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Chance-constrained programming (CCP) is one of the most 
difficult classes of optimization problems that has attracted 
the attention of researchers since the 1950s. In this survey, 
we focus on cases when only limited information on the dis-
tribution is available, such as a sample from the distribu-
tion, or the moments of the distribution. We first review 
recent developments in mixed-integer linear formulations of 
chance-constrained programs that arise from finite discrete 
distributions (or sample average approximation). We high-
light successful reformulations and decomposition techniques 
that enable the solution of large-scale instances. We then re-
view active research in distributionally robust CCP, which is 
a framework to address the ambiguity in the distribution of 
the random data. The focal point of our review is on scalable 
formulations that can be readily implemented with state-of-
the-art optimization software. Furthermore, we highlight the 
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prevalence of CCPs with a review of applications across mul-
tiple domains.

© 2022 The Author(s). Published by Elsevier Ltd on behalf 
of Association of European Operational Research Societies 
(EURO). This is an open access article under the CC BY 

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Most optimization models in practice involve problem parameters that are uncertain. 
Furthermore, in some cases these uncertain parameters involve risky outcomes with low 
probability. Therefore, requiring feasibility of a solution for every possible outcome may 
lead to overly conservative solutions. To remedy this, chance-constrained programming 
(CCP) has emerged as a powerful paradigm to model system failure/reliability consid-
erations and to address the conservatism of a solution given a certain tolerance for risky 
outcomes.

CCP is used to model risk-averse decision-making problems in a plethora of appli-
cations. A few recent and active application domains—not meant to be an exhaustive 
list—include finance, healthcare, power systems, transportation and routing, supply 
chain, logistics, scheduling, and wireless communications. For example, in power sys-
tems, production levels need to be determined so as to meet peak load (demand) [96]. 
This problem is complicated by uncertainties in both generator availability (especially 
with renewables) and loads. The utility company’s aim is to minimize the expected cost 
of power production while ensuring that the loss-of-load probability (i.e., the probability 
that the available generator capacity is insufficient to meet the peak load) is below an 
acceptable reliability level [168]. In supply chain problems, service level constraints are 
introduced to limit the probability of stock-outs [40]. In portfolio optimization problems, 
there is interest to restrict the downside risk at a certain threshold (value-at-risk) [56]. 
Finally, in communications network design problems, a certain quality of service (QoS) 
with respect to packet losses needs to be ensured [153]. Such risk, service, or reliabil-
ity constraints are modeled using CCPs. We review various applications of CCPs in 
Appendix A.

1.1. Problem definition

Formally, for a given probability space (Ω, F , P 0), a chance-constrained program 
(CCP) is given by

min
x

c�x

s.t. P 0(x ∈ P(ω)) ≥ 1 − ε, (1a)

x ∈ X , (1b)

http://creativecommons.org/licenses/by/4.0/
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where c ∈ Rn is a cost vector, X ⊂ Rn represents a compact set defined by deterministic 
constraints on the decision variables x, possibly including integrality restrictions on some 
variables, ω ∈ Ω ⊂ Rd is a random vector with a distribution P 0, for a given ω, P(ω)
represents the set of solutions that are safe or desirable, and ε ∈ (0, 1) is the risk tolerance 
for the decision vector x being unsafe. For risk-averse decision makers typical choices for 
the risk level are small values, e.g., ε ≤ 0.05. In this survey, we mainly focus on linear
chance constraints, i.e., polyhedral P(ω). More precisely, let

P(ω) := {x : T (ω)x ≥ r(ω)}, (2)

where T (ω) is an m × n matrix of random constraint coefficients, and r(ω) ∈ Rm is a 
vector of random right-hand sides.

Next, we introduce the taxonomy of CCPs. Constraint (1a) is said to be an individual
chance constraint for m = 1, and a joint chance constraint for m > 1. If, for all ω ∈ Ω, 
we have T (ω) = T for some deterministic m × n matrix T , and only r(ω) is random, 
then we say that the CCP has right-hand side (RHS) uncertainty. In contrast, if the 
so-called technology matrix T (ω) is random, we say that the CCP has left-hand side 
(LHS) uncertainty, regardless of whether r(ω) is a fixed vector or is random. Most of 
the work in CCP can be seen as single-stage (i.e., static) decision-making problems 
where the decisions are made here and now, and there are no recourse actions once the 
uncertainty is revealed. In Section 2.4, we discuss extensions to two-stage CCPs. Finally, 
in many problems of interest, the decision vector x is pure binary and this structure 
can be exploited to obtain stronger formulations and specialized algorithms. We refer to 
such CCPs with pure binary variables as chance-constrained combinatorial optimization
problems.

CCP dates back to the early work of Charnes and Cooper [38], Charnes et al. [39],
Miller and Wagner [157], Prékopa [187], and Prékopa [188], who first consider problems 
with individual or joint chance constraints. We refer the reader to [25,62,107,190,191,207]
for textbook treatment and detailed reviews that describe the earlier developments in 
this area. This survey is aimed at reviewing the developments in the past two decades 
primarily from a perspective of mathematical programming reformulations for CCPs 
that can be easily implemented by practitioners using a state-of-the-art optimization 
solver, such as Gurobi and CPLEX. Beyond immediate use with reformulations, such 
solvers also facilitate the solution of mixed-integer (conic) problems, using user-defined 
cutting plane or Benders decomposition approaches. We focus on the cases when there 
is limited knowledge of the probability distributions governing the random parameters 
under minimal assumptions (e.g., non-i.i.d.), and consider approaches based on sampling 
or distributional robustness. In Appendix B, we give Table 3 that summarizes other 
reviews covering topics that are complementary.

Despite long-standing interest and ubiquity in practice, CCP remains one of the most 
challenging class of problems in general. There are two main challenges with CCPs.
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Table 1
Joint probability density function of ω.

Scenario 1 2 3 4 5 6 7 8 9
ω1 0.75 0.5 0.5 0.25 0.25 0.25 0 0 0
ω2 1.25 1.5 1.25 1.75 1.5 1.25 2 1.5 1.25
Probability 0.2 0.14 0.06 0.06 0.06 0.3 0.04 0.04 0.1

Fig. 1. The feasible region of the example CCP (from [116]).

1. Non-convexity of the feasible set. For certain special cases such as joint CCPs with 
RHS uncertainty involving quasi-concave or log-concave distributions [187,190,236,
237], or individual chance constraints with LHS uncertainty under a certain log-
concave distribution and choice of ε [119], such as normal [108], there is an equivalent 
convex representation of the corresponding CCP. (See, also, [224] for a discussion on 
convexity.) In general, however, chance constraints even in the case with continuous 
x, polyhedral P, and only RHS uncertainty give rise to non-convex feasible regions 
in their original variable space. We illustrate this challenge with an example.

Example 1. [116] Let ω1 and ω2 be dependent random variables with joint probability 
density function given in Table 1. Consider the CCP with RHS uncertainty

min x1 + x2

s.t. P 0

{
2x1 − x2 ≥ ω1
x1 + 2x2 ≥ ω2

}
≥ 0.6

x ≥ 0.

The feasible region of this problem is non-convex as illustrated in Fig. 1. It can 
be represented as a union of polyhedra whose extreme points are given by the so-
called (1 − ε)-efficient points, which results in a feasible set that is not necessarily 
convex. �
Indeed, the resulting problems are NP-hard, in general [150,167]. Ben-Tal and Ne-
mirovski [19], Calafiore and Campi [29,30], and Nemirovski and Shapiro [166,167]
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approximate the non-convex chance constraint with convex constraints such that 
the solution to this approximation is feasible with high probability. However, such 
methods could yield highly conservative solutions [4] (see Section 2.5).

2. Difficulty of evaluating the probability of an undesirable solution. In general, the 
distribution P 0 in the chance constraint may not be fully specified. A black-box sim-
ulation model or an oracle may be available to evaluate P 0 for a given solution x, 
however it is not straightforward to integrate such an oracle within the optimization 
model and the number of feasible solutions to evaluate is typically huge [238]. In this 
survey, we focus on two main approaches to address this difficulty, namely the Sam-
ple Average Approximation (SAA) approach [4] (Section 2) and the distributionally 
robust approach (Section 3).

There has been renewed and growing interest in CCP since the early 2000s [65,201]
to tackle these challenges. Capitalizing on the enormous success of mixed-integer pro-
gramming (MIP) and conic optimization solvers since the early 2000s, our focal point 
is on reformulations that aim to circumvent the aforementioned challenges and enable 
progress towards the solution of this difficult class of problems.

1.2. Outline

Our survey is organized as follows. In the first part of this survey, in Section 2, we 
consider CCPs under a finite discrete distribution. We consider a natural MIP formula-
tion and valid inequalities for both RHS and LHS uncertainty in Sections 2.1 and 2.2, 
respectively. In Section 2.3, we review alternative formulations and specialized methods 
for CCPs under a finite distribution. In Section 2.4, we describe a two-stage CCP and 
a Benders decomposition method for its solution. In Section 2.5 we describe approxima-
tions of CCPs. In the second part of this survey, in Section 3, we consider distributionally 
robust CCPs, primarily under two types of uncertainty sets: moment-based (Section 3.1) 
and Wasserstein ambiguity sets (Section 3.2) and conclude in Section 4. We give some 
preliminaries, provide more details on some valid inequalities, and an overview of a wide 
range of applications in the Appendix.

2. CCPs under finite discrete distributions

In this section, we consider CCPs under a finite discrete probability space (Ω, 2Ω, PN ), 
where Ω = {ω1, . . . , ωN } and pi = PN (ω = ωi). Let Fω denote the cumulative distri-
bution function of ω. Of particular interest are such CCPs that result from the SAA 
approach [149,178], which approximates P 0 via a finite empirical distribution, PN . We 
refer the reader to Appendix C for preliminaries on two types of risk definitions for 
univariate random variables that are closely related to chance constraints and their for-
mulations when the random variable follows a finite discrete distribution.
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For ease of exposition, we will assume that the samples are independent and identically 
distributed (i.i.d.) and consider the SAA formulation of CCP (i.e., pi = 1

N , i ∈ [N ]). 
Throughout, for a ∈ Z+, let [a] := {1, . . . , a}. The methods we discuss can be adapted 
to the case of non-i.i.d. scenarios, for example those that are obtained via importance 
sampling [17].

The SAA formulation of (1) is

min
x

c�x (3a)

s.t. 1
N

∑
i∈[N ]

1(x /∈ P(ωi)) ≤ ε, (3b)

x ∈ X , (3c)

where 1(·) is the indicator function. From this formulation, it is apparent that the use of 
finite discrete distribution circumvents the difficulty of evaluating the violation probabil-
ity when the distribution is not explicitly given. Under non-equal probability scenarios, 
constraint (3b) is simply

∑
i∈[N ]

pi1(x /∈ P(ωi)) ≤ ε.

When P(·) is polyhedral as given by (2), formulation (3) for CCP under a discrete distri-
bution lends itself to an equivalent mixed-integer (linear) program via the introduction 
of binary variables and so-called big-M constraints, which we will specify in the next 
section. Hence, the non-convex feasible region in the original space of variables can be 
represented as a polynomial-sized MIP with additional binary variables. While the re-
sulting feasible region is non-convex, the MIP formulation enables the immediate use of 
off-the-shelf MIP solvers. Next we present such MIP formulations for the RHS and LHS 
uncertainty cases.

