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1 | INTRODUCTION

Community science or citizen science (CS) data are increasingly
making important contributions to applied ecological research
and conservation planning. One of the most common forms of
CS data is the recording of species observations by members of
the public. These observations are being collected for a diverse
array of taxa, including butterflies (Howard et al., 2010), sharks
(Vianna et al., 2014), lichen (Casanovas et al., 2014), bats (Newson
et al., 2015) and birds (Sauer et al., 2017). The number of these
CS projects has been growing exponentially, but they vary widely
in complexity, data collection flexibility and participation (Pocock
et al., 2017; Wiggins & Crowston, 2011). Projects occur on a spec-
trum from those with a predefined sampling structure that resem-
bles more traditional survey designs, to those that are unstructured
and collect observations opportunistically. Projects with study de-
signs and defined protocols generally produce data that are more
informative for a particular objective, but are often limited to a
specific time frame and region and have fewer participants. This
can lead to a trade-off between the quality and quantity of data
collected by CS projects (Bird et al., 2014; Pacifici et al., 2017).
Semi-structured CS projects have unstructured data collection,
but critically also collect data on the observation process, which
can be used to retrospectively account for many sources of noise
introduced by data collection (Altwegg & Nichols, 2019; Kelling
et al., 2019). With the increasing popularity in the use and applica-
tion of CS data, we describe and evaluate steps for data processing
and analysis that maximize the value of semi-structured CS data
(Sullivan et al., 2014).

Data consisting of species observations from volunteers pres-
ent three general challenges that are not as prevalent in conven-
tional scientific data. Firstly, the locations selected by participants
to collect data are usually strongly spatially biased. For example,
participants may preferentially visit locations that are close to
where they live (Dennis & Thomas, 2000; Mair & Ruete, 2016), are
more accessible (Botts et al., 2011; Kadmon et al., 2004), contain
high species diversity (Hijmans et al., 2000; Tulloch et al., 2013)
or are within protected areas (Tulloch et al., 2013). Secondly, the
observation process is heterogeneous, with large variation in
effort, time of day, observers and weather, all of which can af-
fect the detectability of species (Ellis & Taylor, 2018; Hochachka
et al., 2021; Oliveira et al., 2018). Thirdly, participants often have
preferences for certain species, which may lead to preferential re-
cording of some species over others (Troudet et al., 2017; Tulloch
& Szabo, 2012). Nonetheless, CS data can fill critical gaps in our
knowledge of the biodiversity of many parts of the world, and the
growing scale and scope of CS data will likely increase our un-
derstanding of global biodiversity into the future. Therefore, it is
imperative to define approaches that can maximize the value of
the increasing volumes of CS species observations.

Imperfect detection in the observation process means that
not every individual is detected by an observer, and consequently,

some species are falsely absent from the data. The three CS data

challenges listed above each result in false absences in the species
recorded. The spatial bias has the strongest impact, since an ab-
sence of observers in an area results in no species being recorded.
The other two challenges affect whether a species is recorded,
conditional on an observer visiting a location where a species is
present. Some facets of observer effort affect whether a species
is available for detection—e.g. whether it is a time of day when the
species is present in that place and behaves in a way that makes
it detectable (Diefenbach et al., 2007; Hochachka et al., 2009).
Other facets of effort affect whether an observer detects and
identifies an available species, for example the duration and dis-
tance travelled while observing (Fuller & Langslow, 1984), or the
skills and equipment associated with a particular observer (Kelling
etal, 2015).

False negatives due to imperfect detection are ubiquitous in eco-
logical data and require careful data analysis for robust inference.
There are two main approaches for addressing the challenges of false
negatives: 1) imposing a more structured protocol onto the dataset
after collection via data filtering (Kamp et al., 2016) and 2) using an
analytical framework that accommodate the false negatives, such as
including covariates in a model to account for the variation in the
causes of false negatives (Miller et al., 2019). In this paper, we advo-
cate combining both of these approaches to increase the reliability
of inferences made using CS observations.

