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Block-Sparse Signal Recovery via General Total
Variation Regularized Sparse Bayesian Learning

Aditya Sant

Abstract—One of the main challenges in block-sparse signal
recovery, as encountered in, e.g., multi-antenna mmWave channel
models, is block-patterned estimation without knowledge of block
sizes and boundaries. We propose a novel Sparse Bayesian Learning
(SBL) method for block-sparse signal recovery under unknown
block patterns. Contrary to conventional approaches that impose
block-promoting regularization on the signal components, we ap-
ply two classes of hyperparameter regularizers for the SBL cost
function, inspired by total variation (TV) denoising. The first class
relies on a conventional TV difference unit and allows performing
the SBL inference iteratively through a set of convex optimization
problems, enabling a flexible choice of numerical solvers. The
second class incorporates a region-aware TV penalty to penalize
the signal and zero blocks in a dissimilar manner, enhancing the
performance. We derive an alternating optimization algorithm
based on expectation-maximization to perform the SBL inference
through computationally efficient parallel updates for both the
regularizer classes. The numerical results show that the proposed
TV-regularized SBL algorithm is robust to the nature of the block
structure and is capable of recovering signals with both block-
patterned and isolated components, proving effective for various
signal recovery systems.

Index Terms—Compressed sensing, block-sparsity, sparse
Bayesian learning, total variation, expectation-maximization,
majorization-minimization, cyclic optimization.

I. INTRODUCTION

OLVING an underdetermined system of linear equations
S has been heavily studied in the signal processing literature.
In many signal acquisition and estimation tasks, the underlying
signals are sparse. Compressed Sensing (CS) theory [2], [3] has
extensively studied stability conditions, algorithms, and conver-
gence for sparse signal estimation. Within the CS paradigm, one
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particular signal class is block-sparse signals where consecutive
groups of elements are alternatively nonzero or zero. Block-
sparse signal recovery has various applications in wireless com-
munication, audio, and image processing. Our primary interest
resides in mmWave channel estimation and modeling where
the received signal consists of angular multipath components
that impinge on the receive antenna as clustered rays (hence
block-sparse) [4]-[6].

The key challenge with block-sparse recovery is to model
inter-element dependency, in addition to the sparsity constraint.
We address the most general class of block-sparse signals: block
boundaries are unknown and the block sizes are, in general,
unequal. In this setup, the number of possible block combina-
tions involved in the search grows exponentially with the signal
length. Imposing all signal boundaries without prior structure
and knowledge would prevent scaling to large signal sizes and
thus prove inefficient for recovery. On the other hand, employing
a conventional CS algorithm with no block structure regulariza-
tion would clearly underperform by not taking the full advantage
of the signal structure. Thus, there is an inherent trade-off in
incorporating a prior signal structure in block-sparse recovery
under unknown block boundaries: pre-defining the search grid
enables accurate modeling at the cost of excessive complexity,
whereas computationally tractable, flexible modeling of block-
sparse priors may hamper the ability to recover arbitrary block
structures. This calls for the design of a computationally efficient
signal recovery algorithm that imposes an effective, yet robust
prior to model the underlying non-uniform block-sparsity, which
is the main focus of our paper.

A. Overview of Block-Sparse Signal Recovery

Block-sparse recovery methods have enforced block-
patterned structures through block partitioning or efficient inter-
element coupling. The early attempts assumed known block
sizes and modified conventional CS algorithms to support block-
sparse signal recovery. These include Group-Lasso [7], Group
Basis Pursuit [8], Model-based CoSaMP [9], Block-OMP [10],
and a block /5-norm based method [11]. Extending to the case
of unknown block partitions, algorithms such as Struct-OMP
in [12] and the method based on graphical models in [13] were
developed. The approach in [13] uses the Boltzmann Machine
model to capture inter-element dependencies; the method suffers
from high complexity, inhibiting the scaling to large dictionaries
and signal dimensions.
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Apart from conventional CS approaches, Sparse Bayesian
Learning (SBL) [14], [15] has shown superior performance for
block-sparse recovery, especially in multiple measurement vec-
tor (MMYV) scenarios. The first work is [ 16], where the developed
block Sparse Bayesian Learning (BSBL) algorithm assumes
known block partitions and models temporal signal correlations
in an MMV-SBL problem. The work in [17] proposes different
optimization methods for the BSBL inference, including the
extension to unknown block structures, which however does not
follow an elegant optimization framework. Differently, [ 18] uses
Bayesian compressive sensing and incorporates a spike-and-slab
prior to model both block-patterned and individual sparsity. The
inference in [18] relies on time-consuming Gibbs Sampler and
Markov Chain Monte Carlo (MCMC) methods.