2.1. RHS uncertainty

First, let us consider the problem with RHS uncertainty. In this setting, the joint 
linear CCP (3) with RHS uncertainty is reformulated as a mixed-integer linear program 
[201]

min
x,t,z

c�x (4a)

s.t. x ∈ X , Tx = r̄ + t, (4b)

tj ≥ ri,j(1 − zi), ∀i ∈ [N ], ∀j ∈ [m], (4c)
1
N

∑
zi ≤ ε, (4d)
i∈[N ]
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t ∈ Rm
+ , z ∈ {0, 1}N , (4e)

where r̄ ∈ Rm is a chosen vector satisfying r(ωi) ≥ r̄ for all i and ri = (ri,1, . . . , ri,m)�

denotes r(ωi) − r̄. The choice of r̄ ensures that the vector ri is nonnegative for all i ∈ [N ]. 
Since ε < 1, we have Tx ≥ r(ωi) for some i ∈ [N ]. Therefore, Tx ≥ r̄, and from (4b), we 
have t ∈ Rm

+ as stated in (4e). The binary variable zi encodes the indicator function in 
(3b) to model the event Tx ≥ r(ωi). In particular, if zi = 0, then constraints (4c) enforce 
that t ≥ ri holds and thus Tx ≥ r(ωi) is satisfied. Otherwise, zi = 1, and constraints (4c)
reduce to the trivial relation t ≥ 0. Such constraints are referred to as big-M constraints, 
where in (4c), the big-M coefficients are given by ri,j . Finally, (4d) enforces that the 
probability of x /∈ P(ω) is within the risk threshold ε. Note that this constraint is 
equivalent to a cardinality constraint on the binary variables 

∑
i∈[N ] zi ≤ �εN� =: k. In 

the non-equiprobable case, it is a knapsack constraint 
∑

i∈[N ] pizi ≤ ε.
In the case of individual chance constraints, when m = 1, we can linearize the chance 

constraint (1a), where P(ω) in (2) is defined by a single constraint, as Tx ≥ F −1
ω (1 −ε) to 

lower bound the LHS with the (1 − ε)-quantile (see Definition 2 in Appendix C). Under 
RHS uncertainty, problems with joint chance constraints (m > 1) are more challenging. 
In fact, Luedtke et al. [150] show that problem (4) is NP-hard for m > 1. Often, formu-
lations with big-M constraints result in weak LP relaxation bounds, which hinder the 
convergence of the branch-and-bound methods. Therefore, MIP approaches have focused 
on obtaining strong formulations for the SAA model to scale up the problem sizes that 
can be solved. To this end, an important substructure in the formulation (4) is given 
by constraints (4c) and (4e) for a fixed j. This particular substructure is a special case 
of the mixing set studied in [87] that involves general integer variables whose convex 
hull of solutions is given by the so-called mixing inequalities. The specific form of the 
mixing inequalities involving only binary variables—known as the star inequalities—is 
independently considered in Atamtürk et al. [14] in the context of vertex covering. In 
the ensuing discussion, we will specify the star (or binary mixing) inequalities with an 
additional strengthening in the context of CCPs.

We first consider strengthening based on an individual inequality in the joint chance 
constraint. More precisely, consider (4c) and (4e) for a fixed j. We will drop the depen-
dence on j for notational convenience. The resulting system is nothing but a mixing set 
with binary variables given by

M :=
{

(t, z) ∈ R+ × {0, 1}N : t + rizi ≥ ri, ∀i ∈ [N ]
}

.

The (binary) mixing set M involves N inequalities that share a common continuous 
variable t, but independent binary variables zi, i ∈ [N ]. The so-called mixing inequalities
of Günlük and Pochet [87] specialized to binary case, which is known to be equivalent 
to the so-called star inequalities introduced in [14], are an exponential family of linear 
inequalities that provide the complete linear description of conv(M) (see also, Pochet 
and Wolsey [184, Theorem 18]). Furthermore, this class of inequalities can be separated 
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in polynomial time [10,87], hence formulation (4) can be strengthened using the mixing 
inequalities within a branch-and-cut framework. Somewhat surprisingly, Kılınç-Karzan 
et al. [110] uncover that the mixing inequalities for the set M are nothing but the 
polymatroid inequalities valid for the epigraph of a submodular function g(1 − z) (in 
this case g(1 − z) = maxi∈[N ]{ri(1 − zi)}) as defined in Lovász [144], Atamtürk and 
Narayanan [12, Proposition 1]. (See Appendix C.2 for a review of submodularity and 
polymatroid inequalities.)

Luedtke et al. [150] further strengthen formulation (4) by exploiting the cardinality 
constraint (4d) and by studying the resulting set given by (4c)–(4e) for a fixed j. In this 
case, an immediate strengthening is that of the big-M. Consider the mixing set with a 
cardinality constraint

MC :=

⎧⎨
⎩(t, z) ∈ R+ × {0, 1}N : t + rizi ≥ ri, ∀i ∈ [N ],

∑
i∈[N ]

zi ≤ k

⎫⎬
⎭ .

Sort the values ri for i ∈ [N ], to obtain a permutation σ such that:

rσ1 ≥ rσ2 ≥ · · · ≥ rσN
.

Now observe that due to the cardinality constraint 
∑

i∈[N ] zi ≤ k, we must have t ≥ rσk+1 . 
Therefore, we deduce that

MC =

⎧⎨
⎩(t, z) ∈ R+ × {0, 1}N : t + (ri − rσk+1)zi ≥ ri, ∀i ∈ [N ],

∑
i∈[N ]

zi ≤ k

⎫⎬
⎭ .

Note, here, that this is an immediate big-M coefficient strengthening—the coefficient of 
zi is reduced from ri to (ri − rσk+1)—that can be readily incorporated into the MIP 
formulation (4). This strengthening uses the quantile information that t ≥ rσk+1 .

Due to their common usage, we give a precise definition of the resulting mixing in-
equalities that make use of the cardinality-based strengthening next. Consider a subset 
S = {s1, s2, . . . , s�} ⊆ {σ1, σ2, . . . , σk} such that rsi

≥ rsi+1 for i = 1, . . . , �, where 
s1 = σ1 and s�+1 = σk+1. Luedtke et al. [150] show that a strong mixing inequality valid 
for MC is given by

t +
�∑

i=1

(
rsi

− rsi+1

)
zsi

≥ rs1 , (5)

which is precisely in the form of a basic mixing inequality proposed for a mixing set 
without the cardinality constraint, with the exception that S ⊆ {σ1, σ2, . . . , σk} with 
rs�+1 = rσk+1 as opposed to S ⊆ N and rs�+1 = 0 for a basic mixing inequality. 
Küçükyavuz [116] show that this idea can be adapted to the non-equiprobable case by 
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setting ϕ := arg max{j :
∑j

i=1 pπi
≤ ε}, where π is a permutation of the scenarios in non-

decreasing order of their probabilities. This choice of ϕ gives a valid cardinality restriction 
on the binary variables. Furthermore, inequality (5) can be strengthened by further use 
of the cardinality relation or for the case where the scenarios are not equiprobable when 
constraint (4d) is in the form of a knapsack inequality [1,116,150,263]. We describe this 
further strengthening in inequality (32) in Appendix D.

Next, we illustrate the strengthened mixing inequalities on our numerical example 
(Example 1). Consider the first inequality inside the chance constraint and note that 
ϕ = 3 with respect to ω1. Note that the scenarios are already ordered in nonincreasing 
order with respect to the possible values of r1(ω). Therefore, we have t1 ≥ 0.25 = r1(ω4). 
A possible strengthened mixing inequality is for S = {1, 3} given by

t1 + (0.75 − 0.5)z1 + (0.5 − 0.25)z3 ≥ 0.75.

It is easy to see the validity of this inequality. If z1 = 0, then we must have t1 ≥ 0.75, 
which satisfies this inequality. If z1 = 1 and z3 = 0, then we must have t1 ≥ 0.5, which 
is also satisfied. Finally, when z1 = z3 = 1, the inequality reduces to t1 ≥ 0.25, which 
holds due to the (1 − ε)-quantile relation.

So far, we reviewed inequalities based on an individual inequality inside the joint 
chance constraint. If we consider multiple inequalities inside the chance constraint jointly, 
the resulting set is an intersection of multiple mixing sets that share a common set 
of binary variables z, but independent continuous variables tj, j ∈ [m]. For this case, 
Atamtürk et al. [14, Theorem 3] show that adding the mixing inequalities written for 
each set to the LP relaxation of the set defined by (4c) and (4e) is sufficient to obtain the 
convex hull of solutions in the absence of cardinality/knapsack constraints. Furthermore, 
Kılınç-Karzan et al. [110] show how to extend their framework exploiting submodular-
ity to recover this result, as well as extend it to propose the so-called aggregated mixing 
inequalities that incorporate lower bounds on the continuous variables based on the quan-
tile relation. For the special case of two-sided chance constraints, the valid inequalities 
in the convex hull description provided in Liu et al. [139] are equivalent to the aggre-
gated mixing inequalities. The aggregated mixing inequalities do not directly use the 
cardinality information, but use it indirectly through the lower bound on the continuous 
variables obtained from the quantile. In contrast, Küçükyavuz [116] and Zhao et al. [263]
propose valid inequalities for the intersection of mixing sets by directly considering the 
cardinality/knapsack constraint. We elaborate on these approaches in Appendix D.

2.2. LHS uncertainty

Now consider the problem with uncertainty data in both LHS and RHS. In this setting, 
the joint linear CCP (3) with LHS uncertainty is reformulated as a mixed-integer linear 
program [201]
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min
x,z

c�x (6a)

s.t. x ∈ X , (6b)

T (ωi)x ≥ r(ωi) − M(ωi)zi, ∀i ∈ [N ], (6c)
1
N

∑
i∈[N ]

zi ≤ ε, (6d)

z ∈ {0, 1}N , (6e)

where M(ωi), i ∈ [N ] is a vector of big-M coefficients such that when zi = 1, inequality 
(6c) is redundant.

In Section 2.1 we exploited the mixing structure associated with (4c) and (4e) for a 
fixed j. In other words, we considered an individual inequality inside the (joint) chance 
constraint. Furthermore, we considered RHS uncertainty only. In this section we will 
consider LHS as well as RHS uncertainty, and we will jointly consider the inequalities 
inside the chance constraints for any m ≥ 1.

The mixing inequalities described in Section 2.1 rely on the fact that all scenarios 
share the same LHS for a given j ∈ [m], that is t = Tjx−r̄j , where Tj is the jth row of 
T . Due to this relation, we arrive at a mixing structure with N constraints that share the 
same continuous variable t and different binary variables. In contrast, in LHS uncertainty 
case, we no longer have a common continuous variable. Can we still apply the mixing 
inequalities?

