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a b s t r a c t

A natural and important generalization of submodularity – k-submodularity –
applies to set functions with k arguments and appears in a broad range of ap-
plications, such as infrastructure design, machine learning, and healthcare. In this
paper, we study maximization problems with k-submodular objective functions.
We propose valid linear inequalities, namely the k-submodular inequalities, for
the hypograph of any k-submodular function. This class of inequalities serves
as a novel generalization of the well-known submodular inequalities. We show
that maximizing a k-submodular function is equivalent to solving a mixed-integer
linear program with exponentially many k-submodular inequalities. Using this
representation in a delayed constraint generation framework, we design the first
exact algorithm, that is not a complete enumeration method, to solve general
k-submodular maximization problems. Our computational experiments on the
multi-type sensor placement problems demonstrate the efficiency of our algorithm
in constrained nonlinear k-submodular maximization problems for which no alter-
native compact mixed-integer linear formulations are available. The computational
experiments show that our algorithm significantly outperforms the only available
exact solution method—exhaustive search. Problems that would require over 13
years to solve by exhaustive search can be solved within ten minutes using our
method.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Submodularity is an important concept in integer and combinatorial optimization. Several functions of
great theoretical interest in combinatorial optimization are submodular, such as the set covering function
and the graph cut function. Submodularity also arises in numerous practical applications, including the
influence maximization problem [1], the sensor placement problem [2], and the hub location problem [3].
Submodularity is shown to be the discrete analogue of convexity [4], and the unconstrained submodular
minimization problem is polynomially solvable [5–8]. However, submodular minimization with simple
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onstraints, such as cardinality constraints, is generally NP-hard [9]. Submodular maximization is known
o be NP-hard even in the unconstrained case. Nemhauser et al. [10] prove that the greedy method for
aximizing a monotone submodular function subject to a cardinality constraint is a (1−1/e)-approximation

lgorithm.
In addition to the approximation algorithms, polyhedral approaches have been popular in submodular

ptimization research. Edmonds [11] gives linear inequalities which fully describe the convex hull of
he epigraph for a submodular function (see also [12]). These inequalities are referred to as extended
olymatroid inequalities, as they are closely related to a structure called extended polymatroid. Atamtürk
nd Narayanan [13] establish a polarity result analogous to the relationship between extended polymatroids
nd extended polymatroid inequalities for non-submodular functions. With this observation, Atamtürk
nd Narayanan [14] present an alternative proof for the convex hull description of the epigraphs for
ubmodular functions. Nemhauser and Wolsey [15] give an exact method for submodular maximization
rom a polyhedral perspective. They show that maximizing any submodular function is equivalent to
olving a mixed-integer linear program with exponentially many linear inequalities, referred to as the
ubmodular inequalities. Atamtürk and Narayanan [14] provide valid inequalities for general set functions by
xploiting their submodular–supermodular decomposition. Moreover, the polyhedral approach has received
enewed interest, both in terms of strengthening extended polymatroid inequalities [16,17] and submodular
nequalities [18–20], as well as extending their use to stochastic settings [21–25]. In addition, submodular
roperties in mixed-binary convex quadratic and conic optimization problems are discovered and exploited
n [13,26–29].

Submodularity can be generalized to functions with k set arguments for any positive integer k, resulting
n the concept called k-submodularity. This term is introduced by Huber and Kolmogorov [30], and it
ncompasses submodularity and bisubmodularity [31,32] as special cases when k = 1 and k = 2, respectively.
esearchers have studied k-submodular minimization, where k ≥ 2, using various approaches. Qi [32] proves
n analogue of Lovász extension for bisubmodular functions, implying that this class of functions can be
inimized in polynomial time using the ellipsoid method. Subsequently, weakly and strongly polynomial-

ime algorithms are proposed for unconstrained bisubmodular minimization [33,34]. Yu and Küçükyavuz [35]
ake a polyhedral approach and present a complete linear convex hull description for the epigraph of any
isubmodular function. Based on this polyhedral characterization, the authors propose an effective cutting
lane algorithm to solve constrained bisubmodular minimization. Huber and Kolmogorov [30] generalize the
in-Max Theorem for submodular and bisubmodular minimization to the k-submodular case with k ≥ 3.
hether k-submodular functions can be minimized in polynomial-time when k ≥ 3 is still an open problem.
The k-submodular maximization problem – a generalization of the NP-hard submodular maximization

roblem – is also NP-hard. Extensive research has been devoted to developing approximation algorithms
nd proving their guarantees. For example, Singh et al. [36] give a constant-factor approximation algorithm
or a class of bisubmodular functions. The authors refer to bisubmodularity that we consider in this paper
s directed bisubmodularity. They show that a bisubmodular function can be embedded into a submodular
unction over an extended ground set, a set containing two copies of each element in the original ground
et. For each subset of the extended ground set that contains both copies of an element, the submodular
unction value can be recursively obtained by solving discrete optimization problems with exponentially
ized decision spaces. This construction is computationally expensive but theoretically interesting. Iwata
t al. [37] and Ward and Živný [38] independently show that a randomized greedy algorithm attains
he approximation guarantee of 1/2 for unconstrained bisubmodular maximization (see also [39]). For
-submodular maximization with k ≥ 3, Ward and Živný [39] achieve a max(1/3, 1/(1 + a))-approximation,
here a = max(1,

√
(k − 1)/4). Iwata et al. [40] improve this result to a factor of 1/2 and show that there

s a (k/(2k − 1))-approximation algorithm for unconstrained monotone k-submodular maximization. The
uthors further prove that their algorithms are asymptotically tight. In terms of constrained k-submodular
2
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aximization, researchers predominantly focus on non-negative monotone k-submodular functions. For
xample, Ohsaka and Yoshida [41] propose greedy algorithms for maximizing non-negative monotone
-submodular functions subject to a total cardinality constraint on all selected items, and to individual
ardinality constraints on each of the k subsets. Their algorithm achieves a 1/2 approximation ratio under a
otal cardinality constraint, and this ratio is asymptotically tight. For the latter, the proposed algorithm
chieves 1/3-approximation. Sakaue [42] studies maximization of non-negative monotone k-submodular
unctions under matroid constraints. The proposed greedy algorithm yields a 1/2-approximate solution.

To the best of our knowledge, there is no algorithm for maximizing possibly non-monotone k-submodular
unctions under general constraints. There has also been a paucity of research on exact solution methods for
-submodular maximization, both constrained and unconstrained. Therefore, we are interested in developing
versatile exact solution method. Practically, in situations where we have limited computing resources and

n approximate solution suffices, approximation algorithms are extremely valuable. On the other hand, for
roblems such as high capital investments and strategic decision-making, where optimality is important and
ore computing resources are available, it is desirable to apply an exact method that solves the problem
ithin a reasonable amount of time. Given the formidable computational burden of exhaustive search, there
re no known efficient exact methods for constrained k-submodular maximization. To bridge this gap, our
aper takes a polyhedral approach and proposes the first computationally attractive exact solution method
hat handles non-monotone k-submodular functions, as well as arbitrary linear constraints.

