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Abstract—In this paper, we explore the small-cell uplink access
point (AP) placement problem in the context of throughput
optimality and provide solutions while taking into consideration
inter-cell interference (ICI). First, we briefly review the vector
quantization (VQ) approach and related single user throughput-
optimal formulations for AP placement. Then, we investigate the
small-cell case with multiple users and expose the limitations of
mean squared error based VQ for solving this problem. While the
Lloyd algorithm from the VQ approach is found not to strictly
solve the small-cell case, based on the tractability and quality of
the resulting AP placement, we deem it suitable as a simple
and appropriate framework to solve more complicated prob-
lems. Accordingly, to minimize ICI and consequently enhance
achievable throughput, we design two Lloyd-type algorithms,
namely the Interference Lloyd algorithm and the Inter-AP Lloyd
algorithm, both of which incorporate ICI in their distortion
functions. Simulation results show that both of the proposed
algorithms provide superior 95%-likely rate over the traditional
Lloyd algorithm and the Inter-AP Lloyd algorithm yields a
significant increase of up to 36.34% in achievable rate over the
Lloyd algorithm.

Index Terms—Base station placement, Beyond 5G, Lloyd
algorithm, SINR minimization, throughput optimization, user cell
association.

I. INTRODUCTION

THE past decade has witnessed the surge of wireless com-
munication technologies that have significantly raised

the bits-per-second-per-hertz figure of merit and throughput
of wireless networks in order to cope with the ongoing
widespread adoption of mobile broadband by society. One
of these key technologies, massive multiple-input-multiple-
output (massive MIMO) [2]–[6], utilizes hundreds of antenna
elements and is particularly appealing since intra-cell interfer-
ence and small-scale fading are naturally canceled out due to
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favorable propagation and channel hardening [7], leading to
low-cost hardware implementations [8]. Distributed antenna
systems (DASs), especially in the form of distributed MIMO
[9]–[15], give rise to even higher average rates over co-located
MIMO systems [10], [16], [17]. In general, distributed massive
MIMO can either be cooperative or non-cooperative, with
cell-free massive MIMO [18], [19] being an example of the
former. Although cooperation between the distributed antenna
elements in the cell-free approach assists in mitigating inter-
ference between users and further increases spectral efficiency
over non-cooperative massive MIMO systems, the required
user-related information exchange occupies a significant por-
tion of the usually limited back-haul capacity of wireless
systems [9], [20], [21]. As a result, despite the benefits of cell-
free massive MIMO systems, near future deployments of 5G
(3GPP Rel-15 and Rel-16 [22]) and WiFi 6 (IEEE 802.11ax
[23]) will still be based on the concept of small-cells, possibly
leaving cell-free approaches to posterior deployments of the
technology. Hence, controlling inter-cell interference (ICI)
continues to be a major system design problem, which will
actually assume much greater significance with the expected
network densification of Beyond 5G systems. Currently, ICI is
dealt with in the standards by advanced scheduling techniques
such as basic service set (BSS) coloring [23] and dynamic time
division duplex (D-TDD) [24]. Also, controlling ICI is of great
importance to public protection and disaster relief (PPDR)
wireless networks occupying the 700 MHz (and below) fre-
quency bands due to their desirable propagation characteristics
and higher signal penetration capabilities, which can cause
severe service outages to adjacent emergency networks even
in not-so-dense deployments [25]–[28].

In this work, we exploit another degree of freedom in
system design, namely access point (AP) placement, in order
to tackle ICI in small-cell wireless systems with non-uniform
user distributions. To contextualize the discussion, consider a
large gathering such as a sporting event, where sections in the
stadium see a different number and arrangement of spectators
depending on the crowd on the day of the event. To avoid
service interruption, more APs should be placed where the
number of spectators is larger, and vice versa, leading to the
concept of smart stadiums. Additionally, flexible AP deploy-
ment is of utmost importance in the infrequent emergency
and disaster relief situations, where deployments should be
tailored to the time-specific coverage and service requirements,
therefore following the dynamics of the emergency event [25].
Thus, the question of interest is: How do we optimally place
the APs given the distribution of users? In recent times, the
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AP (or antenna) placement problem has attracted a great deal
of attention [13]–[15], [29], however, optimizing the AP or
antenna locations by maximizing a signal-to-noise ratio (SNR)
objective function alone has traditionally been the standard
approach. The authors of [13] consider a DAS and optimize
the cell averaged ergodic capacity based only on SNR and
neglect ICI. Using the square distance criterion, they notice
similarities with codebook design in vector quantization (VQ),
which enables the utilization of the well-known (for ease
of implementation) Lloyd algorithm to solve the antenna
placement problem. In [15], the average achievable per-user
rate of uniformly distributed users is optimized in order to
find the radius of a circular antenna array; however, due to
the adoption of a single-cell model, no ICI is considered.
Circular antenna array deployments based on average rate
optimization are also considered in [14] based on one-cell and
two-cell models, with the latter model accounting for leakage
interference alone. Additionally, the authors of [29] simulated
an indoor wireless environment where they generated a 10-fold
improvement in the distributed system capacity over the co-
located one. Further, placing APs in accordance with the user
densities generated a significant increase (40% over uniform
AP placement) in system capacity. The authors of [30] and
the subsequent works by their group [31]–[34] have discussed
heterogeneous wireless sensor network deployment as a source
coding problem. In these works, the optimal deployment
is solved while studying limited communication range and
optimal total power consumption to place both APs and fusion
centers, but without addressing ICI. Recently, unmanned aerial
vehicles (UAVs) equipped with base stations have also been
considered in the context of AP placement [35]–[42].

In the abovementioned works, the suitability of the Lloyd
algorithm from VQ to throughput-optimal AP placement has
not been investigated. VQ considers only a single user, and the
objective function is averaged over the position of this user.
This approach, however, does not conform with the small-cell
scenario where there are multiple users, one from each cell,
communicating with the serving AP in its cell. Further, ICI has
been neglected, therefore leading to AP placements that yield
sub-optimal throughput. Hence, in this work, we devise a non-
cooperative small-cell system based on the Lloyd algorithm,
which we show can solve for near-optimal AP locations, in
terms of the fundamental performance measure of throughput,
while considering ICI.

Contributions

To the best of our knowledge, solutions to the AP placement
problem based on the Lloyd algorithm and that are derived
from a detailed analysis of throughput optimality, while incor-
porating ICI, have not been provided in the literature. Hence,
in this work on small-cell AP placement, our contributions are
as follows.

• We first formulate various single user AP placement
problems for throughput optimality in terms of rate,
SNR, and a higher exponent for the user-AP distance (as
opposed to squared distance). We explore the relationship
of the Lloyd algorithm from VQ to these problems.

We then study the multiple user case and address the
small-cell AP placement problem. Although our analysis
determines that the application of the Lloyd algorithm
to small-cell AP placement is not ideal, we find that the
Lloyd algorithm, apart from being easy to implement,
is quite effective in solving the placement problem as a
baseline algorithm and yields near-optimal AP locations.

• We present two methods to incorporate ICI into the opti-
mization function of the Lloyd algorithm. Consequently,
the distortion function of the Lloyd algorithm is modified
and two Lloyd-type algorithms for AP placement that are
aware of ICI and, as a result, maximize achievable per-
user SINR, are proposed, namely the Interference Lloyd
algorithm and Inter-AP Lloyd algorithm.

The remainder of this paper is organized as follows. Section
II outlines the small-cell model used throughout the paper.
VQ and the application of the Lloyd algorithm to the AP
placement problem is described in Section III. Mathematical
formulations of throughput optimality for single user and
multiple user cases are provided in IV. The ensuing section
V presents the formulations and solutions for including ICI
in the VQ approach. Cell association strategies for each of
the proposed algorithms are elucidated in Section VI. The
simulation methodology and results are stated in Section VII.
Finally, we provide concluding remarks in Section VIII.