As it turns out, we can indeed extend the mixing inequalities to generate other classes 
of valid inequalities for joint chance-constrained programs with LHS uncertainty. To do 
so, we solve the following single-scenario optimization problem for all scenarios ω ∈ Ω
and for a given φ ∈ Rn:

qω (φ) = min
x

φ�x (7a)

x ∈ P(ω), (7b)

x ∈ X . (7c)

We sort the values qω (φ) for ω ∈ Ω, to obtain a permutation σ such that:

qσ1 (φ) ≥ qσ2 (φ) ≥ · · · ≥ qσN
(φ) .

Observe that φ�x ≥ qσk+1(φ) is a valid inequality. Furthermore, substituting t = φ�x

and r = q(φ) in inequality (5), we obtain a valid inequality of the desired form. These in-
equalities are referred to as quantile cuts. This and related inequalities based on quantile 
information have been studied in [6,137,148,194,214,245]. These inequalities consider the 
interaction between the decision variables across multiple inequalities in the chance con-
straint, which results in improved computational performance. In another line of work, 



S. Küçükyavuz, R. Jiang / EURO Journal on Computational Optimization 10 (2022) 100030 11
Tanner and Ntaimo [217] propose a class of cuts based on the irreducibly infeasible sub-
systems (IIS) of an LP that requires that a subset of scenarios are satisfied. The authors 
demonstrate the efficacy of this approach in a vaccine allocation application.

2.3. Alternative formulations and methods

While we focus on natural big-M formulations that can be easily adopted by prac-
titioners, it is important to note that there are alternative reformulations for this class 
of problems relying on the concept of (1 − ε)-efficient points, which are an exponential 
number of points representing the multivariate value-at-risk associated with the chance 
constraint (8b) to be specified later. We provide a brief overview here, and refer the 
reader to [62], and references therein, for a more detailed treatment of methods based 
on (1 − ε)-efficient points.

Definition 1. [189] Let ν ∈ Rm be such that Fω(ν) ≥ 1 − ε and Fω(ν − ε) < 1 − ε for 
ε ≥ 0, ε 
= 0. The point ν is called (1 − ε)-efficient. �

In Example 1, observe that ν ∈ {(0.25, 2), (0.5, 1.5), (0.75, 1.25)} is (1 − ε)-efficient. 
The (1 − ε)-efficient points then prescribe the extreme points of the non-convex feasible 
region as seen in Fig. 1.

There are several methods in the literature that rely on the enumeration of the expo-
nentially many (1 −ε)-efficient points [65,114,115,189,203]. Such alternative formulations 
lead to specialized branch-and-bound algorithms described in [22,23,201,202]. Sen [203]
uses the (1 − ε)-efficient points to give a disjunctive programming reformulation of joint 
chance constraints with finite discrete distributions. Valid inequalities are proposed based 
on the extreme points of the reverse polar of the disjunctive program, which can be sepa-
rated by a cut generation linear program (CGLP) [15]. Küçükyavuz [116] gives a compact 
and tight extended formulation based on disjunctive programming for m = 1. Vielma 
et al. [227] extend this formulation for varying m > 1 to obtain a hierarchy of stronger 
relaxations. Dentcheva et al. [65] use (1 − ε)-efficient points to obtain various reformu-
lations of probabilistic programs with discrete random variables, and to derive valid 
bounds on the optimal objective function value. Ruszczyński [201] uses the concept of 
(1 − ε)-efficient points to derive consistent orders on different scenarios representing the 
discrete distribution. The consistent ordering is represented with precedence constraints, 
and valid inequalities for the resulting precedence-constrained knapsack set are proposed. 
Beraldi and Ruszczyński [22] propose a branch-and-bound method for probabilistic inte-
ger programs using a partial enumeration of the (1 − ε)-efficient points. In a related line 
of work, Lejeune [122] introduces the concept of (1 − ε)-sufficient points—a concept less 
computationally demanding than (1 −ε)-efficient points as described in [123]—leading to 
a Boolean reformulation method and MIPs for CCPs. Lejeune and Margot [124] extend 
this method to quadratic CCPs.
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Alternatively, Ahmed et al. [6] consider a Lagrangian relaxation of the MIP formu-
lation by creating copies of the variables, and relaxing the non-anticipativity constraint 
that these variables are equal. The authors derive extended formulations (without big-M 
coefficients) whose relaxations achieve stronger bounds than the basic formulation (with-
out mixing strengthening). In addition, Ahmed et al. [6] propose a heuristic scheme to 
generate a conservative approximation for CCP and later Jiang and Xie [104] show that 
this approximation is tighter than the classical CVaR approximation (see Definition 3
and Nemirovski and Shapiro [167]).

Furthermore, for problems with pure binary variables and special structures, i.e., for 
combinatorial CCPs, stronger formulations have been developed (see, e.g., [21,98,136,
212,214,238]). For example, Song et al. [214] study chance-constrained bin packing prob-
lems, and propose a formulation that does not involve additional indicator variables to 
represent (3b) based on the so-called lifted probabilistic cover inequalities. Later, Wang 
et al. [234] consider a closely related formulation with multiple chance constraints and de-
rive lifted cover, clique, and projection inequalities based on a bilinear reformulation. In 
a related line of work, Wang et al. [235] consider a chance-constrained assignment prob-
lem and its distributionally robust variant, and propose lifted cover inequalities based 
on a bilinear reformulation of the problem. For chance-constrained knapsack problems, 
Yoda and Prékopa [253] provide sufficient conditions for the convexity of the formulation, 
Klopfenstein and Nace [113], De [57], Han et al. [89], and Joung and Lee [106] derive 
approximate but more tractable formulations that can provide near-optimal solutions, 
and Goyal and Ravi [86] derive a fully polynomial time approximation scheme when 
the random item sizes are independent and Gaussian. In addition, Nikolova [169] stud-
ies approximation algorithms for general chance-constrained combinatorial optimization 
problems with random parameters following either the Gaussian distribution or a gen-
eral distribution. Xie and Ahmed [246] provide a bicriteria approximation algorithm for 
a class of chance-constrained covering problems and their distributionally robust variants 
that finds a solution within constant factor of the violation probability and a constant 
factor of the optimal objective.

For chance-constrained set covering models with RHS uncertainty, Beraldi and 
Ruszczyński [23], Saxena et al. [202] propose a specialized branch-and-bound algorithm 
based on the enumeration of (1 − ε)-efficient points. Subsequently, Saxena et al. [202]
derive polarity cuts to improve the computational performance of this approach. For in-
dividual chance-constrained set-covering problems with LHS uncertainty, [77] developed 
cutting plane approaches for the case that all components of the Bernoulli random vector 
ωi are independent. In addition, Wu and Küçükyavuz [238] propose an exact approach 
for a partial set covering problem for the case that there exists an oracle to retrieve 
the probability of any events under P 0. In another line of work, Goyal and Ravi [85]
and Swamy [216] propose approximation algorithms for chance-constrained set-covering 
problems with optimality guarantees.

In addition to the aforementioned combinatorial CCPs, Padberg and Rinaldi [177] and 
Campbell and Thomas [32] study chance-constrained traveling salesman problems, Song 
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and Shen [213] incorporate a chance constraint into a bi-level shortest path interdiction 
problem, and Ishii et al. [101] and Geetha and Nair [81] study chance-constraint variants 
of the spanning tree problem.

It bears mentioning that there are recent nonlinear programming-based approaches 
that directly address the non-convexity of chance constraints. Cheon et al. [49] give a 
global optimization algorithm that successively partitions the non-convex feasible re-
gion until a global optimal solution is obtained. Tayur et al. [218] give an algebraic 
geometry algorithm for a scheduling problem with joint chance constraints that solves 
a series of chance-constrained integer programs with varying reliability levels. Peña-
Ordieres et al. [180] derive smooth non-convex reformulations of the chance constrained 
based on the sampled empirical distribution. Other nonlinear programming approaches, 
which may result in solutions that are stationary points, include difference-of-convex op-
timization methods [97], sequential outer and inner approximations [82], and sequential 
cardinality-constrained quadratic optimization methods [53].

Finally, throughout, we have assumed that the risk level ε is fixed. However, in prac-
tice, the decision-maker may be interested in the trade-offs between risk level and the 
optimal objective. One way to assess this would be to solve the problem for multiple 
values of fixed ε. Alternatively, Shen [210] proposes a novel variable risk threshold model 
in which the risk tolerance is adjustable with an appropriate penalty function in the 
objective to prevent high risk. The author proposes a MIP formulation for this problem 
for individual chance constraints. Xie et al. [247, Theorem 8] show that the correspond-
ing optimization problem is strongly NP-hard. Elçi et al. [74] propose a stronger MIP 
formulation for this problem under RHS uncertainty. Finally, Lejeune and Shen [127] con-
sider joint chance constraints also with LHS uncertainty and propose a Boolean-based 
mathematical formulation for this model.

2.4. Two-stage chance-constrained programming

Thus far, we have considered a decision-making problem that is static. In other 
words, the decisions are made here-and-now before the revelation of the outcome of a 
random event. However, in most practical situations, there are multiple decision stages—
intervened by a probabilistic event—and the decision-maker takes recourse actions in the 
later epochs based on the observed outcome of the event. In this section, we focus on 
problems that involve two stages. For example, in a power generation setting, the day-
ahead problem determines the on/off status of the conventional generators a day before 
realizing the demand (load) or supply (in case of renewable generators). Then the second-
stage problem ensures that the loss-of-load probability is no more than a pre-specified 
risk level ε ∈ (0, 1). Therefore, a two-stage chance-constrained model is called for.

As before, the random outcome ω is defined on a probability space (Ω, 2Ω, PN ). Let 
E[·] denote the expectation operator taken with respect to ω. Liu et al. [137] propose 
the two-stage chance-constrained mixed-integer program
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min
x

c�x + PN (x ∈ P(ω))E[h(x, ω)|x ∈ P(ω)], (8a)

PN (x ∈ P(ω)) ≥ 1 − ε (8b)

x ∈ X , (8c)

where P(ω) = {x : ∃y satisfying W (ω)y ≥ r(ω) − T (ω)x, y ∈ Y} and the second-stage 
problem is given by

h(x, ω) = min
y

g(ω)�y (9a)

W (ω)y ≥ r(ω) − T (ω)x (9b)

y ∈ Y. (9c)

Here, g(ω) is a vector of second-stage objective coefficients, Y is the domain of the 
second-stage decision vector y. For a related model that considers only the feasibility of 
the second-stage problem without an associated second-stage cost function h(x, ω), we 
refer the reader to [148].

The two-stage chance-constrained problem can be formulated as a large-scale mixed-
integer program by introducing a big-M term for each inequality in the chance constraint 
and a binary variable for each scenario. In particular, analogous to the static CCP, the 
deterministic equivalent formulation (DEF) of the two-stage CCP may be stated as

min
x,y,z

c�x + 1
N

∑
i∈[N ]

g(ωi)�y(ωi)zi (10a)

T (ωi)x + W (ωi)y(ωi) ≥ r(ωi) − M(ωi)zi, i ∈ [N ] (10b)
1
N

∑
i∈[N ]

zi ≤ ε, (10c)

x ∈ X , y(ωi) ∈ Y, i ∈ [N ] (10d)

zi ∈ {0, 1} i ∈ [N ], (10e)

where zi, i ∈ [N ] is a binary variable that equals 0 only if the second-stage problem for 
scenario ωi has a feasible solution, and M(ωi) is a vector of large enough constants that 
makes constraint (10b) redundant if zi = 1, i.e., if the second-stage problem for scenario 
ωi need not be feasible. The rest of the constraints are interpreted similarly as before.

