermore,

��xy� 1

3
x3� 2

3
y3/2

��,
��xy� 1

2
x2

p
y� 1

2
y3/2

��6C(|x|3+|u|3/2).

Thus,

Re
⇥
⌫1("

1/2w+)
�
xy� 1

3
x3� 2

3
y3/2

�
+⌫2("

1/2w+)
�
xy� 1

2
x2

p
y� 1

2
y3/2

�⇤

6C"1/2(|x|3+|u|3/2).

Here, x=x" and y=x2
"+u". So, it just remains to bound the real part of the term

xy� 1

3
x3� 2

3
y3/2. Since y<0, the real part of the third term vanishes. Write the first

and second as

x"u"+
2

3
x3

" =x"u"� 2

3
|x"|3 6�

�
2

3
��

�
|x|3+C��1|u|3/2,

which yields the desired estimate.

To prove (v), it remains to show that bF"(x", ū")6C. By the same argument as

above, we have
bF"(x", ū")6 (1+C"1/2)(|x"|3+|u"|3/2),

which proves it.
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Proof of Proposition B.1. The first step is to obtain a bound when x1,x2>2 and the

cuto↵ is at L=0. In this case, (g"L)
L,� becomes simply (g")�, and the operator appearing

in the result is given by

(S"
�1,x1

)⇤S",epi((g"
)
�
)

�1,�x2
(z1, z2)

=

Z

b,z2R,s2[0,"n)
dz PB"(0)=z(⌧" 2 ds,B"(⌧")2 db)S"

�1,x1
(z, z1)S

"
�1,�x2�s(b, z2)

(here n= 1

2
"�3/2+"�1x2+1 from (3.8)). We think of the right-hand side as an integral

of operator kernels in z1 and z2 over some extra parameters z,b and s. We estimate

exactly as in (A.7)–(A.9) to see that k(S"
�1,x1

)⇤S",epi((g"
)
�
)

�1,�x2
k1 is bounded by

Z

b,z2R,s2[0,"n)
dz PB"(0)=z(⌧" 2 ds,B"(⌧")2 db) exp{F"(x1, z)+F"(�x2�s,b)}. (B.4)

It is convenient to recall at this point that, in the context of the above bound, the

parameters appearing in (B.1), (B.2) and Lemma B.2 are given by

x" =x1� 1

2
"1/2z� 1

2
", u" = z�"1/2,

x" =�x2�s+ 1

2
"1/2b+ 3

2
", ū" =b+"1/2.

(B.5)

We remark that x1 and x2 here are fixed; constants in the estimates below may (and

will) depend on them.

Consider first the case z>�1. Recalling that x2>2, one can check that x2
"+u">0

and that, if we let z̄= 1

2
"�1+"�1x1 then �x"+

p
x2
"+u"�"�1/2 is negative for z2[�1, z̄)

and non-negative for z>z̄. In the first case, we may use Lemma B.2 (ii) and the fact that

for y=x2
"+u">0 we have that ⌫1 and ⌫2 are positive and bounded and

xy� 1

2
x2

p
y� 1

2
y3/2 6 0

to find a C<1 such that bF"(x", z)6C� 1

3
|z|3/2, while for z>z̄ then we may simply use

Lemma B.2 (i) to get a much better bound. On the other hand, when z<�1, we use

Lemma B.2 (iii) to find C<1 such that F"(x1, z)6C(1+log |z|). Therefore, we may

choose a constant C>0 depending on ↵ such that

F"(x1, z)6C+C log |z|1z6�↵� 1

3
|z|3/21z>�↵.

Note that we got a better bound than (A.12), because we are assuming x1>2.

Next, we deal with the other term inside the exponential in (B.4). Assume first that

z6g(0) (so in particular what follows holds also for z6�↵). We claim then that, as in

(A.11), there are 1>0 and C<1 such that

F"(�x2�s,b)6�1s3+C. (B.6)
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We still have the linear lower bound (A.10), b>�↵��s. Note, first of all, that the

random walk simply cannot jump upwards farther than "�1/2s in time s, and therefore

b6z+"�1/2s. Then, we have x"60 for small enough " (see (B.5); here we have used

z6g(0)). Assume furthermore that x2
"+b>0. It is easy to check then that, for s<"n (as

we have in (B.4)), the hypotheses of Lemma B.2 (ii) are satisfied for small ", so we have

using also (B.3) that

F"(�x2�s,b)6 bF"(x", ū")6 (1+⌫1)
�
x"b+

2

3
x3

"� 2

3
(x2

"+b)3/2
�
, (B.7)

with ⌫1 non-negative and bounded (note that the second term in (B.3) is clearly negative

in our case; additionaly, note that in (B.3) the middle term in the first parenthesis has

a + 1

3
in the middle term, the � 2

3
here is because we are writing xy� 1

3
x3=xu+ 2

3
x3).

Using the linear lower bound b>�e↵�e�s, and the definition (B.5) of x", which in our

case is negative, (B.6) follows from (B.7). The alternative x2
"+b<0 can only happen

for b<0 and 06s6s0, for a constant s0<1 depending on ↵, � and x2. Then, since we

also have b>�↵��s0, we can use Lemma B.2 (v) to get bF"(�x2,"�s,b)6C, and hence,

since s6s0, (B.6).

Now suppose z>g(0). We can use Lemma B.2 (ii) because the condition

�x"+
p

x2
"+ū" < "�1/2

reduces in this case to 1

2
"�3/2�"�1s+"�1x2>�1, which holds because s<"n= 1

2
"�1/2.

We get F"(�x2, z)6 bF"(x", ū")6C.

Let �" be the hitting time of the epigraph of �↵��|x| by the random walk B".

Clearly, ⌧ ">�". We have

Pz(�
" 6 s)=Pz

⇣
sup

06x6s
B"(x)+↵+�x> 0

⌘
.

Note that B"(x)+↵+�x is a submartingale, and by Doob’s submartingale inequality,

for any �>0,

Pz

⇣
sup

06x6s
B"(x)+↵+�x> 0

⌘
6Ez[e

�(B"(s)+↵+�s)] = e�(z+↵+�s)+"�1s logM("1/2�),

where M(�)=e�/(2�e��), �>� log 2, is the moment generating function of a centered

negative Geom
⇥
1

2

⇤
random variable. By choosing �>0 carefully, we can find a 2>0 such

that the right-hand side is bounded above by exp{�2s�1(z+↵+�s)2} when z6�↵, and

therefore, for such z,

Pz(⌧" 6 s)6 exp{�2s�1(z+↵+�s)2}. (B.8)
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Putting it all together, we have that k(S"
�1,x1

)⇤S",epi((g"
)
�
)

�1,�x2
k1 is bounded by a constant

multiple of

Z �↵

�1
dz

Z 1

0

ds e�2s
�1

(z+↵+�s)2+C log |z|�1s
3

+

Z 1

�↵
dz

Z

s>0,b2R
PB"(0)=z(⌧" 2 ds, B"(⌧")2 db)e�|z|3/2/3+F"(�x2�s,b).