We describe analytical approaches for using semi-structured CS
data, using the example of estimating species distributions from data
collected by the eBird CS project (Sullivan et al., 2014). We evaluate
the efficacy of using two critical aspects of these CS data that facil-
itate robust ecological inference. Firstly, data submitted to eBird are
structured as “checklists,” where each checklist is a list of the num-
bers of individuals of each bird species recorded during a period of
bird-watching. The majority of these checklists record every individ-
ual bird the observer detected and identified, so we can infer when
a species was not detected. Secondly, eBird is a semi-structured CS
project, which means most eBird checklists have associated meta-
data describing the “effort” or observation process (Kelling et al.,
2019), which allow us to model variation in the probability of de-
tection. While our examples focus on the use of eBird data for es-
timating species occurrence, our results are applicable to similar CS
datasets tackling similar ecological questions, and these results can

also help inform the design of future CS surveys.

2 | METHODS

We explored the impact of various analytical practices when using
CS data to estimate species distributions. We used different model-
ling approaches to estimate 1) encounter rate with Maxent and ran-
dom forest models and 2) occupancy rate with an occupancy model.
Species encounters arise as a compound process requiring both the
species to occur at a site and to be detected at that site. Encounter
rate is defined as the average rate at which observers encounter the

species, so it reflects the product of occurrence and detectability. It
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FIGURE 1 Schematic diagram of the flow of data into each of the 7 model types for the encounter rate model. The sizes of the boxes and
the numbers inside them are the number of checklists. The blue processes occur once, and the pink processes occur 25 times, once for each
model run. The numbers shown will therefore vary slightly each time within the pink box. The dark colours represent training data and the

pale colours validation data. Arrows represent data processing steps or p

can also be considered to describe the “apparent distribution” of the
species: the distribution of where observers encounter, detect, iden-
tify and record the species. Occupancy is defined as the probability
that a species is present in a given location, with the model struc-
ture separating occurrence and detectability. For the random forest
and occupancy models, we use detection/non-detection data as the
response variable, while Maxent uses only detection (or “presence-
only”) data and combines these with pseudo-absences. All analyses
were conducted with R (R Core Team, 2018).

rojection of the same data forward to the next stage

2.1 | eBird data selection

We used data from the eBird Basic Dataset (EBD), which is global
in extent and updated monthly (www.ebird.org/science/downl
oad-ebird-data-products). The most current version of the EBD
can be freely accessed via an online data portal and processed
with the auk R package (Strimas-Mackey et al., 2017). eBird has
a robust review process, focussed on ensuring correct locations

and species identification, that is conducted before data enter the
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EBD. This review process removes unlikely false positives from
the data, that is species records without adequate evidence of the
identification, for locations and times of year that they are not
expected to occur. This process does not remove false positives
that are plausible observations based on species distributions and
phenology. We provide further details on this review process and
other aspects of eBird data in Appendix S1. Our data are from
the EBD version released in May 2019. To model distribution in
the breeding season, we used checklists from 15 May to 30 June.
We used a geographically restricted subset of data, from Bird
Conservation Region 27 “Southeastern coastal plain” (BCR27), a
biogeographically distinct region that covers and includes parts of
the states: Mississippi, Alabama, Florida, Georgia, North Carolina
and South Carolina (NABCI, 2000).

For our primary case study, we focussed on wood thrush
Hylocichla mustelina in the breeding season. Wood thrush is a rel-
atively common nesting passerine across much of eastern North
America, that is easily detected by its distinctive song. We also pres-
ent some supplementary results from modelling the distribution of
chuck-will's-widow (Antrostomus carolinensis), in order to illustrate
how decisions about data analysis may have different impacts in
different species. Chuck-will's-widows are camouflaged and noctur-
nally active, when their loud and distinctive vocalizations make them
highly detectable. Their different daily activity patterns and habitats
provide a good contrast between these two example species.

2.2 | eBird data processing—training data

We split the eBird data into a dataset to train (or fit) the models and
semi-independent datasets to validate (or test) the models (Figure 1

and Figure S1). To train the models, we used eBird data from 2018.
We used a hierarchy of data processing steps on the training data,
applying these sequentially to create a set of differently processed
datasets. These data processing steps were designed to highlight or
address the challenges with CS data outlined in the introduction. We
applied these datasets to each of the two model types to estimate
both species encounter rate and occupancy (Table 1).