This formulation poses multiple challenges in addition to the usual difficulties of a 
formulation with big-M constraints (10b). First, the objective function (10a) is nonlin-
ear. Second, the problem is large scale due to the copies of the variables y(ωi) and the 
large number of binary variables zi for i ∈ [N ]. Nevertheless, the formulation (10) has 
a decomposable structure—for a fixed first-stage vector x, the problem decomposes into 
independent scenario problems. Furthermore, if y is a continuous decision vector and Y
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is polyhedral, then the second-stage problems are linear programs. Next we describe a 
Benders-type decomposition algorithm that not only exploits this decomposable struc-
ture, but also replaces the weak big-M constraints (10b) with stronger optimality and 
feasibility cuts, using the mixing structure.

2.4.1. Benders decomposition-based branch-and-cut algorithm
Benders method [20], or its specific use in the classical two-stage stochastic program-

ming (without chance constraints) referred to as the L-shaped method [225], is the 
method of choice for two-stage stochastic programs, where the second-stage problems 
are linear programs. However, despite their similar structure to two-stage CCPs, these 
methods are not immediately applicable to (10), since the feasibility and optimality 
cuts of the Benders method ensure that all second-stage problems are feasible and the 
second-stage costs of all scenarios are considered, which is not the case for two-stage 
CCPs, where violations are allowed in the second-stage problems and the second-stage 
costs of the feasible second-stage problems are accounted for. For general recourse prob-
lems, feasibility and optimality cuts that are different from the traditional Benders cuts 
must be developed.

Let ηi represent a lower bounding approximation of the optimal objective function 
value of the second-stage problem under scenario ωi, i ∈ [N ]. Without loss of generality, 
we assume that ηi ≥ 0, i ∈ [N ]. At each iteration of a Benders decomposition method, a 
sequence of relaxed master problems (RMP) are solved:

min
x,z,η

c�x + 1
N

∑
i∈[N ]

ηi (11a)

1
N

∑
i∈[N ]

zi ≤ ε, (11b)

(x, z) ∈ F , (11c)

(x, z, η) ∈ O, (11d)

x ∈ X (11e)

z ∈ {0, 1}N , (11f)

where, F and O denote the set defined by the feasibility and optimality cuts—to be 
specified later—respectively.

At iteration k, let (xk, zk) be the optimal solution to the RMP. Given this first-
stage solution, suppose that we solve the LP (9) for outcome ω to obtain h(xk, ω). 
The feasibility cuts in set F are derived from the solution to this LP. If zk

i = 0 for 
some i ∈ [N ], then the second-stage problem must be feasible. If it is infeasible for a 
scenario j ∈ [N ], then there exists an extreme ray ψωj

associated with the dual of (9)
for scenario ωj that yields the inconsistent solution. Then, letting φ = ψ�

ωj
T (ωj) in (7)

gives a violated valid mixing inequality that cuts off this infeasible solution (xk, zk). If, 
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on the other hand, for all ω ∈ Ω, the second-stage problem associated with scenario ω
such that zk(ω) = 0 is indeed feasible, then the current solution (xk, zk) is a feasible 
solution and no feasibility cuts are necessary. However, optimality cuts may be needed. 
Next we describe how to obtain valid optimality cuts.

Let ψωj
be the dual vector associated with the optimal basis of the second-stage 

problem (9) for scenario ωj at this iteration. One possible big-M optimality cut is given 
by [231,232]

ηj + Mjzj ≥ ψ�
ωj

(r(ωj) − T (ωj)x), (12)

where Mj , j ∈ [N ] is a big-M coefficient vector.
Next we describe a stronger optimality cut proposed by [137] that leads to faster 

convergence to an optimal solution. Clearly, the traditional Benders optimality cut, ηj ≥
ψ�

ωj
(r(ωj) − T (ωj)x) is a valid optimality cut for x ∈ X (in fact for x ∈ P(ω)) if zj = 0. 

However, it may not be valid for all x ∈ X for solutions with zj = 1. To obtain a valid 
optimality cut, we solve the following secondary problem with φ = ψ�

ωj
T (ωj):

v̄ωj
(φ) = min

x,y
φx

x ∈ X , y ∈ Y.

Then we add the optimality cut of the form

ηj +
(

ψ�
ωj

r(ωj) − v̄ωj
(φ)

)
zj ≥ ψ�

ωj
(r(ωj) − T (ωj)x). (13)

To see the validity of this inequality at zj = 1, note that in this case, the second-
stage objective function contribution for scenario ωj is zero. Furthermore, inequality 
(13) evaluated at zj = 1 reduces to ηj ≥ v̄ω(φ) − φx. Because v̄ω(φ) − φx ≤ 0 for all 
x ∈ X and ηj ≥ 0, this inequality is trivially satisfied. The finite convergence of the 
resulting algorithm is proven in [137] under certain assumptions.

In Table 2, we summarize a set of computational experiments that appear in [137]
to show the effectiveness of the approaches discussed so far. The instances are based 
on a resource planning problem adapted from [148]. In the first stage, the number of 
servers among s types of servers to employ is determined. The second-stage problem is 
to allocate the servers to clients of τ types, so that their demands are met with high 
probability (1 − ε). Instances with various choices of N, ε, τ, s are tested and we report 
the average statistics for three random instances generated for the combination reported 
in each row. We compare the proposed “Strong” decomposition algorithm which uses the 
optimality cuts (13) with definition (10) and the decomposition approach (referred to as 
“Basic”) which uses the mixing-based feasibility cuts and the big-M optimality cuts (12)
with an appropriate choice of big-M as described in [137]. We report the solution times 
(in seconds) only for Strong decomposition, because for DEF and Basic, all instances 
tested reach the time limit of one hour. We also report the percentage optimality gap 



S. Küçükyavuz, R. Jiang / EURO Journal on Computational Optimization 10 (2022) 100030 17
Table 2
Result for instances with random RHS (summarized from [137]).

Instances DEF Basic Strong
(N, ε) (s, τ) Gap (%) Gap (%) Time Gap (%)

(2000, 0.05)
(5,10) 4.60 2.34 166 0
(10,20) - 2.93 483 0
(15,30) - 2.69 1106 0

(2500, 0.05)
(5,10) 4.64 2.61 279 0
(10,20) - 3.08 711 0
(15,30) - 2.88 1819 0.091

(2000, 0.1)
(5,10) 7.1 5.46 723 0
(10,20) - 5.99 1069 0
(15,30) - 6.27 1032 0

(2500, 0.1)
(5,10) 7.63 5.32 641 0
(10,20) - 5.79 1198 0
(15,30) - 6.03 2112 0.021

at termination under the Gap column. In most cases, DEF is unable to find a feasible 
solution to the LP relaxation, as indicated by a ‘-’. In cases when it is able to find a 
feasible solution, it ends with a gap ranging from 4% to 8%. On the other hand, Basic is 
able to find a feasible solution for all instances, but is unable to prove optimality for any 
of the 36 instances tested. It ends after an hour with optimality gaps ranging from 2% 
to 7%. In contrast, the Strong decomposition algorithm, based on the proposed strong 
optimality cuts, is able to solve most of the instances to optimality. For the two unsolved 
instances (indicated by a superscript 1 under the Gap column), the average optimality 
gap is less than 0.1%. These results highlight the importance of using strong formulations 
and decomposition for large-scale instances.

It is important to note that in this model, the undesirable outcomes ω such that 
x /∈ P(ω) are simply ignored. Liu et al. [137] propose an extension of the two-stage model 
(8), where they allow so-called recovery decisions for the undesirable scenarios. They 
discuss how to resolve a potential time inconsistency in two-stage CCP. Furthermore, 
the Benders decomposition-based solution method is extended to operate in the case of 
recovery.

Elçi and Noyan [73] extend this framework to a two-stage chance-constrained opti-
mization model with a mean-risk objective, using the conditional value-at-risk as a risk 
measure. The authors apply this framework to a humanitarian relief network design 
problem and demonstrate its effectiveness on a case study based on hurricane prepared-
ness in Southeastern United States. Lodi et al. [142] extend this two-stage framework to 
convex second-stage problems, motivated by hydro-power scheduling applications. They 
build an outer approximation of the nonlinear second-stage formulations to design a 
Benders-type algorithm that converges to an optimal solution under mild assumptions. 
They demonstrate the computational benefit of the decomposition algorithm on a case 
study based on hydroplant data from Greece.
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We close this subsection by noting the assumption of continuous second-stage vari-
ables can be lifted by leveraging the developments for decomposition algorithms for 
classical two-stage stochastic mixed-integer programs, where the second-stage problems 
also involve integer decisions [35,79,118,120,172–174,192,204–206,255]. These methods 
rely on iteratively convexifying the second-stage problems and updating the feasibility 
and optimality cuts accordingly. These methods can be combined with the Benders-type 
algorithm we described to enable the solution of two-stage CCPs with integer variables 
at the second stage.

2.5. Approximations

Given the difficulty of solving the exact formulations of CCPs or their SAA refor-
mulations, one line of research has focused on inner and outer approximations of CCPs 
that are more tractable. This tractability often comes at the price of conservatism in 
the resulting solutions. Here we briefly review these formulations and refer the reader to 
[5,125] for a review of relaxations and approximations for CCPs.

• Scenario approximation. Scenario approximation (SA) [e.g., 29,30,33,34,58] entails 
sampling to approximate the distribution P 0 with a finite distribution PN with a 
set of outcomes Ω = {ω1, . . . , ωN }. However, unlike the SAA model (3), a usual 
stochastic program (not chance-constrained) is solved enforcing that the relations 
inside the chance constraint hold for each scenario. Thus, the scenario approximation 
problem is given by

min
x

c�x

s.t. x ∈ P(ω), ω ∈ Ω, (14a)

x ∈ X . (14b)

As a result, for polyhedral P(ω) and continuous x, the resulting SA formulation is 
a large-scale LP. The authors give a finite sample guarantee that the solution to 
this problem is feasible to the original CCP with high probability. Interestingly, this 
sample size does not depend on m, under certain assumptions. Unfortunately, the 
required sample size is typically large and the resulting solution is overly conservative. 
The SAA approach [149,178] is aimed at alleviating the conservatism of the SA 
approach by enforcing the chance constraint, with a smaller risk level, over the finite 
distribution PN , albeit as a MIP as opposed to an LP.

