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Abstract

Chemically stable quantum-confined 2D metals are of interest in next-generation nanoscale
quantum devices. Bottom-up design and synthesis of such metals could enable the creation of
materials with tailored, on-demand, electronic and optical properties for applications that utilize
tunable plasmonic coupling, optical non-linearity, epsilon-near-zero behavior, or wavelength-
specific light trapping. In this work, we demonstrate that the electronic, superconducting and
optical properties of air-stable two-dimensional metals can be controllably tuned by the formation
of alloys. Environmentally robust large-area two-dimensional In,Gai., alloys are synthesized by
Confinement Heteroepitaxy (CHet). Near-complete solid solubility is achieved with no evidence
of phase segregation, and the composition is tunable over the full range of x by changing the
relative elemental composition of the precursor. The optical and electronic properties directly
correlate with alloy composition, wherein the dielectric function, band structure,
superconductivity, and charge transfer from the metal to graphene are all controlled by the

indium/gallium ratio in the 2D metal layer.

Introduction

Two-dimensional mono-elemental materials exhibit a wide range of optical, electronic, and
superconducting properties that diverge from those of their bulk counterparts!~. For example, few-
layer indium on Si(111)° and gallium on GaN(0001)® show increased superconducting transition
temperatures, potentially facilitating their use in nanoscale quantum devices. Ultrathin gold
exhibits strongly tunable plasmons with resonance peaks between 1.5 and 5 pum, suggesting
foundational applications in plasmonic metasurfaces’. These property enhancements have

%19 and molecular beam

benefited from refinements in synthesis by evaporation®, liquid exfoliation
epitaxy?. However, the ability to intercalate various metal species into high-energy interfaces!!
suggests an alternative synthesis route towards stabilizing two-dimensional metals not previously
pursued. This route, dubbed “confinement heteroepitaxy” (CHet)!?, enables the formation of
environmentally robust 2D metals that are readily studied by a wide variety of ex-situ techniques.
In CHet, metal atoms are intercalated into the gallery between epitaxial graphene (EG) and
SiC(0001) under near-atmospheric pressure in argon environment, to form a large-area 2D crystals
epitaxial to the SiC lattice. Similar to 2D metal systems grown by molecular beam epitaxy under

ultra-high vacuum?#, CHet-based 2D metals exhibit clean, abrupt interfaces and properties distinct

from their bulk counterparts. For CHet-derived systems, these include zero-crossings in the



frequency-dependent  dielectric  constant!’, extraordinary room-temperature nonlinear
susceptibilities x® >10 nm/V!4, and a 4-fold increase in the superconducting transition
temperature over that of the most stable bulk phase!?2. When considered in the context of the
environmental robustness of CHet-based 2D metals, these properties strongly suggest the potential

utility within multicomponent nanoscale photonic and quantum devices.

The prospect of tuning 2D metal properties via doping and alloying promises to further expand the
materials frontier and technological impact of these two-dimensional metals. Early experiments

15-23 and the intercalation of SnixGex?*

toward this end, such as surface alloy phases on bulk metals
at the EG/SiC(0001) interface motivate exploration of how 2D metal alloy composition enables
tuning of the inter-band contributions to dielectric properties, alloy-dependent Fermi surface
geometry, and other aspects of optical and electronic response. Here, we report the controlled
synthesis and characterization of two-dimensional In.Gai., alloys via CHet, using high-purity In
and Ga metal precursors. We find the 2D metal alloy composition is readily tunable by changing
the elemental concentration in the precursor, confirmed through high-resolution x-ray
photoelectron spectroscopy (XPS) and auger electron spectroscopy (AES) mapping. Cross-
sectional scanning transmission electron microscopy (STEM) and azimuthal reflection high-
energy electron diffraction (ARHEED) confirm the metals are epitaxial to the SiC substrate, and
electron energy loss spectroscopy (EELS) demonstrates metal confinement between graphene and
SiC. First-principles density functional theory (DFT) predicts and STEM verifies that the layers
are randomly mixed (approaching an ideal alloy) with a nominal thickness of two atoms. The
optical and electronic properties directly correlate with alloy composition, where the dielectric
response, electronic band structure, superconductivity, and charge transfer from metal to graphene

all vary in controlled ways with respect to the indium concentration in the 2D layer.

Results and Discussions

Atomically thin In.Gai.. alloys are realized through confinement heteroepitaxy (CHet) (see
Methods), where group-III metal atoms are thermally evaporated at near-atmospheric pressures
and then stabilized as 2D metal alloys by intercalation into a defect-engineered EG/SiC interface.
Tuning of the 2D In,Ga;., alloy composition is achieved by simply adjusting the alloy precursor
composition, and thus metal atom flux, from 0 to 1 mole fraction indium. X-ray photoelectron

spectroscopy (Figure 1a,b) provides evidence that the metal is successfully intercalated at the



EG/SiC interface, where the splitting of the Cls peak signifies passivation of the buffer layer by
the intercalant!>?° (See SI, Figure S1). Furthermore, XPS confirms both In and Ga at the EG/SiC
interface, where a slight shift in the In 3d and Ga 2p spectra occurs in the 2D In.Gai., alloy
compared to pure 2D In and 2D Ga, signifying the variation in chemical bonding environment
introduced by the presence of a second element. Finally, XPS reveals that the correlation between
the composition of the IniGai.x precursor and that of the 2D-In.Ga., alloy is nearly linear for the
compositions examined (Figure 1¢), indicating that specific 2D alloy compositions across the full
range of 0 <x <1 can likely be achieved within a few percent by tuning the precursor composition.
The near-linear relation between precursor and final alloy compositions is remarkable, and reflects

an interplay of kinetic and equilibrium aspects of metal intercalation in the experimental geometry.