Two data processing steps were designed to demonstrate the dif-
ferences in model estimates when the dataset does not contain key
information. These two steps both degraded the eBird data to pro-
duce datasets that mimic common CS data structures. The first data
degrading step, i) select only detections (Table 1), produced a data-
set of “presence-only” information. This structure of data is common
with CS projects that do not collect lists of species. The data degrad-
ing step, ii) select only “incomplete” checklists (Table 1), produced a
dataset of checklists for which observers explicitly indicated that not
all species were recorded. In this subset, non-detections cannot be
separated from species bias when observers decide not to record a
particular species that they have detected and identified. The mod-
els with these data (models 1 and 2) highlight the impact of using
similar data to estimate species occupancy or encounter rates.

Three data processing steps were designed to demonstrate
the impact of refining the eBird data and show the relative value
of smaller, but more selective datasets, compared to larger and less
refined datasets. These refinements were additively imposed on the
raw data, so each cumulatively refined the data further. The data
refinement steps were iii) select only “complete” checklists, to pro-
vide data with non-detections; iv) spatially subsample the data, to
reduce the influence of spatial bias; and v) select checklists within
standard range of effort, to reduce the influence of checklists with
unusual effort (Table 1). Using non-detections allows the model to

TABLE 1 Descriptions of the elements in models 1-7 that include different data processing treatments. Model 3 uses all the raw data
with no processing. Models 1-2 use data degraded in different ways by processes (i) and (ii). Models 4-6 use data refined in different ways

by processes (iii), (iv) and (v). Model 7 uses the same data as model 6,

Data processing treatment

Degrade i) Select detections only
(“presence-only”)

ii) Select incomplete checklists only
Refine iiii) Select complete checklists only
iv) Spatial subsampling
V) Effort filters
vi) Effort covariates
Model structures
Encounter rate model Model type

No. of land cover covariates

No. of effort covariates
Occupancy model Occupancy model

No. of land cover covariates

No. of effort covariates

but additionally includes effort variables as covariates

Model
2 3 4 5 6 7
v
v
v v v v
4 4 4
v v
4

Maxent Random forest

16 16

0 0 5
Single-season occupancy model
4
0 5
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have knowledge of where effort was expended, but the species was
not recorded. Data processing step iii) ensures that all the inferred
“non-detections” are actually non-detections, by only including com-
plete checklists where observers report all the species they could
detect and identify. This addresses the challenge of species report-
ing bias. Step iv) spatial subsampling reduces the over-influence of
well-surveyed locations in the analysis. This addresses the challenge
of spatial bias. Step v) reduces the range of checklist effort, creat-
ing a more consistent and standardized set of checklists for analysis.
This addresses the challenge of variable effort. Methodological de-
tails for how we performed each of these data processing steps are

given in Appendix S2.

2.3 | eBird data processing—validation data

We created two validation datasets, chosen because of their differ-
ent forms of independence from the 2018 training data. In general,
the form of validation data should be tailored to a specific intent
(Valavi et al., 2018).

Our main validation set was temporally independent, using
eBird data from 2017. We split data with species detections from
data with species non-detections and spatially subsampled each set
of data to reduce the influence of spatial bias. We then randomly
subsampled the non-detections so there were equal numbers of
detections and non-detections. Recombining these two datasets
gave us a balanced validation set (with equal detections and non-
detections) and with reduced spatial bias (Figure 1). The reduced
spatial bias ensured that the data represent the study region more
evenly, and the balance of detections and non-detections was
designed to test the ability of the model to discriminate between
areas of species presence and absence. As 2017 is a different year,
it would not provide good validation for species that change their
distribution substantially from year-to-year, such as irruptive spe-
cies, but we have no reason to expect such inter-annual variability
for our example species.

Our second validation dataset was designed to compare esti-
mates from eBird data with estimates from data collected with a
standardized and pre-designed survey. We used data from the 2018
North American Breeding Bird Survey (BBS) that were also submit-
ted to eBird (Figure 1). We used the BBS data submitted to eBird to
enable us to use data with precise location information for each stop
on the 25-mile BBS routes. We extracted BBS data from eBird by
identifying sets of at least 40 x 3-min point counts conducted on the
same day, by the same observer, at locations that were spatially and
temporally separated according to expectations for BBS stops. We
also removed these same data from the training data. See Appendix
S2 for more details of both validation datasets.