Before we summarize our results, we provide a few examples from a wide range of applications of
-submodular maximization.

.1. Multi-type sensor placement

Sensor networks – enabled by internet of things (IoT) technology – provide real-time monitoring and
ontrol of systems to operate smart cities [43], smart homes [44], and smart grids [45]. These applications
ften call for multiple types of sensors in the network. For example, in smart water distribution networks,
ultiple types of sensors are placed to measure different aspects of water quality in real time [46]. Suppose
e have k types of sensors and a set N of n locations to place them. If at most one sensor is allowed in each

ocation, then every k-tuple of pairwise disjoint subsets of N corresponds to a multi-type sensor placement
lan. The effectiveness of a sensor deployment plan can usually be evaluated using k-submodular functions
uch as the entropy function. Thus a multi-type sensor placement problem can be expressed in terms of
onstrained k-submodular maximization.

We provide more details of coupled sensor placement, in which we have two types of sensors for different
easurements, such as temperature and humidity. Here, k = 2 is an arbitrary choice for illustration purposes.
he description below can be generalized to the cases with k ≥ 3. Every biset (S1, S2) ∈ 3N corresponds

o a coupled sensor placement plan, in which the type-1 sensors are placed at the locations in S1 and the
ype-2 sensors are placed at S2. Due to a limited budget, we can place at most B1 type-1 and B2 type-2
ensors. We evaluate each sensor deployment plan using entropy, which measures how much uncertainty in
he environment the sensors can capture [41]. The entropy of a discrete random variable X with support X
s computed by

H(X) = −
∑
x∈X

P(X = x) logP(X = x).

he entropy of X is high if multiple outcomes occur with similar probabilities, making it difficult for us to
redict what we may observe. For instance, it is harder for us to guess the outcome of throwing a fair die
orrectly than that of a biased die, so the entropy in the case of a fair die is higher than the latter. In the

ontext of coupled sensor placement, a discrete random variable XS1,S2 captures the possible observations

3
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eported by sensors installed at (S1, S2) ∈ 3N , and the set XS1,S2 contains all possible observations. The
ntropy of XS1,S2 is

H(XS1,S2) = −
∑

x∈XS1,S2

P(XS1,S2 = x) logP(XS1,S2 = x).

n an ideal coupled sensor placement plan, sensors are installed at locations where the corresponding
bservations are the most unpredictable. In other words, a placement (S∗

1 , S∗
2 ) is the best when H(XS∗

1 ,S∗
2
)

s maximal among all feasible (S1, S2) ∈ 3N .
As mentioned earlier, the description above holds for k ≥ 2 types of sensors. The function f : (k +

)N → R, defined by f(S1, . . . , Sk) = H(XS1,...,Sk
) for all (S1, . . . , Sk) ∈ (k + 1)N , is monotone and

-submodular [41]. Thus the multi-type sensor placement problem is a cardinality-constrained k-submodular
aximization problem with objective function f .

.2. Multi-topic influence maximization

Social networks have allowed information to be spread faster than ever. In applications such as viral
arketing, we may find a class of k-submodular maximization problems in which we aim to maximize the

pread of information on k topics over a social network. Suppose one would like to promote k types of
roducts. He or she may select influential network users to share their experiences of the products with their
ollowers. As these followers share again with their own followers, messages about the products gradually
iffuse across the network and reach a possibly large population. Kempe et al. [1] propose a diffusion model
alled independent cascade to describe the diffusion mechanism of a single type of influence. The authors
lso show that the expected total number of reached network users is a submodular function of the initial
ource of the spread. Ohsaka and Yoshida [41] generalize this model to allow k ≥ 2 types of influence. In
heir model, a social network is represented by a digraph G = (N, A), in which N = {1, 2, . . . , n} is the
et of network users, and the arcs A capture how the users interact with each other. Every arc (i, j) ∈ A

s associated with probabilities pq
(i,j) for every q ∈ {1, 2, . . . , k}. Each probability pq

(i,j) is the likelihood of j

ccepting i’s information on the qth topic. Once j adopts a new piece of information, this user is ready to
nfluence his or her own neighbors. Let Sq ⊆ N be the group of influencers responsible for promoting the
th type of products and Aq(Sq) be the individuals influenced by the initial spreaders Sq about product q

nder the stochastic model described above. Each influencer is restricted to accepting at most one type of
ponsored product for fairness. Thus the initial influencers form a k-tuple of pairwise disjoint subsets of N .
he function f : (k + 1)N → R defined by f(S1, . . . , Sk) = E|

⋃k
q=1 Aq(Sq)| computes the expected total

umber of influenced individuals given k sets of initial influencers. This function is shown to be monotone
nd k-submodular [41].

.3. Multi-class feature selection

Feature selection plays a key role in multiple fields of research including machine learning [47], bioinfor-
atics [48], and data mining [49]. This process improves the analysis of large datasets by reducing the
imensionality of data. In the resulting multi-class feature selection problems, there are k uncorrelated
rediction variables, with their associated features mixed in a pool. The task is not only to find the most
nformative features, but also to classify the features with respect to the prediction variables, giving rise to
k-submodular optimization problem.
With two prediction variables, such problem is referred to as coupled feature selection in [36]. More

ormally, suppose that a Gaussian graphical model and a set of features N are given. Let C1, C2 be two
ariables to be predicted. The goal is to partition the features in N into two sets S1 and S2, such that S1

s used to predict C1, and S2 is used to predict C2. It is assumed that S1, S2 are mutually conditionally

4
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ndependent given C = {C1, C2}. The total number of selected features, |S1| + |S2|, is no more than a
given number B. Next, we describe the score function that evaluates the mutual information obtained by
a coupled feature selection. Suppose X and Y are discrete random variables, and X ,Y are the respective
supports. Then the conditional entropy of X given Y is

H(X|Y ) = −
∑

x∈X ,y∈Y
P(X = x, Y = y) log P(X = x, Y = y)

P(Y = y) .

he biset mutual information is computed by

I(S1, S2; C) = H(S1 ∪ S2)−
∑
i∈S1

H(i | C1)−
∑
j∈S2

H(j | C2),

here H is the entropy function discussed in Section 1.1 and the conditional entropy is defined above.
ntuitively, the features with higher mutual information are more informative about both prediction tasks.
et f(S1, S2) = I(S1, S2; C). The function f is monotone and bisubmodular [36], and the best features can
e found by maximizing f .

