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Abstract

Predicted climate change extremes, such as severe or prolonged drought, may considerably
impact carbon (C) and nitrogen (N) cycling in water-limited ecosystems. However, we lack a
clear and mechanistic understanding of how extreme climate change events impact ecosystem
processes belowground. This study investigates the effects of five years of reoccurring extreme
growing season drought (66% reduction, extreme drought treatment) and two-month delay in
monsoon precipitation (delayed monsoon treatment) on belowground productivity and
biogeochemistry in two geographically adjacent semi-arid grasslands: Chihuahuan Desert
grassland dominated by Bouteloua eriopoda and Great Plains grassland dominated by B. gracilis.
After five years, extreme drought reduced belowground net primary productivity (BNPP) in the
Chihuahuan Desert grassland but not in the Great Plains grassland. Across both grasslands,
extreme drought increased soil pH and available soil nutrients nitrate and phosphate. The delayed
monsoon treatment reduced BNPP in both grasslands. However, while available soil nitrate

decreased in the Chihuahuan Desert grassland, the delayed monsoon treatment had little effect on
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soil ecosystem properties. Extreme drought and delayed monsoon treatments did not
significantly impact soil microbial biomass, exoenzyme potentials, or soil C stocks relative to
ambient conditions. Our study demonstrates that soil microbial biomass and exoenzyme activity
in semi-arid grasslands are resistant to five years of extreme and prolonged growing season
drought despite changes to soil moisture, belowground productivity, soil pH, and nutrient

availability.

Introduction

Drylands are highly responsive to changes in the amount and seasonality of growing season
precipitation (Knapp et al., 2008; Maurer et al., 2020) and are expected to be particularly
vulnerable to climate change (Diffenbaugh et al., 2008; Hoover et al., 2020; Lian et al., 2021;
Hanan et al., 2021). Climate models predict that many dryland regions will experience
increasingly variable precipitation patterns, enhanced aridity, and more frequent, severe, and
prolonged droughts (Cook et al., 2015; Schlaepfer et al., 2017; Bradford et al., 2020). In the
Southwestern U.S., some models predict little change in total summer precipitation (Gutzler and
Robbins, 2011). Other models forecast increasingly extreme and irregular rain events delivering
less rain overall (Seager et al., 2007) and extended pre-monsoon hyper-arid periods (Notaro et
al., 2010; Cook and Seager, 2013; Pascale et al., 2017). However, empirical evidence in these
regions demonstrates that aridity is increasing (Maurer et al., 2020), and prolonged and severe

droughts are already occurring (Cook et al., 2021; Zhang et al., 2021).

In aridlands, rainfall pulse size and frequency drive many ecological processes which regulate

biogeochemical cycles, e.g., plant primary production and soil microbial activity (Noy-Meir
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1973; Collins et al., 2008). Thus, changes to the amount and timing of rainfall may considerably
alter biogeochemical cycling, including carbon (C) cycling in drylands (Scott et al., 2009; Reed
et al., 2012; Song et al., 2020). Modifications to belowground dynamics with changing climate
conditions may be particularly important in drylands. Globally, drylands are estimated to store
~38% of the global belowground biomass C pool and ~44% of global organic matter C pool in
surface soils (top 30cm) (Hanan et al., 2021). However, our understanding of the climatic
controls that drive C dynamics belowground remains unclear (Canarini et al., 2017; Gherardi and

Sala, 2020; Deng et al., 2021).

There are various ways severe and extended dry periods can impact belowground
biogeochemical cycling and C storage. For instance, plants may allocate C from aboveground
biomass to belowground biomass to enhance water uptake during drought (Poorter et al., 2012;
Meng et al., 2022). Alternatively, as the duration and intensity of drought are critical factors in
the depletion of plant C and water reserves (DaCosta and Huang, 2009; Poorter et al., 2012),
extreme or prolonged drought events may create conditions that inhibit root C allocation
(Arcioni et al., 1985; Volaire 1995). Chronic dry and hyper-arid periods may also negatively
impact soil microbial function, e.g., by reducing plant C inputs, increasing osmotic stress, and
limiting substrate availability and enzyme mobility (as reviewed by Schimel, 2018). However, in
water-limited ecosystems, dew or small rain events (<1mm) can also activate nitrogen (N) and C
fixation by biological soil crusts or decomposition (e.g., C and N mineralization) by soil
microbes (Schwinning and Sala, 2004; Pointing and Belnap, 2012; Collins et al., 2014).

Therefore, as microbes may remain biologically active at water levels below that required by
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plants, drought conditions that maintain small rainfall events may preserve soil microbial

function.

Widespread concern over the effects of climate change on ecosystem structure and function has
led to experimental studies and meta-analyses assessing the impacts of altered precipitation
regimes on NPP and biogeochemical cycling across a variety of ecosystems (e.g., Canarini et al.,
2017; Wilcox et al., 2017; Song et al., 2019; Zhang et al., 2020). Among these studies, evidence
suggests that the sensitivity of belowground processes to drought in arid ecosystems differs from
mesic ecosystems. For example, a meta-analysis of altered precipitation studies in grasslands
suggests that belowground net primary productivity (BNPP) in arid regions is more sensitive to
precipitation increases or decreases than in wetter regions (Zhang et al., 2020). In contrast, soil
microbial biomass and hydrolytic C-degrading extracellular enzyme activities in aridlands appear
less sensitive to rainfall reductions than in more mesic ecosystems (Ren et al., 2017). Our
predictions of the effects of climate change on belowground dynamics, however, are challenged
due to the broad variation in factors between studies, e.g., climates, soil, ecosystem types,
experimental manipulation treatment, and duration (Canarini et al., 2017; Wilcox et al., 2017;
Hoover et al., 2018; Deng et al., 2021). It is also uncertain what influences ecosystem responses
to altered precipitation regimes. Thus, calls have been made for more studies to include site-level
characteristics (e.g., soil texture, nutrients, soil moisture, and pH), which may help identify
factors that influence the sensitivity of ecosystems to climate change (Ren et al., 2017; Wilcox et