The first integral clearly converges. The second one can be split into z2[�↵, g(0)] and

(g(0),1). On the first piece the bound (B.6) still holds, so the integral is clearly finite.

On the second piece we observe that z>g(0) forces ⌧"=0 and b=z, so the integral is just

Z 1

�↵
dz e�|z|3/2/3+F"(�x2,z) 6C.

The next step is to extend to L>0.

Suppose that f` is the LC cuto↵ of some f2LC to the right of position `. Then if

L>`, because the random walk is free for time L�` (see (2.35)),

(S"
�1,x1�L)

⇤S",epi((f`)
L,�

)

�1,�x2+L =(S"
�1,x1�`)

⇤S",epi(f`,�)

�1,�x2+`. (B.9)

On the other hand, we can write (S"
�1,x1�L)

⇤S",epi(fL,�
)

�1,�x2+L as a telescoping series

(S"
�1,x1

)⇤S",epi(f0,�)

�1,�x2
+

LX

`=1

[(S"
�1,x1�`)

⇤S",epi(f`,�)

�1,�x2+`�(S"
�1,x1�(`�1)

)⇤S",epi(f`�1,�
)

�1,�x2+`�1
]. (B.10)

We have the following estimate.

Lemma B.3. For each �>0, there is a C<1 such that, for all `6L,

k(S"
�1,x1�`)

⇤S
",epi((g"

L)
`,�

)

�1,�x2+` �(S"
�1,x1�(`�1)

)⇤S
",epi((g"

L)
`�1,�

)

�1,�x2+`�1
k1 6Ce�(2/3��)`3 (B.11)

Before proving the lemma we will employ it to finish the proof of Proposition B.1.

Using (B.11) in (B.10) we have, for x1>2 and x2>2,

k�0(S
"
�1,x1�L)

⇤S
",epi((g"

L)
L,�

)

�1,�x2+L �0k1 6 k�0(S
"
�1,x1

)⇤S
",epi((g"

L)
0,�

)

�1,�x2
�0k1+C

LX

`=1

e�`3/2 6C 0,

uniformly in L as needed, using the L=0 case of the proposition (note that (g"L)
0,�(y)=

(g"
0
)0,�(y) for all y>0). The condition x1,x2>2 can now clearly be dropped using this

estimate by taking L larger if needed and shifting g slightly.
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Proof of Lemma B.3. Note first that, for all `6L, we have (g"L)
`,�(y)=(g"`)

`,�(y)

for all y>0. Using this and (B.9), we have that the operator inside the trace norm in

(B.11) can be written as

(S"
�1,x1�`)

⇤[S
",epi((g"

`)
`,�

)

�1,�x2+` �S
",epi((g"

`�1)
`,�

)

�1,�x2+` ] (B.12)

We can write the kernel of the operator in brackets at (z, z2) as

EB"
0=z[S

"
�1,�x2+`�⌧"

(B"(⌧")�z2)1⌧"<"n+`�S"
�1,�x2+`�⌧"

(B"(⌧")�z2)1⌧"<"n+`],

where n is still 1

2
"�3/2+"�1x2+1 (as above) while ⌧" is the hitting time of epi((g"`)

`,�),

and ⌧" is the hitting time of epi((g"`�1
)`,�) by the scaled walk

B"(x)= "1/2(B"�1x+2"�1x�1).

Note that ⌧">⌧" with equality whenever ⌧">1. So, we can put 1⌧"<1 inside the expec-

tation and use the sum instead of the di↵erence in our bounds. We can then estimate

the trace norm of (B.12) (on L2((�1, 0])) by

Z
p"z(ds, ds, db, db̄) dz 1s<1kS"

�1,x1�`(z, z1)1z160S
"
�1,�x2+`�s(b�z2)1z260k1 (B.13)

+

Z
p"z(ds, ds, db, db̄) dz 1s<1,s<"n+`kS"

�1,x1�`(z, z1)1z160S
"
�1,�x2+`�s(b̄�z2)1z260k1, (B.14)

where the trace norms are as operator kernels in z1 and z2 (with z fixed), and

p"z(ds, ds̄, db, db̄)

is the probability measure for the di↵usively rescaled random walk starting at z to

hit the lower curve at (s,b) and the upper (cuto↵) curve at (s̄, b̄). Note again that

the centered random walk only takes jumps upwards of at most one step and there-

fore B"(x)6z+"�1/2x. Since (g"`)
`,�(x)>�↵��|`�x|, we simply cannot have ⌧"<1 if

z<�N :=�"�1/2�↵��|`�1|, i.e. the integrations are restricted to z>�N .

The operators inside the norms above are rank-1, so the trace norms are the product

of L2 norms, and we get for (B.14) a bound of a constant multiple of

Z
p"z(ds, ds, db, db̄) dz 1s<1,s<"n+` exp(F"(x1�`, z)+F"(�x2+`�s, b̄)).

We will proceed to estimate this one; it will be clear from the proof that the same

argument works for (B.13) with a few simplifications, since ⌧" and b are under better

control than ⌧" amd b̄.
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Note first of all that, in the same way as in (B.8), for z6�↵��`, we have

p"z(s< 1)6 exp(�(z+↵+�`)2) (B.15)

(and furthermore it simply vanishes if z<�N . as we just argued). We have the lower

bound b̄>�↵��|`�s|, and we claim that this is enough to get a bound

F"(�x2+`�s, b̄)6C(1+log `), (B.16)

with C<1 independent of " or `. Call

x" =�x2+`�s+ 1

2
"1/2 b̄+ 3

2
" and ū" = b̄+"1/2.