II. SYSTEM MODEL

We use the small-cell model detailed in [43], [44], and
[45, Ch. 4], which is reproduced here for completeness. Also,
throughout this paper, we use bold symbols to denote vectors,
E{·} is the expectation operator, || · || represents the ℓ2-
norm of a vector, and all logarithms are to the base 2.
Now, consider a geographical area where K single-antenna
users are distributed, according to some probability density
function (pdf) fP(p), where p ∈ R2 is the random vector
denoting the position of a user. There are M single-antenna
APs that serve the users in this area. The location of an AP
is denoted by q ∈ R2. All APs are connected via error-
free backhaul links to the network controller1 (NC), so that
it knows the positions of the APs and their respective users.
For simplicity, a narrowband flat-fading channel is considered.
With m = 1, 2, . . . ,M and k = 1, 2, . . . ,K, the channel
coefficient between the mth AP and kth user is

gmk =
√
βmkhmk, (1)

where βmk and hmk ∼ CN (0, 1) are the large-scale and
small-scale fading coefficients, respectively. hmk is assumed
to remain constant during a coherent interval and change
independently in the next, and is independent of βmk. The
large-scale fading coefficients are modeled as

βmk =

{
c0, ||pk − qm|| ≤ r0,

c1zmk

||pk−qm||γ , ||pk − qm|| > r0,
(2)

where pk and qm represent the locations of the kth user and
mth AP, respectively. Here, γ is the pathloss exponent, zmk

1The NC is where the proposed placement algorithms to be described in
detail in the remainder of this manuscript will be loaded and executed.
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is the log-normal shadow fading coefficient, and c0, c1, and
r0 are constants. These coefficients can also be estimated by
either ray-tracing [46] or data-driven [47] approaches.

The uplink transmission model used in this work schedules
users in a round robin fashion with their serving APs using
time-division multiple access (TDMA). Thus, each AP serves
only one user in a time slot. In the small-cell set-up, each of
the M cells corresponds to each of the M APs, and pursuant
with the uplink model, the user in each cell communicating
with its associated AP causes interference to all other APs.
Now, letting km denote a user in the cell associated with AP
m, the received signal ym at this AP is

ym =
M∑

m′=1

√
ρrgmkm′ skm′ + wm, (3)

where ρr is the uplink transmit power, skm
is the data symbol

with E{|skm
|2} = 1 (unit power), and wm ∼ CN (0, 1) is the

additive noise. A matched filter (MF) employed at the AP m
estimates the data symbol skm

of user km as

ŝkm
=

g∗mkm

|gmkm
|
ym,

=
√
ρr|gmkm |skm︸ ︷︷ ︸
Tdes: desired term

+

M∑
m′=1
m′ ̸=m

√
ρr

g∗mkm

|gmkm
|
gmkm′ skm′

︸ ︷︷ ︸
Tint: interference term

+vm,

(4)
where vm ∼ CN (0, 1). Considering Tint in (4) as noise, the
signal-to-interference-plus-noise ratio (SINR) achieved by user
km at AP m is derived to be

ϕkm
=

ρrβmkm
|hmkm

|2

1 + ρr
M∑

m′=1
m′ ̸=m

βmkm′ |hmkm′ |2
. (5)

III. VECTOR QUANTIZATION AND AP PLACEMENT

In this section, we provide an overview of VQ and how the
Lloyd algorithm is currently used in its basic form, to solve
for AP placement. Note that Section IV will investigate the
suitability of the Lloyd algorithm to obtain AP locations.

A. Overview of Vector Quantization

In VQ, the random vector to be quantized is x ∈ Rp,
where p is the dimension, and the two main steps to be
designed are the encoding and decoding steps. The encoder E
splits the domain under consideration into N regions (called
Voronoi regions, each corresponding to a bit sequence of
length log2N ) and assigns a region R to the input vector
x. The encoder performs the following mapping

E : Rp → {R1,R2, . . . ,RN}. (6)

The decoder D then assigns to each region Rn, where n =
1, 2, . . . , N , a codepoint x̂n, and performs the mapping

D : {R1,R2, . . . ,RN} → {x̂1, x̂2, . . . , x̂N}. (7)

The set of codepoints {x̂1, x̂2, . . . , x̂N} is collectively the
codebook. Thus, the quantizer Q assigns for every input x,
one of N codepoints, and is given as

Q(x) = D(E(x)) = x̂E(x), (8)

where x̂E(x) specifies that the output codepoint is a function
of the input vector and for simplicity in notation, we assume
that E(x) denotes the index of the region that it specifies. The
encoder E assigns to the input x, the region that is closest
to it, defined in terms of a distortion function d between the
input vector and a codepoint. The codepoint corresponding to
the region can formally be written as

x̂E(x) = arg min
x̂n

d(x, x̂n). (9)

Taking the average of the distortion function over the distri-
bution of the input vector, the VQ optimization problem is

arg min
x̂1,x̂2,...,x̂N

Ex

{
d(x, x̂E(x))

}
. (10)

To solve the optimization of (10), the goal is to find the
optimal encoder and decoder jointly, which is difficult. Hence,
it is split into two tasks, which are to find a optimal encoder
given a fixed decoder and a optimal decoder given a fixed
encoder, and form the two necessary conditions for quantizer
optimality. The main methodology then is to alternate between
these two tasks in order to converge to a reasonable solution.
Accordingly, finding the best encoder given the decoder in-
volves determining the best regions given fixed codepoints.
This leads to the Nearest Neighbor Condition (NNC)

Rn = {x : d(x, x̂n) ≤ d(x, x̂l),∀l ̸= n}. (11)

Next, finding the best decoder given the encoder involves
determining the best codepoints given the regions. This is the
Centroid Condition (CC), given by

x̂n = Cent{x|x ∈ Rn}, (12)

where the centroid Cent2 of region Rn gives the codepoint
x̂n for the region. The Lloyd algorithm alternates between the
NNC and CC steps until convergence and yields the optimal
codepoints.

B. The Lloyd Algorithm for AP Placement

If the VQ approach were to be used to solve for small-cell
AP placement, then the random vector to be quantized is the
2-D position p of a single user. The Voronoi regions are the
cells Cm and the codepoints are the AP locations qm, where
m = 1, 2, . . . ,M . The optimization problem in (10) can be
written by using similar notations and taking the average over
the user positions, as follows

arg min
q1,q2,...,qM

Ep

{
d(p,qE(p))

}
. (13)

2The centroid is defined [48] as

Cent{x|x ∈ Rn} = arg min
x̂n

E{d(x, x̂n)|x ∈ Rn}.
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It is worth reiterating that E(p) indexes the nearest AP that
the user at p associates to. The objective function in (13) can
be written as

JVQ = Ep

{
d(p,qE(p))

}
,

=

∫
p∈R2

d(p,qE(p))fP(p)dp,

=
M∑

m=1

 ∫
p∈Cm

d(p,qm)fP(p|p ∈ Cm)dp

Pr(p ∈ Cm),

=
M∑

m=1

Sm Pr(p ∈ Cm),

(14)
where the penultimate step arises by splitting the integral in
the previous step into the cells (Voronoi regions) with their
respective codepoints and the quantity Sm is defined as

Sm =

∫
p∈Cm

d(p,qm)fP(p|p ∈ Cm)dp. (15)

To solve for the optimal AP locations, the most often used
distortion function is the squared Euclidean distance

dSE(p,qE(p)) =
∣∣∣∣p− qE(p)

∣∣∣∣2 , (16)

and the objective function in (14) then becomes the mean
squared error (MSE). In this paper, we retain the name ‘Lloyd
algorithm’ for the algorithm that solves (14) using dSE, the
steps of which are provided in Algorithm 1. For algorithms
that use all other distortion functions, we will use the name
‘Lloyd-type algorithm’. Note that when the Lloyd algorithm

Algorithm 1 Lloyd Algorithm With Squared Error Distortion

1: Initialize random AP locations q
(0)
1 ,q

(0)
2 , . . . ,q

(0)
M .