al., 2017).
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To improve our understanding of the effects of predicted climate extremes on belowground C
and biogeochemical cycling in aridland ecosystems, we assessed the effects of two altered
precipitation patterns — severe reductions in growing season precipitation and extended hyper-
arid periods — both of which are predicted to occur in the North American southwest (Cook and
Seager, 2013; Cook et al., 2015) on belowground primary productivity and biogeochemical
processes in two Southwestern semi-arid grassland ecosystems. The two grasslands in this study
are considered an ecotone between a Chihuahuan Desert grassland and a Great Plains grassland
ecosystem. The Chihuahuan Desert grassland is dominated by Bouteloua eriopoda (black
grama); the Great Plains grassland is dominated by B. gracilis (blue grama). Chihuahuan Desert
grasslands are generally restricted to desert regions (Schmutz et al., 1991) but are expanding
northward into the southern edge of Great Plains grassland at our study site (Knapp et al., 2015;
Hoffman et al., 2020; Collins et al., 2020). For five years, each grassland experienced
reoccurring extreme drought (-66% reduction in growing season rainfall; extreme drought
treatment) or a two-month delay in monsoon precipitation timing (complete omission of rain
occurring during the monsoon season and captured rain applied later in the season; delayed

monsoon treatment).

Previous work in these grasslands revealed that black grama is more sensitive to drought than
blue grama (Knapp et al., 2015; Griffin-Nolan et al., 2019; Lagueux et al., 2020). Another earlier
study found that extreme drought altered soil microbial community assembly, but soil microbial
exoenzyme activity did not significantly change after two years (Ochoa-Hueso et al., 2018).
Fernandes et al. (2018) found that the extreme drought and delayed monsoon treatment

negatively affected cyanobacterial biological soil crusts after three years. However, the
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Chihuahuan Desert grassland experienced greater losses in cyanobacteria biomass and diversity,
and the delayed monsoon treatment had weaker effects overall in this study. The results from
earlier research in these grasslands lead us to predict that after five years:
1) The extreme drought treatment will have greater effects on belowground primary
productivity and biogeochemistry than the delayed monsoon treatment
2) Chihuahuan Desert grassland will be more sensitive to the altered precipitation

treatments than Great Plains grassland

Specifically, we hypothesized that five years of severe reductions in growing season rainfall
(extreme drought treatment) would reduce belowground primary productivity and soil microbial
biomass and function due to chronic water stress. We predicted responses to the delayed
monsoon treatment to be less pronounced than the extreme drought treatment because this
treatment does not reduce the total amount of rainfall (as captured rainfall is reapplied later in the
season). Additionally, in earlier studies, this treatment has shown to be less impactful than the
extreme drought treatment (Fernandes et al., 2018). Lastly, black grama has been shown to be
more drought sensitive than blue grama (Knapp et al., 2015; Griffin-Nolan et al., 2019; Lagueux
et al., 2020). Therefore, we expected to observe stronger responses to altered precipitation

treatments in the Chihuahuan Desert grassland than in the Great Plains grassland.

2. Materials and Methods
2.1. Site description
This study takes place in the Sevilleta National Wildlife Refuge (SNWR), a Long-Term

Ecological Research in central New Mexico, USA. The SNWR straddles the ecotone between
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the Colorado Great Plains and the Chihuahuan Desert (Buxbam and Vanderbilt, 2007). Thus, the
two sites in our study, a black grama-dominated Chihuahuan Desert grassland and a blue grama-
dominated Great Plains grassland, are ~5km apart. Soils are < 2 million years old and are
classified as Typic Haplargids with a lithology of piedmont alluvium (Buxbaum and Vanderbilt,
2007). Soil texture between the two sites slightly varies. In the Chihuahuan Desert site, soils are
a sandy loam mixture; soils in the Great Plains site are a mixture of sand, clay, and loam (Kréel-
Dulay et al., 2004). However, soils beneath the dominant grasses are generally similar in texture
and nutrient concentrations (Ladwig et al., 2021). The average annual temperature at the SNWR
is 13.2°C, with an average low of 1.6°C and a high of 33.4°C in July (Collins et al., 2008). Mean
annual precipitation is ~250mm, with most (~60%) falling during the summer monsoon, which
typically occurs from July to September (Pennington and Collins, 2007), but rainfall is spatially
quite variable and often highly localized during the monsoon season. During the year we
sampled (2017), the Great Plains site received almost double the rain as the Chihuahuan Desert

site during the summer monsoon (156mm vs. 83mm).

2.2. Experimental design

The two grasslands in this study are a part of the Extreme Drought in Grassland Experiment
(EDGE) platform. The experiment began in the spring of 2012 (pre-treatment) at the SNWR.
Each site contains three treatments (ten replicates): ambient rainfall, extreme growing season
drought, and delayed monsoon. The extreme drought treatment reduces growing season rainfall
(April through September) each year by 66%, which equates to a 50% reduction in annual
precipitation. The extreme drought treatment was imposed using transparent polyethylene roof

panels spaced apart to cover 66% of the roof’s surface area (Yahdjian and Sala, 2002). The
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delayed monsoon treatment altered monsoon precipitation timing by omitting 100% of monsoon
season precipitation from July to August each year. Rainfall was blocked using complete
polyethylene roof panels and gutters that directed rainfall into adjacent storage tanks. Each year
captured rain was applied over multiple watering events using raindrop quality sprinkler heads
from September to early October. All plots are 3x4 m in size and are paired spatially into blocks
with treatments assigned randomly within a block. Plots were hydrologically isolated from the
surrounding soil matrix by aluminum flashing to a depth of 15c¢m. Drought shelters are tall,
open-sided, and open-ended minimizing microclimate effects (Whitney et al., 2019). During an
average rainfall year, these passive drought shelters would simulate a 1-in-100-year drought
(Knapp et al., 2015) while maintaining rainfall size and frequency patterns typical of natural

drought years (Knapp et al., 2017).