Usually, we have been breaking into cases x2
"+ū">0 or not, but now let us suppose that

we have the stronger condition 1

2
x2
"+ū">0. Of course, this implies that y"=x2

"+ū">0,

so ⌫1, ⌫2>0. We have

x"y"� 1

2
x2

"y
1/2
" � 1

2
y3/2
" 6 0,

by Young’s inequality and the fact that y">0, but now the extra condition 1

2
x2
"+ū">0

allows us to check the non-obvious fact that

x"y"� 1

3
x3

"� 2

3
y3/2
" 6 0

as well. Therefore, under these conditions, we have bF"(x", ū")60. Now, there exists a C

depending on x2, ↵ and � such that, if x">C"1/2 then, since �↵��` ū">�"�1/2x", we

can use Lemma B.2 (iii) to get the bound C(1+log `). On the other hand, if x"<C"1/2,

we estimate

F"(�x2+`�s, b̄)6 bF (x", ū")6 0,

using the above argument for the last inequality and Lemma B.2 (ii) for the first, which

we are allowed to use because of the condition s̄6"n+`.
Alternatively, we have 1

2
x2
"+ū"<0. Because of the lower bound on b̄, there is a

C<1, depending only on ↵ and �, such that |x"|3+|ū"|3/26C. Then, we can use Lem-

ma B.2 (iii) when x">0, or, when x"<0, Lemma B.2 (v) if x2
"+ū"<0 or Lemma B.2 (ii)

if x2
"+ū">0, to prove (B.16).

Now, we consider F"(x1�`, z). We claim that

F"(x1�`, z)6�
�
2

3
��

�
`3+C��1|z|3/21z6�↵��`�C|z|3/21z>�↵��`+C. (B.17)

Let x"=x1�`� 1

2
"1/2z� 1

2
" and u"=z�"1/2. Consider first the case 1

2
x2
"+u"60. Since

z>�↵��`�"�1/2, this can only happen if `6C"�1/4 and we have |x"|6C"�1/4,
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|u"|6C"�1/2 and |u"|1/2/|x"| bounded so, if x"<0, we can use Lemma B.2 (iv) to get

(B.17). Suppose, on the other hand, that 1

2
x2
"+u">0. If �x"+

p
x2
"+u">"�1/2, by

Lemma B.2 (i), there is nothing to estimate. Otherwise, we have

�x" 6�x"+
p
x2
"+u" < "�1/2,

which, together with the lower bound on z, gives "1/2x"2(1�
p
5, 1+

p
5 ) independent

of `, so we can use Lemmas B.2 (ii) and (B.3), together with the facts that ⌫1 and ⌫2 are

non-negative and bounded independent of ` and that x"y"� 1

2
x2
"y

1/2
" � 1

2
y3/2
" 60, to get

F"(x1�`, z)6x"u"+
2

3
x3

"� 2

3
(x2

"+u")
3/2.

Using x"u"6�|x"|3+C��1|u"|3/2 and z>�↵��`�"�1/2, this is bounded above by

�
�
2

3
��

�
`3+C��1|z|3/21z6�↵��`�C|z|3/21z>�↵��`+C

for su�ciently small ". There is finally the case x">0 but 1

2
x2
"+u"<0. Here, ` is bounded

and we can estimate by C log(|z|+C), by Lemma B.2 (iii), which can be absorbed into

the right-hand side of (B.17). This completes the proof of (B.17).

Now we can use (B.15)–(B.17) to see that (B.13) is bounded by

Ce�(2/3��)`3
Z

dz eC��1|z|3/21z6�↵��`�C|z|3/21z>�↵��`�(z+↵+�`)21z+↵+�`601z>�N .

It is not hard to see that this last term is bounded by C 0e�(2/3��)`3 , completing the

proof.

Remark B.4. Examining the argument, it is not hard to see that one should be able

to get away with �(x)>�↵��|x|2, if � is su�ciently small, depending on t. From the

variational formula (4.18), it is clear that �=1/t is the physical barrier, but in fact the

above argument breaks down at �=c/t with c⇡0.9.In fact, for c/t<�<1/t, one has to

do a very fine estimate on an oscillatory integral in order to control things. We do not

pursue it here.

Remark B.5. There is still one term not taken care of by the preceeding argument;

we need to show that, for i<j, xi>xj and ai, aj and the scaling introduced in (3.8), as

well as the scaled variables zi=2"�1xi+"�1/2(ui+ai)�2 introduced in Lemma 3.5,

k#i(ui)�ai(ui)("
�1/2Qnj�ni(zi, zj)�e(xi�xj)@

2

(ui, uj))�aj (uj)#
�1

j (uj)k1 0

as " 0. The pointwise convergence

"�1/2Qnj�ni(zi, zj) e(xi�xj)@
2

(ui, uj)
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is just a standard convergence of random walk transition probabilities to those of Brow-

nian motion. To see that with these conjugations the convergence holds in trace norm,

we write "�1/2Qn�ex@
2

as

1

2
("�1/2Qbn/2c+ex@

2/2)("�1/2Qdn/2e�ex@
2/2)

+ 1

2
("�1/2Qbn/2c�ex@

2/2)("�1/2Qdn/2e+ex@
2/2).

We can estimate the trace norm of each of the two terms as in the proof of Lemma A.2

of [9]. Introducing the factors #i and #
�1

j , and bounding the trace norm of the product

by the product of the Hilbert–Schmidt norms we get, for twice the first term, a bound

by the square root of

Z

R2

dui dz ("
�1/2Qb(nj�ni)/2c+e(xi�xj)@

2/2)2(ui�z)
(1+u2

i )
4i

(1+z2)2(i+j)

⇥
Z

R2

duj dz("
�1/2Qd(nj�ni)/2e�e(xi�xj)@

2/2)2(z�uj)
(1+z2)2(i+j)

(1+u2

j )
4j

,

which goes to zero as " 0. The other term is essentially the same.

B.2. Convergence

We now explain how the above trace estimates prove the convergence of the TASEP

approximations to their continuum versions. The same argument shows the continuity

of the limiting kernels from UC to the trace class.

We want to show that

(S"
�1,x)

⇤S",epi(g"
)

�1,�x ���
" 0

(S�1,x)
⇤Sepi(g)

�1,�x (B.18)

in trace norm as g
"

g in LC[0,1). More explicitly, if ⌧ " is the hitting time of g" by

B", we want

Z

s2[0,1)

b,z2R

dz PB"(0)=z(⌧" 2 ds,B"(⌧")2 db)S"
�1,x(z, z1)S

"
�1,�x�s(b, z2)

Z

s2[0,1)

b,z2R

dz PB(0)=z(⌧ 2 ds,B(⌧)2 db)S�1,x(z, z1)S�1,�x�s(b, z2),
(B.19)

as integral operators in the trace class. First, we claim that

PB"(0)=z(⌧" 2 ds,B"(⌧")2 db) PB(0)=z(⌧ 2 ds,B(⌧ )2 db) (B.20)
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as measures. By Donsker’s invariance principle B" B uniformly on compact sets. By

Proposition 3.2, if z<g(0) we have (B.20), and furthermore the convergence is uniform

over sets of locally bounded Hölder �-norm. On the other hand, if z>g(0) then, from

our assumption, z>g
"(0) for su�ciently small ", and then ⌧"=⌧=0, so the convergence

as measures also happens for z>g(0).