Using CHet, the InGai., alloys are uniformly distributed with no apparent lateral segregation. As
evidenced by AES mapping (Figure 1d), the uniform spectral intensity of Ga and In as a function
of position in the 2D InosGaos alloy (other alloys are similar) demonstrates that both metals
intercalate with similar overall efficiencies and exhibit an essentially uniform mixing upon
intercalation. This suggests that the group-IIl elements react similarly with graphene defects
formed during CHet, following similar transport kinetics within the intercalation gallery, this is
likely due to their similarity in elemental properties and may not be the case for highly disparate
elements such as mixtures of group-III and refractory d-block elements. We note that the diagonal
stripes in the AES maps are associated with regions of multi-layer EG that often occur at the step
edges in SiC that separate the (0001) terrace regions. Further evidence of this can be found in the
C and Si maps where step edge regions exhibit an increased carbon and Si signals (Figure S2).
Despite this, Ga and In atoms are continuous and uniform across the micron-scale terraces, with
minimal oxygen present. Regions with increased oxygen are encountered, generally where the EG
is scratched or EG layer formation is incomplete. In those cases, we find severe oxidation of the
2D metals, validating the critical role of the graphene overlayer to maintaining environmental

stability (Figure S3).
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Figure 1. Compositional and structural characterization of CHet-grown 2D-In.Gai.« alloys. (a,b) XPS analyses
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verify the co-existence of metallic Ga and In in the alloys. Ga 2p and In 3d peaks are identified close to 1116 and 444
eV, which are the metallic peak positions for pure 2D-Ga and 2D-In, respectively. Slight shifts in Ga 2p and In 3d
peak positions for the 2D-In.Gai-» alloys, compared to the pure 2D-Ga and 2D-In, correspond to different neighbors’
chemistries introduced by the second element in the alloys. (¢) Tuning the composition of the 2D-In.Gai- alloys is
possible by adjusting the precursor composition, with close correspondence between alloy and precursor
compositions. (d) Ga and In AES maps of the 2D-Ino.sGaos alloy showing uniform distribution of Ga and In across
the mapped regions. The diagonal regions of low signal correspond to steps in the SiC which can contain additional
EG layers that attenuate the In and Ga signals. (e) Cross-sectional STEM and accompanying EELS mapping showing

two layers of uniformly dispersed 2D-Ino.sGao.s alloy between EG and SiC, where EELS verifies oxygen is not present.

Two dimensional In.Gai.x alloys are bilayer epitaxial films, confined at the EG/SiC(0001)
interface. High angle annular dark-field (HAADF) STEM imaging (Figure le) demonstrates
uniform contrast in the alloy layer, indicating a uniform dispersion of Ga and In atoms over the
regions examined. Electron energy loss spectroscopy (EELS) mapping further verifies the uniform
distribution of Ga and In (Figure S4), where the 2D metal layer exhibits co-located Ga-L,3 and
In-My s EELS signals without oxygen. Further quantification of the In and Ga composition at the
atomic scale using core-loss EELS, applied to the InosGaos alloy, further verifies the layers are

uniform in composition. Beyond a uniform dispersion of In and Ga, STEM imaging also indicates



the 2D-In,Ga;., alloys are crystalline (Figure 1e). This is verified by RHEED (Figure 2) of
EG/2D-Ing5Gao.s/SiC at two azimuthal angles rotated 30° to each other. The patterns (Figure 2a,
b) exhibit vertical streaks perpendicular to the surface, indicating a smooth surface. Non-vertical
streaks and spots near the center streak (labeled 00) are also observed from the SiC substrate alone,
indicating they are not related to the EG/2D-Ino sGao.s. Plots in Figure 2¢, d of the intensity versus
momentum transfer parallel to the surface (k) from the boxed regions in Figure 2a,b (chosen to
avoid the substrate signal) demonstrate an average spacing (Ak|) between adjacent peaks of 3.04
+0.14 A™'. AK is related to the real space lattice constant by a = 21t/[(+/3/2) Ak|]; here a = 2.38
+0.11 A, which is consistent with graphene a = 2.46 A. Therefore, the measured Ak of 3.04 +
0.14 A™!'is assigned as reciprocal space vector G(01). The peaks observed in Figure 2c are
assigned as 02, 01, 00, 01, and 02 peaks of graphene. This assignment is further verified when
AK is measured at a 30° azimuthal angle from Figure 2d. The average Ak;=5.23 £0.03 A", close
to the length of the reciprocal space vector G(12) = 5.108 A™! for graphene.

Two dimensional InGai., is matched in lattice constant and symmetry to the SiC substrate. This
epitaxial relation is evident when considering a 2D reciprocal space map of EG/2D-Ing 5Gao.5s/SiC
(Figure 2e, f). A grid is constructed using the unit vector a* along G(01), and unit vector b* along
G(10), 60° rotated with the same magnitude. Most a*/b* intersections coincide with diffraction
spots from graphene. However, some diffraction spots between the 1% order spots of graphene,
labelled by dark blue arrows, are not at the intersections of the graphene grid. RHEED patterns
and symmetry from a 2D map of the SiC substrate (Figure S5a) measure a reciprocal space vector
G(01)=a,*=2.36+0.03 A'and bs* = G(10), with as* = bs*. The corresponding real space lattice
constant @ = 3.07 + 0.04 A matches bulk SiC. Like the black grid from graphene on the EG/2D-
Ino.sGao.s/SiC 2D reciprocal space map in Figure 2e, a dark blue grid in Figure 2f consisting of
as* and bs* superposed on the experimental 2D map of the same EG/2D-Ino 5Gao.s/SiC 2D map
coincides with the six 1 order spots located between the 1% order graphene spots. The unit vectors
ag* and bg* of SiC are rotated 30° relative to a* and b*of graphene, consistent with EG/2D-In/SiC
observed by low-energy electron diffraction'?. These results indicate that there are no other regular
reciprocal space lattices besides graphene and SiC. The combination of STEM and 2D maps from
ARHEED thus provides evidence that the 2D metal alloys are lattice matched to the SiC substrate,

just as are the mono-elemental end-members!'2.
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Figure 2. Reflection high-energy electron diffraction (RHEED) patterns taken from EG/2D-InosGao.s/SiC at 20
keV electron energy along the zone axis (Z.A.) (a) [2110] and (b) [1010]. Each visible diffraction streak is labeled
by its Miller index. The two arrows perpendicular to each other represent the momentum transfers kK, and k; parallel

and perpendicular to the surface. (¢) and (d) Intensity profiles scanned along the K| direction within the yellow boxes

(k.| = 4.5 A" ) in the corresponding RHEED patterns shown in (a) and (b) after smooth background intensity
subtraction. (e) and (f) Same experimentally constructed ARHEED 2D reciprocal space map of EG/2D-Ino.sGao.s/SiC
sliced parallel to surface at |k, | = 8.5 A, Intersections of the black grid in (e) correspond to the graphene lattice
based on unit vectors a*= b*. Intersections of dark blue grid in (f) is the SiC lattice based on unit vectors as*= bs*.