.4. Drug-drug interaction detection

Drug-drug interactions (DDIs) detection is an important application in the healthcare domain which
xploits bisubmodularity. DDIs are the reactions resulting from using multiple drugs concomitantly. DDIs are
major cause of morbidity and mortality [50] – adverse drug events cause 770,000 injuries and deaths every

ear, and as much as 30% of these adverse drug events are due to DDIs [51,52]. Hu et al. [53] show that the
orrelations among the combinations of drugs and associated symptoms can be captured by a bisubmodular
unction, and the potential DDIs are determined by maximizing this function.

The aforementioned applications are solved using approximation algorithms due to the lack of exact
olution methods.

.5. Our contributions

Despite the developments in approximation algorithms for unconstrained and a few classes of constrained
-submodular maximization, there is no known exact method other than exhaustive search for general
-submodular maximization. To bridge this gap, we propose the first polyhedral approach to study
-submodular function maximization and provide an exact algorithm to maximize any k-submodular func-
ion subject to general constraints. We propose a new class of valid linear inequalities called
-submodular inequalities. These inequalities are non-trivial extensions of the submodular inequalities
ntroduced by Nemhauser and Wolsey [15], in that the proposed k-submodular inequalities account for
he interchanges of elements among the k subsets. With these valid inequalities, we develop an exact
utting-plane algorithm for constrained k-submodular maximization problems, which does not require the
-submodular objective function to satisfy any restrictive assumptions, such as monotonicity and non-
egativity, nor does it restrict the structure of the constraints. We demonstrate the effectiveness of our
lgorithm by experimenting on the multi-type sensor placement problem, which has a highly nonlinear
-submodular objective function. The computational experiments show that our algorithm significantly
utperforms the exhaustive search method.

.6. Outline

The outline of this paper is as follows. In Section 2, we provide formal definitions of k-submodularity and
eview its known properties. In Section 3, we state and prove additional properties of k-submodular functions
5
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hat have not been studied in the literature. These properties are used to establish our main results. Next, in
ection 4, we propose a class of valid linear inequalities which we call the k-submodular inequalities for the
ypograph of any k-submodular function. In particular, we show that maximizing a k-submodular function
s equivalent to solving a mixed-integer linear program with exponentially many k-submodular inequalities.
n Section 5, we give a cutting plane algorithm to solve the constrained maximization problems with
-submodular objective functions. We demonstrate the efficiency of our proposed algorithm and compare
t against the exhaustive search method on the multi-type sensor placement problem in Section 6. Lastly,
e conclude with a few remarks in Section 7.

. Preliminaries

Let N = {1, 2, . . . , n} be a non-empty finite set. For any integer k ≥ 1, we let

(k + 1)N = {(S1, S2, . . . , Sk) : Sq ⊆ N, Sq ∩ Sq′ = ∅, for all q, q′ ∈ {1, 2, . . . , k} with q ̸= q′}

e the collection of all k-sets, which are k-tuples of pairwise disjoint subsets of N . For brevity, we denote
any (S1, S2, . . . , Sk) ∈ (k + 1)N by S. We call S ∈ (k + 1)N a partition, or an orthant, of N , if

⋃k
q=1 Sq = N .

Definition 2.1. For any integer k ≥ 1, a function f : (k+1)N → R is k-submodular if for any X = (X1, X2,

. . . , Xk), Y = (Y1, Y2, . . . , Yk) ∈ (k + 1)N ,

f(X) + f(Y) ≥ f(X ⊓Y) + f(X ⊔Y),

where
X ⊓Y = (X1 ∩ Y1, X2 ∩ Y2, . . . , Xk ∩ Yk),

and

X ⊔Y =
(

(X1 ∪ Y1)\
k⋃

q=2
(Xq ∪ Yq), . . . , (Xk ∪ Yk)\

k−1⋃
q=1

(Xq ∪ Yq)
)

.

In particular, the functions satisfying Definition 2.1 when k = 1 are called submodular functions, and
when k = 2 such functions are referred to as bisubmodular functions. In the following discussion, we assume
k ≥ 2 unless specified otherwise. For any q ∈ {1, 2, . . . , k}, i ∈ N\

⋃
q′∈{1,...,k}\{q} Xq′ and X ∈ (k + 1)N , we

define
ρq,i(X) = f(X1, . . . , Xq ∪ {i}, . . . , Xk)− f(X).

Intuitively, ρq,i(X) represents the marginal contribution of adding i ∈ N to the qth subset of X. Ando
et al. [54] provide an alternative definition of bisubmodularity that involves the notion of marginal
contribution. Ward and Živný [39] generalize this result to k-submodularity. Before explaining this equivalent
definition of k-submodular functions, we first establish a new term.

Definition 2.2. A function f : (k + 1)N → R is submodular over a partition S = (S1, S2, . . . , Sk) if the
function

f̂S(X) := f(X ∩ S1, X ∩ S2, . . . , X ∩ Sk) (1)

is submodular over X ⊆ N .

Lemma 2.3 ([39]). For an integer k ≥ 2, a function f : (k + 1)N → R is k-submodular if and only if

C1) the function f is submodular over every partition of N , and
C2) given any X ∈ (k + 1)N and any i ∈ N\

⋃k
p=1 Xp, ρq,i(X) + ρq′,i(X) ≥ 0 for every pair of

′ ′
q, q ∈ {1, 2, . . . , k} such that q ̸= q .
6
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Although Ward and Živný [39] assume the k-set functions to be non-negative, shifting such functions by a
onstant does not affect their k-submodularity. The next corollary immediately follows from condition (C1).
t captures the diminishing marginal return property of k-submodular functions over every partition.

orollary 2.4. If f is a k-submodular function, then for any X, Y ∈ (k + 1)N that satisfy Xp ⊆ Yp for all
∈ {1, . . . , k}, ρq,i(X) ≥ ρq,i(Y) for all i ∈ N\

⋃k
p=1 Yp and q ∈ {1, . . . , k}.

Definition 2.5. A k-submodular function f over a ground set N is monotone non-decreasing if for any
X, Y ∈ (k + 1)N such that Xq ⊆ Yq for all q ∈ {1, . . . , k}, the property f(Y) ≥ f(X) holds.

Equivalently, f is monotone non-decreasing if for any X ∈ (k + 1)N and i ∈ N\
⋃k

p=1 Xp, ρq,i(X) ≥ 0 for
all q ∈ {1, . . . , k}. We call a monotone non-decreasing function simply a monotone function.