By the estimates proved in the previous section, one can restrict the integration in

(B.19) to s, b and z in compact intervals, the complementary integration being uniformly

small in " in trace norm. Since we are now on a compact interval of z, we can normalize

to make

µ" = c"PB"(0)=z(⌧" 2 ds,B"(⌧")2 db) dz and µ= cPB(0)=z(⌧ 2 ds,B(⌧)2 db) dz

probability measures. Taking B as the trace class, the convergence then follows by

����
Z
(f"�f) dµ"

����6
Z

kf"�fk dµ",

and the following fact, which is presumably well known, but whose proof is easier than

searching for a reference.

Proposition B.6. Let µn, n=1, 2, ... , and µ be probability measures on a Polish

space ⌦, with µn converging weakly to µ as n 1. Let f be a bounded continuous

function from ⌦ into a Banach space B. Then,

Z
f dµn

Z
f dµ.

Proof. The µn are tight, so, by throwing away a set of uniformly small measure, we

may assume that ⌦ is compact. By the Skorokhod representation theorem, there exist

random variables Xn, n=1, 2, ... , and X, distributed according to µn and µ with Xn X

almost surely. Let ">0. Since ⌦ is compact, there is �>0 such that kf(!)�f(!0)k< 1

2
"

whenever d(!,!0)<�. So,

kE[f(Xn)�f(X)]k6 kfk1P(d(Xn, X)> �)+ 1

2
"< "

for n su�ciently large.

This proves (B.18) which, in view of the discussion around (3.21), yields Propo-

sition 3.6, i.e. the convergence of the TASEP finite-dimensional distributions to those

of the fixed point in the case of 1-sided initial data. The extension 2-sided initial data

(i.e. Theorem 3.13) is done as explained in §3.4, the main tool being the finite propagation

speed result, Lemma 3.4, proved in the next section.
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Appendix C. Finite propagation speed and regularity

C.1. Finite propagation speed

We will now prove Lemma 3.4. First of all, note that by a union bound it su�ces to

prove the result for m=1. The resulting constants will then depend on m. In reality, the

constants are independent of m if all the points xi are bounded above. But we do not

use it anywhere, so we just give the simplest proof which su�ces for the results of this

article. For simplicity, we will also set t=1 and, by shifting the initial data, we can set

a=0.

Recall that we are given initial data X"
0
satisfying (3.4) in the UC topology, which

in particular means that we have a fixed ↵,�<1 such that h"
0
(y)6↵+�|y| for all ">0.

Then, we make the UC cuto↵, replacing it by X",L
0

in which all the particles with label

less than or equal to �"�1L0 are moved to 1. The corresponding rescaled height function

is denoted by h
",L
0

and we choose L0⇠ 1

2
L in "Z so that this function has been replaced

by a straight line with slope �2"�1/2 to the right of L (see Definition 3.3). We will prove

that the di↵erence of (3.7) with m=1, that is

P
�
X2"�3/2t

�
1

2
"�3/2t�"�1x� 1

2
"�1/2a+1

�
> 2"�1x�2

�

for some fixed a and x, computed with initial data X",L�1

0
and initial data X",L

0
, is less

than Ce�cL3

. Then, one just sums over integers L>L0 to get Lemma 3.4.

Note that, to keep the notation as simple as possible, we may assume in this subsec-

tion that x=0, or, to make the notation even simpler, x=" because this makes a=0 in

(3.8). From translation invariance, we do not actually lose generality by assuming this.

To bound the di↵erence of probabilities we use the Fredholm determinant formula

and (A.2), which reduces the problem to estimating the trace norm of

�0(S�t,�n)
⇤(S epi(X",L�1

0 )

�t,n �S epi(X",L
0 )

�t,n )�0,

with t=2"�3/2 and n= 1

2
"�3/2. It is more convenient t o use the cuto↵ position as a

frame of reference so we translate the cuto↵ rescaled height configurations to the left

by a macroscopic distance L so that the rightmost (non-infinite) particle of ✓�"�1L0X",L
0

has label 1 and ✓�"�1L0X",L�1

0
is the same configuration, except that about 1

2
"�1 of the

rightmost particles have been moved to +1. The shifted macroscopic height functions

have been replaced by a line of slope �2"�1/2 to the right of zero in the first case, and

to the right of �1 in the second case. To view the system from the same position as

before, we have to replace n by n+"�1L0, and so the problem comes down to bounding

the trace norm of

�0(S�t,�n�"�1L0)⇤(S epi(✓�"�1L0X
",L�1
0 )

�t,n+"�1L0 �S epi(✓�"�1L0X
",L
0 )

�t,n+"�1L0 )�0.



the kpz fixed point 189

In the language of the rescaled kernels from Lemma 3.5, we need to bound the trace

norm of

�0(S
"
�1,�L)

⇤(S
",epi(�(✓Lh

",L�1
0 )

�
)

�1,L �S
",epi(�(✓Lh

",L
0 )

�
)

�1,L )�0,

but this is exactly Lemma B.3.

Remark C.1. At the level of the fixed point, one has immediately from the 1-point

version of the variational formula,

h(1, 0)
dist
= sup

y2R
{A2(y)�y2+h0(y)}

with A2(y) the Airy process (see Remark 4.19), that replacing h0 by the cuto↵

h
L
0
(y)= h0(y)�11y>L,

a↵ects the value of h(1, 0) only if the supremum is achieved at y>L. As h0(y)6↵+�|y|,
this is essentially controlled by the probability that A2(L)>L2��L�↵. Since A2(L) has

the GUE Tracy–Widom distribution, this is roughly exp{� 2

3
L3}. It is not hard to make

this argument rigorous. Since TASEP satisfies a microscopic version of the variational

formula, one could provide an alternate proof of the finite propagation speed following

the same argument. It reduces to a large deviation bound for the tail probability in

the microscopic analogue of the Airy process. This can be proved with our formulas,

and leads to similar computations as our proof of the cuto↵. We did it via Lemma B.3,

because we need it later as well in the proof of regularity.

C.2. Regularity

Next, we obtain the necessary tightness on h
"(t,x) by obtaining uniform bounds on the

local Hölder norm �< 1

2
. Note that we are working at t fixed, and the bounds are as

functions of x, so we will assume in the rest of the section that t=1; other times can be

obtained analogously, or alternatively by scaling. We start with a well-known version of

the Kolmogorov continuity theorem.