Using the model fitted with the training data, we estimated
counts on checklists in both the validation datasets. We compared
the estimated occurrence rates to the actual occurrence, enabling us
to understand the quality of the models to predict to different data-

sets. See Appendix S2 for more details of the validation procedures.
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2.4 | eBird data processing—occupancy models

Preparing data for the occupancy models required some additional
data processing. There are many decisions required when using CS
data for occupancy models and we describe these in greater detail in
Appendix S1 with only a brief overview here. We defined a “site” as
a location (defined by latitude and longitude) with at least two visits
during 15 May-30 June 2018. Where there were more than 10 visits
to a single site, we randomly selected 10 of the visits.

For the occupancy models, we created a third validation set. We
wanted to validate the estimates of occupancy, while limiting the ef-
fects of detectability. We used the models to estimate occupancy
and detectability at all sites. We calculated the cumulative estimated
detectability across all visits at a single site by using the formula:
pi=1-TI;2, (1 - py) where p, is the estimated detectability at
site i and visit t and p; is the cumulative detectability at site i across
all visits. We used the cumulative detectability to select only sites
with high detectability (p; 20.90) and determined whether the focal
species was recorded on any visit. Using these validation data, we
compared the estimated occupancy to the observed occurrence at
each site. Using only the sites with high detectability ensured that
we were getting close to comparing our estimates of occupancy with

true species occurrence.

2.5 | Environmental data

As environmental covariates, we used land cover data derived from
the MODIS product MCD12Q1 v006 (Friedl & Sulla-Menashe, 2015).
We estimated the land cover associated with each checklist as the
proportion of each land cover category in a 2.5 km x 2.5 km square
surrounding the checklist location in the year the observations were
made. We included the proportions of each of 16 land cover types in
the UMD LC_Type2 classification of MODIS MCD12Q1 v006 clas-
sification (Friedl & Sulla-Menashe, 2015). See Appendix S2 for a list
of the land cover types.

2.6 | Effort covariates

We used effort covariates that describe heterogeneity in observer
effort that we expect to be associated with differences in detect-
ability. eBird checklists contain information on the following effort
covariates: start time of birding activity, duration of birding activity,
whether observers were travelling or stationary, distance travelled
and the number of observers. For occupancy models, we also included
the square of “start time of birding activity,” to enable quadratic rela-
tionships with time of day. Each of these covariates describes varia-
tion in effort that will impact detectability. We expect that all of these
will usually be important descriptors of heterogeneity in effort, but
the effect of these on detectability is likely to vary by species, region
and season. Not all eBird checklists contain each of these variables,

but all complete checklists contain each of these; by filtering to only
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complete checklists in step iii), we ensure that each of the checklists
in the training and validation data all contains the effort variables.

2.7 | Estimating species encounter rate

We estimated the encounter rate of the two species on eBird check-
lists in relation to the environmental covariates for each of the
seven treatments of the data (Table 1). We fitted models to 25 ver-
sions of data, from each of the seven treatments of the data. For
each of the 25 versions, we randomly selected 0.75 of the training
and validation datasets before applying the relevant data process-
ing treatments (Figure 1). The response was the detection/non-
detection of each species, and the environmental covariates were
16 land cover covariates described in Appendix S2 (Friedl & Sulla-
Menashe, 2015). Model 1 used presence-only records of the species
on a checklist, fitted with a Maxent model through the R package
maxnet (Phillips, 2016). Models 2-7 fitted a random forest with a re-
sponse of detection/non-detection records on checklists, followed
by calibration with a generalized additive model (GAM). The ran-
dom forest models were fitted with the R package ranger (Wright
& Ziegler, 2017) and the calibration GAMs within R package scam
(Pya, 2013). For further details of the model fitting, see Appendix S2
and the code in supporting information A3.