Without loss of generality, we assume that f(∅) = 0 where ∅ is the k-set (∅, . . . , ∅). By slightly abusing
notation, we let f(X) = f(x), where x = [x1, . . . , xk]⊤ and x⊤

q ∈ {0, 1}n = Bn for every q ∈ {1, . . . , k}. To
be more precise, xq

i = 1 if i ∈ Xq, and xq
i = 0 otherwise for i ∈ N and q ∈ {1, . . . , k}. This is a unique

one-to-one mapping between (k + 1)N and {x ∈ Bkn :
∑k

q=1 xq
i ≤ 1 for all i ∈ N}. The hypograph of f is

Tf =
{

(x, η) ∈ Bkn × R : η ≤ f(x),
k∑

q=1
xq

i ≤ 1 for all i ∈ N

}
.

In this study, we consider maximization problems with k-submodular objective functions, namely

max
X∈X

f(X), (2)

where f is k-submodular and X ⊆ (k + 1)N denotes the collection of feasible k-sets. When the problem is
unconstrained, X is (k + 1)N . Let K be the set of incidence vectors x that correspond to the feasible k-sets
in X . Problem (2) can be rewritten as

max{η : (x, η) ∈ Tf , x ∈ K}. (3)

In Section 4, we propose a set of valid linear inequalities for Tf . By using these inequalities in a cutting
plane framework, we propose the first computationally feasible exact method to solve problem (3) in
Section 5. Before we do so, we first identify additional properties of k-submodular functions in the next
section.

3. New properties of k-submodular functions

In this section, we establish a few properties of k-submodular functions that are not previously discussed
in the literature to the best of our knowledge. These properties are useful for deriving valid linear inequalities
for Tf in Section 4.

Lemma 3.1. Given a ground set N = {1, 2, . . . , n}, a function f : (k + 1)N → R is k-submodular and
monotone if and only if

f̂S(Y ) ≤ f̂S(X) +
∑

i∈Y \X

[f̂S(X ∪ {i})− f̂S(X)] (4)

for any X, Y ⊆ N over any partition S of N .
7
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roof. Nemhauser and Wolsey [15] show that a set function g : 2N → R is submodular and monotone if
nd only if

g(T ) ≤ g(S) +
∑

j∈T \S

[g(S ∪ {j})− g(S)] for any S, T ⊆ N.

uppose f is k-submodular and monotone. Given any partition S, f̂S is submodular by (C1). For any
⊆ Q ⊆ N , we construct P, Q such that Pq = P ∩ Sq and Qq = Q ∩ Sq for all q ∈ {1, . . . , k}. Since

q ⊆ Qq for all q and f is monotone, f̂S(P ) = f(P) ≤ f(Q) = f̂S(Q), which implies that f̂S is monotone.
Thus property (4) holds. Conversely, suppose (4) is true. Then f̂S is submodular and monotone over any
partition S of N , and (C1) immediately follows. Let any X ∈ (k + 1)N and i ∈ N\

⋃k
p=1 Xp be given.

For any q ∈ {1, . . . , k}, we construct a partition Sq such that Sq
p = Xp for all p ∈ {1, . . . , k}\{q}, and

Sq
q = N\

⋃
p∈{1,...,k}\{q} Xp. We note that X and (X1, . . . , Xq ∪ {i}, . . . , Xk) are both in the partition Sq.

Now ρq,i(X) = f̂Sq (X∪{i})−f̂Sq (X) ≥ 0. It follows that ρq,i(X)+ρq′,i(X) ≥ 0 for any q, q′ ∈ {1, . . . , k} with
q ̸= q′. Therefore, f is monotone and (C2) holds. We conclude that f is k-submodular and monotone. □

Given a non-monotone submodular function g defined over a ground set N , Nemhauser and Wolsey [15]
show that g∗(S) := g(S) −

∑
i∈S(f(N) − f(N\{i})) is monotone and submodular. Lemma 3.2 generalizes

this result to non-monotone k-submodular functions.

Lemma 3.2. Let f : (k + 1)N → R be a k-submodular function. For every i ∈ N and q ∈ {1, . . . , k}, we
define

ξq
i = min

{
ρq,i(S) : S ∈ (k + 1)N\{i},

k⋃
p=1

Sp = N\{i}

}
.

The function

f∗(X) := f(X)−
k∑

q=1

∑
i∈Xq

ξq
i

is k-submodular and monotone.

Proof. By Lemma 3.1, it suffices to show that f̂∗
T is submodular and monotone for any partition T. Consider

any X, Y ⊆ N and any partition T of N . Let X and Y be the corresponding k-sets over this partition. In
other words, Xq = X ∩ Tq and Yq = Y ∩ Tq for all q ∈ {1, . . . , k}. Then

f̂∗
T(X) +

∑
i∈Y \X

[f̂∗
T(X ∪ {i})− f̂∗

T(X)] (5a)

= f∗(X) +
k∑

q=1

∑
i∈Yq\Xq

[f∗(X1, . . . , Xq ∪ {i}, . . . , Xk)− f∗(X)] (5b)

= f(X)−
k∑

q=1

∑
i∈Xq

ξq
i +

k∑
q=1

∑
i∈Yq\Xq

[ρq,i(X)− ξq
i ] (5c)

= f(X) +
k∑

q=1

∑
i∈Yq\Xq

ρq,i(X)−
k∑

q=1

∑
i∈Xq∪Yq

ξq
i (5d)

≥ f(X1 ∪ Y1, . . . , Xk ∪ Yk)−
k∑

q=1

∑
i∈Xq∪Yq

ξq
i (5e)

≥ f(Y) +
k∑ ∑

ρq,i(T1, . . . , Tq\{i}, . . . , Tk)−
k∑ ∑

ξq
i (5f)
q=1 i∈Xq\Yq q=1 i∈Xq∪Yq

8
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≥ f(Y) +
k∑

q=1

∑
i∈Xq\Yq

ξq
i −

k∑
q=1

∑
i∈Xq∪Yq

ξq
i (5g)

= f(Y)−
k∑

q=1

∑
i∈Yq

ξq
i (5h)

= f∗(Y) = f̂∗
T(Y ). (5i)

qs. (5b)–(5d) rewrite f∗ in terms of f . Inequality (5e) is a consequence of Corollary 2.4 as we show next.
For every q ∈ {1, . . . , k}, we fix an ordering of the elements in Yq\Xq to be (αq(1), αq(2), . . . , αq(|Yq\Xq|)).
Then

f(X1 ∪ Y1, . . . , Xk ∪ Yk)

= f(X) +
k∑

q=1

|Yq\Xq |∑
j=1

ρq,αq(j)(X1 ∪ Y1, . . . , Xq ∪ {αq(r)}j−1
r=1, Xq+1, . . . , Xk)

≤ f(X) +
k∑

q=1

|Yq\Xq |∑
j=1

ρq,αq(j)(X)

= f(X) +
k∑

q=1

∑
i∈Yq\Xq

ρq,i(X).