2: Use the NNC to determine the cells
C(i+1)
1 , C(i+1)

2 , . . . , C(i+1)
M such that

C(i+1)
m =

{
pk :dSE

(
pk,q

(i)
m

)
≤dSE

(
pk,q

(i)
l

)
,∀l ̸= m

}
.

3: Use the CC to determine the AP locations
q
(i+1)
1 ,q

(i+1)
2 , . . . ,q

(i+1)
M such that

q(i+1)
m =

1∣∣∣C(i+1)
m

∣∣∣
∑

pk∈C(i+1)
m

pk.

4: Repeat from step 2 until convergence (MSE falls below a
threshold).

is implemented, we use the K realization of users at positions
pk, k = 1, 2, . . . ,K, as described in Section II. We will use
this notation for all the Lloyd-type algorithms that follow.
Also, observe that in the CC step in 1, as a result of dSE,
the centroid is replaced by the expectation which is evaluated
by using the sample average over the user positions pk present
in cell Cm.

An interesting observation here is that the VQ framework
presented above considers only the positions of the users
and APs, and hence is independent of both the small-scale

fading and shadow fading components of the wireless system
since these quantities are not dependent on the user and AP
positions. These random quantities thus do not play a role in
AP placement using VQ. It is also very important to note here
that VQ considers only a single user to be quantized and the
average over the distribution of that user is taken. However,
this does not conform to our small-cell system model, where
M users are each communicating with its serving AP at the
same time. Hence, the VQ approach does not strictly solve the
small-cell AP placement problem.

IV. THROUGHPUT FORMULATIONS AND SOLUTIONS
WITHOUT INTER-CELL INTERFERENCE

In this section, we will describe throughput optimization
via various formulations, such as average rate and SNR, and
provide solutions to obtain optimal AP locations (preliminarily
discussed in [1]). We start by considering the single user
scenario inherent to VQ and expand to a more realistic one
in which multiple users are present. We also illustrate, by
formulation only, the case where ICI is present. In summary,
we argue how the Lloyd algorithm, despite its simplicity, is
suitable for small-cell AP placement.

A. Single User Case
1) Rate: The single user case is the simplest case wherein

a user at location p alone is considered. Recall that p is a
random vector with pdf fP(p). We start our analysis with per-
user rate, which is the common measure of interest, achieved
by a user at p with its nearest AP at qE(p), as per the VQ
principles discussed above. We also approximate the large-
scale fading coefficients, given in (2), by

βE(p) ≈
c1zE(p)∣∣∣∣p− qE(p)

∣∣∣∣γ , (17)

since r0 is much smaller than the dimensions of the area under
consideration. Note that the second subscript has been dropped
for the ensuing analyses, since we consider a single user. Let
us define the average rate, utilizing the per-user SNR ψkE(p)

(obtained from (5) by neglecting ICI and replacing m with
E(p)) as follows

r(q) = EA,p

{
log

(
1 + ψkE(p)

)}
, (18)

where we average over the user position p, the random
quantities hE(p) and zE(p), A = {hE(p), zE(p)} for brevity,
and we use the notation q = {q1,q2, . . . ,qM} to show that
the average rate is a function of the M AP locations alone.
Similar to VQ in the previous section, we average out the
small-scale and shadow fading components defined in A since
they are position independent and do not contribute to the
optimal placement of APs. Assuming high SNR (ψkE(p)

≫ 1),
we can write (18) as

r(q) = EA,p

log

 ρrc1|hE(p)|2zE(p)(∣∣∣∣p− qE(p)
∣∣∣∣2) γ

2


 , (19)

and we wish to perform the optimization

arg max
q1,q2,...,qM

r(q). (20)
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After averaging and removing the terms that are not involved
in the optimization in (19), we obtain

arg min
q1,q2,...,qM

Ep

{
log

(∣∣∣∣p− qE(p)
∣∣∣∣2 + ϵ

)}
, (21)

where we have added a constant ϵ > 0 (typically very small)
to prevent the logarithm from approaching negative infinity if
the user position p were to overlap with the position of the
nearest AP qE(p). Note that ϵ could correspond to the pathloss
at a reference distance or even height of the AP. The objective
function to be optimized above is concave as a result of which
the Majorization-Minimization (MM) technique [49] can be
used to acquire a solution to the centroid computation (CC)
step. Although the distortion function in (21) is the logarithm
of the squared Euclidean distance, the NNC step here remains
the same as in the Lloyd algorithm since both log(·) and ϵ can
be ignored when comparing two distortion functions. The MM
technique upperbounds the objective function by a surrogate
function and minimizes the surrogate through an iterative
method. Solving the objective function in (21) using the MM
method results in an iterative solution with the following two
update equations

q(j+1)
m =

∑
pk∈Cm

w
(j)
k pk∑

pk∈Cm

w
(j)
k

,

w
(j+1)
k =

1

||q(j+1)
m − pk||2 + ϵ

, ∀pk ∈ Cm,

(22)

where j denotes the MM iteration index.
In summary, to solve for the AP locations, we can now for-

mulate a Lloyd-type algorithm with the NNC step remaining
the same as that in the Lloyd algorithm, i.e., with dSE, and
the CC step replaced by the above iterative solution of (22).
We call this Lloyd-type algorithm as the MM-Lloyd algorithm.
The proof of (22) is left to Appendix A and the algorithm is
provided in Algorithm 2.

Algorithm 2 MM-Lloyd Algorithm

1: Initialize random AP locations q
(0)
1 ,q

(0)
2 , . . . ,q

(0)
M .

2: Use the NNC to determine the cells
C(i+1)
1 , C(i+1)

2 , . . . , C(i+1)
M such that

C(i+1)
m =

{
pk :dSE

(
pk,q

(i)
m

)
≤dSE

(
pk,q

(i)
l

)
,∀l ̸= m

}
.

3: Use MM iterations to determine the AP locations
q
(i+1)
1 ,q

(i+1)
2 , . . . ,q

(i+1)
M with the update equations

q(j+1)
m =

∑
pk∈C(i+1)

m

w
(j)
k pk∑

pk∈C(i+1)
m

w
(j)
k

,

w
(j+1)
k =

1

||q(j+1)
m − pk||2 + ϵ

, ∀pk ∈ C(i+1)
m ,

where q
(i+1)
m = q

(j+1)
m after convergence.

4: Repeat from step 2 until convergence.

2) SNR: If throughput is measured solely by the SNR
averaged over the user location p, then we can show that the
simple case of SNR maximization is equivalent to the VQ
optimization problem given in (14). Let us write the average
achievable SNR as

ψ(q) = EA,p

{
ρrc1|hE(p)|2zE(p)∣∣∣∣p− qE(p)

∣∣∣∣γ
}
, (23)

which is lower bounded by applying Jensen’s inequality as

ψ(q) ≥ EA

 ρrc1|hE(p)|2zE(p)(
Ep

{∣∣∣∣p− qE(p)
∣∣∣∣2}) γ

2

 , (24)

with A defined as before. Maximizing ψ(q) to obtain the
AP locations is the same as minimizing the term in the
denominator, leading to the same objective function (14) in
VQ. The optimization problem is

arg min
q1,q2,...,qM

Ep

{∣∣∣∣p− qE(p)
∣∣∣∣2} . (25)

As before, this is solved using the Lloyd algorithm with
dSE (Algorithm 1). For consistency in future discussions, we
introduce the notation d(p,q) as a general form of distortion
measure with q = {q1,q2, . . . ,qM}. Hence, the squared error
distortion function in (16) is written in the general form as

dSE
(
p,q

)
=

∣∣∣∣p− qE(p)
∣∣∣∣2 . (26)