We used the validation datasets to validate the estimates either
from the Maxent model or from the combination of the random
forest and the calibration GAM. We used a range of performance
metrics to compare the estimates to the observations: sensitivity,
specificity, true skill statistic (TSS), area under the curve (AUC),
kappa and mean squared error (MSE, also named Brier score). To
quantify the benefit or detriment of the seven data refining or de-
grading steps, we calculated the differences in performance metrics
between each of the 7 models and model 3. We selected model 3 as
the “baseline” because it used no data degrading or refinement. We
examined the distribution of these differences across the 25 differ-
ent runs of the model sets.

Randomly selecting one of the twenty-five iterations of fitting
the set of seven models, we mapped the estimated encounter rates
across the whole region of the BCR27. We produced a dataset with
the land cover for each 2.5 km x 2.5 km grid cell across the entire
region and we set effort variables to be constant across the region.
The predictions were the hypothetical encounter rate of an average
eBird participant conducting a 1 hr, 1 km complete checklist on 15
June 2018 at the optimal time of day for species detection. We es-
timated encounter rate for this standardized checklist in each grid

cell in BCR27, using each of the seven models.
2.8 | Estimating species occupancy
To assess the effects of these data processing steps in an alterna-

tive modelling framework, we applied single-species occupancy

models to estimate occupancy and detectability. We modelled

occupancy probability as a function of MODIS land cover (Friedl & Sulla-
Menashe, 2015). However rather than using all 16 land cover variables
as above, we selected four categories considered a priori to have the
most ecological relevance for wood thrush (deciduous broadleaf forest,
mixed forest, croplands and urban) and chuck-will's-widow (evergreen
needleleaf, deciduous broadleaf, mixed forest, urban). For modelling
detectability, we used five effort covariates described above and the
square of start time of birding activity. We used the R package un-
marked to fit single-season occupancy models (Fiske & Chandler, 2011).
We could not run an occupancy model with the detection only data
(model 1) above, but we ran these occupancy models using six different
combinations of data processing that matched encounter rate models
2-7 (Table 1). The data degrading and refinement steps took place be-
fore we prepared the data for occupancy models. For further details of
the data processing and model fitting, see Appendix S2. Given the more
stringent data processing for occupancy models, there was less value in
repeating this analysis several times as the datasets would be relatively
similar; therefore, we did not repeat this analysis 25 times.

We validated the estimates from the occupancy model using the
occupancy validation dataset described above. As above, we also
mapped the occupancy rate across the whole region by predicting
to the whole of BCR27.

2.9 | Varying sample size

Our study area has a relatively high density of eBird data, but other
regions and other CS projects often have fewer data. Therefore, we
wanted to assess whether the results we found would be similar with
smaller datasets. We estimated wood thrush encounter rate using only
models 3 and 7 for a range of sample sizes. As above, for each model
pair (model 3 and model 7) we randomly selected 0.75 of both the
training and validation datasets. We then further subsampled these
new datasets to varying proportions of the new total: 0.1, 0.3,0.5,0.7
or 0.9. We ran this set of 10 analyses (five sample sizes, two models)
25 times. For each run, we compared the difference in predictive per-
formance metrics (as described above) between model 7 and model 3.

3 | RESULTS
3.1 | Estimating species encounter rate

Both wood thrush and chuck-will's-widow results show model 7 had
the highest estimates of encounter rate (Figure 2, Figures S4, S10
and S11) and the best model performance (Figure 3, Figures S2, S13
and S14). Model performance was consistently the best with model
7, across both validation datasets and most of the performance
metrics (Figure 3, Figures S2, S13 and S14). Thus, the combination
of all data processing steps resulted in the best model, and using
complete checklists produced the biggest improvement for wood
thrush, while adding covariates produced the biggest improvement