Lemma C.2. Let h(x) be a stochastic process defined for x in an interval [�M,M ]✓
R such that, for some p>1 and ↵>0,

E[|h(x)�h(y)|p]6C|x�y|1+↵. (C.1)

Then, for every �<↵/p, there is a yC=C(p,↵,�, C) such that, for the local Hölder norm

defined in (3.6),

P(khk�,[�M,M ] >R)6CR�p. (C.2)
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We want to obtain an estimate like (C.1) for our process, but we have only access

to cumulative distribution functions. We can use the following lemma.

Lemma C.3. Let H1 and H2 be random variables. Then, for p>2,

E[|H1�H2|p1H1>H2 ] = p(p�1)

Z 1

�1

Z 1

�1
da db |a�b|p�21a>bP(H1 >a, H2 6b). (C.3)

Proof. Since the integrand is positive, the right-hand side of (C.3) can be rewritten

using Fubini’s theorem as

E
Z H1

H2

dh2

Z H1

h2

dh1 p(p�1)(h1�h2)
p�21H1>H2

�
.

Performing the integrations inside the expectation gives the left-hand side.

Proof of Theorem 4.13. We want to use the previous lemma, but there is a little

problem. We have formulas for

P(h(x)>a, h(y)6b)=P(h(y)6b)�P(h(x)6a, h(y)6b)

in terms of di↵erences of Fredholm determinants, which can be estimated by the trace

norm of the di↵erence of kernels. If x is close to y, the di↵erence is small, as desired.

However, it is not straightforward to get the needed decay as a,b ±1 (even if one knows

the tails P(h(x)>a) and P(h(y)6b) decay exponentially, it would still mean one had to

control the di↵erence of determinants on a range c log |a�b|�1 for |a�b| small, which is

non-trivial.) We get around this with a simple trick. Let hN (x)=(h(x)^N)_(�N) be

the cuto↵ of h at ±N . Applying Lemma C.3 to H1=h
"
N (x) and H2=h

"
N (y), we have, for

fixed t and p>2,

E[|h"N (x)�h
"
N (y)|p]

= p(p�1)

Z N

�N

Z N

�N
da db |a�b|p�2[F "

x(a)1a<b+F "
x(b)1a>b�F "

x,y(a,b)],

where F " are the 1- and 2-point cumulative distribution functions of the 1:2:3 rescaled

TASEP height functions. Now, suppose we find some p>1, ↵>0 and C=C(N) such that

the right-hand side is bounded by C|x�y|1+↵ independent of ">0. Suppose also that

limsup
N 1

limsup
" 0

P
⇣

sup
x2[�M,M ]

|h"(x)|>N
⌘
=0. (C.4)

Then, we have (4.12) because, if supx2[�M,M ] |h"(x)|6N , then h
"
N=h

" on [�M,M ].
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To see that (C.4) holds, we note that we have assumed that h"(0,x)6C(1+|x|). We

may also assume, without loss of generality, that h"(0,x")>`>�1 independent of " for

some x" x0, since the h
" have been assumed to converge to some h in UC, and we may

assume that h(x0)>�1 for some x0. Therefore, we can bound h
"(1,x) above by the

maximum of two rescaled TASEP height functions, one starting with C(1+x) and one

starting with C(1�x). For each, we can estimate the probability that the height profile

is greater than N anywhere on [�M,M ] by cutting the initial data at L, using the exact

formulas (e.g. from Example 2.10), and showing that the bound does not depend on L.

This is fairly standard, so we omit the details. This shows that

limsup
N 1

limsup
" 0

P
⇣

sup
x2[�M,M ]

h
"(x)>N

⌘
=0.

For the other direction, we bound h
"(t,x) below by the narrow wedge solution h

"(t,x)

centered at x". By results of Johansson [34], h"(1,x)+(x�x")2 converges uniformly on

compact sets to the (rescaled) Airy2 process. In particular,

limsup
N 1

limsup
" 0

P
⇣

sup
x2[�M,M ]

h
"(x)6�N

⌘
=0.

This reduces the problem to showing that, for x1<x2,
Z

�N6a1<a26N
da1 da2 |a1�a2|p�2

⇥
F "
x1
(a1)�F "

x1,x2
(a1,a2)

⇤
6C(N)|x1�x2|1+↵. (C.5)

It may appear this is not general enough because x1<x2 and a1<a2, but our proof will

apply equally well to the process with spatially flipped initial data h0(�x), which restores

the symmetry. There is one last issue which is that we only have nice formulas for these

cumulative distributions, when there is a rightmost particle. So we move all the particles

to the right of "�1L to 1, giving a cuto↵ height function h
",L
0

and corresponding 1- and

2-point distribution functions F ",L
x and F ",L

x,y , and we need the constant C(N) in (C.5)

to be independent of L.

From (3.7), we have

F ",L
x1,x2

(a1,a2)=PX",L
0

(X2"�3/2t(ni)> 2"�1xi�2, i=1, 2),

with ni=
1

2
"�3/2t�"�1xi� 1

2
"�1/2ai+1, and where X",L

0
is the cuto↵ TASEP initial data

as in Definition 3.3. By translation invariance (2.33), this is the same as

PfX",L
0

(X2"�3/G2t(ñi)> 2"�1xi�2 for i=1, 2)

=det(I�(S�t,�ñ1)
⇤S epi( eX",L

0 )

�t,ñ1
(I�Qn2�n1�2"�1x2�2Q

n1�n2�2"�1x1�2))

=det(I�(S�t,�ñ1)
⇤S epi( eX",L

0 )

�t,ñ1
(Qn2�n1�2"�1x2�2Q

n1�n2�2"�1x1�2+�2"�1x1�2)),
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where eX",L
0

=✓�"�1LX
",L
0

, ñi=ni+"�1L, and the first equality is from Theorem 2.6 and

(2.12) (note that n1>n2 for small "). Since S epi( eX",L
0 )

�t,ñ1
Qn2�n1=S epi( eX",L

0 )

�t,ñ2
, scaling the

variables in the determinant as in §3.3, and noting that the scaled version of X̃",L
0

con-

verges to ✓LhL0 (x) yields

F ",L
x1,x2

(a1,a2)=det(I�Ax1,a1;x2,a2),

where

Ax1,a1;x2,a2

=��a1 [(S
"
�t,x1�L)

⇤S",epi(�(✓Lh0)
�
)

�t,�x2+L ��a2
eQ"
x2�x1

��a1+(S"
�t,x1�L)

⇤S",epi(�(✓Lh0)
�
)

�t,�x1+L ��a1 ],

with
eQ"
x2�x1

(u2, u1)= "�1/2Qn1�n2(z2, z1),

and

zi =2"�1xi+"
�1/2(ui+ai)�2.