The Pattern-coupled SBL (PC-SBL) method [19] initiated a
fresh view to incorporate block-sparse structures by coupling
the underlying SBL hyperparameters. The Non-uniform Burst
Sparsity algorithm in [20] improved on PC-SBL inference by
using the Variational Bayesian Inference [21]. Coupled priors
for block-sparse signal recovery are also used in the Extended-
BSBL (EBSBL) method in [22]. Unlike the PC-SBL algorithm,
EBSBL algorithm gives an equal weight to the neighbouring pa-
rameters, leading to performance superior to BSBL, but inferior
to PC-SBL.

All the above coupled-priors-based algorithms incorporate a
hyperprior in the SBL parameter space (see, e.g., Gamma hyper-
priorin [14]), which needs to be specifically tuned for a particular
block-sparse signal structure. Instead of such offline tuning, the
hyperparameters could be estimated jointly with the signal. Such
an approach is proposed in [23], where the signal and support
random variables are modeled via a Gaussian-Bernoulli prior
whose hyperparameters are also estimated from the observed
data. Since exact update equations are no longer tractable for
such models, the MCMC method is used for parameter estima-
tion. Based on a clustered sparsity model, a hybrid clustered
sparse prior is introduced in [24]. This framework extends
PC-SBL [19] by considering the PC-SBL’s coupling coefficient
as a hyperparameter which is then adaptively adjusted based on
the observed data.

B. Main Contribution: Total Variation Regularizers for SBL

We address compressed estimation of block-sparse signals
in an MMV setup. We propose a novel SBL hyperparameter
prior/regularizer to encourage block-patterned sparsity where
the underlying sparsity profile is non-uniform and unknown,
i.e., without any prior knowledge of block sizes and boundaries.
To this end, we introduce two classes of Total Variation (TV)
inspired regularizers that promote contiguous signal and zero re-
gions by enforcing low TV in the hyperparameter space of SBL.
The salient features of these regularizers, and the underlying
optimization used, are given below:

e The first regularizer class, Conventional TV Regularizers,

uses the standard TV of the form T'(x) = >, |x; — xi_1]
(i.e., the absolute difference between two consecutive ele-
ments) and its variants utilizing sparsity promoting regular-
izers from the CS domain on the TV penalty. This enforces
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minimal hyperparameter variation in both the signal and
zero regions of a block-sparse signal.

e The second regularizer class, Region-aware Regularizers,
introduces more robust regularization that penalizes the
signal and zero regions differently; this region-awareness
stems from the incorporation of a nonlinear hyperparame-
ter transformation g(-), thus creating a general version of
the TV as T'(x) = 3_; [9(x:) — g(xi-1)|.

® A majorization-minimization approach is utilized to derive
iterative convex solvers for the class of Conventional TV
Regularizers. We have analyzed this framework separately
in our prior work [1].

e We develop an iterative algorithm for the Expectation-
Maximization (EM) based SBL inference using cyclic
optimization, tailored for Region-aware Regularizers, and
show its convergence properties. The procedure decouples
the inference into parallel updates for each hyperparam-
eter component, establishing a computationally efficient
optimization method. We further unify the method to build
a universal inference strategy for the TV-regularized SBL
under both regularization classes.

Numerical experiments show that by inducing a soft, flexible
TV prior, the proposed TV-regularized SBL method is robust
to sparsity structure; the algorithm attains definitive recovery
from strict block-sparsity to fully random sparsity in spite of
the block-pattern-inducing prior. We additionally note that the
block-sparse signal generation is inspired by the real-world
applications like mmWave channel modeling. To this end, we as-
sume that the block-sparse signals do not have excessively large
amplitude fluctuations within each signal block; the developed
TV-SBL accommodates such homogeneous signals for resilient
performance.