2.3. Belowground net primary productivity and standing crop root biomass

During the fifth year of this experiment, BNPP was measured using root ingrowth bags (5 cm
diameter by 20 cm deep), with five replicates per treatment. Three ingrowth bags (per plot) were
inserted in the ground adjacent to clumps of grass in late June and removed in October after the
extreme drought and delayed monsoon treatments were completed. Roots were removed from
the bags by hand, washed, and then dried at 60 °C for at least 48 h and weighed to the nearest
0.0001g. For standing crop root biomass (root biomass), three samples per plot were randomly
sampled from beneath a patch of either blue or black grama grass (depending on the grassland
site) at a depth of 15 cm using a bucket auger. Replicate samples from each plot were combined

before determining soil volume. Roots were extracted by passing soil and roots through multiple
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sieves with the smallest diameter sieve size of 600 um. Roots were then washed and dried at 70°

C for 48h. Root biomass was calculated as root biomass per unit soil volume (g/cm?).

2.4. Soil sampling

During the fifth year of this experiment, we collected soil samples at three time points: pre-
monsoon (mid-June), monsoon (late July), and post-monsoon (early October). During each
sampling period, five soil cores were randomly sampled from each plot at a depth of 10 cm using
a 1.9 cm wide soil corer. Following collection, soil samples were homogenized, passed through a
2 mm sieve, and kept at 4°C until further processing. For soil microbial exoenzyme analyses, a

subsample of soil was immediately frozen at -20°C.

2.5. Soil moisture and pH

In each plot, soil moisture was measured every 15 minutes using two Campbell Scientific CS-
616 probes. One probe was buried at 45° to obtain an integrated measure of moisture at the top
~20cm of soil; a second probe was vertically inserted to integrate soil moisture from 0-30 cm
depth. Soil pH was determined using a 2:1 (dH2O: soil) slurry after stirring and then allowing it

to settle for 30 minutes.

2.6. Soil carbon and nutrient stocks and pools

Available soil nitrate (NO3"), ammonium (NH4"), phosphate (PO4>") were measured during the
pre-monsoon, monsoon, and post-monsoon sampling periods, and extractable organic carbon
(EOC), and extractable total nitrogen (ETN) were measured during the monsoon and post-

monsoon sampling periods only. Extracts were obtained by shaking 5g of fresh soil in 0.5 M
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K>SO4 for two hours and then filtering through glass filter paper. All nutrients were assessed
using colorimetric microplate assays (BioTEK SynergH.T.HT, Winooski VT, USA). Available
soil NO3—N was analyzed with a modified Griess reaction (Doane and Horwath, 2003),
available soil NH4"-N was quantified using the Berlethot reaction protocol (Rhine et al., 1998),
and PO4>—P was measured with a malachite green assay (D’Angelo et al., 2001). EOC and ETN
concentrations were determined using a Shimadzu analyzer (TOC-VCPN; Shimadzu Scientific
Instruments Inc., Columbia, MD, USA). Total % organic C (%0OC) and % total N (%N) were
measured once using soils collected during the monsoon sampling period. %OC and % TN
subsamples were dried at 50°C, ground and carbonates were removed with an HCI fumigation
(Harris et al., 2001) and then quantified with a dry combustion C and N analyzer

(ElementarPyroCube®).

2.7. Microbial Responses

Microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN) were assessed during
the monsoon and post-monsoon sampling periods. Five grams of fresh soil were incubated with
2mL of ethanol-free chloroform for 24 hours at room temperature. Following incubation, soils
were extracted and analyzed for EOC and ETN as above. MBC and MBN were calculated as the
difference between EOC and ETN concentrations, respectively, from fumigated and non-

fumigated samples.

We examined hydrolytic and oxidative enzymes which release C, N, and phosphorous (P) at the
terminal stages of organic matter decomposition during the monsoon and post-monsoon

sampling periods using standard high throughput microplate protocols (Saiya-Cork et al., 2002;
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McLaren et al., 2017). Examined hydrolytic exoenzymes include cellulose-degrading [3-
glucosidase (B-gluc), and cellobiohydrolase (Cello), protein-degrading leucyl aminopeptidase
(LAP), chitin-degrading N-acetylglucosaminidase (NAG), and acid phosphatase (Phos), and
oxidative enzymes peroxidase (Perox), and phenol oxidase (Phenol), which aid in the
decomposition of recalcitrant organic matter. Frozen samples were thawed immediately at room
temperature before analysis. One gram of soil was blended with 125mL of modified universal
buffer at pH 7 and pipetted into 96-well plates with eight analytical replicates per sample.
Fluorescing, 4-methylum-belliferone (MUB) tagged substrate (B -D-glucoside,  -D-cellobioside,
N-acetyl- B -D-glucosaminide and phosphatase) or 7- amino-4-methylcoumarin (MC) tagged
substrate (Leucine amino peptidase) was added to each hydrolytic enzyme assay. Hydrolytic
enzyme assays were incubated at room temperature for 5 hours and 25 minutes, with
measurements taken every 45 minutes to ensure activity was measured in the linear range of the
reaction. Background fluorescence was measured for each soil, substrate, and quenching of
MUB or MC (LAP only) by soils, and we used MUB/MC standard curves to calculate the rate of
substrate hydrolyzed. Oxidative enzyme analysis was performed using L-3,4-
dihydroxyphenylalanine (L-DOPA) as substrate and incubated at 10°C for 25 hours. Sample
fluorescence of hydrolytic enzymes and oxidative enzyme color absorbance was measured at 360
nm excitation and 460 nm emission, respectively, using a BioTek Synergy HT microplate reader

(BioTek Instruments Inc., Winooski, VT, USA).