Note that eQ"
x2�x1

(u2, u1)= eQ"
x2�x1

(u2�u1) are transition densities of a centered, di↵u-

sively rescaled geometric random walk B".

We need to estimate F ",L
x1

(a1)�F ",L
x1,x2

(a1,a2), which by (A.2) is controlled by the

trace norm

kAx1,a1;x1,a1�Ax1,a1;x2,a2k1 = k��a1(S
"
�t,x1�L)

⇤S",epi(�(✓Lh0)
�
)

�t,�x2+L ��a2
eQ"
x2�x1

��a1k1.

From Proposition B.1 we have

k��a1(S
"
�t,x1�L)

⇤S",epi(�(✓Lh0)
�
)

�t,�x2+L ��a2k1 6C.

Since �a2<�a1, we also have by Schwartz’s inequality,

k��a2
eQ"
x2�x1

��a1kop 6
Z

|y|>|a2�a1|
eQ"
x2�x1

(y)dy, (C.6)

where k · kop is the operator norm and we are using kABk16kAkopkBk1. When we

plug this estimate into the left-hand side of (C.5), we get 2NE[|B"(x2�x1)|p�1]. The

2N comes from the integral over a1, and we lose a power in the exponent because of

the estimate in (C.6) which is by a transition probability instead of the cumulative

functions. At any rate, we have 2NE[|B"(x2�x1)|p�1]6C(N, p)|x2�x1|(p�1)/2. So, we

have proved (C.5) with ↵= 1

2
(p�3), which means that we have (C.2) with �= 1

2
� 3

2p , for

any p>2 (though with a constant C getting worse as p 1).
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Appendix D. Path integral formulas

D.1. An alternative version of [8, Theorem 3.3]

Consider a measure space (X,µ) and fix t1<...<tn. In [8, §3] a very general setting

is described on which the Fredholm determinant of certain extended kernels, acting on

L2({t1, ..., tn}⇥X), can be turned into the Fredholm determinant of what they call a path

integral kernel, which acts on L2(X). The result proved in that paper can be applied to a

variety of processes, and in particular yields the path integral formula for the KPZ fixed

point given in Proposition 4.3. However, the TASEP extended kernel does not fit into

the setting of that paper. The purpose of this subsection is thus to provide a suitable

version of [8, Theorem 3.3]. We do not strive for the greatest possible generality, but

instead state a relatively simple variation of [8] which is enough to obtain the TASEP

path integral formula, which in turn is proved in the next subsection.

Let M(X) be the space of real-valued measurable functions on X. We are given a

collection of integral operators on subspaces D+

W , R+

W , D�
W , R�

W , DK and RK of M(X):

• Wti,tj :D+

W R+

W , for 16i<j6n;

• Wti,tj :D�
W R�

W , for 16j6i6n;

• Kti :DK RK , for 16i6n, with DK ,RK satisfying

DK ,RK ✓D+

W\D�
W and Wti,tj (DK)✓D+

W\D�
W for all i and j,

Wti,tj (DK)✓DK for all i> j.
(D.1)

Given these operators, we construct an integral operator Kext acting on the space

D(t1,...,tn)
K of functions f : {t1, ..., tn}⇥X R such that f(ti, ·)2DK for 16i6n through

the following integral kernel:

Kext(ti, x; tj , y)=

⇢
Wti,tjKtj (x, y), if i> j,

�Wti,tj (I�Ktj )(x, y), if i< j
(D.2)

(that is, for f2D(t1,...,tn)
K , we set Kextf(ti, x)=

Pn
j=1

R
X dµ(y)Kext(ti, x; tj , y)f(tj , y)).

Our assumptions on the domains and ranges of our operators ensure that these (and

later) compositions are always well defined.

We will suppose that our operators satisfy the following algebraic assumptions: for

all f2DK ,

Wti,tif = f for all 16 i6n, (D.3a)

Wti,tjWtj ,tkf =Wti,tkf for all 16 i, j, k6n, (D.3b)

Wti,tjKtjWtj ,tif =Ktif for all 16 i< j6n. (D.3c)
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These three assumptions are our replacement for Assumption 2 of [8]. There are two main

di↵erences with that paper: First, we are assuming here that the Wti,tj ’s are properly

defined operators for i>j, and that Wti,tj and Wtj ,ti are essentially inverses of each

other; and second, the reversibility relation Wti,tjKtj=KtiWti,tj which is assumed in [8]

is replaced here by (D.3c).(34)

Additionally, we consider multiplication operators Nti acting on M(X) as Ntif(x)=

'ti(x)f(x) for some 'ti2M(X). We define N to be the diagonal operator acting on

functions f : {t1, ..., tn}⇥X R as Nf(ti, ·)=Ntif(ti, ·). We also introduce the notation

Nti = I�Nti .

We need to make some additional assumptions on our operators (the first one is conve-

nient in light of our setting in the next subsection, but could be relaxed as in [8]; the last

four replace Assumptions 1 and 3 in [8, Theorem 3.3]):

(i) 'ti(x)>0 for all x2X. We let N1/2
ti denote the operator of multiplication by

'ti(x)
1/2 and define N1/2 in the same way.

(ii) For all 16i6n, N1/2
ti maps L2(X) to DK .

(iii) For all 16i, j6n, N1/2
ti maps Wti,tj (RK) to L2(X), and if additionally i>j

then it also maps Wti,tj (DK) to L2(X);

(iv) RK[D+

W✓L2(X).

(v) There exist multiplication operators Vti and V 0
ti satisfying V 0

tiVtiN
1/2
ti =N1/2

ti and

such that, for all i<j, the operator VtiN
1/2
ti Wti,tjN

1/2
tj V 0

tj is trace class in L2(X) and,

for all i and j, the operators VtiN
1/2
ti Wti,tjKtjN

1/2
tj V 0

tj are trace class in L2(X).

(vi) There exist multiplication operators Uti and U 0
ti satisfying

UtiU
0
tiKtiWti,tj =KtiWti,tj

for all j6i and such that the operator

Uti [KtiWti,ti+1Nti+1 ...Wtn�1,tnNtnKtn�KtiWti,t1Nt1Wt1,t2Nt2 ...Wtn�1,tnNtn ]U
0
ti

is trace class in L2(X).