To the best of our knowledge, this is the first work to apply
a TV-type penalty in the hyperparameter space of SBL for the
purpose of encouraging block-sparsity. The framework is quite
general and allows for more exploration of a wide range of
regularizers, especially those inspired by CS.

Organization: The paper is organized as follows. Section II
formulates the block-sparse signal recovery problem through
the SBL framework and introduces the two classes of TV
regularization for block-sparsity. Section III presents a general
optimization framework for the both regularizer classes. Sec-
tion IV devises a universal EM-based alternating optimization
method, establishes its proof of convergence, and outlines its
algorithmic implementation. Numerical experiments are shown
in Section V, and Section VI provides concluding remarks.

Notations: Vectors are denoted by lower-case boldface letters
(a) and defined as column vectors a = [a; - - - ax]T. Matrices
are denoted by upper-case boldface letters (A). The vector at ¢th
column of matrix A is denoted as a,. Transpose and Hermitian
transpose are denoted as (-) T and (), respectively. The trace of
matrix A is denoted as Tr(A). A diagonal matrix with diagonal
entries a1, . .., ay is denoted by diag(aq, . .., ay). The default
norm for a vector ||a|| is the 2-norm, unless otherwise specified.
||A|| denotes the Frobenius norm of matrix A, unless otherwise
specified. The ¢p-“norm” ||a]|o counts the number of nonzero
entries of vector a. The notation (-)(*) is used to denote the
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value at the kth iteration. We use I(-) as a shorthand for the
standard indicator function for positive real numbers 1g+1(-).
The statistical quantities p(x|y), E[], etc. have their usual
meaning.

II. NEW TOTAL VARIATION REGULARIZERS FOR
BLOCK-SPARSE SIGNAL RECOVERY VIA SBL

A. Sparse Signal Recovery Problem

We consider a multiple measurement vector (MMYV) problem
where the objective is to simultaneously estimate L unknown
source vectors x; € C with a common block-sparse structure
from a collection of noisy linear measurements!

yi=Ax;+n, l=1,...,L, (1)
where y; € CM is a measurement vector at time instant [, A €
CM*N is a fixed and known measurement matrix (or a basis
matrix or dictionary), and n; ~ CA/(0, A\I) is a noise vector,
independent of x;. Source vectors and noise vectors are assumed
to be independent and identically distributed (i.i.d.) across the
time instants.

Because of the block-sparse structure, x; consists of succes-
sive signal blocks and zero blocks. The same sparsity pattern
is shared among the collection of vectors {x;}~ , but the
magnitudes of nonzero elements are drawn from an i.i.d. Gaus-
sian distribution. Thus, the signal ensemble X = [x - - - x] is
block-row-sparse. We consider the most general (and challeng-
ing) block-sparse inference task: both the block locations and
(possibly non-uniform) sizes are unknown.

Prior to introducing our novel SBL-based method for block-
sparse recovery, we provide a brief overview of the general SBL
framework for sparse signal recovery.

B. SBL With Generalized Cost Function

SBL is inspired by the Automatic Relevance Determina-
tion mechanism from neural networks [25], [26], providing
the means for relatively weighing the importance of different
network weights, which could be sparse. There are various
advantages for choosing SBL as a sparse signal recovery method
for the MMV case:

e The M-SBL [27] parameter estimation abstracts each row
of X by a single (hyper)parameter (;), reducing the num-
ber of parameters to be estimated from N L to N compared
to CS approaches.

e SBL falls into the category of correlation-aware methods
which show superior sparse recovery performance [28].

e Jthasbeen shown in [15], [29] that the global minimum for
the SBL cost function leads to maximally sparse solutions.
Additionally, the number of local minima can be bounded

ISince our framework is not application-specific, we call each unknown x;
a source for convenience. The considered MMV setting arises in, e.g., wire-
less communications: 1) direction of arrival estimation of clustered multipath
components at mmWave frequencies, where the block-sparse x; represents a
vector of beam space angular components of the channel for time instant /, and
2) a user activity detection and channel estimation problem in multi-antenna
communications under uncorrelated fading channels with spatially correlated
activity patterns, where the block-sparse x; is the channel vector associated
with V users at time instant .