Only modest differences in total energies (< 30 meV per metal atom) exist for a wide range of 2D-
In,Ga., structures, suggesting no preference in elemental arrangement in the 2D metal alloy. This
is supported by DFT calculations of twenty-five structures (Figure S6, Table S1) covering seven
distinct alloy compositions for monolayer, bilayer, and trilayer systems — one configuration each
for monolayer systems at 0, 8, 92, and 100% indium; two configurations each for monolayers at
25, 50, and 75% indium; four configurations each for bilayers at 25, 50, and 75% indium; pure
bilayers of Ga and In, and a pure Ga trilayer. There is a weak preference towards layer segregation
(~0.1 eV per metal atom or less) for indium at the bottom layer at low and high indium
concentrations and gallium in the bottom layer at intermediate compositions; the weakness of this
preference, considering the high temperature of intercalation, is consistent with the well-mixed
layers observed experimentally. Figure 3 displays a plot of the most favorable alloy composition

at given chemical potentials for indium and gallium. The bilayer is relatively more favorable for



gallium than the monolayer, as evidenced by the general leftwards shift in the bilayer phase
boundaries relative to the monolayer regions. The slices through this plot (Figure 3b and 3¢) show
how close competing concentrations can be even across a wide range of chemical potential;
overall, the results indicate a lack of line phases, a preference for well-mixed alloys, and some
potential for compositional fluctuations where several compositions are closely competing at a

given chemical potential.

A simple nearest-neighbor cluster expansion with distinct pair-wise interactions between In-In,
Ga-Ga, and In-Ga within or across lower and upper layers and an on-site energy can reproduce the
first-principles total energies of this set of alloy configurations to within a few hundredths of an
eV/metal atom (these errors and the associated fitting parameters are given in Tables S1 and S2
respectively). Two additional extremal (1/12 and 11/12) In concentrations were included in the
nearest-neighbor model to capture the effects of isolated minority atoms, but are omitted from the
phase diagram of Figure 3a. Neither gallium nor indium naturally prefer the SiC-induced lattice
spacing of 2.97 A. Comparison to bulk inter-atomic spacings in pure metals suggests that gallium
is under modest tensile strain'? and indium is under large compressive strain when epitaxial to SiC
(while indium does not have a single nearest-neighbor distance in bulk, even the shortest distance
at 3.24 A?® is much longer than the SiC spacing), consistent with a net preference for gallium

intercalation.
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Figure 3. (a) Alloy stability as a function of Ga and In chemical potentials and layer thickness, based on first-
principles Gibbs free energies including configurational entropy of ideal mixing at the growth temperature of 800 °C.
(b,c) Two cuts along the dashed lines show competing phases.

Having established the structure and solubility properties of our as-prepared 2D InxGaix alloys,
we now systematically investigate the electronic and optical properties of the alloys as a function
of composition. Angle-resolved photoemission spectroscopy (ARPES) was performed on the 2D
InxGaix alloys. Figure 4a and 4b show the measured band dispersion and Fermi surface for the
2D Ing.75Gao25 alloy. The most intense (bright blue) points of Figure 4b correspond to the Dirac
point of graphene. More extended Fermi surface structures are also seen; these arise from bands
of the 2D metal alloy. Superimposed on the experimental ARPES data in Figure 4a is a DFT band
structure in the virtual crystal approximation®’ (VCA) computed for a 2D Ing.75Gao 25 alloy on SiC,
without the overlying bilayer graphene (see Methods and Figure S7 for methodology and see
Figure S8 for additional comparisons at different compositions). In the virtual crystal
approximation, the potentials of In and Ga are mixed to capture their average effect at each atomic
site in the 2D metal. The Fermi level within the VCA is shifted to match the ARPES bandstructure
(which reasonably reproduces the measured Fermi surface geometry), as charge transfer to
graphene from the metal (absent in the calculation) is significant. The computed band structure for
the occupied states agrees well with that from ARPES across at least 2 eV from the Fermi level.
This good agreement between the VCA calculations and experiment further confirms the near-
complete solid solubility of In and Ga in InxGai.x alloys. We note that the VCA band structure for
Inp 5Gao 5 is comparable to the band structure computed for two explicit (i.e. non-VCA) low-energy
alloy structures of the same composition (shown in Figure S9), where the band structure for the
explicit alloy calculations has been unfolded into the effective primitive Brillouin zone (Figure
S9). Similar to 2D Ga!2, the comparison between theory and experiment indicates that the bilayer
graphene does not hybridize significantly with the metallic states close to the Fermi level. In both
the ARPES data and the VCA calculations, the band dispersion in the 2D InxGaix alloys does not
change significantly with the alloy composition. While there is a slight change in the relative
energies of the bands (discussed below), the most notable change in the ARPES band structure is
a downward shift in the Fermi level with increasing In concentration (Figure S8). This can be
observed through the shrinkage of the pocket of states located around the K point in both ARPES
and the calculated VCA Fermi surface (note that the empirical shift in the VCA Fermi level is

aligned to the shape of the larger nearly free electron component of the Fermi surface, not the



presence or size of the pocket). The overall shift in the Fermi level is consistent with the reduction
in work function as the In concentration increases (Figure S11) and is important for explaining the

trend in superconductivity discussed below.
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Figure 4. Electronic structure of 2D-Ino.7sGao.2s alloy. (a) Calculated band structure of 2L Ino.7sGao2s alloy/SiC
under VCA (red lines) and measured APRES spectra (purple map) along the high symmetry path -K-M-T" of the
alloy/SiC Brillouin zone. The dashed purple line is the experimental Fermi level, which is 0.15 eV below the calculated
Fermi level (likely due to the absence of the graphene cap in the VCA calculation; see Figure S10). (b) ARPES-
measured Fermi surface where k, and k,, are the in-plane electron crystal momenta. High symmetry paths and points
of the first Brillouin zone of 2L Ino.75Gao.25 alloy/SiC are labelled by white lines and solid circles, respectively. (¢)
DFT-calculated Fermi surface of 2L Ino.7sGao.s alloy/SiC (purple), where the calculated Fermi level (Ef) is shifted by
—0.15 eV to match the experimental Fermi level. Note how the size and shape of both the large nearly free electron
surface and also the small pockets around the K point are simultaneously well-described with a single Fermi level
shift. The Brillouin zone of alloy/SiC is shown in grey.