for chuck-will's-widow (compare models 2 and 3).
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FIGURE 2 Estimated wood thrush
encounter rate across the BCR27 region
for models 1-7. Estimated encounter
rate is the expected proportion of
standardized checklists that would
record wood thrush. These hypothetical
standardized checklists are conducted
by an average eBirder, travelling 1 km
over 1 hr, at the optimal time of day for
detecting wood thrush
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With wood thrush data, both models 1 and 2 had substantially
worse model performance than other models, which was evident
with both of the validation datasets (Figure 3 and Figure S2). The
estimates of encounter rate from models 1 and 2 were poorly cor-
related with those from model 7 (Figure S3), although there are some
broad similarities in spatial patterns (Figure 2). These results demon-
strate that for wood thrush using presence-only or casual observa-
tions (not part of a complete checklist) is likely to result in poorer
ecological inference. Models 3-6 all displayed similar model per-
formance (Figure 3 and Figure S2), similar absolute encounter rate
(Figure S4) and similar correlations with the predictions from model
7 (Figure S3). As a contrast, chuck-will's-widow showed the greatest
gains in model performance with the addition of effort variables as

covariates and with the use of non-detections in model 2. There was

smaller improvement for the other model refinement steps (Figures
S13 and S14). Overall, due to the strong effect of time of day on
the estimated encounter rate, most estimates had a poor correlation
with those from model 7 (Figure S12). All these results suggest that
the largest gains in model performance may vary with characteristics

of the data, which we expect to vary by species, season and region.

3.2 | Estimating species occupancy

Across models, the estimates of occupancy for both wood thrush
and chuck-will's-widow were less variable (within species) than those
of encounter rate. The six occupancy models showed relatively con-

sistent spatial patterns (Figure 4 and Figure S15) and high correlation
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FIGURE 3 Differences in predictive performance metrics for the wood thrush encounter rate models 1-7 against balanced and
subsampled eBird data from 2017. Metrics are compared to the performance from model 3, and the y-axis values show differences relative
to model 3. The white halves of the plots indicate where model performance is better than model 3. The grey halves of the plots indicate
where model performance is worse than model 3. Model 3 uses all the data in a random forest encounter rate model. Model 7 is the random
forest encounter rate model using complete checklists, spatial subsampling, effort variable filters and effort variables as covariates. The
validation metrics are calculated for 25 different model runs. For details of models 1-7, see Table 1 and the text. Boxes show the median and
the interquartile range, and whisker ends denote the extremes of the distributions

between estimates (Figures S5 and S16). The notable outlier for oc-
cupancy models was model 7, when effort covariates were included.
This led to correlated, but larger absolute estimates of occupancy
(Figures S7 and S17), and slightly improved model performance by
some metrics (Figures S8 and S19). With these training and validation
datasets, therefore, we could not strongly identify improvements re-
sulting from most of the data processing steps, but including effort
covariates describing heterogeneity in detectability was an impor-

tant improvement (Figures S6 and 518).

3.3 | Varying sample size

Model 7 (with all data refinement steps) was better than model 3 (no
data refinement) (Figure 3). However, the benefits of using model 7

were reduced at smaller sample sizes (Figure 5 and Figure S9). This
may be because reducing the dataset size by filtering (Figure 1) also
has a cost when there are fewer data. However, we find that even
with the smallest datasets, there is no disadvantage to using model
7—it performs equivalent to or better than model 3 across all sample
sizes that we tested (Figure 5 and Figure S9).

4 | DISCUSSION

Community science datasets are becoming increasingly valuable
research tools for ecology and conservation due to their increas-
ing prevalence (Pocock et al.,, 2017) and broad spatio-temporal
scope (Chandler et al., 2017). For example, eBird data have been
used to study phenology, species distributions, population trends,
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FIGURE 4 Estimated occupancy of
wood thrush across the BCR27 region

for occupancy models 2-7 calculated

with data processing steps (ii) to (v). The
occupancy is the expected probability that
cells are occupied by wood thrush

Model 3 . \ga

Model 4 8/

Model 5 : 0

Model 6 O(

Model 7

evolution and behaviour and to inform conservation (Lang et al.,
2019; MacPherson et al., 2018; Mattsson et al.,, 2018; Mayor
et al., 2017; Seeholzer et al., 2017). However, CS data generally
have more errors, assumptions and biases associated with them,
often a result of relatively unconstrained survey design and a
highly heterogeneous observation process. Here we demonstrate
how thoughtful combinations of data filtering and analysis can re-
move relatively uninformative data and control for much of the
statistical noise in CS data.