Similarly, inequality (5f) holds because

ρq,i(X1 ∪ Y1, . . . , Xq ∪ Yq\{i}, . . . , Xk ∪ Yk) ≥ ρq,i(T1, . . . , Tq\{i}, . . . , Tk)

for any i ∈ Xq ∪ Yq ⊆ Tq where q ∈ {1, . . . , k}. Inequality (5g) follows from the definitions of ξ1
i and ξ2

i .
Eqs. (5i) follow from the definitions of f∗ and f̂∗. □

emma 3.3. Let f be a monotone k-submodular function. Given any X, S ∈ (k + 1)N ,

f(X) ≤ f(S) +
k∑

q=1

∑
i∈Xq\

⋃k

r=1 Sr

ρq,i(S) +
k∑

q=1

∑
p∈{1,...,k}\{q}

∑
i∈Xq∩Sp

ρq,i(∅).

roof. Let

Xq =
k⋃

p=1
Lq

p ∪ Jq, Sp =
k⋃

q=1
Lq

p ∪Kp

here Jq, Kp, Lq
p are pairwise disjoint subsets of N for all p, q ∈ {1, . . . , k}. Observe that Lq

p = Xq ∩ Sp,
q = Xq\

⋃k
r=1 Sr, and Kp = Sp\

⋃k
r=1 Xr, for all p and q. Furthermore,

f(S) +
k∑

q=1

∑
i∈Xq\

⋃k

r=1 Sr

ρq,i(S) +
k∑

q=1

∑
p∈{1,...,k}\{q}

∑
i∈Xq∩Sp

ρq,i(∅) (6a)

= f

(
k⋃

q=1
Lq

1 ∪K1, . . . ,
k⋃

q=1
Lq

k ∪Kk

)
+

k∑
q=1

∑
i∈Jq

ρq,i(S) +
k∑

q=1

k∑
p=1,p ̸=q

∑
i∈L

q
p

ρq,i(∅) (6b)

≥ f

(
k⋃

Lq
1 ∪K1 ∪ J1, . . . ,

k⋃
Lq

k ∪Kk ∪ Jk

)
+ f

(
k⋃

L1
p, . . . ,

k−1⋃
Lk

p

)
(6c)
q=1 q=1 p=2 p=1

9
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≥ f
(
L1

1 ∪K1 ∪ J1, . . . , Lk
k ∪Kk ∪ Jk

)
+ f

(
k⋃

p=2
L1

p, . . . ,
k−1⋃
p=1

Lk
p

)
(6d)

≥ f

(
k⋃

p=1
L1

p ∪K1 ∪ J1, . . . ,
k⋃

p=1
Lk

p ∪Kk ∪ Jk

)
(6e)

≥ f

(
k⋃

p=1
L1

p ∪ J1, . . . ,
k⋃

p=1
Lk

p ∪ Jk

)
(6f)

= f(X). (6g)

nequality (6c) follows from Corollary 2.4. Inequalities (6d) and (6f) are due to the monotonicity of f , and
nequality (6e) holds because f is k-submodular. □

Lemma 3.3 applies to all monotone k-submodular functions. By using the relationship between any general
-submodular function f and its monotone counterpart f∗ as stated in Lemma 3.2, we obtain the following
esult.

orollary 3.4. Let f be a k-submodular function. Given any X, S ∈ (k + 1)N ,

f(X) ≤ f(S) +
k∑

q=1

∑
i∈Xq\

⋃k

r=1 Sr

ρq,i(S) +
k∑

q=1

∑
p∈{1,...,k}\{q}

∑
i∈Xq∩Sp

ρq,i(∅)−
k∑

q=1

∑
i∈Sq\Xq

ξq
i .

With these properties of k-submodular functions, we propose valid linear inequalities for the hypograph
f any k-submodular function in the next section.

. k-submodular inequalities

Let f be a k-submodular function defined over N . Recall that Tf is the hypograph of f . In this section,
e propose two classes of valid linear inequalities for Tf depending on whether f is monotone. We refer to

hese inequalities as the k-submodular inequalities.

roposition 4.1. Let f be a monotone k-submodular function. For a given S ∈ (k + 1)N , the inequality

η ≤ f(S) +
k∑

q=1

∑
i/∈
⋃k

r=1 Sr

ρq,i(S)xq
i +

k∑
q=1

∑
p∈{1,...,k}\{q}

∑
i∈Sp

ρq,i(∅)xq
i (7)

s valid for Tf .

roof. Consider any (x, η) ∈ Tf . Recall that x = [x1, . . . , xk]⊤ ∈ Bkn. Let X ∈ (k + 1)N be the k-set
epresented by x. For any S ∈ (k + 1)N ,

η ≤f(X) (8a)

≤f(S) +
k∑

q=1

∑
i∈Xq\

⋃k

r=1 Sr

ρq,i(S) +
k∑

q=1

∑
p∈{1,...,k}\{q}

∑
i∈Xq∩Sp

ρq,i(∅) (8b)

=f(S) +
k∑

q=1

∑⋃k

ρq,i(S)xq
i +

k∑
q=1

∑
p∈{1,...,k}\{q}

∑
i∈Sp

ρq,i(∅)xq
i (8c)
i/∈
r=1 Sr

10
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I
nequality (8a) follows from the definition of Tf . Inequality (8b) holds by Lemma 3.3. Eq. (8c) uses the
characteristic vector x to equivalently state the set relations. To see this, for every q ∈ {1, . . . , k} and i ∈ N ,
xq

i = 1 exactly when i ∈ Xq. □

Proposition 4.2. Let f be any k-submodular function. For a given S ∈ (k + 1)N , the inequality

η ≤ f(S) +
k∑

q=1

∑
i/∈
⋃k

r=1 Sr

ρq,i(S)xq
i +

k∑
q=1

∑
p∈{1,...,k}\{q}

∑
i∈Sp

ρq,i(∅)xq
i −

k∑
q=1

∑
i∈Sq

ξq
i (1− xq

i ) (9)

is valid for Tf .