The 2D metal alloy exhibits a composition-dependent dielectric function. Figures Sa and S¢ show
the dielectric functions determined from variable angle spectroscopic ellipsometry (VASE) in
combination with a regression analysis using a multilayer model'®>. We have previously applied
this approach to obtain the dielectric functions for 2D Ga and 2D In'?® and obtained good agreement
with first-principles calculations. The model consists of the SiC substrate, a modified SiC substrate
describing the uppermost SiC layers to which the metal atoms are covalently bonded'?, the 2D
metal film, and graphene. The dielectric functions of the 2D metals are well described by a sum of
two to three Lorentz functions and a Drude term. The Drude term describes free electron
contributions due to intraband excitations (“plasmon mode”) and the Lorentz terms describe
localized electronic contributions due to interband excitations?®. In our previous work on 2D Ga
and 2D In'3, detailed statistical analysis of the thickness of the 2D metals using cross-sectional

transmission electron microscopy indicated that Ga samples are predominantly bilayer while In

10



samples are a mixture of bilayer and trilayer films. The peaks at ~1.7 to 2.0 eV in the measured ¢,
spectra are interband transitions in bilayer films, while the additional peak at ~1.2 eV for In is
related to trilayer films. Similar peak positions are observed here for 2D Ga and In. The 2D alloy
samples all have a single peak in €, at ~1.7 to 2.0 eV (Figure Sc¢), consistent with our findings that

the alloy samples are predominantly bilayers.

Experiment and theory (Figures 5b and 5d) demonstrate that the dominating Lorentz term
centered at ~1.7 to 2.0 eV in ¢, shifts to lower energies with increasing In content, except for the
case of pure Ga in the experimental data. The &, spectra computed for the two random
configurations for Ino.sGaos alloys have peak positions within +£0.15 eV of those obtained using
VCA (Figure S9c¢, d). In contrast, a simulation involving phase separated Ino sGao s alloy structures
with In (Ga) in the bottom layer and Ga (In) in the top layer gives peak positions of 2.10 and 1.59
eV, which are significantly different from experiment and further support the well-mixed nature
of the alloys. The interband transitions at ~2 eV result from quantum-confined bands centered
around the K-M high symmetry path in the Brillouin zone!®. These transitions are not affected by
the discrepancies between the computed and experimental Fermi levels in ARPES (see also Figure

S13).

Previously, the Lorentz resonance was shown to decrease with the effective thickness of the
quantum well for bilayer and trilayer Ga and In samples!s. DFT indicates that the electrostatic
potential in 2D In is deeper than that in 2D Ga (Figure S14), indicating that the smaller energy
separation between the quantum-confined bands in 2D In results primarily from its larger thickness
compared to 2D Ga rather than a weaker crystal potential. For the alloys, the interband transition
energies decrease as the In composition increases (Figure S8), and the dependence of these
interband transition energies on the effective quantum well thickness agrees well with that obtained
for 2L and 3L In and Ga samples (Figure S15). This suggests that the optical absorption peaks in
these 2D metal systems can be effectively tuned, not just by the number of layers'® but also more

finely by bottom-up control of the alloy composition.

Tunability is also evident in the real part of the dielectric function, with epsilon near zero (ENZ)
regions!? in the near-IR (NIR) and visible range prominently occurring for the DFT-calculated
functions (Figure Sb) that are in reasonable agreement with the experimentally determined &;. The

relatively large deviations from ENZ for the alloys seems to be caused by the strong damping of

11



the Drude term causing significant losses evident by the large positive values in €, in the NIR
range that are much less pronounced for 2D-Ga and 2D-In. Possible explanations for the large
damping of the free electron contribution described by the Drude term might include alloy

scattering, interface roughness, or non-uniform charge transfer from the 2D metals to graphene.
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Figure S. The complex dielectric function of 2D-In.Gai« alloys. (a,b) Real part of the complex dielectric
function £7*(E), (a) deduced from ellipsometry measurements and (b) computed from first principles (DFT). (c,d)
Imaginary part of the complex dielectric function £3*(E), (c) deduced from ellipsometry measurements and (d)
computed from DFT. The measurements are obtained using VASE at 55°, 60° and 65°. One model is applied to fit
data from all angles simultaneously. We observe an interband transition at roughly 2 eV, which is in excellent
agreement to DFT calculations. The insets of panels (¢) and (d) show the major interband optical transition peaks as
a function of Indium content. Experimental (computed) peak positions are 1.89 (2.06), 1.92 (1.95), 1.87 (1.86), 1.80
(1.79) and 1.77 (1.70) eV, respectively for 0% In, 25% In, 50% In, 75 % In and 100% In alloys, decreasing with
increasing In content for both the VASE measurements and DFT calculations, except for Gallium in the experimental
data. A second resonance is evident in the low energy range (~0.7 eV).
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The superconducting transition temperature 7. can also be tuned by the alloy composition. Figure
6a plots the temperature-dependent resistance of In.Gai.. alloys, where x ranges from 0 to
approximately 0.5. Figure 6b plots the extracted 7. as a function of the In concentration x. 7
decreases from its pure 2D-Ga value of 7. = 4.1 K'? to approximately 2 K when the In
concentration reaches 50%, with the slope appearing to become steeper around 40% indium. The
trend of Tt is consistent with the evolution in Fermi surface geometry in In,Gai., alloy. Our prior
investigation of the pure-Ga system revealed that contributions to a’F (the electron-phonon
coupling function relevant to superconductivity) are substantial for virtual transitions between the
nearly-free-electron-like sheet and the pocket of states around the K point!2. In Figure 4 and Fig.
S8, we combine calculations and ARPES measurements to show that the nearly-free-electron
Fermi surface is larger in Ga than it is in In, and the pocket at K disappears as the indium
concentration increases. This explains the decrease of 7. with increasing In concentration. The

disappearance of the K pockets may be responsible for the change in slope around x=0.4.
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Figure 6. Superconductivity in CHet-grown 2D-In.Gai-x alloys. (a) Normalized resistance vs. temperature R/R(12
K) for In concentration x as labeled in the plot. (b) The superconducting transition temperature 7¢ as a function of x.
We estimate 7. using the black dashed line in (a), where R(7c) = 0.94 R(12 K). T. corresponds approximately to the

onset of a precipitous resistance drop in the R(T) curves.