• CVaR approximation. From the Definitions 2 and 3 of value-at-risk (VaR) and condi-
tional value-at-risk (CVaR), respectively, it is readily apparent that for a univariate 
random variable X, CVaR1−ε(X) ≥ VaR1−ε(X). Therefore, for individual chance 
constraints (m = 1), one can approximate the constraint P (r(ω) −T (ω)x ≤ 0) ≥ 1 −ε, 
or in other words, VaR1−ε(r(ω) − T (ω)x) ≤ 0 with CVaR1−ε(r(ω) − T (ω)x)) ≤ 0. 
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For the case of finite discrete distributions, this approximation leads to tractable 
reformulations due to the LP representation of CVaR given in (28). In particular, 
for individual chance constrained CCP (3), the CVaR approximation LP is

min
x

c�x

s.t. η + 1
εN

∑
i∈[N ]

wi ≤ 0,

wi ≥ r(ωi) − T (ωi)x − η, ∀ i ∈ [N ],

x ∈ X .

In general, though, it is not possible to represent CVaR tractably [167]. Nevertheless, 
Nemirovski and Shapiro [167] give a family of safe (i.e., feasible with high probabil-
ity) and, in some cases, tractable approximations—referred to as generator-based 
approximations—that include the Bernstein approximation [183]. They show that 
the tightest such approximation is a CVaR approximation. However, CVaR approx-
imation is also conservative in some cases [7]. We refer the reader to [165], and 
references therein, for a survey on related safe tractable approximations for individ-
ual chance constraints.
In the case of joint chance constraints (m > 1), it is worthwhile to note that even 
for the discrete case, while a vector-valued multivariate VaR definition exists (Def-
inition 1), there is no unified definition of multivariate CVaR (see [155] and the 
discussions therein). This poses challenges in formulating related CVaR-based ap-
proximations that are tractable. One approach is to scalarize the multivariate random 
vector r(ω) −T (ω)x and use the corresponding univariate CVaR. Considering the am-
biguity of the scalarization weights leads to a multivariate CVaR definition that can 
be represented as a challenging MIP with big-M constraints [170]. MIP strengthening 
techniques can be used to improve the computational performance of the resulting 
multivariate CVaR formulations [117,138,171].

• Bonferroni approximation. Given that joint chance constraints are significantly 
harder than individual chance constraints, one approximation scheme that is com-
monly considered replaces the joint chance constraint with m individual chance 
constraints. In this case, consider replacing the joint chance constraint P (Tj(ω)x ≥
rj(ω), j ∈ [m]) ≥ 1 − ε with

P (Tj(ω)x ≥ rj(ω)) ≥ 1 − εj , (15)

where
∑

j∈[m]

εj ≤ ε. (16)

From Bonferroni’s inequality, it follows that any solution satisfying constraints 
(15)–(16) also satisfies the joint chance constraint [42,167]. Because optimizing over 
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εj is, in general, difficult, a common choice is εj = ε/m, j ∈ [m]. However, this is also 
known to be a conservative approach [41,167].

Note that while these approximations provide some statistical guarantees for feasi-
bility, they are known to be conservative and do not come with optimality guarantees. 
Indeed, Xie and Ahmed [246] show an inapproximability result for CCPs. Ahmed [2]
uses a similar idea as [167], this time to obtain a convex (Bernstein) relaxation that 
yield deterministic lower bounds. Integrated chance constraints proposed by Klein Han-
eveld [111] replace the non-convex chance constraints with a quantitative measure of 
shortfalls that lead to polyhedral representations [112] in the discrete case. In this case, 
they are equivalent to the LP relaxation of the MIP formulation of CCP. Alternatively, 
statistical lower bounds can be obtained by using order statistics based on SAA solutions 
[149,178]. Such deterministic or statistical bounds are useful in assessing the quality of 
a solution obtained from an approximation.

The finite sample guarantees of sampling based methods [29,30,34,149,178] are much 
too large and conservative in practice. On the other hand, for small N , the out-of-
sample performance of the SAA solution may even be infeasible to the original problem. 
For example, in [238], the authors consider a partial set covering problem when an oracle 
that can evaluate the true probability of the desired event is available. They observe that 
for sample sizes that lend themselves to a tractable solution of the resulting MIP, the 
SAA solution is often infeasible to the original problem. This is related to the over-fitting 
phenomenon in machine learning when the solution of the problem is highly sensitive to 
the samples {ωi}i∈[N ] used to obtain it. In the next section, we describe an approach 
that alleviates this problem.

3. Distributionally robust chance-constrained programming

Given the unavailability of the exact distribution P 0 and the potential overfitting 
issues due to SAA-based approaches, there has been growing interest in modeling 
stochastic optimization problems that are distributionally robust (see [195] and refer-
ences therein).

Formally, a distributionally robust chance-constrained program (DRCCP) is modeled 
as

min
x

c�x (17a)

s.t. sup
P∈F(β)

P (x /∈ P(ω)) ≤ ε (17b)

x ∈ X , (17c)

where F(β) is an ambiguity set of distributions and β is a set of parameters that de-
scribe the ambiguity set. Accordingly, the distributionally robust chance constraint (17b)
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ensures that the chance constraint is satisfied with respect to all distributions in F(β), 
even the worst possible one.

Several types of ambiguity sets have been studied in the literature based on various 
characteristics of the distribution, including moments, shape information (e.g., symmetry 
and unimodality), support, mixture models, and discrepancy measures (e.g., Wasserstein 
and φ-divergence) [3,31,43,72,75,91,105,121,130,167,226,242,248,250,264]. These ambigu-
ity sets lead to different computational tractability and conservatism of the corresponding 
DRCCP. In this survey, we will focus on moment-based ambiguity sets (Section 3.1) and 
Wasserstein ambiguity sets (Section 3.2).

3.1. Moment-based ambiguity

There are many successful developments on the tractability of single and joint chance 
constraints with moment ambiguity sets, which characterize P based on moment infor-
mation of P 0 [31,91,92,130,243,251,264].

For known mean value μ and covariance matrix Σ, El Ghaoui et al. [72] characterize 
a moment ambiguity set

F(μ, Σ) := {P : E[ω] = μ,E[(ω − μ)(ω − μ)�] = Σ}.

All probability distributions in F(μ, Σ) need to have the designated first two moments, 
and are otherwise allowed to have different distribution types (e.g., Gaussian, Gaussian 
mixture, etc.) or different support (e.g., discrete or continuous). Perhaps surprisingly, El 
Ghaoui et al. [72, Theorem 1] show that DRCCP is second-order conic representable for 
individual chance constraints (i.e., m = 1). Specifically, if T (ω) := ω�A + T0 for some 
data matrix A ∈ Rd×n and vector T0 ∈ R1×n and r(ω) := b�ω + r0 for some data vector 
b ∈ Rd and constant r0 ∈ R, then constraint (17b) is equivalent to

μ�(b − Ax) +
√

1 − ε

ε
‖Σ1/2(b − Ax)‖2 ≤ T0x − r0. (18)

This indicates that DRCCP may improve not only the out-of-sample performance of CCP 
when the sample size N is small but also the computational tractability. The same result 
is also discovered by Calafiore and El Ghaoui [31] and Wagner [229]. In addition, Zymler 
et al. [264] point out an interesting fact that, for m = 1 and ambiguity set F(μ, Σ), 
constraint (17b) is equivalent to its conservative approximation that replaces the chance 
constraint with CVaR (see Definition 3), i.e., sup

P∈F(μ,Σ)
CVaR1−ε(r(ω) − T (ω)x) ≤ 0.

For individual chance constraints, the result of El Ghaoui et al. [72] can be extended in 
multiple directions while maintaining both exactness and computational tractability. For 
example, Cheng et al. [47] incorporate support information into F(μ, Σ) (e.g., specifying 
that P is supported on a convex set) and derive an exact reformulation of (17b) based on 
linear matrix inequalities. Zhang et al. [258] consider potential errors of estimating the 



22 S. Küçükyavuz, R. Jiang / EURO Journal on Computational Optimization 10 (2022) 100030
mean value μ and covariance matrix Σ, e.g., when this is done based on inadequate his-
torical data. To address this, they adopt an alternative ambiguity set proposed by Delage 
and Ye [59] to allow the true mean value of ω to be within an ellipsoid centered at μ and 
the true covariance matrix to be bounded from above by Σ. For this extended ambiguity 
set, Zhang et al. [258] show that constraint (17b) is still second-order conic representable. 
For ambiguity set F(μ, Σ), Xu et al. [248] study a distributionally robust variant of the 
stochastic dominance constraint (see, e.g., Dentcheva and Ruszczyński [64]), which re-
quires different risk tolerances for violating a chance constraint with different magnitudes. 
More precisely, they study constraints sup

P∈F(μ,Σ)
P [T (ω)x ≥ r(ω) − s] ≤ ε − β(s) for all 

s ≥ 0, where β(s) is a pre-specified non-decreasing function of s, and show that these 
constraints are conic representable for various β(s) functions. Furthermore, Yang and 
Xu [251] and Xie and Ahmed [243] consider an extension that allows the event x ∈ P(ω)
to depend non-linearly on x and ω, e.g., x ∈ P(ω) if and only if f(x, ω) ≥ 0, where 
function f(x, ω) is concave in x and quasiconvex in ω. For example, Yang and Xu [251, 
Corollary 2] recast (17b) as a linear matrix inequality if r(ω), as well as each entry of 
T (ω), is either convex quadratic or linear in ω.

It is also possible to extend El Ghaoui et al. [72] by incorporating shape information 
into the ambiguity set F(μ, Σ). For example, Calafiore and El Ghaoui [31, Lemma 3.1]
strengthens F(μ, Σ) by additionally requiring P to be centrally symmetric (that is, 
P [A] = P [−A] for any Borel set A ⊆ Rd) and derives a conservative approximation 
of constraint (17b). Hanasusanto [90] considers a similar ambiguity set and allows the 
true covariance matrix to be bounded from above by Σ (instead of matching it exactly 
as in F(μ, Σ)). Consequently, Hanasusanto [90, Theorem 3.4.3] recasts (17b) as a set of 
conic constraints. Different from [31], Li et al. [130, Theorem 1] strengthens F(μ, Σ) by 
requiring that P is α-unimodal (a generalized notion of unimodality; see Dharmadhikari 
and Joag-Dev [66] for definition). They show that constraint (17b) is equivalent to a set 
of second-order conic constraints. Hanasusanto [90, Example 3.4.4] considers a similar 
ambiguity set, which bound the true covariance matrix from above by Σ, and recasts 
(17b) as linear matrix inequalities. Stellato [215] also considers a similar ambiguity set 
as in Li et al. [130] but requires P to be centered around μ. In that case, Stellato [215, 
Section 4.1.1] recasts (17b) as a single second-order conic constraint. There are works 
that consider other shape information and provide tractable conservative approximations
of (17b) (i.e., maintaining computational tractability at a potential cost of exactness). 
For example, Chen et al. [42] replace the covariance information in F(μ, σ) with bounds 
on forward and backward deviations, which capture the asymmetry of P , and derive a 
conservative approximation of (17b) via second-order conic constraints. Li et al. [129]
drop the covariance restriction from F(μ, Σ) while adding in that P is log-concave and 
supported on an ellipsoid centered at μ. For this case, Li et al. [129] derive conserva-
tive and relaxing approximations of (17b), all via second-order conic constraints. Postek 
et al. [185] replace the covariance information in F(μ, Σ) with the mean absolute devi-
ation (MAD) from the mean and further require that ω is componentwise independent. 
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For that case, Postek et al. [185] derive a conservative approximation of (17b) based on 
second-order conic constraints.