Proof. Consider any (x, η) ∈ Tf . Let X ∈ (k + 1)N be the k-set represented by x. For any S ∈ (k + 1)N ,

η ≤f(X) (10a)

≤f(S) +
k∑

q=1

∑
i∈Xq\

⋃k

r=1 Sr

ρq,i(S) +
k∑

q=1

∑
p∈{1,...,k}\{q}

∑
i∈Xq∩Sp

ρq,i(∅)−
k∑

q=1

∑
i∈Sq\Xq

ξq
i (10b)

=f(S) +
k∑

q=1

∑
i/∈
⋃k

r=1 Sr

ρq,i(S)xq
i +

k∑
q=1

∑
p∈{1,...,k}\{q}

∑
i∈Sp

ρq,i(∅)xq
i −

k∑
q=1

∑
i∈Sq

ξq
i (1− xq

i ) (10c)

Inequality (10a) holds due to the definition of Tf , and (10b) follows from Corollary 3.4. Lastly, for every
q ∈ {1, . . . , k} and i ∈ N , xq

i = 1 or equivalently 1 − xq
i = 0, exactly when i ∈ Xq. This justifies equation

(10c). □

We call inequalities (7) and (9) k-submodular inequalities associated with S ∈ (k + 1)N . Intuitively,
the first summation term on the right-hand side of a k-submodular inequality represents the marginal
contribution made by appending additional elements to Sq, q ∈ {1, . . . , k}. The second nested summation
term gives the upper bounds for the change in functional value when some elements in Sq are switched to
Sq′ for any q′ ̸= q. When k = 2, we call the proposed inequalities bisubmodular inequalities. In the next
remark, we show that our proposed inequalities subsume the submodular inequalities.

Remark 4.3. Notice that the submodular inequalities proposed by Nemhauser and Wolsey [55] is a special
case of the k-submodular inequalities when k = 1. Let g : 2N → R be a submodular function defined on N .
We denote the hypograph of g by

{(y, ηg) ∈ Bn × R | ηg ≤ g(y)}.

For any j ∈ N and S ⊆ N , we let γj = g(N)− g(N\{j}) and ρj(S) = g(S ∪ {j})− g(S). The submodular
inequality associated with S is

ηg ≤ g(S) +
∑
i/∈S

ρi(S)yi −
∑
j∈S

γj(1− yj),

which is exactly inequality (9) when k = 1. In this submodular inequality, the first summation accounts for
marginal returns from appending items to S, and the second summation estimates the change in function g if
items are removed from S. The natural extension of a submodular inequality to the k-submodular setting is
an inequality that accounts for the change in function value by adding an unselected item to, or removing an
item from each of the k subsets. However, the resulting inequalities are usually invalid because the function
value also changes by switching a selected item from one subset to another. The k-submodular inequalities
account for this complication.
11
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Now let us consider the polyhedron

Pf = {(x, η) ∈ Rkn+1 : η ≤ f(S) +
k∑

q=1

∑
i/∈
⋃k

r=1 Sr

ρq,i(S)xq
i +

k∑
q=1

∑
p∈{1,...,k}\{q}

∑
i∈Sp

ρq,i(∅)xq
i

−
k∑

q=1

∑
i∈Sq

ξq
i (1− xq

i ), ∀S ∈ (k + 1)N ,
k∑

q=1
xq

i ≤ 1, ∀i ∈ N}.

heorem 4.4. Given any k-submodular (not necessarily monotone) function f and any (x, η) ∈ Bkn ×R,
e have (x, η) ∈ Pf if and only if η ≤ f(X), where X is the k-set represented by x.

Proof. Suppose (x, η) ∈ Pf . Due to the second set of constraints in Pf and the fact that x ∈ Bkn, xq
i = 1

xactly when i ∈ Xq for any i ∈ N and q ∈ {1, . . . , k}. In addition, xp
i = 0 for all p ∈ {1, . . . , k}\{q}.

herefore,

η ≤ f(X) +
k∑

q=1

∑
i/∈
⋃k

r=1 Xr

ρq,i(X) · 0 +
k∑

q=1

∑
p∈{1,...,k}\{q}

∑
i∈Xp

ρq,i(∅) · 0−
k∑

q=1

∑
i∈Xq

ξq
i (1− 1)

= f(X).

onversely, suppose η ≤ f(X). Let x be the characteristic vector of the k-set X. The second set of constraints
n Pf trivially holds at (x, η). For any S ∈ (k + 1)N ,

η ≤ f(X)

≤ f(S) +
k∑

q=1

∑
i∈Xq\

⋃k

r=1 Sr

ρq,i(S) +
k∑

q=1

∑
p∈{1,...,k}\{q}

∑
i∈Xq∩Sp

ρq,i(∅)−
k∑

q=1

∑
i∈Sq\Xq

ξq
i

= f(S) +
k∑

q=1

∑
i/∈
⋃k

r=1 Sr

ρq,i(S)xq
i +

k∑
q=1

∑
p∈{1,...,k}\{q}

∑
i∈Sp

ρq,i(∅)xq
i −

k∑
q=1

∑
i∈Sq

ξq
i (1− xq

i ),

hich follows from the argument in the proof of Proposition 4.2. Thus (x, η) satisfies the first set of
onstraints in Pf as well. We conclude that (x, η) ∈ Pf . □

orollary 4.5. Problem (3) is equivalent to

max{η : (x, η) ∈ Pf ∩ Bkn × R, x ∈ K}.

roof. This result directly follows from Theorem 4.4. □

emark 4.6. It may be difficult to compute ξq
i , where i ∈ N and q ∈ {1, . . . , k}, for non-monotone

-submodular functions in practice. However, we do not require exact ξq
i values in the construction of the

inear valid inequalities in our exact method. Proposition 4.2 still holds if we replace ξq
i by its lower bound.

ne lower bound is ζ = f − f , where f and f are a lower and an upper bound of f , respectively. This
estimate can be improved depending on the problem context. Similarly, we can replace the ξq

i values in Pf

y their lower bounds that are cheaper to obtain. With the same proof, Theorem 4.4 and Corollary 4.5 hold
or the modified Pf .
12



Q. Yu and S. Küçükyavuz Discrete Optimization 42 (2021) 100670

5

f

r

1

1

1

1

1

1

1

P
r

6

(

. A cutting plane algorithm for k-submodular maximization

We incorporate our proposed k-submodular inequalities in a cutting plane algorithm to tackle constrained
k-submodular maximization problems in the form of (2), or equivalently (3). Following the results in
Section 4, problem (3) can be rewritten as

max η (11a)
s.t. (x, η) ∈ C, (11b)

x ∈ K. (11c)

The polyhedral set C in constraint (11b) is defined by the k-submodular inequalities, which provide a
piecewise linear representation of the objective function f . The set K in constraint (11c) contains the
characteristic vectors x that are associated with the feasible k-sets in X . By abusing notation, K here also
embeds the binary restriction x ∈ Bkn and the constraints

∑k
q=1 xq

i ≤ 1, for all i ∈ N .
We propose Algorithm 1 to solve problem (11). In this algorithm, we start with a relaxed set C and repeat

the following subroutine until the optimality gap is within the given tolerance ϵ. We solve a relaxed version
of (11) to obtain x and η using a branch-and-bound algorithm. The current solution η is an upper bound
or the optimal objective, and f(x) serves as a lower bound. Let X be the k-set that corresponds to x. If

η overestimates f(x), then we restrict C by adding the k-submodular inequality (9) associated with X. We
epeat the same procedure in the next iteration.