Conclusions

The formation of environmentally robust, uniform, large scale two-dimensional In.Gai.. alloys
enables detailed chemical and compositional analyses that reveal successful tuning of the alloy
composition and associated electronic, optical and superconducting properties, including the
degree of charge transfer, the presence and placement of epsilon-near-zero regions, and the Fermi
surface topology. The ability to form well-mixed alloys in a 2D geometry that is in intimate contact
with a SiC substrate without experiencing substantial compositional layering due to differential
bonding strength to SiC likely reflects the chemical similarity of Ga and In. Although Ga and In
atoms differ in size, this geometrical distinction cannot easily be expressed along the layering
dimension in an epitaxial bilayer geometry. Similar alloying strategies spanning further across the
periodic table may provide opportunities to expand the scope of these environmentally stable 2D
metals, with prospects for interlayer or intralayer ordering and associated line phases,
enhancements in intercalation kinetics or thermodynamics, and the introduction or enhancement

of spin or superconducting order.

Materials and Methods:

Synthesis of 2D-InGai.x alloys. Atomically thin In.Gai., alloys with tunable compositions were
achieved via the confinement heteroepitaxy (CHet) in a horizontal tube furnace fitted with a 1-
inch outer diameter quartz tube!?. Various alloy precursors were formed by the mixing of metallic
gallium and indium powers with different ratios on a custom-made alumina crucible at 80°C.
Annealing at 800°C in 500 Torr Ar environment (Ar flow of 50 sccm) for 30 minutes were

determined to be optimum conditions for the CHet process.

XPS. XPS measurements were performed with a Physical Electronic Versa Probe I, using a
monochromic Al Kq X-ray source (hv = 1486.7 eV) and a concentric hemispheric analyzer. High-

resolution spectra over a radial area of 200 um were obtained at a pass energy of 29.35 eV and
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charged corrected to the graphene peak in Cls spectrum at 284.5 eV. A U2 Tougaard background
was used to fit XPS spectra. The In,Gai.. compositions were calculated based on the In 4d and Ga

3d spectra.

AES. AES maps were acquired using a beam current of 10 nA and energy of 10 keV with a
Physical Electronics Model 670 Scanning Auger system with a field emitter. A 2-point acquisition
method is used for intensity calculation at each point. The following peak/background energy
values are used: In: 404.1/420.1 eV, Ga: 1068.3/1081.0 eV, C: 267.8/291.0 eV, Si: 1613.2/1628.0
eV, O: 509.3/532.0. Maps are the average of 5, 20, 5, 15, 15 frames for In, Ga, C, Si and O,

respectively.

Cross-sectional STEM and EELS. Cross-sections from the In.Gai.x alloy samples are prepared
by a Helios G4 PFIB UXe DualBeam with a Xe" plasma ion source to avoid contamination from
typical gallium FIB. A ~200 nm amorphous carbon coating is deposited by the electron beam at 5
keV and 6.4 nA. Then the Xe" ion beam is utilized to deposit a 5 um tungsten layer at 30 KeV.
The samples were then prepared by performing a standard lift-out procedure and attaching to TEM
half grids using tungsten deposition. Finally, both sides of the samples were thinned in multiple
steps by gradually lowering the ion beam voltage from 30 kV to 2 kV until the deposited tungsten
is almost consumed, and the cross-section window appeared transparent in the electron beam
image at 3 keV. High-resolution STEM imaging and EELS of the prepared cross-sections is
performed in an FEI Titan 80-300 HB Cubed transmission electron microscope equipped with a
high-brightness gun (XFEG) and two spherical aberration correctors in both the probe and the
image forming lenses. Operational conditions are optimized to minimize the electron beam damage
at the interface for both imaging and EELS. STEM images are collected at 300 keV and less than
60 e/A? /sec electron dose rate using an in-column Fischione HAADF detector (model 3000) at
19.1 beam convergence angle, 50.5-200 mrad collection angles at 115 mm Camera length, and 50
um C2 aperture. Core-loss EELS maps at the interface are acquired at 200 keV, 91 mm Camera
Length, ~ 50 pA screen current using a Gatan K2 IS detector. In order to minimize the drift during
the acquisition, the beam was blocked, and the stage was left for 20 minutes to stabilize. Then the
EELS map was acquired for 67 seconds only at 0.94 A pixel size, 0.01 Seconds pixel time, 0.5
eV/channel electron dispersion, and 4 eV FWHM energy resolution. Multi-statistical analysis
(MSA) is performed on the EELS spectrum image to denoise the spectrum performs performing

mapping and quantification. The quantification of the EELS signal is performed using the Hartree-
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Slater cross-section method for the whole denoised spectrum image. Then the indium and gallium

compositional percentages are normalized to indium to gallium ratio.

Azimuthal RHEED. The principle of azimuthal reflection high-energy electron diffraction
(ARHEED) has been described elsewhere? and has been applied to graphene on SiO 2%
monolayer MoS; and monolayer WS, on c-plane sapphire substrates.*! The glancing incident angle
of the high-energy electron beam was oriented at about 1° relative to the sample surface. The
glancing electron beam was elongated on the sample surface (at least several mm?) and electrons’
short mean free path allowed the near surface structure from a large surface area of a sample be
probed. The electron energy and emission current used in 10~® Torr vacuum were 20 keV and 45
HA, respectively. In the ARHEED the sample was rotated with a 1.8° step increment around an
axis perpendicular to the sample surface. The rotation was controlled by an ultrahigh vacuum
compatible step motor. At each azimuthal angle, a RHEED pattern projected on a phosphor screen
was recorded by a digital camera placed outside the vacuum chamber. 100 RHEED patterns at 100
azimuthal angles allow the reciprocal space structure above the sample surface to be constructed.
The quantitative analysis from either an individual RHEED pattern or the constructed reciprocal
space 2D map using Laue conditions gives the in-plane lattice constants and reveals the symmetry
of the sample surface, respectively. The scale bar in the RHEED pattern has been calibrated

previously by using a CdTe crystal with known lattice constants.

ARPES. ARPES measurements were performed at the Microscopic and Electronic STRucture
Observatory (MAESTRO) beamline at the Advanced Light Source at Lawrence Berkeley National
Lab. The sample was annealed at 550 K for 1 hour in the end-station before measurements to
remove adsorbates from the transfer of the sample through air. Measurements of 2D Ga,
Ino.25Gao 75, Ino.s0Gao.s0, Ino.75Gao.2s and In structures were performed using photon energies of 140,
123, 126, 200 and 110 eV, respectively. Photoemission spectra were collected by moving the
sample around one angle while using the angle-resolved mode of a Scienta R4000 electron

analyzer for the collection of the other angular axis.