2.8. Statistical analysis
Continuous measures of soil moisture data were averaged by month (April- October 2017) and

were then grouped according to relevant treatment periods. Soil moisture differences between
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ambient and the extreme drought treatment plots were analyzed during the drought treatment
period in which the extreme drought plots received -66% of rainfall (April-September). The
delayed monsoon treatment and ambient plots were grouped into two treatment periods: delayed
monsoon treatment period when rain was 100% omitted (July-August), and post-delay, when
captured rainfall was applied to delayed monsoon treatment plots (September-October). All other
variables were measured either once (BNPP, root biomass, %OC, and %N), twice (EOC, ETN,

MBC, MBN, and all exoenzymes), or three times (soil pH and nutrients) (see Table 1).

The effects of rainfall treatments were evaluated using repeated-measures linear mixed-effects
model ANOVA [LMM, R-package Ime4, (Bates et al., 2015)] or when appropriate generalized
linear mixed-effects models (GLMM) [glmmTMB, R package (Brooks et al., 2017)]. Our fixed
effects were treatment, site, sample period (when more than one sampling occurred), and their
interactions, and to account for repeated sampling, we included sampling block as a random effect.
All LMM and GLMM assumptions were evaluated using the ‘Diagnostics for HierArchical
Regression Models’ (DHARMa) package (Hartig, 2021). When LMM passed diagnostics, we used
the ‘anova’ function on the LMM model object. When LMM violated assumptions of equal
variance and normally distributed residuals (response variables: BNPP, available soil nitrate,
exoenzymes: Phos, B-gluc, and NAG), we performed GLMM analyses using a Gamma distribution
log-link function and to account for the zero-inflated response variables (exoenzymes: Cello and
LAP), we conducted zero-inflated Tweedie distribution log-link function analyses (Brooks et al.,
2017). For the oxidative enzymes, most of the values were below minimum detectable levels, and
these data were not analyzed. For GLMM models, the significance of the main effects and their

interaction was determined based on chi-squared tests of their fitted values, using the Type-III
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sum-of-squares ‘Anova’ function from the car R package (Fox and Weisberg, 2019). For both
LMM and GLMM, we used the emmeans R package (Lenth, 2021) to conduct Tukey post hoc
comparisons between estimated marginal means for all treatment effects or interactions. All
statistical analyses were performed using R statistical software version 4.1.2 (R Development Core
Team, 2021) and R studio (RStudio Team, 2021). Data figures were constructed using the ggplot2

package (Wickham, 2016).

3. Results

3.1. Belowground net primary productivity and standing crop root biomass

BNPP response to altered precipitation differed between the two grasslands (site-by-treatment
interaction, Table S1). In the Chihuahuan Desert grassland, both extreme drought and delayed
monsoon decreased BNPP (Table 2; Table S6; Fig. 1a), whereas, in the Great Plains grassland,
only the delayed monsoon treatment reduced BNPP (Table 2; Table S6; Fig. 1b). Root biomass

did not differ between treatments in either grassland (Table 2; Table S1; Fig. Sla,b).

3.2. Soil moisture and pH

The extreme drought and delayed monsoon treatment altered soil moisture during each treatment
period (Table 2; Table S2). During the periods when rainfall was reduced (drought period for
extreme drought treatment) or 100% omitted (delay period for the delayed monsoon treatment),
soil moisture was significantly lower under both altered precipitation treatments (Table 2; Table
S2; Fig. 2a,b). The delayed monsoon treatment also showed a treatment-by-period interaction
(Table S2). Pairwise comparisons revealed that during the post-delay treatment (when captured

rainfall was applied to delayed monsoon plots), there was marginally higher soil moisture in the
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delayed monsoon treatment plots than in the ambient plots (Table S6; Fig.3b). Additionally,
during the treatment periods (drought and delay periods), soil moisture was consistently higher in
the Great Plains grassland than in the Chihuahuan Desert grassland across all treatments (Table
S2; Table S7; Fig. S2). Extreme drought increased soil pH at both sites (Table 2; Table S3; Table

S6).

3.3. Soil carbon and nutrient stocks and pools

The effects on soil carbon and nutrients were more pronounced under the extreme drought
treatment, and there were few effects under the delayed monsoon treatment (Table 2; Table S1;
Table S3). Extreme drought altered most available soil nutrients (Table 2; Table S3). Available
soil NO3™ had a three-way interaction with treatment, site, and sampling period (Table S3).
During the monsoon sampling period, extreme drought increased available soil NO3™ in the Great
Plains grassland (Fig.3b; Table 2; Table S6) and marginally increased NOs™ in the Chihuahuan
Desert site during the post-monsoon sampling period (Fig.3a; Table 2; Table S6). At both sites,
extreme drought marginally decreased available soil NH4* and marginally increased PO4*~
(Table 2; Fig. 3a,b; Table S3). The delayed monsoon treatment had few effects on available soil
nutrients except for NO3~ which showed a three-way interaction between treatment, site, and
sampling period (Table 2; Table S3). Here, the delayed monsoon treatment reduced available soil
NOs™ in the Chihuahuan Desert site during the monsoon sampling period (Fig. 3a; Table 2; Table
S6). Across both sites and sampling periods, EOC, ETN, total soil %OC, and %N did not

significantly differ between altered precipitation treatments (Table S2; Table S3; Fig. 3¢,d,e,f).