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 70, 2022

above [15]; this bound is typically lower than that for
conventional sparse recovery algorithms.

e SBL shows great promise for sparse signal recovery under

correlated sources and ill-conditioned dictionaries [30],
[31]. Such dictionaries (e.g., FFT bases) are often encoun-
tered in specific signal recovery applications, like wireless
channel estimation.

We now describe the SBL inference. With an additive Gaus-
sian noise model (1), the likelihood of the observations p(y;|x;)
is given by the Gaussian likelihood CA(Ax;, AI). The SBL
framework [27] assumes a prior distribution on x;; for each sig-

nal x; € cN ,Il=1,..., L, this is characterized by a parametric
Gaussian distribution CA/(0,T") as
1
p(xi;) = WGXP (—x' T 'x), (2)

where v = [y1---yn]T € RY is a vector of hyperparame-
ters, adjusting the variance of each signal component z;;,
i=1,...,N,and T £ diag(71,...,vn). The hyperparameter
values -y reflect the sparsity profile of the block-row-sparse X; a
suitable prior on vy can lead x; to model many interesting sparse
priors, e.g., Gaussian scale mixtures [14], [32], [33].

The posterior density p(x;|y;;) is also Gaussian as
CN (B y1 > Zxlysy)» Where

-1 H ~1AH —1\—1
Holyiy = A iy ATV Bixlyy = ()‘ A"A+T ) 3‘
3)
For a given =, the estimate of each signal {x;}% , is formed
as X SBL, = Hoslyiy according to (3). Following [27], the hy-
perparameter estimation is done through Type-II Maximum a
Posterior (MAP) estimation over -y as

*

~* = argmax log p(¥|y1,...,¥yL)
7-0

L
argmin Llog |3y + > visyty —logp(y), @)
= =1
where 3, = Al + AT A" is the measurement model covari-
ance matrix and log p(+y) is the hyperprior on . The expression
in (4) is the generalized MMV-SBL cost function.

Two important remarks regarding (4) are in order.

1) Role of the prior: A majority of works consider so-called
non-informative (i.e., uniform) prior logp(vy), which
corresponds to type-II Maximum Likelihood estimation
above. However, in signal processing tasks, where one
possesses some prior information of the structure of sig-
nal X, an appropriate choice of an informative prior of
hyperparameter ~ can significantly improve the inference
performance [34]-[36]. We address the latter by incorpo-
rating the knowledge of the underlying block-sparse signal
structure into the hyperprior log p(7).

2) Minimization strategies: The SBL cost function (4) is, in

general, non-convex in v due to the concave term log |2, |;
convexity of log p() depends on the prior.
Different minimization strategies for (4) have been pro-
posed, along with their convergence guarantees. To this
end, we develop and discuss specific optimization strate-
gies tailored for our novel SBL method in Section III.
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C. SBL With Novel TV-Based Regularizers

Regarding the MMV-SBL cost function (4), this section
presents our novel SBL priors, i.e., hyperparameter regularizers,
that will encourage block-sparse signal recovery. We introduce
two regularization classes inspired by Total Variation (TV)
and various CS-based sparse regularizers. TV has been used
extensively in image processing for regularization and denois-
ing [37]-[39]. TV regularization has also been used for group-
sparse recovery along with the sparsity-inducing regularizers
(like ¢1-norm penalty) in such image recovery tasks [40]-[45].
These approaches enforce structure by working directly on
signal x; — a more challenging and less efficient approach for
the complicated block-sparsity problem.

Differently, our approach relies on enforcing special struc-
tures on the hyperparameter vector . It is noteworthy that
imposing the regularizer on the hyperparameters rather than the
source vectors x; is an important distinction and also key to
the success of our approach. Block-sparse recovery algorithms
have been developed introducing priors on the hyperparameter
space (see Section I-A). The BSBL [17] algorithm is tailored
to fixed block sizes, thus limiting its utility for more flexible
block-sparse recovery. The algorithms using rigid SBL hyper-
parameter coupling [19], [20], although highly effective for
flexible block-sparse recovery, are herein shown to be sensitive
to recovering signals with both block-sparse and isolated sparse
components; these stronger priors are biased to block structures
in the underlying signal. We aim to bridge this gap by introducing
a softer TV-inspired prior p(v) on the hyperparameter space.
This circumvents excessive coupling bias on the signal and
makes the proposed method extremely robust and capable of
accommodating both block-sparse and isolated sparse compo-
nents. Empirical evidence for our claims is provided through the
simulation results for different classes of block-sparse signals in
Section V.