Variable angle spectroscopic ellipsometry (VASE). VASE measurements are implemented
using an M-2000 ellipsometer (J.4. Woollam) in rotating-compensator (RCE)-mode. The angle of
incidence (AOI) is varied in 5° steps from 55° to 65°. The measurements are conducted at a

wavelength range from 300 to 1700 nm (0.74 eV — 3.35 eV). All samples are measured under
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ambient conditions in a clean room with a macroscopic laser spot size of ~1 mm. Models of the
experimental data are obtained using the EP4 modeling program from Accurion GmbH. The
samples are all modeled as a layer stack with the following setup: Air — epitaxial graphene (EG) —
2D metal — modified SiC - SiC (substrate). The dispersion functions for air, graphene and SiC are
adjusted from literature.?*3* The 2D metals are modelled by considering the free and bound charge
carrier contributions, using a combination of Drude and Lorentz functions!’. The resulting
dielectric function of each sample is extracted by simultaneously fitting the experimental spectra

taken for the different AOIs to the model of the layer stack.

Transport measurements. Four-probe resistance measurements were performed in a Quantum
Design physical property measurement system (PPMS) using an excitation current of 1 pA.
Electrical contacts are made by soldering Indium dots onto the EG/In:Ga1.»SiC heterostructures
in a colinear four-point-probe configuration parallel to the steps. Contact pitches were on the order

of hundreds of micrometers.

Theory

Phase stability calculations. All DFT calculations on phase stabilities were performed using the
GGA-PBE?* exchange-correlation functional and the PAW pseudopotentials. Plane-wave
expansions were truncated at an energy cutoff of 500 eV. All structural relaxations were performed
using dipole corrections to the total energy and to the electrostatic potential in the out-of-plane
direction, until the remaining forces were within 0.001 eV A™!. Brillouin zone samplings were
performed on grids with k-point densities equivalent to that of a 30x30x1 grid for a 1x1 Ga/SiC
unit cell. Graphene/Ga/SiC calculations were performed using five repeating units along the z
direction for a 2x2 bilayer graphene plus a V3x\3 R30° Ga/SiC supercell, capped from below with
H, and also for a 2x2 supercell of the same used for most of the alloy calculations to achieve
correct dopant density. The GasiGac stacking (with Ga replaced by In in the appropriate alloys)

was used for all calculations.

Band structures and dielectric functions. DFT calculations within the virtual crystal
approximation (VCA)?” were performed using the local density approximation (LDA)3® for the
exchange-correlation functional as implemented in the plane-wave pseudopotential code,

QUANTUM ESPRESSO?’. We show in Figure S9c that the band structures obtained with LDA
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and PBE exchange-correlation functionals are nearly identical; structural parameters are likewise
similar, with the interlayer distances and the SiC lattice constant being slightly larger for PBE than
for LDA (Table S3). Optimized norm-conserving pseudopotentials®® were used to generate the
pseudopotentials of virtual atoms that describe on average the electron-ion interactions in alloys.
Three concentrations of Ga, 25%, 50% and 75% Ga, were considered to compare with
experimental samples. A plane-wave kinetic energy cut-off of 90 Ry was used, and an energy
threshold of 1071° Ry was applied for the self-consistent cycle. A Monkhorst-Pack k-point mesh
of 26x26x1 was used for geometry optimization and self-consistent field calculations, while a
denser k-point mesh of 52x52x1 was needed to obtain density of states and converged dielectric
functions. SiC substrates are modeled by six SiC layers passivated by hydrogen atoms where the
bottom SiC layer is fixed during the structural relaxation. All other atomic positions are relaxed
until the forces acting on each atom are less than 0.0001 Ry/Bohr. To eliminate interactions
between slabs along the z direction due to the periodic boundary condition, a vacuum length of 16

A with an electrostatic dipole correction is employed.

The complex dielectric function was computed using the independent particle approximation®,
where excitonic effects are neglected. This approximation is reasonable given the large in-plane
screening present in the 2D metal systems. The volume of the “optically active region” used to
normalize the computed dielectric function consists of the metal layers and top three SiC layers.
In the sum over states, we included 70 bands involving all valence states to converge £%¥.
Additionally, the intraband and interband broadening parameters were taken to be, respectively,
0.01 eV and 0.08 eV. These broadening parameters have a negligible influence on the optical peak

positions!3. Band unfolding for random alloy systems was performed using the BandUP code**4!.
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Figure S3. X-ray photoelectron spectroscopy (XPS) captured for the 2D-In.Gai.« alloys. (a) The split in C 1s for
various 2D alloys verifies the existence of the intercalant at the interface of SiC/EG (b) Slight shift in Si 2p peak
positions are correspond to different neighbor’s chemistries. (¢) The origin of O 1s signals is likely due to regions of
oxidized surface Ga and In particles that are not intercalated. (d-g) show the 2D-InosGaos alloy as a representative
sample. The higher binding energy peak in the Ga 2p and In 3d regions correspond to gallium and indium oxide,
indicating that some Ga and In remaining on the surface of the EG and subsequently oxidize following exposure to
ambient. (h-1) For higher accuracy, Ga 3d and In 4d is used to calculate the composition of the 2D-In.Gai.r alloys. Ga
3d spectrum in 2D-Ga (1) and In 4d spectrum in 2D-In (h) are utilized to deconvolute the Ga 3d and In 4d regions for
alloys. The spectra are charge referenced to the sp? C (Gr) peak at 284.5 V.
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Figure S4. Scanning electron microscope image (a) and corresponding Auger electron spectroscopy (AES) maps (b-f) of a
2D-IngsGays alloy. AES maps indicate (¢) Ga and (d) In atoms are uniformly dispersed across a 10 um % 10 pm region without
lateral segregation. The diagonal stripes in which the C signal (b) is stronger is attributed to the greater number of EG layers at the
step edges compared to the terrace regions. The greater number of EG layers attenuates the Ga, In and Si signals as these elements