3) Higher Exponent for User-AP Distance: The objective
function in the Lloyd algorithm is proportional to the square
of the user-AP distance while that in the MM-Lloyd algorithm
is proportional to the logarithm of the squared distance. This
means that the MM-Lloyd algorithm disproportionately con-
siders the contribution of users, as the logarithm suppresses the
larger distances inherent to users at the cell borders, in compar-
ison to the Lloyd algorithm. To overcome this effect, we can
design another optimization function that exponentially scales
up large distances relative to the Lloyd algorithm by raising
the distance to a higher power. The topic of optimal quantizer
design for higher powers of distance has been studied in
[31]. This higher exponent χ > 2 also characterizes higher
frequency (e.g., mmWave) communications. The optimization
problem can then be represented as

arg min
q1,q2,...,qM

Ep

{∣∣∣∣p− qE(p)
∣∣∣∣χ} , (27)

where χ is the power. This optimization problem can be
solved by using a Lloyd-type algorithm that uses the distortion
function

dχ
(
p,q

)
=

∣∣∣∣p− qE(p)
∣∣∣∣χ . (28)

While the NNC step uses dχ, the CC step utilizes the steepest
descent method, with the update equation

q(j+1)
m = q(j)

m − δ
∂

∂q
(j)
m


∫

p∈Cm

dχ

(
p,q(j)

m

)
fP(p)dp

 ,

(29)
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for all m, where j is the iteration index, δ is the step size, and
the gradient expression is given by

∂

∂qm


∫

p∈Cm

dχ (p,qm) fP(p)dp


=

χ

|Cm|
∑

pk∈Cm

(qm − pk) ||pk − qm||χ−2
. (30)

This Lloyd-type algorithm is called the Lloyd-χ algorithm and
the proof of the above result for gradient can be found in
Appendix B. The algorithm is given in Algorithm 3.

Algorithm 3 Lloyd-χ Algorithm

1: Initialize random AP locations q
(0)
1 ,q

(0)
2 , . . . ,q

(0)
M .

2: Use the NNC to determine the cells
C(i+1)
1 , C(i+1)

2 , . . . , C(i+1)
M such that

C(i+1)
m =

{
pk :dχ

(
pk,q

(i)
m

)
≤dχ

(
pk,q

(i)
l

)
,∀l ̸= m

}
.

3: Use the steepest descent method to determine the AP loca-
tions q

(i+1)
1 ,q

(i+1)
2 , . . . ,q

(i+1)
M with the update equation

q(j+1)
m =q(j)

m − δχ∣∣∣C(i+1)
m

∣∣∣
∑

pk∈C(i+1)
m

(q(j)
m −pk)

∣∣∣∣∣∣pk − q(j)
m

∣∣∣∣∣∣χ−2

,

where q
(i+1)
m = q

(j+1)
m after convergence.

4: Repeat from step 2 until convergence.

The above formulations were developed by assuming a
single user located at p. However, in practice and according
to the system model, M APs serve M users at the same time.
Hence, we now consider the case where M users are picked
from the distribution.

B. Multiple User Case

1) Random User Selection: If M users are selected in-
dependently from the overall distribution fP(p), then the
distribution of these users are i.i.d. Let p ≜ {p1,p2, . . . ,pM}
be the set of locations of the M users. If we assume that
the users do not interact with each other3, then the objective
function can be the sum of distortions incurred by each user
with its closest AP, i.e., the optimization is of the form

arg min
q1,q2,...,qM

Ep

{
M∑

m=1

d(pm,qE(pm))

}
= arg min

q1,q2,...,qM

M · Ep

{
d(p,qE(p))

}
, (31)

where qE(p) defined as before and the simplification arises
from the fact that each user is i.i.d. The final objective function
thus is essentially the same as the single user case.

The above model is applicable in the following scenario.
First, since the selection does not limit one user per small

3This implies that a user does not influence the AP selection of any other
user. In other words, the distortion function between a user at pm and its
closest AP qE(pm) is independent of the positions of all other users pm′ ,
where m′ ̸= m. It is worth noting that multiple users can select the same AP
as its closest one.

cell, the cells must be capable of dealing with more than
one user with no multiple access interference. Secondly, since
there is no ICI considered, each small cell must be assigned
orthogonal resources. This leads to an interesting resource
allocation problem which we do not pursue in this work.

2) Random Selection of One User Per Cell without ICI:
The formulation described above considers M users at a time,
but fails to follow the system model as each user is not
necessarily picked from the Voronoi region or cell in which its
serving AP is present. Under this model, assuming again that
the users at p = {p1,p2, . . . ,pM} do not interact with one
another, the objective function to minimize would be the sum
of the average distortion in each cell, i.e., the optimization is

arg min
q1,q2,...,qM

Ep

{
M∑

m=1

d(pm,qm)

}
, (32)

with the joint distribution of the user positions as

fP(p) =

M∏
m=1

fPm(pm|pm ∈ Cm). (33)

The above objective function can be simplified as

M∑
m=1

Ep {d(pm,qm)} =
M∑

m=1

∫
p∈Cm

d(p,qm)fP(p|p ∈ Cm)dp,

=
M∑

m=1

Sm,

(34)
where Sm is from (15). It is worth noting here the difference
between this objective function and that of the Lloyd algorithm
in (14) where each term Sm is weighted by the probability that
the user is present in the cell Pr(p ∈ Cm). The solution to the
above objective function is then a Lloyd-type algorithm with
the CC step unchanged, but with the NNC step using weighted
distortion functions, with the weights being the inverse of the
proportion of users present in the cell. More specifically, the
squared error distortion dSE(p,qm) is pre-multiplied with a
weight wm = 1/Pr(p ∈ Cm) = K/Nm, where Nm is the
number of users in Cm. The NNC step is

Cm = {p : wmdSE (p,qm) ≤ wldSE (p,ql) ,∀l ̸= m} . (35)

We call this algorithm as the weighted MSE (WMSE) Lloyd
algorithm. Note that weighted distortion functions have been
studied in [30], although the authors have considered weights
that remain constant. The weights in the WMSE Lloyd al-
gorithm, on the other hand, are learnt in every iteration. The
proof of the above solution is provided in Appendix C and the
algorithm is outlined in Algorithm 4.

3) Random Selection of One User Per Cell with ICI: In
all the above formulations, we have considered only SNR and
the fact that users do not interact with one another. However,
under the effects of ICI, users do interact with one another in
the form of providing interfering signals at the APs which are
serving the other users. Thus, the distortion function between
a user and its serving AP would be a function of all other
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Algorithm 4 WMSE Lloyd Algorithm

1: Initialize random AP locations q
(0)
1 ,q

(0)
2 , . . . ,q

(0)
M .

2: Use the NNC to determine the cells
C(i+1)
1 , C(i+1)

2 , . . . , C(i+1)
M such that

C(i+1)
m =

{
pk:wmdSE

(
pk,q

(i)
m

)
≤wjdSE

(
pk,q

(i)
l

)
,∀l ̸=m

}
.

3: Use the CC to determine the AP locations
q
(i+1)
1 ,q

(i+1)
2 , . . . ,q

(i+1)
M such that

q(i+1)
m =

1∣∣∣C(i+1)
m

∣∣∣
∑

pk∈C(i+1)
m

pk.

4: Repeat from step 2 until convergence.

users as well and under a similar fashion as in (32), we can
write the objective function as

M∑
m=1

Ep

{
d(pm,qm,p

′
m
)
}

=
M∑

m=1

∫
p1∈C1

· · ·
∫

pM∈CM

d(pm,qm,p
′
m
)fP(p)dp, (36)

where the (general) distortion function uses the term p′
m

which
denotes the set of user positions other than the user at pm

and fP(p) is as in (33). It is clear from the objective function
in (36), due to the dependency of the distortion function on
the interfering users, the joint distribution fP(p) cannot be
simplified to consider each cell Cm independently as in (34).
This makes the said objective function difficult and intractable,
and hence cannot be readily solved.