Theorem D.1. In the above setting, assume that (D.1), (D.3a)–(D.3c) and assump-

tions (i)–(vi) are satisfied. Then,

det(I�N1/2KextN1/2)L2({t1,...,tn}⇥X)

=det(I�Ktn+KtnWtn,t1Nt1Wt1,t2Nt2 ...Wtn�1,tnNtn)L2(X).
(D.4)

(34) It is possible to state a version of Theorem D.1 where Wtj ,ti is not necessarily well defined for
i<j, but instead one assumes that Wtj ,tiKti and KtjWtj ,ti are well defined and satisfy the necessary
algebraic assumptions.
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Note that, by (ii) above, the operator inside the determinant on the left-hand side

acts on L2({t1, ..., tn}⇥X). Similarly, by (iii) above and the fact that

Ktn�KtnWtn,t1Nt1Wt1,t2Nt2 ...Wtn�1,tnNtn

=
nX

j=1

n�jX

k=0

(�1)k
X

j=`0<`1<...<`k6n

KnWn,jNjWj,`1N`1W`1,`2N`k�1W`k�1,`kN`kW`k,n

(see (D.7) below), the operator inside the determinant on the right-hand side acts on

L2(X). Moreover, due to (iv) and (v), after conjugating appropriately by the operators

Vti and V 0
ti on the left, and Utn and U 0

tn on the right, which does not change the value of

the Fredholm determinants, the operators on both sides become trace class, which shows

that the two Fredholm determinants are finite.

Proof of Theorem D.1. The proof is a minor adaptation of the arguments in [8,

Theorem 3.3], and we will use throughout it all the notation and conventions of that

paper. We will just sketch the proof, skipping some of the technical details. In particular,

we will completely omit the need to conjugate by the operators Uti and Vti , since this

aspect of the proof can be adapted straightforwardly from [8] (such conjugations are

used to justify the operations involving the multiplicativity and the cyclic property of

the Fredholm determinant).

In order to simplify notation throughout the proof, we will replace subscripts of the

form ti by i, so for example Wi,j=Wti,tj . Let K=N1/2KextN1/2. Then, K can be written

as

K=N1/2(W�Kd+W+(Kd�I))N1/2 with Kd

ij =Ki1i=j and N1/2
i,j =N1/2

i 1i=j ,

whereW� andW+ are lower triangular, respectively strictly upper triangular, and defined

by

W�
ij =Wi,j1i>j and W+

ij =Wi,j1i<j .

The key to the proof in [8] was to observe that

[(I+W+)�1)]i,j = I1j=i�Wi,i+11j=i+1,

which then implies that

[(W�+W+)Kd(I+W+)�1]i,j =Wi,1K11j=1.

The fact that only the first column of this matrix has non-zero entries is what ultimately

allows one to turn the Fredholm determinant of an extended kernel into one of a kernel

acting on L2(X). However, the derivation of this last identity uses

Wi,j�1Kj�1Wj�1,j =Wi,jKj ,
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which is a consequence of Assumptions 2 (ii) and 2 (iii) in [8], and thus is not available

to us. In our case, we may proceed similarly by observing that

[(W�)�1)]i,j = I1j=i�Wi,i�11j=i�1,

as can be checked directly using (D.3a) and (D.3b). Now, using the identity

Wi,j+1Kj+1Wj+1,j =Wi,jKj

(which follows from our assumption (D.3c) together with (D.3b)), we get

[(W�+W+)Kd(W�)�1]i,j =Wi,jKj�Wi,j+1Kj+1Wj+1,j1j<n =Wi,nKn1j=n. (D.5)

Note that now only the last column of this matrix has non-zero entries, which accounts

for the di↵erent expression on the right-hand side of (D.4) when compared to [8]. To

take advantage of (D.5), we write

I�K=(I+N1/2W+N1/2)[I�(I+N1/2W+N1/2)�1N1/2(W�+W+)Kd(W�)�1W�N1/2].

Since N1/2W+N1/2 is strictly upper triangular, det(I+N1/2W+N1/2)=1, which in particu-

lar shows that I+N1/2W+N1/2 is invertible. Thus, using (D.5), we deduce that det(I�K)

is the same as

det(I�(I+N1/2W+N1/2)�1N1/2W(n)KdW�N1/2),

with W(n)
i,j =Wi,n1j=n. Using the cyclic property of the Fredholm determinant we deduce

now that det(I�K)=det(I�eK) with
eK=KdW�N1/2(I+N1/2W+N1/2)�1N1/2W(n).

Since only the last column of W(n) is non-zero, the same holds for eK, and thus

det(I�K)=det(I�eKn,n)L2(X). (D.6)

Our goal is thus to compute eKn,n. We have, for 06k6n�i,

[(N1/2W+N1/2)kN1/2W(n)]i,n

=
X

i<`1<...<`k6n

N1/2
i Wi,`1N`1W`1,`2 ... N`k�1W`k�1,`kN`kW`k,n,

while, for k>n�i, the left-hand side above equals zero (the case k=0 is interpreted as

N1/2
i Wi,n). As in [8], this leads to

eKi,n =
iX

j=1

n�jX

k=0

(�1)k
X

j=`0<`1<...<`k6n

KiWi,jNjWj,`1N`1W`1,`2N`k�1W`k�1,`kN`kW`k,n.

(D.7)

Replacing each N` by I�N` except for the first one and simplifying as in [8] leads to

eKi,n =KiWi,i+1Ni+1Wi+1,i+2Ni+2 ...Wn�1,nNn�KiWi,1N1W1,2N2 ...Wn�1,nNn.

Setting i=n yields eKn,n=Kn�KnWn,1N1W1,2N2 ...Wn�1,nNn, which, in view of (D.6),

yields the result.
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D.2. Proof of the TASEP path integral formula

Recall that Qn�m n
n�k= 

m
m�k. Then, for K

(n)
t =Kt(n, · ;n, ·) we may write

Qnj�niK
(nj)

t =

nj�1X

k=0

Qnj�ni 
nj

k ⌦�nj

k

=

nj�1X

k=0

 ni
ni�nj+k⌦�

nj

k

=Kt(ni, · ;nj , ·)+Qnj�ni1ni<nj .

(D.8)

This means that the extended kernelKt defined in (2.6) has exactly the structure specified

in (D.2), taking (for fixed t>0)

ti =ni, Kti =K(ni)

t and and Wti,tj =Qnj�ni .

As a consequence, the path integral version (2.12) of the TASEP formula will follow from

Theorem D.1, with Nti=�ai , once we check all the necessary assumptions. We do this

next.