sit beneath the EG. The O map indicates that the oxygen content in the alloy is minimal, suggesting the EG protects the alloy from
oxidation.
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Figure S3. Oxidation of a patterned 2D-Ga sample. SEM (a) demonstrates the location where the graphene is selectively
removed by plasma etching (“No EG” region), and AES maps (b-e) verifies the critical role of EG as the protective capping layer
for CHet-derived 2D metals. In the regions without EG, there is a significant amount of oxidation, while the presence of EG protects
the 2D metals form the oxidation and the oxygen content in the metal is below the detection limit.
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Figure S4. EELS quantification of the 2D-In.Ga,., alloy. (a) Analog Annular dark-field (ADF) image of bilayer In,Gaj., at the
SiC/EG interface. (b) EELS spectrum image (EELS SI) acquired simultaneously with the ADF. Both (a) and (b) have 48 pixels
x130 pixels with ~1 A pixel size. To achieve spatially resolved signals within the atomic scale. EELS signal is collected by Gatan’s
K2 IS direct electron detector. (c) and (d) are the Indium and Gallium EELS maps of the In-M4 5 and Ga-L,3 edges. The EELS
mapping is conducted using Digital-Micrograph software after refining the EELS spectrum image using principal component
analysis (PCA). (e) and (f) are the In-M, 5 and Ga-L, 3 edges after background subtraction. The edge signals are extracted from the
bi-layer InGa;., alloy region in (g). The vertical axis represents the electron counts as measured by the direct electron detector. The
Ga-L, 3 signal is noisier than the In-M, 5 because its location is at higher energies (1115 eV) where the total signal is weak, while
the In is a delayed maximum at 443 eV. (h) Table summary of the quantified EELS spectrum image performed using the Hartree-
Slater cross-section method performed using Digital-Micrograph software. The quantification is applied to all the present elements
in the whole spectrum image volume as shown in (i). The relative compositions of Indium and Gallium show a 1:1 ratio, which
implies that the In,Ga., alloy is IngsGa s
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Azimuthal RHEED. Before the measurement of the 2D map of EG/2D-Ino5Gao.s/SiC, the 2D
maps of a SiC substrate and bilayer graphene on H terminated SiC substrate were measured using
azimuthal reflection high-energy electron diffraction (ARHEED) at room temperature in a high
vacuum chamber without any sample treatment. Figures S4(a) and (b) show the 2D maps of pure
SiC and bilayer graphene on SiC, respectively. A 2D map is constructed and expressed as functions
of momentum transfer parallel to a sample surface kjover 360° in-plane azimuthal angles ¢ at a
constant momentum transfer perpendicular to a sample surface Ki.! The momentum transfer k =
Kout - Kin, Where kou and Kkin are electron’s outgoing and incoming wave vectors, respectively. |k
= /K2 + k2, where k« = k sin ¢ and ky = k; cos ¢. Each concentric circle represents |[Akj| =2 A-!
radially outward. The blue and black grids are constructed from the measured reciprocal space unit
vectors as* and bs* for SiC and measured a* and b* for bilayer graphene on SiC, respectively.
Both show a six-fold symmetry. The relative rotation of unit vectors between graphene and SiC is
30°. The real space in-plane lattice constant a for a hexagonal lattice van be obtained from

measured reciprocal space vector |G(hk)| = %\/h2 + hk + k2, where a is a real space lattice
constant.
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Figure S5. 2D maps constructed from the measured RHEED patterns at 100 different azimuth angles at room
temperature from SiC and bilayer graphene on SiC. (a) The measured lengths of reciprocal space unit vectors as*
(= G(01)) and bs* (= G(10)) from SiC are 2.36 + 0.03 A", This measured 2.36 + 0.03 A" can be converted to a real
space in-plane lattice constant as = 3.08 + 0.04 A. This measured reciprocal space value is close to the theoretical
SiC’s reciprocal space unit vector length of 2.361 A using a real space bulk lattice constant of 3.08 A. The
intersections of blue grid lines cover almost all diffraction spots of SiC. Weak spots not located at the intersections of
grid lines are from Kikuchi spots or lines. The k. of this 2D map is at 6.64 A"!. (b) The measured lengths of reciprocal
space unit vectors a* and b* from the bilayer graphene are 3.03 + 0.04 A"'. This length is 25% larger than that from
SiC. This measured 3.03 + 0.04 A" can be converted to a real space in-plane lattice constant a = 2.39 + 0.03 A. The
measured reciprocal space value is close to theoretical graphene unit vector length of 2.948 A using a real space bulk
graphite lattice constant of 2.46 A. The intersections of black grid lines cover diffraction spots from graphene. Note
that additional spots can be accounted for the blue grids from SiC in (a). The left-over weak spots do not locate at the
intersections of grid lines are from Kikuchi spots or lines. The k. of this 2D map is at 5.63 A™!.
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Figure S6. Atomic structures of the explicit alloys examined for the computational phase diagram and simple cluster
expansion. For multilayer alloys, structures are represented by multiple images, stripping away upper layers to show
the structures of those underneath, from right to left. Gallium is reddish brown; indium is yellow. All calculations also
incorporated a cap of bilayer graphene, which has been removed for visual clarity. The geometry of the SiC slab
underneath is similar to that of Figure S7 with one less layer of SiC.
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Table S1. Energy error in model fit to DFT energies of structures. The energy of all twenty-five structures given
in Figure S6 modeled in DFT was modeled by a nearest-neighbor cluster expansion, and the errors in that fit are given
here. Of note is that while the model fails badly if no distinction between first and higher level atoms is given, it
appears to be successful without distinguishing between 2™- and 3-layer atoms. This fitting does not include the
alloys computed with VCA.

Alloy Error in model fit (eV) Alloy fraction of In |  Error in model fit (eV)
fraction of In
0/1, 1L -0.0243 0/1, 2L 0.0025
1/12, 1L -0.0124 1/4, 2L -0.0086
1/4, 1L -0.0003 -0.0021
0.0073 0.0103
1/2, 1L 0.0050 0.0000
0.0124 1/2, 2L -0.0049
3/4, 1L 0.0043 -0.0080
0.0039 -0.0119
11/12, 1L -0.0150 0.0119
1/1, 1L 0.0000 3/4,2L -0.0069
100%-2L -0.0153 -0.0028
0/1, 3L 0.0117 0.0117
0.0000
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Table S2. Fitting parameters for the nearest-neighbor cluster expansion. The parameters for the nearest-neighbor
cluster expansion fit to the DFT energies.