To deal with ICI in a tractable manner, we adopt a slightly
different approach based on the following considerations.
Based on results obtained so far, VQ provides a good frame-
work to solve throughput optimization problems by Lloyd-type
algorithms, although without ICI. We have also seen that the
optimization in (36), which considers ICI, is difficult to solve
and to derive an AP placement algorithm. Further, numerical
simulations (shown in Experiment 1 of Section VII-C) show
that the average achievable rate is very similar, whether the
Lloyd or Lloyd-type algorithms described in this section are
used. Motivated by these three facts, in the next section, we
show how the Lloyd algorithm can be modified to account
for ICI in AP placement. It is worth noting here that we
could implement power control along with AP placement,
i.e., optimizing uplink power with per-user power constraints
jointly with the AP locations, in order to increment rate.
Our focus in this work, however, is to solely investigate
the appropriateness of the VQ approach to small-cell AP
placement and the necessary modifications to add ICI to the
VQ optimization framework such that a Lloyd-type algorithm
can be used to solve the problem, both of which have not been
performed in past literature. Thus, we will continue to assume
the same uplink power for all users and address power control
in future work.

V. THROUGHPUT FORMULATIONS ACCOUNTING FOR
INTER-CELL INTERFERENCE

To account for ICI in the VQ framework, we develop
two distortion functions, namely the interference and inter-AP
distortion functions.

A. Interference Distortion Measure

From (25), it is clear that the Lloyd algorithm maximizes
only the desired signal component. In addition, we are now
required to minimize the interference term. To construct a
distortion function that considers both the desired and inter-
ference signals, we consider the achievable per-user rate, as
considered in Section IV-A1, but using the SINR expression
from (5). Formally, the rate maximization problem is

arg max
q1,q2,...,qM

EA,B,p

{
log

(
1 + ϕkE(p)

)}
, (37)

where set A = {hE(p), zE(p)} defined as before and set
B = {hm′ , zm′ : m′ ̸= E(p)} consists of the small-scale
and shadow fading quantities for all interfering cells Cm′ ,
m′ ̸= E(p). For notational simplicity, the SINR ϕkE(p)

above
can be rewritten using TSNR for the desired signal power in
the numerator and TICI for the interference signal power in the
denominator as follows

ϕkE(p)
=

TSNR

1 + TICI
, (38)

where TSNR = ρrβE(p)|hE(p)|2 and TICI =
ρr

∑
m′ ̸=m βm′ |hm′ |2. To recapitulate the notation, we

use a single subscript for simplicity and while hE(p) and
βE(p) are the small-scale and large-scale fading coefficients,
respectively, for the user at p to the serving cell, hm′ and
βm′ correspond to the same quantities for the same user, but
to the non-serving AP m′. Approximating the rate with high
SINR (ϕkE(p)

≫ 1) and TICI ≫ 1, and simplifying, we get

log ϕkE(p)
≈ log TSNR + log

1

TICI
. (39)

It is worth nothing here that the log-sum inequality could
be applied to separate the second term above as the sum of
inverses of the individual ICI terms. Further, considering the
above sum of logarithm terms, it is clear that the MM tech-
nique can be applied. However, finding a surrogate function
in this case is not as straightforward as in the solution to the
MM-Lloyd algorithm discussed in Section IV-A1. We believe
that the insight obtained from (39) is sufficient to generate a
solution for AP placement. To simplify further, we negate the
quantity in (39) and approximate using the relation log x < x
which yields

− log ϕkE(p)
<

1

TSNR
+ TICI. (40)

We have now expressed the negative rate as the sum of the
powers of the inverse of the desired and interference terms.
Therefore, to maximize rate or equivalently, minimize the
negative of the rate, we need to maximize SNR and minimize
ICI, corresponding to the first and second terms in (40),
respectively. The equation presented also reveals the structure
of the distortion function that we will use.
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TABLE I: Summary of Throughput Formulations and Solutions
Number of Users Formulation Solution Algorithm

Single user
Rate MM-Lloyd
SNR Lloyd

Higher exponent for user-AP distance Lloyd-χ

Multiple users
Random user selection Lloyd

Random selection of one user per cell without ICI WMSE Lloyd
Random selection of one user per cell with ICI Interference and Inter-AP Lloyd

Accordingly, in line with the objective function for a Lloyd-
type algorithm in (14), we average (40) over the user positions
and the random quantities defined in (37) above, to obtain

EA,B,p

{
1

TSNR
+ TICI

}
= Ep

{
EA,B,p′

{
1

TSNR
+ TICI

}}
,

(41)
where we denote p′ as the set of positions of the interfering
users with respect to the user at p. We have assumed in
(41) that the served user position p is independent from the
interfering user positions p′. We will also assume that as in
(33) that the distribution of users in each interfering cell is
independent and we can then write the joint distribution of
users as

fP(p) = fP,P′(p,p′) = fP(p)fP′(p′),

= fP(p)
∏

m′ ̸=E(p)

fPm′ (pm′ |pm′ ∈ Cm′), (42)

where fP′(p′) is the joint distribution of the locations of all the
interfering users and fPm′ (pm′ |pm′ ∈ Cm′) is the distribution
of the user in cell Cm′ . Consequently, by carrying out the
expectations in (41) over A, B, and p′, we can write the
distortion function as

dIF
(
p,q

)
= κ1

∣∣∣∣p− qE(p)
∣∣∣∣γ

+ κ2
∑

m′ ̸=E(p)

∫
· · ·

∫
1∣∣∣∣pm′ − qE(p)

∣∣∣∣γ fP′(p′)dp′, (43)

where κ1 = EA{1/ρrc1zE(p)|hE(p)|2}, κ2 =
EB{ρrc1zm′ |hm′ |2}, and the integration limits have been
omitted for notation simplicity. This is the interference
distortion function denoted by dIF and the corresponding
Lloyd-type algorithm is called the Interference Lloyd
algorithm. Further simplification using (42) leads to a simpler
distortion measure

dIF
(
p,q

)
=

∣∣∣∣p− qE(p)
∣∣∣∣γ

+κ
∑

m′ ̸=E(p)

∫
pm′∈Cm′

1∣∣∣∣pm′ − qE(p)
∣∣∣∣γfPm′(pm′ |pm′ ∈Cm′)dpm′ ,

(44)

where κ ≜ κ2/κ1. We call κ ≥ 0 as the trade-off factor and it
determines the trade-off between desired signal and ICI power.
κ can be varied to determine the importance of ICI power over
desired signal power.

To solve for the AP locations, the Interference Lloyd
algorithm retains the NNC step and the steepest descent
method is to be used for the CC step (update equation given

in (29) above), both steps utilizing dIF. For the sake of
implementation, the integral in dIF from (44) is numerically
approximated using the sample average over a large number
of realizations of the user locations, and is written as

dIF (p,qm) = ||p− qm||γ

+ κ
∑

m′ ̸=m

1

|Cm′ |
∑

pk
m′∈Cm′

1∣∣∣∣pkm′ − qm

∣∣∣∣γ , (45)

where pkm′ represents the kth realization of the user position
in cell Cm′ . The gradient function in this update equation is

∂

∂qm


∫

p∈Cm

dIF (p,qm) fP(p)dp


=

γ

|Cm|
∑

pk∈Cm

(qm − pk) ||pk − qm||γ−2

+ κ
∑

m′ ̸=m

γ

|Cm′ |
∑

pk
m′∈Cm′

(
pkm′ − qm

)∣∣∣∣pkm′ − qm

∣∣∣∣γ . (46)

The proof of this result is given in Appendix E and the steps
for this Lloyd-type algorithm are provided in Algorithm 5.

Algorithm 5 Interference Lloyd Algorithm

1: Initialize random AP locations q
(0)
1 ,q

(0)
2 , . . . ,q

(0)
M .

2: Use the NNC to determine the cells
C(i+1)
1 , C(i+1)

2 , . . . , C(i+1)
M such that

C(i+1)
m =

{
pk :dIF

(
pk,q

(i)
m

)
≤dIF

(
pk,q

(i)
l

)
,∀l ̸= m

}
.