The special case of combinatorial DRCCPs with individual chance constraints is in 
general intractable because of the binary decision variables. Nevertheless, various formu-
lation strengthening and algorithmic techniques can be applied to solve these problems 
more effectively. For example, Ahmed and Papageorgiou [3] exploit supermodularity 
of their distributionally robust set covering problem to derive a stronger and com-
pact reformulation. Zhang et al. [258] derive a submodular relaxation of their DRCCP 
reformulation for a general binary packing problem and apply extended polymatroid 
inequalities. Zhang et al. [262] integrate various algorithmic techniques, including coeffi-
cient strengthening and structure-aware reformulation, into a branch-and-price algorithm 
to solve a bin packing problem.

Tractable reformulations for distributionally robust joint chance constraints, i.e., con-
straint (17b) with m ≥ 2, are much scarcer than for individual chance constraints. 
Indeed, Hanasusanto et al. [92, Section 2.3] show that DRCCP becomes NP-hard if the 
ambiguity set involves any non-homogeneous dispersion measure (e.g., covariance as in 
F(μ, Σ)) or any non-conic support (e.g., a hyperrectangle), or if T (ω) involves any un-
certainty (i.e., if T (ω) 
= T0 for some data matrix T0 ∈ Rm×n). Nevertheless, tractable 
reformulations do exist for ambiguity sets different from F(μ, Σ) or for chance constraints 
less general than (17b). For example, Hanasusanto et al. [92, Theorem 2] characterize 
an ambiguity set by the mean value, a positively homogeneous dispersion measure (e.g., 
MAD), and a conic support of ω, and derive a second-order conic reformulation of con-
straint (17b), in which T (ω) = T0. Xie and Ahmed [244, Theorem 2] consider a two-sided 
variant of (17b) with m = 2 and T1(ω) = −T2(ω) and derive a second-order conic refor-
mulation of constraint (17b) with regard to ambiguity set F(μ, Σ). Xie and Ahmed [243]
derive exact and tractable reformulations of (17b) with regard to multiple types ambi-
guity sets, e.g., when F(β) involves linear moment constraints only (i.e., on the mean 
value of ω) or when F(β) consists of a single (possibly nonlinear) moment constraint. Xie 
et al. [247] consider a subclass of constraints (17b) with separable uncertainties across 
individual inequalities, i.e., each row of [T (ω); r(ω)] involves a different set of uncertain 
parameters and, correspondingly, a different ambiguity set. They show that, if either 
T (ω) or r(ω) involves no uncertainty, then (17b) admits an exact and tractable reformu-
lation by applying the Bonferroni approximation (or union bound; see Bonferroni [28]).

Various conservative approximations for distributionally robust joint chance con-
straints have been proposed. Chen et al. [41] propose to approximate the chance 
constraint in (17b) by using CVaR and subsequently approximate the resulting dis-
tributionally robust CVaR (DR-CVaR) constraint via a classical inequality of order 
statistics. These two layers of approximation lead to a set of second-order conic con-
straints. Later, Zymler et al. [264] show that the second-layer approximation can be 
circumvented by deriving an exact reformulation of the DR-CVaR constraint, yielding 
a linear matrix inequality approximation of (17b). The approximations of [41] and [264]
can both be further improved by tuning certain scaling parameters. Unfortunately, it 
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Fig. 2. Optimal values of ED-F(μ, Σ) and ED-F(μ, Σ, α) with various φ and α (adapted from Figure 3 
of [130]).

appears to be difficult to simultaneously optimize such scaling parameters and the deci-
sion x in DRCCP. Cheng et al. [47] obtain a different approximation from that of [264]
when different rows of T (ω) are independent.

In Figs. 2a–2b, we summarize a case study of a distributionally robust chance-
constrained economic dispatch (ED) problem that appears in Li et al. [130] to demon-
strate the difference between F(μ, Σ) and an alternative ambiguity set that incorporates 
α-unimodality into F(μ, Σ), denoted by F(μ, Σ, α). Their case study uses the IEEE 30-
bus system and incorporates two uncertain parameters, representing prediction errors 
of the forecast power outputs at two wind farms. The formulation and parameters of 
this problem can be found in [130, Section 5.1]. In particular, we assume that the un-
certainties are α-unimodal with a mode at [0, 0]� and have a mean value μ = φ[1, 1]�
with φ ∈ {−3, −2, . . . , 3}. In Fig. 2a, we compare the optimal values of ED with regard 
to F(μ, Σ) and that of ED with regard to F(μ, Σ, α) with α = 1 and various φ values. 
From this figure, we observe that the optimal value of ED-F(μ, Σ) is consistently higher 
than that of ED-F(μ, Σ, α). This confirms that incorporating unimodality into the am-
biguity set makes DRCCP less conservative. In Fig. 2b, we compare the optimal values 
of ED-F(μ, Σ) and ED-F(μ, Σ, α) with φ = 0 and various α values. From this figure, we 
observe that, although the discrepancy between ED-F(μ, Σ) and ED-F(μ, Σ, α) declines 
as α increases, the convergence is sub-linear (in fact, it takes place when α exceeds 104). 
This demonstrates the significant influence of unimodality upon the ambiguity set and 
the corresponding DRCCP.

The case study just described highlights the utility of available distribution informa-
tion in reducing the degree of conservatism. In this regard, moment ambiguity sets are 
known to be more conservative than their counterparts based on discrepancy measures 
(e.g., a Wasserstein ambiguity set) when more data samples are available. On the other 
hand, there is a trade-off between conservatism and tractability—unlike with moment-
based ambiguity sets, DRCCP with a Wasserstein ambiguity set is not polynomially 



S. Küçükyavuz, R. Jiang / EURO Journal on Computational Optimization 10 (2022) 100030 25
solvable in general [246]. However, there have been recent developments in MIP formu-
lations for DRCCP under Wasserstein ambiguity, which we describe in the next section.

3.2. Wasserstein ambiguity

Due to its desirable statistical properties, the so-called Wasserstein ambiguity set has 
witnessed an explosion of interest. Wasserstein ambiguity set F(N, θ) is defined as the 
θ-radius Wasserstein ball of distributions on Rd around the empirical distribution PN . 
This is defined as

dW (P ,P ′) := inf
Π

{
E(ω,ω′)∼Π[‖ω − ω′‖] : Π has marginal distributions P ,P ′} ,

where the 1-Wasserstein distance, based on a norm ‖ · ‖, between two distributions 
P and P ′ is used. The Wasserstein ambiguity set is then defined as F(PN , θ) :=
{P : dW (PN ,P ) ≤ θ}. Given a decision x ∈ X and random realization ω ∈ Rd, we 
first define a safety set, S(x), of outcomes such that S(x) = {ω ∈ Ω : x ∈ P(w)}. The 
distance from ω to the unsafe set is

dist(ω, S(x)) := inf
ω′∈Rd

{‖ω − ω′‖ : ω′ /∈ S(x)} . (19)

Chen et al. [43, Theorem 3] and Xie [242, Proposition 1] show that the formulation

min
x,v,u

c�x

x ∈ X , v ≥ 0, ui ≥ 0, i ∈ [N ], (20a)

dist(ωi, S(x)) ≥ v − ui, i ∈ [N ], (20b)

ε v ≥ θ + 1
N

∑
i∈[N ]

ui (20c)

is an equivalent formulation of (17), by using the dual representation for the worst-case 
probability P [x /∈ P(ω)] under the Wasserstein ambiguity set P ∈ F(PN , θ) provided 
in [27,80,158]. (See also Hota et al. [99] for a deterministic non-convex reformulation of 
(17) and CVaR-based inner approximation of (17) for certain safety sets.)

Note that formulation (17) is non-convex due to constraint (20b). However, for certain 
safety sets S(·), MIP reformulations are possible [43,102,242]. Therefore, we can once 
again formulate a deterministic equivalent model to be able to solve it using off-the-shelf 
optimization software.

3.2.1. RHS uncertainty
In this section, we consider joint chance constraints with RHS uncertainty under 

certain common form of a safety set. In particular, let
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S(x) := {ω : Tx ≥ r(ω)} , (21)

where r(ω) := Bω + e, for a given an m × d data matrix B, e ∈ Rm, and T is a given 
m × n data matrix. For m = 1 (resp. m > 1), we say that the problem is an individual 
(resp. joint) chance-constrained problem with RHS uncertainty. Let Tj and Bj be a row 
vector of appropriate dimension corresponding to the jth row of T and B, respectively. 
In this case, the distance function is evaluated as [43]

dist(ω, S(x)) = max
{

0, min
j∈[m]

Tjx − Bjω − ej

‖Bj‖∗

}
, (22)

where ‖ · ‖∗ is the dual norm. We can then introduce binary variables, z, to capture the 
non-convex constraint (20b) to arrive at the mixed-integer linear program [43, Proposi-
tion 2]

min
z,u,v,x

c�x (23a)

s.t. z ∈ {0, 1}N , v ≥ 0, ui ≥ 0, i ∈ [N ], x ∈ X , (23b)

ε v ≥ θ + 1
N

∑
i∈[N ]

ui, (23c)

M(1 − zi) ≥ v − ui, i ∈ [N ], (23d)

Tjx − Bjωi − ej

‖Bj‖∗
+ Mizi ≥ v − ui, i ∈ [N ], j ∈ [m], (23e)

where Mi, i ∈ [N ] is a sufficiently large big-M coefficient.
A few remarks are in order. The computational studies of [43,242] indicate that this 

MIP reformulation is difficult to solve in certain cases—state-of-the-art solvers terminate 
with large optimality gaps after an hour time limit. To address this challenge, Ho-Nguyen 
et al. [94] propose a number of results that make an order of magnitude improvement 
in the solution times. Note that formulation (23) is not immediately amenable to the 
improvements we described for the SAA counterpart. For example, constraints (23e)
do not have the mixing structure that the SAA counterpart benefited greatly from. 
In particular, the continuous variables ui are not shared across scenarios, whereas the 
mixing set requires common continuous variables. On the other hand, as argued in [94], 
the SAA counterpart is a relaxation of (23). By making a key observation that relates 
the nominal SAA problem for PN to formulation (23), Ho-Nguyen et al. [94] give a 
stronger formulation and valid inequalities based on the same set of binary variables z. 
Furthermore, this strengthening does have the mixing structure. They also use pre-
processing techniques to reduce the formulation size drastically. On a related note, Ji 
and Lejeune [102] give a different MIP formulation of (17) under Wasserstein ambiguity 
under additional assumptions on the support of ω.
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3.2.2. LHS uncertainty
In this section, we consider joint chance constraints with RHS uncertainty under 

certain common form of a safety set. In particular, let

S(x) := {ω : T (ω)x ≥ r(ω)} , (24)

where rj(ω) := b�ωj + ej , j ∈ [m], for a given vector b ∈ Rκ, ωj , j ∈ [m] is a projection 
of ω to a κ-dimensional vector, and e ∈ Rm. Also, let the jth row of T (ω) be given by 
Tj(ω) := ω�A + Tj for some n × κ data matrix A� and T ∈ Rm×n. In this case, the 
distance function is measured by

dist(ω, S(x)) = max
{

0, min
j∈[m]

Tj(ω)x − rj(ω)
‖A�x − b‖∗

}
. (25)

We can then introduce binary variables, z to represent the non-convex constraint (20b)
and make a transformation of variables to arrive at the mixed-integer conic program 
([242, Theorem 2] and [44, Proposition 1 (for m = 1)]

min
z,u,v,x

c�x

s.t. z ∈ {0, 1}N , v ≥ 0, ui ≥ 0, i ∈ [N ], x ∈ X ,

ε v ≥ θ‖A�x − b‖∗ + 1
N

∑
i∈[N ]

ui,

Mi(1 − zi) ≥ v − ui, i ∈ [N ],

Tj(ωi)x − rj(ωi) + Mizi ≥ v − ui, i ∈ [N ], j ∈ [m],

where Mi, i ∈ [N ] is a sufficiently large Big-M coefficient, under the assumption that 
A�x 
= b for any x ∈ X . This assumption can be relaxed with appropriate safeguards as 
described in [44,95,242].