3.4. Microbial responses
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Compared to the ambient treatment, soil microbial responses were not significantly affected by
our extreme drought or delayed monsoon treatments (Table 2). Although MBN and many
enzymes displayed treatments by sampling or site interactions (Table S4; Table S5; Fig. 4),
pairwise comparisons revealed no significant differences (albeit marginal differences were
present between treatments, but not between controls and treatments, for MBN and some

enzymes) between ambient and altered precipitation treatments (Table S6).

4. Discussion

In this study, we assessed the effects of five years of two altered precipitation regimes predicted
to occur in the future (Cook and Seager, 2013; Cook et al., 2015), extreme growing season
drought, and delayed monsoon timing on BNPP and root biomass and soil biogeochemistry in
two semi-arid grasslands. We identified more ecosystem soil responses to extreme drought than
the delayed monsoon treatment., supporting our first hypothesis. Additionally, although we
observed only a few differences between sites, the Chihuahuan Desert grassland was generally
more sensitive to our altered precipitation treatments, supporting our second hypothesis. Extreme
drought reduced BNPP in the Chihuahuan Desert grassland and increased soil pH and soil
nutrients. The delayed monsoon treatment reduced BNPP in both sites and decreased available
soil NOs3™ in the Chihuahuan Desert site. Finally, despite declines in BNPP and changes to soil
ecosystem properties, extreme and prolonged drought did not significantly impact soil microbial

biomass and exoenzyme potentials, nor did we detect effects on soil C pools (EOC and %OC).

4.1. Effects of extreme drought and delayed monsoon timing on soil moisture



343  Aridlands, such as these grasslands, are pulse-driven ecosystems, whereby the timing and

344  magnitude of rain pulses drive many ecological processes and are punctuated by periods of

345  aridity and low biological activity between rain events (Noy-Meir, 1973; Austin et al., 2004;
346  Loik et al., 2004; Collins et al., 2014). Our extreme drought and delayed monsoon treatments
347  effectively decreased soil moisture during the rain reduction and omission periods, a factor that
348  should be essential in driving changes in belowground structure and function. However, despite
349  the grassland sites being geographically adjacent (separated by ~5km), soil moisture in the

350  Chihuahuan Desert grassland was lower than in the Great Plains grassland across all treatments.
351  During the year we sampled, the Great Plains site received almost double the rain as the

352  Chihuahuan Desert site during the summer monsoon (156mm vs. 83mm). Thus, rainfall and soil
353  moisture differences may explain the few responses (particularly BNPP and NO3") to treatments
354  that differed between sites.

355

356  4.2. Belowground net primary production and biomass

357  Relative to aboveground measures, studies of BNPP response to extreme drought and shifts in
358  seasonal precipitation timing are scarce (Wilcox et al., 2017; Sun et al., 2021). Nevertheless, our
359 findings are consistent with a four-year extreme growing season drought that reported declines in
360  BNPP across four Great Plains grasslands spanning a 309- 825 mm precipitation gradient

361  (Carroll et al., 2021). However, the extreme drought treatment did not consistently reduce BNPP
362  across both sites in our study. While blue and black grama are drought tolerant grasses (Smith et
363  al, 2004; Hoffman et al., 2020), as predicted by our second hypothesis, the differential

364  sensitivity of BNPP to extreme drought suggests that the Great Plains blue grama-dominated

365  grassland may be more drought tolerant than the Chihuahuan Desert black grama-dominated
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grassland. Still, it is important to note the difference in total rainfall between the sites that likely

contributed to this difference.

Other studies show black grama is particularly sensitive to drought. For example, in semi-arid
grasslands, drought strongly and rapidly reduced black grama cover and ANPP relative to blue
grama (Béez et al., 2013; Munson et al., 2013; Knapp et al., 2015). Previous research in our
experimental sites also found that extreme drought reduced black grama survival, biomass, and
genetic variability in surviving plants (Whitney et al., 2019), while blue grama exhibited greater
leaf-level drought tolerance than black grama (Griffin-Nolan et al., 2019). Additionally, during
the year we sampled, although vegetation cover did not differ between delayed monsoon plots
and ambient plots in either grassland, extreme drought more dramatically reduced the % cover of
black grama in the Chihuahuan Desert grassland compared to blue grama in Great Plains
grassland (Loydi and Collins, 2021). Thus, the differential sensitivity of the above-described
aboveground responses and BNPP (our study) indicates the extreme drought treatment in the
Chihuahuan Desert site and the delayed monsoon treatment in both sites pushed these grasslands
beyond their water stress thresholds. This is particularly relevant in the delayed monsoon
treatments where total precipitation was the same as ambient, emphasizing the importance of

prolonged dry periods and precipitation seasonality.

In addition to rainfall differences between the two grasslands, the structural and physiological
characteristics of the plants, and soil texture, may have influenced the soil water retained or lost
from the rooting zone via transpiration or evaporation (Austin et al., 2004; Huxman et al., 2004;

Loik et al., 2004). In our study, lower water inputs (differences in rainfall between the two
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grasslands and the complete omission of rainfall during the delayed monsoon treatment period),
differences in plant cover, and slight differences in soil texture (i.e., sandy loam mixture in the
Chihuahuan Desert site and sand, clay, and loam soil in the Great Plains site; Kroel-Dulay et al.,
2004), may have led to more drastic declines in soil moisture and consequently BNPP. Soil
surface cover is an essential factor influencing soil water availability (Breshears and Barnes,
1999; Loik et al., 2004). Lower soil temperatures under plant canopies can lead to lower soil
evaporation rates (Breshears et al., 1998; Breshears and Barnes, 1999), where soil temperatures
under grasses have been shown to be cooler than bare soils, presumably due to reduced solar
radiation (Popiel et al., 2001). Additionally, while the inverse texture hypothesis suggests
evaporation rates may decrease in coarser textured soil due to greater water infiltration ability
(Noy-Meir et al., 1973), smaller rainfall events under our extreme drought treatment may favor
the finer-textured soil in the Great Plains grassland, which tends to have a higher water holding
capacity than coarser textured soils (Hook and Burke, 2000; Austin et al., 2004). Thus, under
extreme drought conditions, relatively higher water inputs coupled with sustained water
availability may have led to higher ANPP, which allowed BNPP to persist in the Great Plains

grassland.