First, we need to specify the domains and ranges of our operators:

DK = {f 2 `2(Z) :
X

x2Z
2x|xkf(x)|<1 for all k> 0}, RK = `2(Z),

D+

W =R+

W = {f 2 `2(Z) :
X

x60

2x|xkf(x)|<1 for all k> 0}, D�
W =R�

W =M(Z).

It is easy to check that our operators are indeed well defined with these domains and

ranges, and also that (D.1) and assumptions (i)–(iv) are satisfied (essentially all one

needs is to observe that Q and Q�1 preserve `2(Z)). Before checking assumptions (v)

and (vi), let us turn to (D.3).

Conditions (D.3a) and (D.3b) are clearly satisfied. We note at this stage that As-

sumptions 2 (i) and 2 (ii) in [8, Theorem 3.3] (the semigroup property and the right-

invertibility condition) hold in our setting, but their Assumption 2 (iii), which trans-

lates into Qnj�niK
(nj)

t =K(ni)

t Qnj�ni for ni6nj , does not (in fact, the right-hand side

does not even make sense as the product is divergent, as can be seen by noting that

�(n)
0

(x)=2x�X0(n)), which is why we need Theorem D.1. To use it, we need to check

(D.3c), that is

Qnj�niK
(nj)

t Qni�nj =K(ni)

t (D.9)

for ni<nj . In fact, if 06k<ni, then (2.14a), together with the easy fact that hn
k (`, z)=

hn�1

k�1
(`�1, z), implies that

(Q⇤)ni�njh
nj

k+nj�ni
(0, z)=h

nj

k+nj�ni
(nj�ni, z)=hni

k (0, z),
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so that (Q⇤)ni�nj�
nj

k+nj�ni
=�ni

k . Therefore, proceeding as in (D.8), the left-hand side

of (D.9) equals

nj�1X

k=0

Qnj�ni 
nj

k ⌦(Q⇤)ni�nj�
nj

k =
ni�1X

k=ni�nj

Qnj�ni 
nj

k+nj�ni
⌦(Q⇤)ni�nj�

nj

k+nj�ni

=
�1X

k=ni�nj

 ni
k ⌦(Q⇤)ni�nj�

nj

k+nj�ni
+

ni�1X

k=0

 ni
k ⌦�ni

k

(note the crucial fact that, while Q⇤�n
` is divergent, in this argument (Q⇤)m is applied

to these functions only for negative m). The last sum is exactly the right-hand side of

(D.9), so we need to check that the first sum on the right-hand side above vanishes. For

this, we note that, if ni�nj6k<0, then we have

(Q⇤)ni�njh
nj

k+nj�ni
(0, z)= (Q⇤)kh

nj

k+nj�ni
(k+nj�ni, z)= 0,

due to (2.14b) and the fact that 2z2ker(Q⇤)�1, which gives (Q⇤)ni�nj�
nj

k+nj�ni
=0, as

desired.

To finish our proof of (2.12), we need to check that conditions (v) and (vi) in The-

orem D.1 are satisfied. For (v), we let Vni= eVi and V 0
ni
= eV 0

i , with eVif(x)=(1+x2)i and
eV 0
i (x)=(1+x2)�i. For i<j, we need to check that �aiVniQ

nj�niV 0
nj
�aj is trace class.

The �ai ’s are projections, so k�aik1=1 and thus it is enough to show that VniQ
nj�niV 0

nj

is trace class. Assume first that nj�ni>1. Then, we may write VniQ
nj�niV 0

nj
as

nj�1Y

`=ni

eV`QeV 0
`+1

,

and it is enough to show that each factor is Hilbert–Schmidt, which is clear:

keV`QeV 0
`+1

k2
2
=

X

x,y2Z
y<x

22(y�x) (1+x2)2`

(1+y2)2(`+1)
=
X

y2Z

1

(1+y2)2(`+1)

X

x>0

(1+(x+y)2)2`2�2x <1.

If nj�ni=1, then we write Q(x, y�1)=A2(x, y) with

A(x, y)=
�
�
x�y+ 1

2

�
p
⇡(x�y)!

2�(x�y+1/2)1x>y

(this can be checked directly, but it just corresponds to writing a Geom
⇥
1

2

⇤
random vari-

able as the sum of two independent negative binomial random variables with parameters�
1

2
, 1

2

�
), and thus it is enough to show that ViA2V 0

i+1
is trace class. By Stirling’s formula,

A(x, y)⇠ c(x�y)�1/22�(x�y) as x�y 1,
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so factoring the kernel as (ViAV 0
i+1/2)(Vi+1/2AV 0

i+1
), the above argument still applies.

Next, for all i and j, we need to check that �aiVniQ
nj�niK(ni)

t �ajV
0
nj

is trace class.

Since

Qnj�niK
(nj)

t =

njX

k=1

Qnj�ni 
nj

nj�k⌦�
nj

nj�k,

it is enough to show (using also (2.9)) that �aiVni 
ni
ni�k⌦�ajV

0
nj
�

nj

nj�k is trace class for

each k=1, ..., nj . This operator is rank-1 and its unique eigenvalue is

�=
X

x2Z
�aiVni 

ni
ni�k(x)�ajV

0
nj
�

nj

nj�k(x),

which satisfies

|�|2 6
X

x6ai

(1+x2)2i ni
ni�k(x)

2
X

x6aj

22x

(1+x2)2j
(2�x ni

ni�k(x))
2 <1,

because  ni
ni�k(x)=0 for x<X0(k)�ni+k and 2�x ni

ni�k(x) is a polynomial. Therefore,

k�aiVni 
ni
ni�k⌦�ajV

0
nj
�

nj

nj�kk1 = |�|<1,

as desired.

We turn finally to (vi). By (D.7), it is enough to show that

UniK
(ni)

t Qn`0�ni�a`0
Qn`1�n`0�a`1

... Qn`k
�n`k�1�a`k

Qm�n`kU 0
nm

(D.10)

is trace class for all `0<`1<...<`k6m with `0=1, ..., i and k=0, ...,m�`0, where we

choose Uni=Vni and U 0
ni
=V 0

ni
. Now, replace each �a` in the above operator by V 0

n`
�a`Vn` .

The argument in the last paragraph can be used to show again that

UniK
(ni)

t Qn`0�niV 0
n`0
�a`0

is trace class (now using the decay of  ni
ni�k(x) as x 1, since we have no projection on

the left). As shown above, the rest is the product of trace class operators, so the whole

product (D.10) is trace class as needed.
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