Parameter Fitted value (eV)
Ga_self -13.1247
In_self -2.9814
1% layer Ga-1* layer Ga -28.9144
1* layer In-1% layer In -32.2274
1% layer Ga-1* layer In -30.5743
Ga-Si -15.2819
In-Si -15.2901
Ga-Graphene -15.2746
In-Graphene -15.2974
Upper layer Ga-Upper layer Ga 1.6800
Upper layer In-Upper layer In -1.6489
Upper layer Ga-Upper layer In -0.0089
1°* layer Ga-Upper layer Ga 1.4772
1% layer In-Upper layer In 1.6951
1** layer Ga-Upper layer In 1.5701
¥ layer In-Upper layer Ga 1.5836

31



Figure S7. Atomic structures of 2D In.Gai.x /SiC slabs. (a) Virtual crystal approximation (VCA) model. Metal
atoms are modeled as a mixture of In and Ga. (b-c): Models of Ino.sGao.s/SiC alloys without the VCA (In and Ga
atoms are denoted by pink and green balls, respectively), with an in-plane supercell of r3 x r3. (The models chosen
here are the low-energy structures for the 13 x 13 supercells; the structure in (c) is more stable than that in (b) by ~2
meV/atom. See Figure S6 for other structural models.) Dashed lines indicate the cell boundaries. In all structures,
atoms of the top metal layer are marked with a yellow cross and the bottom of the SiC slabs are passivated by hydrogen
atoms. The band structures of the models in (b) and (c) are similar to each other and to that for the VCA model (see
Figure S9).
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Figure S8. Electronic properties of 2L In.Ga:/SiC (x = 0, 0.25, 0.50, 0.75 and 1). (a) Calculated band structures
under VCA (red lines) and ARPES measured band structures (purple maps) of 2L In.Gai./SiC. The dashed purple
line in each band structure is the experimental Fermi level that is deduced using the ARPES-measured Fermi surfaces
and band structures. Black arrows mark the interband transitions along the K-M path which contribute to the peak in
&, at ~ 1.5-2.0 eV. The corresponding interband transition energies decrease as the In concentration increases. (b)
ARPES-measured Fermi surface where k, and k,, are the electron crystal momenta in the in-plane directions. (¢) DFT-
calculated Fermi surface for 2L In.Gai./SiC (purple) for the Fermi level deduced from experiment. The BZ is plotted
in grey. E is the calculated Fermi level.
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Figure S9. Electronic and optical properties of 2D InosGaos with different structural models. (a-b) Band
structure for VCA model (red lines) plotted with effective primitive cell band structures (gray projections) for two
instantiations of Ino.sGao.s alloys (as explicit alloys without using the VCA) in (a) Figure S7b and (b) Figure S7c. The
gray scale represents the spectral function resulting from the band-unfolding procedure?. The Fermi level is at OeV.
(c-d) Interband contributions to the imaginary parts of the dielectric functions for the Ino.sGao.s alloys (no VCA) in (c¢)
Figure S7b and (d) Figure S7c (solid lines). Dashed lines: corresponding result from the VCA model (¢5* = £)7).
The peak position close to 2 eV does not change significantly across the models (within +0.15 eV compared to that
computed by VCA).
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Figure S10. Comparison of Fermi levels in uncapped VCA alloys (with and without the empirical shift) and
atomistic alloys with a graphene bilayer cap. The left-hand column depicts the VCA bandstructures with the original
computed Fermi level as a dashed line and the Fermi level empirically shifted to match the ARPES bandstructure in
blue. To minimize computational cost, in these calculations there is no graphene cap. The right-hand column depicts
explicit alloy calculations within a supercell with a graphene bilayer cap. The horizontal axes have been scaled to
match the scale of the VCA calculation, and the colored arrows show the corresponding k-space directions for the two
pockets in the folded (explicit) and unfolded (VCA) bandstructures. To facilitate comparison, the relative alignment
of the two sets of bandstructures has been set to align the bottoms of the upper Fermi pockets (i.e. those tracked by
the green arrow). The inclusion of the graphene bilayer in the explicit alloy calculation brings the Fermi level
reasonably close to that set by empirical shift to match ARPES, providing evidence that charge transfer between metal
and graphene is the origin of the shift in the Fermi level.
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Figure S11. Work functions and band structures computed using LDA and PBE exchange-correlation
functionals. Work functions of computed 2L In.Gai-/SiC systems (x=0, 0.25, 0.5, 0.75 and 1) computed by (a) LDA
and (b) PBE exchange-correlation functionals. For comparison, the LDA and PBE work functions of free-standing 2L
Gr are 4.57 and 4.26 eV, respectively, and the LDA and PBE work functions of graphene strained (by ~7%) to fit
within the alloy/SiC supercells are 5.12 and 4.83 eV, respectively. All structures are relaxed using the corresponding
functional except for 2L Gr which is relaxed using LDA only. (c) Band structure computed for 2L Ino.75Gao.25/SiC
using LDA (solid purple line) and PBE (dashed orange line). The Fermi level is set at 0 eV. The VCA is used for alloy
systems.
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Figure S12. ARPES-measured band structures of 2D In.Ga1../SiC systems along I'-Kcr. The bright blue slopes

correspond to the band of graphene. Dirac points are slightly below the Fermi level in all systems indicating that
electrons are transferred to graphene from the pure elements and alloys.
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Figure S13. Computed £5*(E) with Fermi level shifted to match the ARPES results. The inset indicates the major
interband optical transition peak as a function of Indium content. The peak positions in the range ~1.5-2.0 eV are the
same as in Figure 5d where the DFT Fermi level is used.
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Figure S14. In-plane averaged electrostatic potential. In-plane averaged electrostatic potential as a function of
distance z from bottom to top of the cell for (a) 2L Ga/SiC system and (b) 2L In/SiC system, demonstrating the
potential well for In is deeper than that for Ga.
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Figure S15. Dependence of €, peak position on effective quantum well thickness w. The peak position of the
dominant optical transition peak between ~1.0 to ~2.0 eV is plotted against w, which is defined to be the distance
between the topmost metal layer and the interface Si layer together with the atomic radius of the metal element. The
data for 3L Ga and 3L In is taken from Ref. [3]. The dashed line is the curve of best fit (peak position (eV) =

25.3w™13),
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Table S3. Structural parameters computed using LDA and PBE exchange-correlation functionals. The inter-
layer distances d, between Sil and M1, M1 and M2 as well as the SiC lattice constant ag;. are shown. Sil is the Si
layer adjacent to 2D metals. M1 and M2 is the bottom and top metal layer, respectively. The VCA is used for alloy

systems.
Unit: A Ga Ing2sGag7s InosGaos Ing75Gagas In All
d,Sil-M1)  2.42 2.48 2.54 2.58 2.62
LDA  d,(MI-M2) 227 2.40 2.49 2.58 2.69
dsic 3.06
d, (Sil-M1)  2.47 2.54 2.59 2.64 2.68
PBE  d,(MI-M2) 238 2.49 2.59 2.68 2.77
asic 3.00
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