3: Use the steepest descent method to determine the AP loca-
tions q

(i+1)
1 ,q

(i+1)
2 , . . . ,q

(i+1)
M with the update equation

q(j+1)
m = q(j)

m

− δ

 γ∣∣∣C(i+1)
m

∣∣∣
∑

pk∈C(i+1)
m

(
q(j)
m − pk

) ∣∣∣∣∣∣pk − q(j)
m

∣∣∣∣∣∣γ−2

+κ
∑

m′ ̸=m

γ∣∣∣C(i+1)
m′

∣∣∣
∑

pk
m′∈C(i+1)

m′

(
pkm′ − q

(j)
m

)
∣∣∣∣∣∣pkm′ − q

(j)
m

∣∣∣∣∣∣γ
 ,

which, after convergence, q(i+1)
m = q

(j+1)
m .

4: Repeat from step 2 until convergence.

B. Inter-AP Distortion Measure
Here, we develop an alternate distortion function that also

accounts for ICI. Consider the interference distortion function
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dIF in (44). Each of the ICI terms in the summation in dIF can
be approximated as follows

Epm′

{
1∣∣∣∣pm′ − qE(p)

∣∣∣∣γ
}

≈ 1∣∣∣∣qm′ − qE(p)
∣∣∣∣γ , (47)

the justification of which is provided in Appendix D. Substi-
tuting (47), we can simplify (44) as

dIA
(
p,q

)
=

∣∣∣∣p− qE(p)
∣∣∣∣γ + κ

∑
m′ ̸=E(p)

1∣∣∣∣qm′ − qE(p)
∣∣∣∣γ .
(48)

We call dIA the inter-AP distortion measure as the ICI term
now involves the distances between the interfering APs and AP
indexed by E(p). The corresponding Lloyd-type algorithm is
called the Inter-AP Lloyd algorithm.

The solution of the optimization problem using dIA is
similar to that of the Interference Lloyd algorithm. For the
steepest descent method, the gradient corresponding to dIA is
given as

∂

∂qm


∫

p∈Cm

dIA (p,qm) fP(p)dp


=

γ

|Cm|
∑

pk∈Cm

(qm − pk) ||pk − qm||γ−2

+ κγ
∑

m′ ̸=m

qm′ − qm

||qm′ − qm||γ+2 .
(49)

The proof of this result is omitted as it is similar in calculation
to the gradient of the interference distortion function in (46)
and the Inter-AP Lloyd algorithm is given in Algorithm 6.
We also summarize the various formulations and solutions
discussed in this section and the prior section in Table I.

Algorithm 6 Inter-AP Lloyd Algorithm

1: Initialize random AP locations q
(0)
1 ,q

(0)
2 , . . . ,q

(0)
M .

2: Use the NNC to determine the cells
C(i+1)
1 , C(i+1)

2 , . . . , C(i+1)
M such that

C(i+1)
m =

{
pk :dIA

(
pk,q

(i)
m

)
≤dIA

(
pk,q

(i)
l

)
,∀l ̸= m

}
.

3: Use the steepest descent method to determine the AP loca-
tions q

(i+1)
1 ,q

(i+1)
2 , . . . ,q

(i+1)
M with the update equation

q(j+1)
m = q(j)

m

− δ

 γ∣∣∣C(i+1)
m

∣∣∣
∑

pk∈C(i+1)
m

(
q(j)
m − pk

) ∣∣∣∣∣∣pk − q(j)
m

∣∣∣∣∣∣γ−2

+κ
∑

m′ ̸=m

q
(j)
m′ − q

(j)
m∣∣∣∣∣∣q(j)

m′ − q
(j)
m

∣∣∣∣∣∣γ+2

 ,

which, after convergence, q(i+1)
m = q

(j+1)
m .

4: Repeat from step 2 until convergence.

Among the distortion functions discussed above, it is evi-
dent that the MSE distortion dSE has the lowest complexity. On

observing the expressions for the interference dIF and inter-AP
dIA distortions, we find that in the former, the summation for
each interfering cell is over all of the users in that cell while
in the latter, the net summation is only over interfering cells.
Hence, dIA has lower implementation complexity than dIF. We
will also see in a later section that user association with dIA
is relatively much simpler.

VI. CELL ASSOCIATION STRATEGIES

In the previous sections, we have addressed the problem of
how to place APs based on the user locations. For complete-
ness, we now aim at answering the following two questions on
cell association: When a new user enters the system, to which
cell should it associate to? What metric should be used? In
this section, we elaborate on these two issues in the context of
Lloyd and Lloyd-type algorithms. Accordingly, consider a user
at location pnew that has entered the area after AP placement
has already occurred and will associate to the AP at qmnew .

For the Lloyd and Lloyd-type algorithms developed in this
paper, the user would associate to the AP that yields the lowest
distortion value. This is a straightforward implementation of
the NNC for each algorithm. Formally, if d represents any of
the distortion functions, qmnew is determined as

qmnew = {qm : d (pnew,qm) ≤ d (pnew,ql) ,∀l ̸= m} . (50)

It is worth pointing out that since the distortion function in the
Interference Lloyd algorithm involves summing over all users
in other (interfering) cells, the complexity of such a calculation
cannot be overlooked. Instead, a cell association procedure
(50) based on the simpler distortion measures of the Lloyd
or the Inter-AP Lloyd algorithm can be undertaken as a low-
complexity alternative. Note that the distortion function in the
latter involves only the knowledge of the interfering APs posi-
tions. This is of greater practical value as opposed to knowing
the positions of all interfering users in the Interference Lloyd
algorithm. In summary, the Inter-AP Lloyd algorithm not only
offers lower implementation complexity and thus a simpler
cell association strategy, but is also of more practical value
compared to the Interference Lloyd algorithm.

VII. SIMULATION METHODOLOGY AND RESULTS

A. Simulation Parameters

A geographical area of dimensions 2 km × 2 km is con-
sidered, consisting of M = 8 APs and K = 2000 users,
and one randomly selected user in each cell communicates
with its associated AP. The pathloss model in (2) is used with
γ = 2, shadow fading zmk ignored as it is averaged out in
Sections IV and V, c0 = 75.86 and c1 = 7.59 × 10−7 as in
[45, eq. (4.36), eq. (4.37)] according to the COST 231 Hata
propagation model, and r0 = 0.001 km. Also, the value of
the trade-off factor is chosen to be κ = 5 × 108 and the
step-size for the gradient descent is δ = 5 × 10−5 for the
Lloyd-χ algorithm and δ = 0.5 for the ICI-aware Lloyd-type
algorithms. Moreover, the uplink transmit power is ρr = 200
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mW and the user distribution is a Gaussian mixture model
(GMM) of the form

fP(p) =
L∑

l=1

plN
(
p|µl, σ

2
l I
)
, (51)

where I is the identity matrix and L is the number of mixture
components, called groups henceforth. For group l, pl is
the mixture component weight, µl is the mean, and σl is
the standard deviation. We set a user configuration with the
parameters L = 3, µ1 = [0.5,−0.5]T , µ2 = [0, 0.5]T ,
µ3 = [−0.5, 0]T , σ1 = σ2 = σ3 = 100, p1 = 0.6, and
p2 = p3 = 0.2.