Consider the MMV-SBL cost function (4). We denote the
hyperprior as 3T() £ —log p(), where 3 is a non-negative
weighting parameter controlling the emphasis on the prior, and
T(-) is a general TV-type penalty of vector ~, which will
become explicit in sequel. Accordingly, we will minimize the
TV-regularized MMV-SBL cost function

L
v = argmin L log|Sy | + Sy i+ BT(). )
= =1

Regardless of the form of T'(-), we refer to our proposed method
collectively as TV-SBL.

Recall from (4) that 3 in (5) serves as the interface on how
much weight the data Y carries in (the optimization over) the
posterior distribution versus the weight carried by the prior
information about the signal structure, captured by 7'(y). This
brings us to motivate the choice of an appropriate 7'(-). The first
thing to stress is that the purpose of the regularization 7'(-) is
not to promote sparse solutions per se. Namely, in the canonical
part of the SBL cost function in (5), the log det term log|Xy |
takes the role of imposing a sparsity penalty via the principles
of automatic relevance determination. Thus, the role of 7°()
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is to augment the SBL’s objective to encourage special sparse
structures, herein, block-sparse structures.

Conventional CS techniques induce sparsity via minimization
of the {y-“norm” ||x||o = Zfil I(|x;|). Many surrogate mea-
sures have been used, the most common one being the /;-norm
in CS [46], [47]. We harness this indicator function perspective
to promote block-sparsity. By extending this element-counting
function to a block-counting function, we introduce two novel
classes of regularizers T'(-): (i) Conventional TV Regularization
and (ii) Region-aware Regularization using TV. We introduce
three analytical TV-SBL regularizers — Linear TV, Log TV and
DoL TV — with the first two belonging to the conventional TV
regularization class, and the third to the region-aware regular-
ization class. We elaborate further below.

Conventional TV Regularization: Our initial approach defines
a block (either signal or zero block) as a region with constant
v;’s, analogous to the BSBL algorithm in [16], yet without the
knowledge of the true block distribution. We define the related
regularizer using the block-counting function that is equal to TV
on -, i.e.,

N
T(v) = ZI(|% = Yi-1l)- (6)
i=2

Using equal variances for the entries within a block, the measure
(6) counts the number of edges in the underlying block structure.
Note that even if the regularizer (6) tends to enforce equal
values of ;’s for the consecutive nonzero entries, this does
not stringently translate to restraining the corresponding signal
entries x;; to have equal magnitudes. This is the main asset
in regularizing the hyperparameters, not the signal magnitudes.
Thus, while simple, the imposed hierarchical prior structure ad-
mits significant boost in recovering various block-sparse signals,
as demonstrated by the numerical results in Section V.

Armed with the ideal measure (6), we can use tractable
measures developed in CS on the TV input variable |v; — v;_1]
to identify appropriate block structures. CS theory has developed
many regularizers that are monotonically increasing and concave
on the positive orthant to promote sparsity. We investigate two
such surrogate functions, introducing our two conventional TV
regularizers addressed in this paper.

1) Linear TV: The linear TV regularizer is equivalent to the
¢1 penalty in CS and is given by the form

N
T(v) =Y i =il )
=2

As stated earlier, TV has also been used in different signal
processing applications to preserve edges and enforce local
smoothness. We use this convex regularizer to enforce a block
structure in the recovered signal. In addition to the signal re-
gions, this penalty is found to “denoise” the zero regions more
effectively than the unregularized SBL algorithm [1].

2) Log TV: Another widely used regularizer in CS is
vazl log(|z;| + €), where € is a positive stability parameter.
This log-sum regularizer employs an iterative reweighted ¢,
minimization algorithm and has been shown to yield superior
recovery [47], [48]. Utilizing this regularizer for block-sparsity,
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the log TV regularizer is given by

N

T(v) = Zlog(\% —Yi-1| +€).

i=2
As in the CS literature, the log TV based approach is found to be
more effective than the linear TV, using the MM optimization
framework (see Section III-A) [1]. This is due to its better
resemblance to /p-“norm” [47], allowing more signal variance
differences within a block and restraining small (faulty) signal
estimate components to emerge.