As in the case of SAA, the computational studies show that the LHS uncertainty case 
is a more challenging case than the RHS uncertainty. First, the resulting formulation 
is no longer linear, but conic. Furthermore, the coefficients of the common variables x
are scenario-dependent unlike the RHS uncertainty case. So it is not clear if similar 
enhancements that Ho-Nguyen et al. [94] performed for the RHS uncertainty case can 
be done here. To this end, Ho-Nguyen et al. [95] establish the link between the DRCCP 
and its SAA counterpart for the LHS case to identify valid inequalities based on mixing 
sets and strengthen the formulation. This results in significant improvements in the 
performance of the resulting MIP formulation. Distributionally robust variants of the 
resource planning problem (described in Section 2.4) with N = 100 that are unsolvable 
or terminate with high end gaps (40-80%) with the original formulation are now solvable 
or have much small end gaps (<15%) with the enhancements proposed in [95].



28 S. Küçükyavuz, R. Jiang / EURO Journal on Computational Optimization 10 (2022) 100030
For combinatorial DRCCPs, for which the decision variables are pure binary, further 
strengthening is possible. Xie [242] observe the submodularity of the norm and the terms 
in the distance operator, and propose the use of polymatroid inequalities to strengthen 
the formulation. They report significant improvements in the performance of the resulting 
algorithm. Kılınç-Karzan et al. [109] show how the polymatroid inequalities derived from 
the conic constraint can be generalized to the case of mixed-binary decisions. In addition, 
Shen and Jiang [209] derive polymatroid inequalities when the random parameters are 
binary-valued and show how these inequalities can be further strengthened via mixing 
and lifting schemes. In a related line of work, Wang et al. [235] consider an assignment 
problem and derive lifted cover inequalities based on a bilinear reformulation of their 
DRCCP.

Conservative approximations for DRCCP with Wasserstein ambiguity are related to 
their SAA counterparts described in Section 2.5. The approach of Erdoğan and Iyen-
gar [75] may be seen as a (robust) scenario approximation counterpart of [29,33] with 
similar sample complexity results when the uncertainty set is defined by a Prohorov 
metric, which is related to a Wasserstein metric. Furthermore, for distributionally ro-
bust CCPs under Wasserstein ambiguity [99] give an approximation based on a CVaR 
interpretation of the reformulation (see, also, [242] for this and two other approximations 
based on the scenario approximation and VaR approximation).

4. Concluding remarks

In this survey, we reviewed reformulations of CCPs based on sampling and distri-
butional robustness, when there is limited distributional information. We described the 
trade-offs between tractability and conservatism of the corresponding optimization mod-
els, as well as the trade-offs between the amount of distributional information used and 
over-fitting. There is some theoretical guidance on selecting sample sizes or other design 
parameters, such as the Wasserstein ball radius. However, this guidance is conservative, 
and instead the parameter choices are made and statistically verified using out-of-sample 
tests and cross-validation, in practice. There are many opportunities that arise from the 
recent developments in CCP models. As we outlined, these models often lead to mixed-
integer (conic) formulations, which optimization software is now able to handle in modest 
sizes. Coupling the novel mixed-integer conic CCP models with parallel developments in 
strengthening mixed-integer conic formulations [11–13,109,242,258] will likely enable the 
solution of large-scale problems before resorting to conservative approximations. Such 
strengthening approaches often exploit hidden submodularity—a recurring structure in 
many reformulations we discussed. Approximations continue to play an important role in 
applications where faster solution times are needed. In such cases, it is of interest to be 
able to provide some performance guarantees. In this regard, recent research in deriving 
strong relaxations and approximation algorithms for structured problems is promising.

We have focused on CCPs where the distribution is unknown in closed form, but 
either a sample or other limited information (e.g., moments, unimodality) is available. 
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We refer the reader to [45,46,48,93,219–223] and references therein for CCPs under con-
tinuous distributions with more knowledge of the distributions (e.g., Gaussian, known 
copulæ), and [208] for DRCCPs with Wasserstein ambiguity and a log-concave reference 
distribution (in place of an empirical distribution). By exploiting the known properties 
of the continuous distribution, if available, convexity of the feasible region may be estab-
lished, tractable reformulations and specialized algorithms such as generalized Benders 
decomposition can be developed.

We have primarily discussed single- or two-stage problems in this survey. Concep-
tually, one can also envision CCPs with multiple decision epochs. Zhang et al. [256]
consider multi-stage CCPs and give valid inequalities for the SAA reformulation. Lulli 
and Sen [151] consider a multi-stage problem under a finite discrete demand distribution, 
and propose a model wherein non-anticipativity is enforced only for the scenarios that 
meet the desired service constraint. The authors propose a branch-and-price algorithm, 
for the resulting formulation. Andrieu et al. [8], González Grandón et al. [84], and refer-
ences therein, consider problems with dynamic chance constraints, and propose solution 
methods under certain continuous distributions. Meraklı and Küçükyavuz [156] consider 
the risk associated with parameter uncertainty in infinite-horizon Markov decision pro-
cesses, and formulate this problem using a chance-constrained optimization framework. 
Models and methods for multi-stage CCPs are sparser due to their inherent difficulty 
not only in modeling, by taking into account the time consistency of solutions, but also 
in designing scalable solution methods. This is an area of further research.

Throughout the survey, we highlighted major trade-offs in comparing alternative 
methods: tractability, conservatism of solutions from approximations, and ease of im-
plementation. The particular choice of a solution method to choose will depend on 
the decision-maker’s risk preferences, available computational budget, and available re-
sources for implementation of special-purpose methods.

In closing, we believe that the developments in easy-to-implement reformulations will 
usher in new and exciting applications of CCPs, given the increasingly uncertain condi-
tions of operations in various sectors (extreme weather, autonomous devices, renewable 
power, pandemics, political unrest, etc.).
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Appendix A. Applications

In this section, we review a few recent and active applications of CCPs in practice—
this is not meant to be an exhaustive list.
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Finance Chance constraints (or equivalently, VaR as defined in (26)) have been applied 
in finance to control risks. Linsmeier and Pearson [135] provide motivation of using VaR 
as a risk measure in significant volatile financial markets. VaR has been widely adopted 
(e.g., by the US Securities and Exchange Commission) as a method of quantifying risks. 
Lemus Rodriguez [128], El Ghaoui et al. [72], Natarajan et al. [164], Zymler et al. [265], 
Huang and Zhao [100], Yao et al. [252], Çetinkaya and Thiele [37], Barrieu and Scan-
dolo [18], Lotfi and Zenios [143], Li et al. [132], and Ji and Lejeune [103] apply VaR 
and worst-case VaR (analogous to the distributionally robust chance constraints) in fi-
nance via mathematical optimization. In addition, Rujeerapaiboon et al. [200] and Choi 
et al. [50] apply chance constraints in multi-period portfolio optimization.

Healthcare Chance constraints find applications in appointment scheduling (e.g., Deng 
and Shen [60]), surgery planning (e.g., Deng et al. [61], Wang et al. [233], and Zhang 
et al. [259]), operating room planning (e.g., Wang et al. [234], Wang et al. [235], and Na-
jjarbashi and Lim [163]), vaccine allocation (e.g., Tanner and Ntaimo [217]), and social 
distancing during a pandemic (e.g., Duque et al. [71]), among others.

Power systems Zhang and Li [254], Bienstock et al. [24], Zhang et al. [257], Duan 
et al. [70], Lubin et al. [146,147] Dall’Anese et al. [55], Xie and Ahmed [244], Li et al. [129], 
and Li et al. [131] study chance-constrained variants of the optimal power flow problem. 
Ozturk et al. [176], Pozo and Contreras [186], and Wang et al. [232] consider chance 
constraints in the unit commitment problem. Vrakopoulou et al. [228], Pozo and Contr-
eras [186], and Wu et al. [239] apply chance constraints to schedule electricity systems in 
face of random outages and contingencies. Liu et al. [140], Liu et al. [141], Ravichandran 
et al. [196], and Zhang et al. [261] employ chance constraints to model an integrated 
system of power grid and electric vehicles. Other power system applications include 
coordinated load control (e.g., Zhang et al. [257] and Zhang et al. [260]), power grid 
topology control (e.g., Qiu and Wang [193] and Mazadi et al. [154]), and hydro power 
plant scheduling (e.g., Wu et al. [240] and Lodi et al. [142]). We refer the reader to a 
recent survey [224] and references therein for a more detailed review of CCP in energy 
management.

Transportation and routing Dinh et al. [67], Moser et al. [160], Pelletier et al. [179], 
Du et al. [68], Wu et al. [241], Muraleedharan et al. [161], Ghosal and Wiesemann [83], 
and Florio et al. [78] study chance constraints in the optimal route design for vehicles (also 
see Cordeau et al. [52]). Blackmore et al. [26], Farrokhsiar and Najjaran [76], Banerjee 
et al. [16], Du Toit and Burdick [69], da Silva Arantes et al. [54], Castillo-Lopez et al. [36], 
and Oh et al. [175] study chance constraints to find paths for robots while avoiding 
obstacles.

Supply chain, logistics, and scheduling Wang [230], Song and Luedtke [212], Hong 
et al. [98], Elçi and Noyan [73], Elçi et al. [74], and Noyan et al. [171] employ chance 
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Table 3
Reviews on CCPs.

Reference Focus Section
[25,107,190,191] Monographs on work prior to 2000 1
[62,63] Monograph, special distributions, (1 − ε)-efficient 

points
1, 2.3

[165] Approximations of individual chance constraints 2.5
[224] Special distributions (e.g., i.i.d. Gaussian); energy 

applications
1.1, Appendix A

[5] Relaxations and approximations of CCP 2.5
[125] Relaxations and approximations of joint CCPs 2.5
[4] SAA approaches, RHS uncertainty 2.1
This paper SAA and DRO-based reformulations, two-stage 

CCPs, applications
2.1, 2.2, 2.4, 3, Appendix A

constraints in the design of networks for logistics and humanitarian relief. Lejeune 
and Ruszczyński [126], Murr and Prékopa [162], Zhang et al. [256], and Liu and 
Küçükyavuz [136] apply chance constraints in logistics. Gurvich et al. [88] study chance 
constraints in the staffing of call centers. Cohen et al. [51] apply chance constraints to 
cloud computing. Lu et al. [145] apply chance constraints in non-profit resource alloca-
tion.