Alternatively, water availability can control the interannual variability of BNPP (Xu et al., 2012;
Byrne et al., 2013). Therefore, our single year of measurement may not represent the overall
response of BNPP to extreme drought in the Great Plains grassland. For instance, although
BNPP was sensitive to three years of drought in a shortgrass steppe, variable results between
years led to a lack of a robust linear relationship between BNPP and precipitation (Byrne et al.,

2013). Additionally, experimental rainfall reductions can alter the vertical root distribution of
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BNPP by increasing root production at deeper soil layers (10-30 cm) (Zhang et al., 2019).
Although most root biomass is located within the top 20 cm of soil at our site (Kurc and Small,
2007), black grama roots can reach depths of 45c¢m (Gibbens and Lenz, 2001). However,
aboveground plant measures from our experimental plots suggest that black grama is particularly
drought-sensitive (Griffin-Nolan et al., 2019; Whitney et al., 2019; Loydi and Collins, 2021).
Therefore, it is also likely that the extreme drought treatment led to a stronger response of BNPP

in the Chihuahuan Desert site.

Contrary to BNPP, we did not detect changes to standing crop biomass (live + dead). Our
findings differ from other studies that reported root biomass decreased in response to drought in
grasslands (e.g., Fiala et al., 2009; de Vries et al., 2016) but coincide with a recent meta-analysis
that found that drought consistently reduced root biomass in forests and shrublands but showed
no relationship across grasslands (Deng et al., 2021). Nevertheless, differences in root biomass
may not have been detectable during the time frame of our study. In a Patagonian steppe
(Berenstecher et al., 2021) and a semi-arid northern grassland (McLaren and Turkington, 2010),
the rate of root decomposition belowground was much slower than leaf tissue decomposed
aboveground, which indicates that the turnover of belowground tissues is relatively slow in semi-
arid ecosystems. Also, it is difficult to separate living and recently dead roots (Ostertag and
Hobbie, 1999). Therefore, it may be challenging to detect recent differences in root production

between our treatments with belowground root biomass measurements.

4.3. Soil carbon and nutrient stocks and pools
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After five years, despite changes to BNPP under both treatments, most changes to soil ecosystem
properties occurred under the extreme drought treatment and primarily only affected soil nutrient
pools, particularly soil NOs™. Extreme drought increased soil pH, available soil NOs", and
marginally increased available soil PO4>". Our findings coincide with other drought studies that
report the accumulation of NOs3™ in semi-arid steppe ecosystems (White et al., 2004; Yahdjian et
al., 2006; Evans and Burke, 2013) and other arid ecosystems such as a semi-arid pinon-juniper
woodland (Cregger et al., 2014). Additionally, while we did not observe higher concentrations of
ETN, our results partially agree with a recent meta-analysis that found higher mineral and

extractable organic N in response to drought across grasslands globally (Deng et al., 2021).

Many factors can drive nutrient accumulation and losses under dry conditions, e.g., reduced
leaching (Jalali, 2009; Mubhr et al., 2010; Cregger et al., 2014), lower biological soil crust N
fixation (Barger et al., 2016), increased volatilization of ammonia with small rain events
(Schlesinger and Peterjohn, 1991), and reduced uptake by plants (He and Dijkstra, 2014; Deng et
al., 2021). However, N retention in soils remains high at our study site even under frequent small
rain events (Kwiecinski et al., 2020). Consequently, nutrient leaching losses in our extreme
drought plots are unlikely. Additionally, N-fixing cyanobacteria are rare in soil crusts in our
study sites (Fernandes et al., 2018). Therefore, we suggest that extreme drought conditions may
have led to soil N and P accumulation due to the reduced uptake of soil nutrients by plants and
possibly continued activity of soil microbes. While extreme drought did not consistently reduce
BNPP at both sites, this treatment consistently decreased aboveground plant cover (Loydi and
Collins, 2021). Therefore, the plot-level reduction in root biomass would likely result in reduced

plant nutrient uptake (Austin et al., 2004; Homyak et al., 2017; Deng et al., 2021). Additionally,



457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

although potential exoenzyme activity may continue even if microbial biomass and respiration
decline (Geisseler et al., 2011), relative to ambient conditions, we found no changes to MBC,
MBN, and exoenzyme activity, suggesting sustained activity by soil microbes under drought was

likely.

Unlike extreme drought, the delayed monsoon treatment altered very few soil ecosystem
properties, supporting our first hypothesis. The delayed monsoon treatment reduced available
soil NO;3™ during the mid-monsoon sampling period in the Chihuahuan Desert grassland. The
decline in NOj3™ during the mid-monsoon sampling period and differences in responses between
the two grasslands may be due to the difference in soil moisture during the sampling period and
between sites. Soil NOs™ was lower during the sampling period when rainfall was 100% omitted,
and this reduction only occurred at the Chihuahuan Desert grassland site, which had lower soil
moisture than the Great Plains site across all treatments. Although some grasslands show
negligible declines in N mineralization to drought (Deng et al., 2021), lower soil NO3 may
suggest declines in N mineralization, which can be strongly influenced by moisture fluctuations
triggered by rain events (Austin et al., 2004; Manzoni et al., 2012; Risch et al., 2019). Dry soil
conditions may also limit soil exoenzyme mobility and substrate availability (Geisseler et al.,
2011; Manzoni et al., 2012; Schimel et al., 2018; Asensio et al., 2021). However, our study

found no significant effect on ETN, %N, or potential exoenzyme activity.