B. Performance Measures

We use the per-user achievable rate of user km, which is
calculated using SINR ϕkm from (5). As given in [45, Ch. 4],
we can also write the achievable rate as

Rkm = E {log2 (1 + ϕkm)} =
1

ln 2
eµkEi (µk) , (52)

where µk = (1 + ρr
∑

m′ ̸=m βmkm′ )/ρrβmkm and Ei(x) =∫∞
x

(e−t/t)dt is the exponential integral.
For each of the proposed algorithms and the benchmark

Lloyd algorithm, the maximum iteration number is set at 50.
Each of the above performance measures is calculated through
Monte Carlo simulations with 10, 000 iterations, choosing a
set of users randomly for transmission each time. Cumulative
distribution function (CDF) plots are generated for each mea-
sure, though normalized by the largest value so as to focus
on the relative performance of the considered algorithms. For
comparison, we utilize the 95%-likely metric that represents
the best rate of the worst 5% of the users (users closer to cell
borders). We denote this by R5%

km
. To quantify the improvement

in relative performance of the proposed algorithms over the
Lloyd algorithm, we use the following measure expressed as
percentage

Improvement Ratio =
R5%,Proposed

km
−R5%,Lloyd

km

R5%,Lloyd
km

× 100. (53)

All algorithms are initialized with the same initial AP locations
for unbiased comparison.

C. Numerical Results

Experiment 1. We compare the throughput performances
of the proposed Lloyd-type algorithms in Section IV with
the baseline Lloyd algorithm. For the Lloyd-χ algorithm, we
use χ = 4 and we note that the rate calculations still use
the exponent γ = 2. The AP locations resultant from the
algorithms are shown in Fig. 1. Relative to the AP positions
of the Lloyd algorithm which are shown as blue circles, the
APs in both the MM-Lloyd and WMSE Lloyd algorithms
are placed closer to the GMM centers. For the MM-Lloyd
algorithm, this can be explained by the logarithm in its
objective function which suppresses the effect of users which
are at large distances (e.g., cell periphery users away from
the GMM center) from the AP position during the placement

-1000 -500 0 500 1000
x-coordinate (m)

-1000

-500

0

500

1000

y-
co

or
di

na
te

 (m
)

Lloyd
MM-Lloyd
Lloyd-  (  = 4)
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Fig. 1: AP locations after convergence of the Lloyd, MM-Lloyd,
Lloyd-χ (χ = 4), and WMSE Lloyd algorithms with M = 8.

TABLE II: Percentage Improvements in Average Achievable Rates
for the Lloyd-Type Algorithms of Section IV

Algorithm Average Achievable Rate

MM-Lloyd 4.26%

Lloyd-χ (χ = 4) −0.64%

WMSE Lloyd 1.14%

process. This, in turn, causes the APs to position themselves
closer to the GMM centers where the majority of the users
at smaller distances are present. The WMSE Lloyd algorithm
works in a different manner as the objective function in (34)
is not weighted by the cell probabilities Pr(p ∈ Cm) as in
(14) of the Lloyd algorithm. This allows cells in the WMSE
Lloyd algorithm to have a larger number of users than the
Lloyd algorithm. On the other hand, the objective function
of the Lloyd-χ algorithm amplifies the contribution of the
users at large distances and results in the APs moving away
from the GMM center. The effects of these placements are
observed in their achievable rate plots in Fig. 2. For both the
MM-Lloyd and WMSE Lloyd algorithms, we observe that due
to their AP positions, the lower rate suffers a reduction in
comparison to the Lloyd algorithm. Nevertheless, note that
there are more users achieving higher rates (right side of
the CDF plot), particularly for the MM-Lloyd algorithm. The
average rate values, however, are higher than that of the Lloyd
algorithm, up to about 4%, as shown in Table II. On the other
hand, the opposite of these effects are observed for the Lloyd-
χ algorithm, with higher low rate values and lower average
rate (only 0.65% lower) than the Lloyd algorithm. Although
omitted here due to space constraints, these effects increase as
the power χ increases.

Experiment 2. Here, our simulations show throughput per-
formances for the proposed ICI-aware Lloyd-type algorithms
and the Lloyd algorithm, as well as their respective AP
placements for comparison. The AP locations obtained after
the algorithms converge are shown in Fig. 3. AP locations for
the Lloyd algorithm are shown as circles around the GMM
center, which in turn are shown by stars. Compared to these
positions, we can observe that the AP locations for both
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Fig. 2: CDF plots of per-user achievable rate for the Lloyd, MM-
Lloyd, Lloyd-χ (χ = 4), and WMSE Lloyd algorithms with M = 8.
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Fig. 3: AP locations after convergence of the Lloyd and ICI-aware
Lloyd-type algorithms with κ = 5× 108 and M = 8.

TABLE III: Percentage Improvements in Average and 95%-Likely
Achievable Rates for the ICI-Aware Lloyd-Type Algorithms

Algorithm Average Rate 95%-Likely Rate

Interference Lloyd −10.94% 33.37%

Inter-AP Lloyd −4.35% 36.34%

the Lloyd-type algorithms are situated further away from the
GMM centers. For the Interference Lloyd algorithm, the AP
positions denoted by the squares are the farthest. This is due
to the interference term in its distortion function that forces
neighboring cells apart. This effect is different (smaller) for
the Inter-AP Lloyd algorithm due to the inter-AP distances
term in its distortion function in contrast to the interference
term in the Interference Lloyd algorithm.

In Fig. 4, we show the CDFs of the achievable rate obtained
per user for each of the considered algorithms. The horizontal
line at the 5th percentile shows the 95%-likely rate and we
compare the values where it intersects the throughput curves.
It is clear that accounting for ICI during the AP placement
procedure yields a superior performance to both Lloyd-type
algorithms in comparison to the Lloyd algorithm in terms
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Fig. 4: CDF plots of per-user achievable rate for the Lloyd and ICI-
aware Lloyd-type algorithms with κ = 5× 108 and M = 8.

of the 95%-likely rate. It is to be noted that the average
rate performances of both the proposed algorithms are lower
than that of the Lloyd algorithm, however, the magnitude of
increase in the 95%-likely rates overshadows the decrease
in average rates. This occurrence is due to the fact that the
original average rate maximization problem in (37) has been
transformed into maximization of its lower bound in (40). In
practice, Fig. 4 shows us that the worst 5% of the users,
usually the ones located closer to the cell borders and thus
more susceptible to the deleterious effects of ICI, will have
an uplink performance boost when APs are placed according
to the proposed algorithms. The percentage of improvements
are quantified in Table III from where we can confirm a very
significant rate enhancement of up to 36.34% in the 95%-
likely achievable rate, in comparison to the Lloyd algorithm.
Also, from the same table, we can quantify that the Inter-AP
Lloyd algorithm, despite its significantly lower computational
complexity, performs slightly to moderately better than the
Interference Lloyd algorithm, giving an approximately 3%
improvement in the 95%-likely achievable rate. It is worth
pointing out that in our experiments, lower κ values resulted
in less improvements as the Lloyd-type algorithms approached
the results of the Lloyd algorithm. Higher κ values resulted
in convergence issues during the AP placement process. Many
iterations of the algorithms were performed with other GMM
configurations and κ values. Similar performance trends were
observed for various standard deviations of the GMMs. Thus,
the choice of κ is an important part of the AP placement
process and depends primarily on the area under consideration
and the pathloss model. Finally, it is important to notice that
although we have focused on the worst 5% of the users, the
Inter-AP Lloyd algorithm actually boosts the performances of
the worst (nearly) 25% of the users. The performance loss of
the best users, as seen in the CDF plot, is justifiable due to
the fact that users closer to the cell center tend to benefit from
large SINR values that already suffice to provide them with
more than their throughput requirements.
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VIII. CONCLUSION

In this paper, we have addressed the access point (AP)
placement problem in the small-cell uplink paradigm under
the criteria of throughput, while considering inter-cell inter-
ference (ICI). After reviewing vector quantization (VQ), we
explored related throughput formulations in the single user
case and subsequently, the multiple user case corresponding
to the considered small-cell model. Without ICI, we showed
that the simple Lloyd algorithm performed similarly to the
aforementioned formulations (only up to a 4% difference) and
could be a baseline algorithm to solve more complex problems.
Accordingly, we accounted for ICI in the optimization function
of the Lloyd algorithm and mathematically arrived at two
distinct distortion functions. Correspondingly, we proposed
two Lloyd-type algorithms, namely the Interference Lloyd
algorithm and the Inter-AP Lloyd algorithm. Both algorithms
yield significant improvement to achievable rates, giving up
to a marked 36.34% increase in the 95%-likely rate over the
benchmark Lloyd algorithm. The Inter-AP Lloyd algorithm
achieves throughput gains coupled with lower complexity and
simpler user association over the Interference Lloyd algorithm.
Finally, cell association strategies were outlined for all algo-
rithms for completeness.