Wireless communication Li et al. [134], Soltani et al. [211], Mokari et al. [159], and Xu 
and Nallanathan [249] apply chance-constrained programming to accommodate the data 
rate requirement in orthogonal frequency division multiple access (OFDMA) systems. Ma 
and Sun [152] and Li et al. [133] apply chance constraints on the beamforming problem 
in communication networks.

Appendix B. Other surveys on CCPs

In Table 3, we provide a list of other survey papers and monographs on CCPs, their 
foci, and the sections in which we referred to them in this paper.

Appendix C. Preliminaries

In this section we review some preliminaries.

C.1. Value-at-risk and conditional value-at-risk

Here we present two relevant definitions pertaining to the risk associated with a 
univariate random variable that are used in our discussion. We refer the reader to 
[181,182,197] for a more detailed treatment of these risk measures.

Definition 2. For a univariate random variable X, with cumulative distribution function 
FX , the value-at-risk (VaR) at confidence level (1 − ε), also known as (1 − ε)-quantile, 
is given by:
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VaR1−ε(X) = min{η : FX(η) ≥ 1 − ε}. � (26)

It follows from (26) that, for any x ∈ R, the inequalities VaR1−ε(X) ≤ x and P (X ≤
x) ≥ 1 − ε are equivalent. That is, a chance constraint on random variable X can be 
equivalently represented as a constraint on its VaR.

Definition 3 ([198,199]). The conditional value-at-risk (CVaR) at confidence level 
(1 − ε) ∈ (0, 1] is given by

CVaR1−ε(X) = min
{

η + 1
ε
E ([X − η]+) : η ∈ R

}
, (27)

where (a)+ := max{0, a}. �
It is well known that the minimum in definition (27) is attained at the VaR at con-

fidence level (1 − ε). CVaR, introduced by Rockafellar and Uryasev [198], satisfies the 
axioms of coherent risk measures, such as law invariance and sub-additivity, as defined in 
[9]. It has other desirable properties, such as tractability—for finite distributions, CVaR 
can be formulated as a linear program and embedded in an optimization model [197]. 
More precisely, suppose X is a random variable with realizations X1, . . . , XN and corre-
sponding probabilities p1, . . . , pN . The optimization problem in (27) can equivalently be 
formulated as the linear program (LP):

min

⎧⎨
⎩η + 1

ε

∑
i∈[N ]

piwi : wi ≥ Xi − η, ∀ i ∈ [N ], w ∈ RN
+

⎫⎬
⎭ . (28)

Furthermore, let ρ denote an ordering of the realizations such that Xρ1 ≤ Xρ2 ≤ · · · ≤
XρN

. Then, for a given confidence level ε ∈ (0, 1] we have

VaR1−ε(X) = Xρq
, where q = min

⎧⎨
⎩j ∈ [N ] :

∑
i∈[j]

pρi
≥ 1 − ε

⎫⎬
⎭ . (29)

C.2. Submodularity and polymatroid inequalities

Here we review the concept of submodularity and valid inequalities for the epigraph 
of a submodular function.

Definition 4. A set function g : 2N → R is submodular if

g(A) + g(B) ≥ g(A ∩ B) + g(A ∪ B) ∀A, B ⊆ [N ]. �
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Given a submodular (set) function g : 2N → R, the extended polymatroid of g is

EPg :=

⎧⎨
⎩π ∈ RN :

∑
j∈V

πj ≤ g(V ), ∀V ⊆ [N ]

⎫⎬
⎭ .

By slightly abusing notation, for any z ∈ {0, 1}N , g(z) is equivalent to g(S), where S
is the support of z, i.e., for all i ∈ [N ], zi = 1 if and only if i ∈ S. Given a submodular 
function g : {0, 1}n → R, consider its epigraph

Qg :=
{

(t, z) ∈ R × {0, 1}N : t ≥ g(z)
}

.

Theorem 1. [12,144] The convex hull of Qg is given by

{
(t, z) ∈ R × [0, 1]N : t ≥ π�z + g(∅), ∀π ∈ EPg−g(∅)

}
.

The inequalities t ≥ π�z + g(∅) for π ∈ EPg−g(∅) are referred to as the polymatroid 
inequalities of g.

Polymatroid inequalities can be separated in O(N log N) time.

Appendix D. Additional valid inequalities for joint CCPs with RHS uncertainty

Consider the SAA formulation of a joint chance constraint with RHS uncertainty:

tj ≥ ri,j(1 − zi), ∀i ∈ [N ], ∀j ∈ [m], (30)∑
i∈[N ]

pizi ≤ ε. (31)

One can follow the description in Section 2.1 to obtain valid inequalities for the set

Mj =

⎧⎨
⎩(t, z) ∈ R+ × {0, 1}N : tj ≥ ri,j(1 − zi), ∀i ∈ [N ],

∑
i∈[N ]

pizi ≤ ε

⎫⎬
⎭ ,

that is, the mixing set with regard to an individual inequality for each j ∈ [m]. Fur-
thermore, Zhao et al. [263] propose a procedure to blend these mixing inequalities into 
a stronger one for the intersection of all Mj ’s (denoted as 

⋂
j∈[m]

Mj , with a slight abuse 

of notation) given by the system (30)–(31). To describe this procedure concretely, we 
define the following notation.

Definition 5. (Adapted from Definition 1 in Zhao et al. [263]) First, for all j ∈ [m], let 
{〈i〉j : i ∈ [N ]} denote a permutation of the set [N ] such that r〈1〉j ,j ≥ r〈2〉j ,j ≥ · · · ≥
r〈N〉j ,j . Accordingly, we define νj such that
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νj∑
i=1

p〈i〉j
≤ ε and

νj+1∑
i=1

p〈i〉j
> ε.

Second, as briefly described in Section 2.1, we let π denote another permutation of [N ]
such that pπ1 ≤ pπw

≤ · · · ≤ pπN
and define ϕ such that

ϕ∑
i=1

pπi
≤ ε and

ϕ+1∑
i=1

pπi
> ε.

In other words, ϕ provides a valid cardinality bound on the binary variables. Notice that 
ϕ does not depend on the index j and ϕ ≥ νj for all j ∈ [m]. Third, for θ ∈ [N ] and, for 
each j ∈ [m], mj ∈ [νj ] and qj ∈ {0} ∪ [ϕ − mj ], we define

• a set Uj = {uj1, uj2, . . . , ujaj
} ⊆ [mj ] with uj1 < uj2 < · · · < ujaj

;
• a set Lj with |Lj | = qj and θ ∈ Lj ;
• a sequence of integers {sjk : k ∈ [qj + 1]} ⊆ {0} ∪ [νj − mj + 1] such that

– 0 ≤ sj1 ≤ · · · ≤ sj,qj+1 = νj − mj + 1;
– Lj ⊆ {mj + sj1 + 1, . . . , N};
– there exists a permutation {�j1, �j2, . . . , �j,qj

} of Lj with �j1 = θ and �jk ≥ mj +
min{sjk + 1, sj,k+1} for all k ∈ [qj ];

– there exists a permutation {hj1, hj2, . . . , hj,qj
} of Lj such that p〈hj1〉j

≥ · · · ≥
p〈hj,qj

〉j
and

mj+sjk∑
i=1

p〈i〉j
+

qj∑
i=k

p〈hji〉j
> ε, ∀k ∈ [qj ]. �

Then, a strengthened mixing inequality valid for the system (30)–(31) is given by 
Theorem 2.1 of Zhao et al. [263] (also see Theorem 6 of Küçükyavuz [116]):

tj +
aj∑

k=1

(
r〈ujk〉j ,j − r〈uj,k+1〉j ,j

)
z〈ujk〉j

+
qj∑

k=1

δjk(1 − z〈�jk〉j
) ≥ r〈uj1〉j ,j , (32)

where

δjk =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

r〈mj+sj1〉j ,j − r〈mj+sj2〉j ,j if k = 1

max

⎧⎨
⎩δj,k−1, r〈mj+sj1〉j ,j − r〈mj+sj,k+1〉j ,j −

∑
i<k: �ji≥mj+min{1+sjk,sj,k+1}

δji

⎫⎬
⎭

for all 2 ≤ k ≤ qj .

Now, suppose that the sets 〈Uj〉j \ {θ} for all j ∈ [m] are mutually disjoint, where 
〈X〉j = {〈i〉j : i ∈ X} for any set X ⊆ [N ], and that 

∑
i∈∪ 〈[m +s ]〉 pi > ε. Then, 
j∈[m] j j1 j
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inequalities (32) can be blended into the following (stronger) valid inequality for the 
system (30)–(31) (see Theorem 4.1 in Zhao et al. [263]):

∑
j∈[m]

1
δj1

(
tj +

aj∑
k=1

(
r〈ujk〉j ,j − r〈uj,k+1〉j ,j

)
z〈ujk〉j

+
qj∑

k=1

δjk(1 − z〈�jk〉j
) − r〈uj1〉j ,j

)

≥ 1 − zθ. (33)

We illustrate the blended inequality (33) on our numerical example (Example 1; also 
see Example 3 of Zhao et al. [263] and Example 2 of Küçükyavuz [116]), in which m = 2, 
N = 9, and ε = 0.4. By definition, we obtain k = 6, ν1 = 3, and ν2 = 5. In addition, we 
obtain a mixing inequality

t1 + 0.25z1 + 0.25(1 − z9) ≥ 0.75

for M1 with m1 = 1, q1 = 1, U1 = {1}, L1 = {9}, and {s11, s12} = {1, 3}, and another 
mixing inequality

t2 + 0.5z7 + 0.25(1 − z9) ≥ 2

for M2 with m2 = 1, q2 = 1, U2 = {1}, L2 = {9}, and {s21, s22} = {4, 5}. Then, for 
θ = 9, we blend these two mixing inequalities to obtain

t1 + t2 + 0.25z1 + 0.5z7 + 0.25(1 − z9) ≥ 2.75,

which is valid for M1 ∩ M2.
There is no known exact separation algorithm for inequalities (32) and (33). However, 

effective heuristics are proposed in [263].
In another line of work, Kılınç-Karzan et al. [110] consider a set of the form

tj ≥ ri,j(1 − zi), ∀i ∈ [N ], ∀j ∈ [m],∑
j∈[m]

tj ≥ ε,

for a given ε that provides a lower bound on 
∑

j∈[m] tj (e.g., that obtained from the 
quantile information). The authors show that under some conditions on ε, the function 
g(1 − z) = max{ε, 

∑
j∈[m]{maxi∈[N ]{ri,j(1 − zi)}} is submodular. This implies, from 

Theorem 1 that the polymatroid inequalities, for t =
∑

j∈[m] tj , are sufficient to describe 
the convex hull of solutions to this set under the given conditions on ε. These are the 
so-called aggregated mixing inequalities for CCPs.
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