Algorithm 1: Delayed Constraint Generation
1 Input initial C, LB = −∞, UB =∞;
2 while (UB− LB)/UB > ϵ do
3 Solve problem (11) by a branch-and-bound algorithm to get (x, η);
4 if UB > η then
5 UB← η;
6 end
7 compute f(x);
8 if η > f(x) then
9 Add a k-submodular inequality (9) associated with x to C;
0 end
1 if LB < f(x) then
2 LB← f(x);
3 Update the incumbent solution to x ;
4 end
5 end
6 Output η, x.

Corollary 5.1. Algorithm 1 converges to an optimal solution of Problem (11) in finitely many iterations.

roof. This result follows from the fact that the number of feasible solutions is finite and from Theo-
em 4.4. □

. Numerical study

In this numerical study, we demonstrate the effectiveness of our proposed Delayed Constraint Generation
DCG) Algorithm 1 by solving constrained k-submodular maximization problems with k = 2 and 3.
13
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S
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e

pecifically, we run computational experiments on the multi-type sensor placement problem, described in
ection 1.1. We refer the readers to Example 5.1 in [35] for a small numerical example. To summarize, let a

set N of n potential sensor deployment locations, and t pairs of measurements made by all types of sensors at
ach location be given. Our goal is to determine a multi-type sensor placement plan S ∈ (k + 1)N , subject

to cardinality constraints |Sq| ≤ Bq for q ∈ {1, 2, . . . , k}, such that the entropy is maximized. Since the
entropy function is highly nonlinear, we cannot formulate the multi-type sensor placement problem as a
compact mixed-integer linear program. Therefore, we compare our DCG algorithm against the exhaustive
search (ES) method, which is the only available benchmark for an exact solution.

Using the DCG approach, we formulate the multi-type sensor placement problem as

max η (12a)
s.t. (x, η) ∈ C, (12b)

k∑
q=1

xq
i ≤ 1, for all i ∈ N, (12c)∑

i∈N

xq
i ≤ Bq, for all q ∈ {1, 2, . . . , k}, (12d)

xq
i ∈ B, for all i ∈ N, q ∈ {1, 2, . . . , k}. (12e)

The variables xq and η are consistent with the notation in (11). Constraint (12b) gives the piecewise linear
representation of the entropy function by exploiting its k-submodularity. The inequalities (12d) ensure that
the cardinality requirements are satisfied.

We create random problem instances using the Intel Berkeley research lab dataset [56]. This dataset
includes the sensor readings of three environmental factors – light, temperature, and humidity – at 54
locations in the Intel Berkeley Research lab from February 28th to April 5th in 2004. We discretize the
temperature data into three equal-width bins. Both light and humidity data are discretized into two equal-
width bins. For the set of experiments with k = 2, we aim to find the best placement plan for light and
temperature sensors. When k = 3, our goal is to determine the optimal placement plan for light, temperature
and humidity sensors. The experiments are executed on two threads of a Linux server with Intel Haswell
E5-2680 processor at 2.5 GHz and 128 GB of RAM. Our algorithms are implemented in Python 3.6 and
Gurobi Optimizer 7.5.1 with default settings and one-hour time limit for each instance.

First, we explore how the changes in the number of deployable locations, n, affect the computational
performance of the DCG algorithm in both sets of experiments with k = 2 and 3. We randomly select
n ∈ {20, 30, 40, 50} out of the 54 locations in the dataset. At each of the n locations, we randomly select
t ∈ {50, 100, 150, 200} tuples of light, temperature and humidity measurements for evaluating the entropy.
We set Bq = ⌊n/10⌋ for q ∈ {1, . . . , k}, so that the cardinality bound for each type of sensors increases
proportionally with n. The computational results are summarized in Table 1 for k = 2 and Table 2 for
k = 3. The first two columns in these tables list the numbers of deployable sensor locations and the numbers
of observations at each location. Columns 3–5 present the relevant computational statistics, namely the
running time in seconds, the number of k-submodular inequalities added, and the number of branch-and-
bound nodes visited when solving the relaxed master problems. The end optimality gap is computed by
(UB−LB)/UB, where UB and LB are the best upper and lower bounds on the objective respectively. The
last column reports the runtime of ES. At the time limit, ES does not provide end gap information because
it produces no lower bounds and has to essentially go through each feasible solution to prove optimality.

In this set of experiments, DCG solves all the instances when k = 2 and solves all but one test case when
k = 3, within the one hour time limit. The test case that DCG fails to solve attains a small end gap of 6.1%.
Based on the runtime differences, the instances with k = 3 are in general more challenging than those with
k = 2, when the other parameters are kept the same. Overall, the computational statistics for k = 2 and
14
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able 1
omputational performance of DCG and exhaustive search in the coupled sensor placement problem. The statistics are averaged across
trials. The superscript ℓ means that out of the three trials, ℓ instances reach the time limit of one hour.

n t Time (s) # cuts # nodes ES time (s)

20

50 0.73 49.67 53.00 9.01
100 1.09 38.67 42.33 17.68
150 1.76 51.67 54.00 21.89
200 0.97 16.33 20.00 34.07

30

50 7.67 285.33 289.67 –3

100 13.04 250.33 253.67 –3

150 15.07 224.67 230.00 –3

200 23.70 241.67 245.00 –3

40

50 36.05 810.33 814.67 –3

100 161.80 1783.33 1791.00 –3

150 145.67 1255.33 1261.00 –3

200 283.81 1676.67 1685.00 –3

50

50 104.21 1549.00 1560.00 –3

100 478.09 3559.33 3566.33 –3

150 1372.18 6911.67 6920.67 –3

200 2474.35 9268.67 9275.67 –3

Table 2
Computational performance of DCG and exhaustive search in the sensor placement problem with three types of sensors. The statistics
are averaged across 3 trials. The superscript ℓ means that out of the three trials, ℓ instances reach the time limit of one hour.

n t Time (s) # cuts # nodes End gap ES time (s)

20

50 0.90 33.33 35.33 – 1633.00
100 1.58 32.67 35.33 – 2953.18
150 1.29 18.00 21.33 – –3