In our example, spatial subsampling did not result in large changes
to the model performance. Spatial subsampling is designed to reduce
the impact of spatial bias on the environmental relationships and sub-
sequent species distribution. In line with our results, previous stud-
ies have found that spatial bias can have surprisingly little impact on
estimated species distributions (Beck et al., 2014; Higa et al., 2014;
Johnston et al., 2020). This may be particularly true where there are
high data volumes, good coverage of environmental space, sampling
that covers the species' environmental niche and stationarity of the
species distribution across the region (Johnston et al., 2020), all of

which are true in our example datasets. Accordingly, we did not see

any impact of the spatial subsampling on the results. In general, we
expect the impact of spatial subsampling would vary in different
situations and with different subsampling parameters. For example,
there may be a greater impact of spatial subsampling when esti-
mating population trends or other processes that show spatial non-
stationarity (Kamp et al., 2016; Zbinden et al., 2014).

Our results suggest that where effort data are not available, in
some situations occupancy models may be a more robust model-
ling approach. Including information on the observation process
has generally been shown to produce more accurate and robust
results (Johnston et al., 2018; Isaac et al., 2014). In our analyses,
the advantages of effort variables were important for chuck-will's-
widow occupancy models, but were less apparent for wood thrush
occupancy models. We also recognize that our occupancy model
validation scheme was less robust, and further study is needed.

We found that model performance was poorer when we de-
graded the data to reflect two common types of CS data: to de-
tections only (presence-only data) and to incomplete checklists
only. There are clear limitations to the ecological insights that

can be gained from presence-only data (Aranda & Lobo, 2011,
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Vaclavik & Meentemeyer, 2009). As a result, multiple approaches
have been suggested for inferring non-detection events when
data are stored in a presence-only format (Hill, 2012; van Strien
et al., 2013). Our case study strongly supports the importance of
complete checklists and the value of retaining this information in
analyses.

Our general recommendation is that both filtering and model-
ling variation in effort are important analytical tools, although their
benefits will vary across datasets and modelling objectives. In our
examples, we find that analysing complete checklists and using
effort variables as covariates made the largest difference to the

model quality. However, the raw data, the volume of data, the model

type and the modelling objective will all affect the relative benefit
of the data processing steps that we describe. In the two metrics
and two species we investigated, the refinements we made to the
data and models either had no negative effect or notably improved
model performance. As such, we suggest these refinements should
be implemented as a general practice; however, the impact of these
filtering and modelling practices should be further evaluated for dif-
ferent datasets and ecological questions. Here, we investigated and
recommend current best practices for using semi-structured CS data
to estimate species occurrence. However, for other ecological ques-
tions the trade-offs related to data quantity and refinement may

lead to different optimal data processing steps. Most importantly,
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we encourage other researchers to carefully consider and test ap-
propriate data processing for their own questions.

While we have focused on aspects of the observation process
that create false-negative errors, data can also contain false-positive
errors. These false positives occur when an observer falsely re-
cords a bird as present, which is usually a result of misidentification
of another species. An increasing number of studies demonstrate
the importance of accounting for false positives (Pillay et al. 2014;
Chambert et al. 2015) and in some cases even a low rate of false
positives can create biased estimates of species distributions (Miller
et al. 2011). We have not discussed the treatment of false positives
in this paper, and eBird data do not contain required information to
estimate false-positive error rates. Additionally, due to the eBird re-
view process, unlikely species records require additional evidence to
enter the publicly accessible data, so false positives in the eBird data
will only be species that could be plausibly detected in those places.
Therefore, false positives in eBird should not affect estimates of
species ranges, but could bias estimates of occurrence or relative
abundance within a species’ range.

There are numerous CS programmes in the world today, but only
a limited number of them collect the information needed to infer
non-detections (Pocock et al., 2017). eBird provides evidence that
information on observer effort and completeness of species lists can
be collected while maintaining high participation. While we focused
on modelling species distributions, many other types of ecological
inference and conservation planning will also benefit from these
data processing steps. In combination, the approaches outlined here
for collecting, processing and modelling CS data can inform ways to
improve existing and future programmes, while increasing our cur-
rent capacity to conduct robust analyses using growing volumes of

community science data.
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