4.4. Microbial biomass and exoenzyme potentials
Rainfall reductions have been shown to impact soil microbial biomass and activities across the

globe (Ren et al., 2017; Deng et al., 2021). However, despite apparent changes in BNPP and soil
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N pools, our study found no difference in soil microbial biomass and potential exoenzyme
activity with either precipitation treatment. These results, however, are consistent with increasing
evidence that microbial biomass generally has lower sensitivity to drought in aridlands, as
reported in a recent metanalysis that found undetectable changes to microbial biomass in longer-
term (>2-3 years) studies (Ren et al., 2017). Further, multiple studies have shown sustained
exoenzyme activities under dry soil conditions (Stursova et al., 2006; Geisseler et al., 2011;
Ochoa-Hueso et al., 2018). Although factors that influence the resistance or resilience of soil
microbial communities under extreme climate conditions remain poorly understood, multiple
mechanisms have been suggested to influence their survival and continued activity (Bardgett and
Caruso, 2020). For example, soil microbial communities may shift toward drought-tolerant taxa
(Ochoa- Hueso et al., 2018). At our study sites, but after only three years of extreme drought,
Ochoa-Hueso et al. (2018) found that drought reduced fungal and bacterial richness in soils in
the Chihuahuan Desert site but did not affect potential exoenzyme activity (Ochoa-Hueso et al.,
2018). Another study revealed that extreme drought and, to a lesser extent, delayed monsoon
treatment negatively affected cyanobacteria-dominated soil crusts after three years, and these
effects were more pronounced in the Chihuahuan Desert grassland than in the Great Plains
grassland (Fernandes et al., 2018). Therefore, despite changes to soil and biocrust communities,
BNPP, and other soil properties, our study reveals that soil microbial biomass and potential

exoenzyme activities were preserved after five years of extreme precipitation manipulations.

Few studies have explored the influence of soil properties on soil microbial resistance and
resilience to climate extremes; however, soil resource availability has been suggested to play an

essential role (Bardgett and Caruso, 2020). As our treatments occurred during the period when
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dew formation is exceptionally rare (Agam and Berliner, 2006), atmospheric moisture may not
be an essential source of soil moisture for soil microbial activity and C cycling during rain-free
periods at our site (Agam and Berliner, 2006; McHugh et al., 2015). In our study, we found no
detectable changes to other measures of belowground C, including soil %OC or EOC to either
treatment, while soil nutrients generally increased. Thus, we propose that soil microbial
functional resistance in our study may be associated with sustained C, N, and water availability.
However, few altered precipitation studies occur over the long term (>10 years) and combine
water reductions with high temperatures, which can increase evaporative demands (Hoover et al.,
2018; Deng et al., 2021). Thus, as resources are depleted over time, or water deficits intensify,

aridland soil microbial response remains uncertain.

5. Conclusions

The Chihuahuan Desert grassland is expanding northward and replacing Great Plains grassland
in response to changing climatic drivers and increasing aridity (Rudgers et al., 2018; Collins et
al., 2020). This ongoing transition has important implications for ecosystem C dynamics in this
semi-arid region, given that ANPP (Knapp et al., 2015) and BNPP (this study) of Chihuahuan
Desert grasslands are more sensitive to drought than Great Plains grasslands. Additionally, water
and N availability are the two most limiting factors regulating ecosystem function in aridlands
(Hooper and Johnson, 1999). Changes to nutrient availability, such as N, may alter plant
community growth and structure (Ladwig et al., 2012) and soil microbial community structure
and function (Treseder, 2008; Ramirez et al., 2012) during periods when water is no longer
limiting. Lastly, although drought experiments and meta-analyses consistently predict negative

impacts of drought on the diversity and abundance of soil microbial communities (Wu et al.,
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2011; Ochoa- Hueso et al., 2018), we found an overall lack of change in soil microbial biomass
and exoenzyme activity and ultimately in soil C stocks, which suggests that soil microbial
processes are relatively resistant to changes in rainfall regimes over the short-term. In the long-
term, however, it remains unclear if chronic drought and changes in precipitation seasonality,
especially if they co-occur, will eventually impact soil microbial function with significant

consequences for dryland C and nutrient cycling.
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Variables
BNPP

Root biomass
Soil moisture
Soil pH

Sampling periods

Post-treatments (October)

Monsoon

April- October

Pre-monsoon, monsoon, and post-monsoon

Total times measured
1
1

Continuous
3



Available nutrients Pre-monsoon, monsoon, and post-monsoon 3
EOC Monsoon and post-monsoon 2
ETN Monsoon and post-monsoon 2
%0C Monsoon 1
%N Monsoon 1
MBC Monsoon and post-monsoon 2
MBN Monsoon and post-monsoon 2
Exoenzymes Monsoon and post-monsoon 2

947

948  Table 1. Sampling scheme summary. Belowground net primary productivity (BNPP),

949  extractable organic carbon (EOC), extractable total nitrogen (ETN), total organic carbon (%0OC),
950 total nitrogen (%N), microbial biomass carbon (MBC), and microbial biomass nitrogen (MBN).
951

952
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954

955

956

957

958

959

960

961

Response Response
category variable
Soil moisture

(during drought or delay treatment periods)