APPENDIX A
PROOF OF SOLUTION FOR MM-LLOYD ALGORITHM

The expectation in the objective function in (21) can be
replaced by the sample average using the user realizations at
pk and written as

J =
∑

pk∈Cm

log
(
||qm − pk||2 + ϵ

)
, (54)

where qE(p) is replaced by qm and the average is taken over
all the users in cell Cm as the update steps correspond to
the CC step of the Lloyd-type algorithm. Following the MM
literature, a concave function can be upper bounded by its
first-order Taylor expansion [50]

h(z) ≤ h′(zl)(z − zl) + h(zl), (55)

where h(·) is concave on R+, z is the variable, zl is the point
around which the expansion is carried out, and h′(·) is the
first derivative. In (54), we can take h(zk) = log(zk) and
zk = ||qm −pk||2 + ϵ, where we note that zk is scalar. Thus,
using the upper bound (55) in (54), the objective function is

J1 =
∑

pk∈Cm

h(zk) ≤
∑

pk∈Cm

[h′(zk,l)(zk − zk,l) + h(zk,l)].

(56)
Removing the terms that are not involved in the optimization,
we have

arg min
qm

∑
pk∈Cm

wkzk = arg min
qm

∑
pk∈Cm

wk

(
||qm − pk||2 + ϵ

)
,

(57)
where the weight wk is defined as

wk = h′(zk,l) =
∂h(zk,l)

∂zk,l

∣∣∣∣
zk,l=||qm−pk||2+ϵ

,

=
1

zk,l

∣∣∣∣
zk,l=||qm−pk||2+ϵ

=
1

||qm − pk||2 + ϵ
,

(58)

which gives the weight update equation. Now, given the
weights, the objective function in (57) is

J2 =
∑

pk∈Cm

wk

(
||qm − pk||2 + ϵ

)
. (59)

Taking the derivative and equating it to 0, i.e., ∂J2/∂qm = 0,
gives the update equation for the AP position

qm =

∑
pk∈Cm

wkpk∑
pk∈Cm

wk
. (60)

APPENDIX B
PROOF OF GRADIENT FOR LLOYD-χ ALGORITHM

The gradient of the distortion function dχ (p,qm) is calcu-
lated as

∂

∂qm


∫

p∈Cm

dχ (p,qm) fP(p)dp


(a)
=

∂

∂qm

 1

|Cm|
∑

pk∈Cm

dχ (pk,qm)

 ,

=
∂

∂qm

 1

|Cm|
∑

pk∈Cm

||pk − qm||χ
 ,

(b)
=

χ

|Cm|
∑

pk∈Cm

(qm − pk) ||pk − qm||χ−2
.

(61)

where (a) is obtained by replacing the expectation with the
sample mean and the factor of 2 is assumed to be absorbed
by the step-size δ in (b).

APPENDIX C
PROOF OF SOLUTION FOR WMSE LLOYD ALGORITHM

Consider the simplified objective function in (34), which
can be written as

M∑
m=1

Sm
(a)
=

M∑
m=1

1

Nm

∑
pk∈Cm

dSE(pk,qm),

(b)
=

1

K

M∑
m=1

1

Pr(p ∈ Cm)

∑
pk∈Cm

dSE(pk,qm),

(62)

where in (a), we have replaced the integral of Sm (defined
in (15)) with the sample average over the users present in the
cell and Nm represents the number of users in cell Cm, and in
(b), we have used Pr(p ∈ Cm) = Nm/K, with K as the total
number of users. Comparing (62) with the objective function
of the Lloyd algorithm JVQ in (14), we have

M∑
m=1

Sm Pr(p ∈ Cm) =
M∑

m=1

1

Nm

∑
pk∈Cm

dSE(pk,qm)× Nm

K
,

=
1

K

M∑
m=1

∑
pk∈Cm

dSE(pk,qm),

(63)
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where we can observe that the objective function in (62) is
a weighted MSE (WMSE) measure, with the weight related
to AP m given by wm = 1/Pr(p ∈ Cm). Thus, the NNC
step is updated to use a weighted squared error distortion
function, i.e., wmdSE(pk,qm). The CC step however remains
independent of the weights. This can be proven by taking the
derivative of the objective function in (62) with respect to the
AP location qm, which gives the AP location as

qm =
1

|Cm|
∑

pk∈Cm

pk. (64)

APPENDIX D
JUSTIFICATION OF (47)

Consider the term in the denominator of (47)

||pm′ − qE(p)||2 = ||pm′ − qm′︸ ︷︷ ︸
y

+qm′ − qE(p)︸ ︷︷ ︸
x

||2. (65)

Let us assume that the distance between the interfering user
and its serving AP, denoted by y, is always smaller than the
distance of that same AP from the nearest AP, denoted by x,
which means

||pm′ − qm′ || ≤
∣∣∣∣qm′ − qE(p)

∣∣∣∣ ⇒ ||y|| ≤ ||x||. (66)

The above inequality always holds true when the interfering
user is on the near side of the interfering AP with respect to the
serving AP and does not always hold true when the interfering
user is on the far side of the interfering AP with respect to
the serving AP. We note that the importance of the second
scenario is reduced when the interfering cells are farther away.
Further, even among the interfering cells that are near (the
neighboring cells), the proportion of users within such cells
that does not satisfy the inequality above is small. Thus, we
make the assumption that (66) is satisfied for all users. Given
that m′ indexes the interfering cells, we can classify these
cells into cells that are the immediate neighbors of cell CE(p),
denoted by IN (E(p)) and those that are not, and are thus
farther away. Hence, the two cases are

||x|| ≥ ||y|| , ∀m′ ∈ IN (E(p)), m′ ̸= E(p),
||x|| ≫ ||y|| , ∀m′ /∈ IN (E(p)), m′ ̸= E(p).

(67)

However, to simplify, we make the optimistic assumption that
||x|| ≫ ||y|| holds true for all m′ ̸= E(p). This gives

||x+ y||2 = ||x||2 + ||y||2 + 2||x||||y|| cos θ,

= ||x||2
(
1 +

||y||2

||x||2
+

||y|| cos θ
||x||

)
,

≈ ||x||2.

(68)

Note that this relation holds true even when γ assumes values
other than γ = 2. Thus, from (65), we have

Epm′

{
1∣∣∣∣pm′ − qE(p)

∣∣∣∣γ
}

≈ 1∣∣∣∣qm′ − qE(p)
∣∣∣∣γ . (69)

APPENDIX E
PROOF OF GRADIENT FOR INTERFERENCE LLOYD

ALGORITHM

The gradient is calculated using the distortion function as

∂

∂qm


∫

p∈Cm

dIF (p,qm) fP(p)dp


=

∂

∂qm

 1

|Cm|
∑

pk∈Cm

dIF (pk,qm)

 ,

=
∂

∂qm

 1

|Cm|
∑

pk∈Cm

||pk − qm||γ

+κ
∑

m′ ̸=m

1

|Cm′ |
∑

pk
m′∈Cm′

1∣∣∣∣pkm′ − qm

∣∣∣∣γ
 ,

=
γ

|Cm|
∑

pk∈Cm

(qm − pk) ||pk − qm||γ−2

+ κ
∑

m′ ̸=m

γ

|Cm′ |
∑

pk
m′∈Cm′

(
pkm′ − qm

)∣∣∣∣pkm′ − qm

∣∣∣∣γ ,
(70)

where the factor of 2 is assumed to be absorbed by the step-
size δ as in Appendix B.
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