200 3.68 36.67 40.00 – –3

30

50 7.54 142.67 147.33 – –3

100 20.27 222.33 226.67 – –3

150 22.48 156.67 160.33 – –3

200 46.55 243.33 248.33 – –3

40

50 82.10 947.33 952.67 – –3

100 164.97 1043.00 1049.33 – –3

150 395.54 1599.67 1606.33 – –3

200 640.38 1902.67 1912.00 – –3

50

50 253.29 1878.33 1886.00 – –3

100 1779.49 6907.67 6920.00 – –3

150 2719.26 6640.00 6646.33 – –3

200 –3 6496.00 6500.67 6.10% –3

k = 3 display the same trend. The runtime, the number of branch-and-bound nodes as well as the number of
k-submodular inequalities added increase as n increases. Variations in t for small n values do not significantly
mpact the computational statistics. When n = 50, all the statistics increase at a greater rate in response
o increments in t compared with the case of n = 20. On the other hand, unsurprisingly, ES struggles for
≥ 30 when k = 2 and 3. In the test cases with n = 20 that ES solves, the computing time drastically

ncreases as k goes from 2 to 3, reflecting the exponential growth of the decision space. For n = 20, 30 and
0, all instances are solved by DCG under 11 min; while ES hits the time limit for n ≥ 30. In fact, when
= 2, n = 50 and t = 100, exhaustive search needs to enumerate 50!/(5!5!40!) ≈ 2.59× 1012 feasible bisets

o find an exact optimal solution. We find that objective function evaluation alone takes 1.6 × 10−4 s on
verage when t = 100 for each biset. Thus, the total function evaluation time is equivalent to 13.13 years.
n contrast, our algorithm finds an optimal solution in 8 min.

Next, we explore the effects of the cardinality bounds Bq, q ∈ {1, . . . , k}, on the computational
erformance of DCG. We consider all the placeable sensor locations; that is, n = 54. Again, at each location,
e randomly select t ∈ {50, 100, 150, 200} k-tuples of sensor readings. We set Bq = B for q ∈ {1, . . . , k},
here B is an integer between 1 and 5. The computational results are summarized in Table 3 for k = 2 and
able 4 for k = 3. In either table, the first column shows the upper bounds on the number of each type
15
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able 3
omputational performance of DCG and exhaustive search in the coupled sensor placement problem. The statistics are averaged across
trials. The superscript ℓ means that out of the three trials, ℓ instances reach the time limit of one hour.

B t Time (s) # cuts # nodes End gap ES time (s)

1

50 1.09 38.00 41.00 – 0.48
100 1.16 18.33 21.33 – 1.04
150 1.45 16.67 20.00 – 1.33
200 1.97 14.67 17.33 – 1.98

2

50 11.03 283.33 286.67 – 546.64
100 27.05 333.33 337.67 – 1158.15
150 22.14 209.00 212.33 – 1596.22
200 47.81 283.33 286.00 – 2307.06

3

50 31.90 669.33 674.33 – –3

100 92.53 939.00 943.33 – –3

150 149.39 997.00 1000.00 – –3

200 335.15 1535.67 1541.33 – –3

4

50 67.92 1106.67 1114.33 – –3

100 404.21 3422.33 3428.33 – –3

150 754.14 3934.00 3940.00 – –3

200 1308.30 5154.00 5159.33 – –3

5

50 149.37 1773.67 1782.33 – –3

100 636.18 4467.33 4473.00 – –3

150 2068.81 8792.00 8800.33 – –3

200 2941.301 11 385.00 11 394.33 2.78% –3

Table 4
Computational performance of DCG and exhaustive search in the sensor placement problem with three types of sensors. The statistics
are averaged across 3 trials. The superscript ℓ means that out of the three trials, ℓ instances reach the time limit of one hour.

B t Time (s) # cuts # nodes End gap ES time (s)

1

50 1.14 19.33 22.00 – 37.56
100 3.05 31.00 33.67 – 64.11
150 4.80 34.00 36.67 – 94.67
200 5.33 26.00 28.00 – 134.80

2

50 22.63 267.33 271.00 – –3

100 41.45 294.33 297.00 – –3

150 50.65 246.00 248.67 – –3

200 88.52 308.67 311.67 – –3

3

50 103.74 923.00 927.67 – –3

100 184.81 1405.00 1410.67 – –3

150 355.86 1315.33 1319.67 – –3

200 524.26 1420.67 1424.00 – –3

4

50 215.59 1624.00 1630.67 – –3

100 787.15 3315.00 3320.67 – –3

150 1618.03 4851.67 4857.00 – –3

200 2467.97 5447.00 5453.00 – –3

5

50 386.29 2330.33 2339.67 – –3

100 1449.97 5362.33 5372.67 – –3

150 2871.681 8067.00 8073.00 4.34% –3

200 –3 7037.33 7044.00 6.26% –3

of sensors. The second column lists the numbers of observations at each of the 54 locations for entropy
evaluations. The next four columns are the relevant computational statistics, including the runtime in
seconds, the number of k-submodular inequalities added, the number of branch-and-bound nodes visited
and the end optimality gaps. The last column reports the running time of ES in seconds.

In both Tables 3 and 4, higher cardinality bounds B make the multi-type sensor placement problem
more challenging, with longer running time, more cuts added, and more branch-and-bound nodes visited.
In particular, when B ≥ 4, the computational statistics increase at a higher rate as t increases than that
with B ≤ 3. These trends are true for both k = 2 and k = 3, since the decision space consisting of all
the plausible deployment plans grows rapidly as more sensors are allowed. If, in addition, the number of

observations is high, then each entropy evaluation becomes expensive, resulting in a significant increase in
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t
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t

a

he running time. When k = 2, even in the most challenging instances where B = 5 and t = 200, DCG
olves two test instances within one hour, and obtains a feasible solution within 3% optimality in the third
rial. Similarly, when k = 3, DCG attains small optimality gap under 6.26% for the most challenging test

case with B = 5 and t = 200. When the cardinality bounds are below three, DCG solves all the instances
within six minutes for k = 2 and nine minutes for k = 3. On the contrary, ES fails due to the time limit for
ll the instances with B ≥ 3 and k = 2. ES struggles more when k = 3 and fails as soon as B exceeds 1.

7. Concluding remarks

In this paper, we propose a polyhedral approach to solve constrained maximization problems with
k-submodular objective functions. We propose valid linear inequalities, referred to as k-submodular inequal-
ities, for the hypograph of any k-submodular function. This development leads us to construct the first exact
method – a delayed constraint generation algorithm based on k-submodular inequalities – to solve general
k-submodular maximization problems other than the trivially available exhaustive search method. Our
numerical experiments on a highly nonlinear multi-type sensor placement problem show that the proposed
delayed constraint generation algorithm is effective when handling challenging k-submodular maximization
problems that cannot be solved exactly by existing methods.
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