Roots

Soil pH

Soil extractable
pools

Soil total %0C
and %N

Microbial
biomass

Exoenzyme
potentials

BNPP

Biomass

EOC
ETN
NH,*-N
NO,~N
PO~ P
%0C
%N

MBC
MEN

Phos
Cello
B-gluc
MNAG

LAP

Treatment
effects &
interactions

Trt:Site

Trt:5ite

Trt

Trt:5ite:Samp

Trt

Trt:5ite:Samp

Trt

Trt:5amp

Trt
Trt:Site
Trt:Samp

Trt:Samp

Chihuahuan
Desert

Extreme drought

Great Plains

+ +
e d Ty
+ +
+~ + o

Table 2. Summary of treatment effects in a precipitation manipulation experiment in an ecotone

between a black grama-dominated Chihuahuan Desert grassland and blue grama-dominated

Great Plains grassland. Treatment effects and interactions are based on repeated measures

ANOVA with the main factors precipitation treatments (Trt), site, and sampling periods (Samp).

Treatment level differences (filled cells) are based on estimated marginal means contrasts

between ambient vs. extreme drought and ambient vs. delayed monsoon treatments. Cells are

filled for belowground net primary productivity (BNPP), root biomass, extractable organic

carbon (EOC), extractable total nitrogen (ETN), ammonium (NH4"), nitrate (NO3"), phosphate



962

963

964

965

966

967

968

969

970

971

(PO4*), total % organic carbon (%OC) and % total nitrogen (%N), microbial biomass carbon,
(MBC), microbial biomass nitrogen (MBN), exoenzymes phosphatase (Phos), cellobiohydrolase
(Cello), B-glucosidase (B-gluc), N-acetylglucosaminidase (NAG), and leucyl aminopeptidase
(LAP) responses. Red cells (-) indicate negative effects (relative to ambient). Blue cells (+)
indicate positive effects (relative to ambient). Darker hues (- or +) indicate significant effects
(p<0.05) and lighter hues (-~ or +~) represent marginally significant effects (0.1<p<0.05). Non-
significant effects between ambient and altered precipitation treatments contain no characters or
color. Two and three-way interactions have complex results and are described in more detail in

text and figures.



Graphical abstract. Figure illustrating the effects of 5 years of extreme growing season drought
(b) and delayed monsoon timing (c) on belowground productivity and biogeochemistry in two
geographically adjacent semi-arid grasslands. Panel (a) represents ambient conditions and the
two grassland sites within all panels; the blue grama (left side) represents the Great Plains
grassland site, and the black grama (right side) represents the Chihuahuan Desert grassland site.
In general, we found that, relative to the ambient treatment, the extreme drought and delayed
monsoon treatments had few effects on soil microbial variables, including soil microbial biomass
and exoenzyme potentials, and had no effect on soil C stocks (no effect= brown boxes). The lack
of effects on microbial variables is despite reductions in BNPP (negative effects = red boxes with

"

- ") and impacts on biogeochemical variables, such as increased soil pH and available soil

nutrients (positive effects = blue boxes with “+").



Fig. 1. Boxplot of belowground primary productivity (BNPP) in a precipitation manipulation
experiment in an ecotone between a black grama-dominated Chihuahuan Desert grassland (a)
and blue grama-dominated Great Plains grassland (b). The three precipitation treatments include
ambient, extreme drought, and delayed monsoon treatments. Letters denote significant

differences between treatments (estimated marginal means, p<0.05).

Fig. 2. Boxplot of average volumetric water content (%) in a precipitation manipulation
experiment in an ecotone between a black grama-dominated Chihuahuan Desert grassland (left
side a,b) and blue grama-dominated Great Plains grassland (right side a,b). The precipitation
treatments include ambient, extreme drought, and delayed monsoon treatments. Ambient and
extreme drought treatments are compared during the drought treatment period (-66% reduction
of ambient growing season rainfall in extreme drought plots) (a). Ambient and delayed monsoon
treatments are compared during the delay period (100% omission of rainfall in delayed monsoon
plots); post-delay treatment period (captured rain is applied to delayed monsoon plots) (b).
Letters denote significant differences between treatments (estimated marginal means, p<0.05),
and " * " represents significant differences between ambient and delayed monsoon treatments

within a single treatment period.

Fig. 3. Boxplot of soil carbon and nutrient stocks and pools: nitrate (NO3), ammonium (NH4"),
phosphate (PO4>) (a,b), extractable organic carbon (EOC), and extractable total nitrogen (ETN)
(c,d), total organic carbon (%OC) and total nitrogen (%N) (e,f) in a precipitation manipulation

experiment in an ecotone between a black grama-dominated, Chihuahuan Desert grassland (left

side), and blue grama-dominated Great Plains grassland (right side). The three precipitation



treatments include ambient, extreme drought, and delayed monsoon treatments. Letters denote

significant differences between treatments (estimated marginal means, p<0.05).

Fig. 4. Boxplot of microbial biomass and exoenzyme potentials: microbial biomass carbon
(MBC) and microbial biomass nitrogen (MBN) (a,b), exoenzymes: B-gluc, LAP, and Phos (c,d),
and Cello and NAG (e,f), in a precipitation manipulation experiment in an ecotone between a
black grama-dominated, Chihuahuan Desert grassland (left side), and blue grama-dominated
Great Plains grassland (right side). Boxplots a,c,d,e, and f represent values during the monsoon
period, and b represents values during the post-monsoon period. The three precipitation
treatments include ambient, extreme drought, and delayed monsoon treatments. Letters denote

significant differences between treatments (estimated marginal means, p<0.05).
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Highlights:
» Extreme and prolonged growing season drought reduces belowground primary productivity
* Microbial biomass and enzymes unaltered by severe or prolonged growing season drought

* Belowground properties are more sensitive to extreme drought than seasonality changes
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