The block-counting function (6) enforces blocks quite rigidly
through constant -; values, irrespective of a block being a zero
or nonzero block. A more flexible block-counting function,
explained next, incorporates this crucial difference between zero
and nonzero blocks.

Region-aware Regularization using TV (RAR TV): We in-
troduce a new terminology here, namely, zero and signal re-
gions. Inspired by a pictorial representation of block-sparse
signals (e.g., block-sparse angular regions for mmWave chan-
nels), a signal region — as a broader description of a signal
block — consists of a contiguous sequence of nonzero entries,
which are not necessarily associated with the same -y; value.
We have empirically observed that there exists a dissimilarity in
the recovery of zero and signal regions of the sparse vector x;. We
modify our original block-counting function (6) to incorporate
this differentiation as

N
T(y) = Z [ (vi) = I(vi-1)]-
i=2

®)

€))

The block-counting function (9), unlike (6), will minimize
the number of transitions between a signal region and a zero
region, while allowing arbitrary variation of signal magnitudes
within the blocks of the signal region. Further, this will enforce
strict contiguous zero blocks; hence the name Region-aware
Regularization (RAR). This differential treatment of the zero
and nonzero regions translates to a nonlinear scaling of the
hyperparameter components. More explicitly, we use a tractable
relaxation of (9) as

N
T(v) = lg(v:) — 9(vi1)l, (10)
i=2
where ¢(-) is a non-decreasing concave function in the positive
quadrant, which (relatively) amplifies lower ~; values while
scaling down the higher values corresponding to large signal
components. We term the penalty in (10) as the Difference of
Functions (DoF) regularizer. We use this form, with its con-
cave non-decreasing behavior, for the optimization analysis of
TV-SBL in Section IV. Prior to this, we introduce one specific
realization of g(-) for the DoF penalty, which will be used to
illustrate the utility of the RAR strategy.
3) Difference of Logs (DoL) TV: Following the above argu-
ments for the utility of the log(+) transform in CS as surrogate
measures of the p-“norm,” we propose a novel Difference of

Logs (DoL) TV penalty as
N

T(v) = llog(v:) —log(vi-1)]. (1)
i=2
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Here, the role of the log(-) function? is to nonlinearly scale the
hyperparameter vector -+ to differentially treat the zero and signal
regions, which is the main feature required for g(+), as motivated
above. We remark that other tractable surrogate functions g(-)
that better resemble the indicator function I(-) in (9) are worth
studying as future work.

Remark 1: One feature of interest here is that the penalty
[log(~i) — log(~;—1)] in (11) alternatively reduces the TV in the
hyperparameter space using the ratio “’—‘1 — 1. The analysis of
the TV reduction by matching the ratio to 1 warrants further
elaboration and discussion, and it is left for future work.

Remark 2: The value of regularization weight parameter
B has clearly a significant impact on the TV-SBL’s perfor-
mance and needs thus appropriate adjustment. As for any
regularization-based method, having a systematic way of defin-
ing the optimal [ is elusive. Pragmatically, if the estimate of
and, consequently, the estimate of x; tend to exclusively show
isolated sparse components for a block-sparse X, increasing /3
promotes the blocks to emerge. On the contrary, if the estimate
vectors are non-sparse with overly smooth envelopes, 3 should
be decreased. We remark that configuring 8 could also be
incorporated into a learning framework. Specific tuning of 3
is outside of the scope of this work.

Through this section, we have introduced three novel block-
sparsity-inducing regularizers: (7), (8), and (11). The key prop-
erties highlighting the differences between these regularizers
are summarized in Table I. We now move on to analyze the
optimization of the TV-regularized MM V-SBL cost function (5)
under each regularizer.

III. OPTIMIZATION FRAMEWORK FOR TV-SBL

SBL optimization has been extensively studied in various
contexts. The original approach was proposed by Tipping [14],
using fixed point iteration. The most popular algorithm for SBL
optimization is the Expectation-Maximization (EM) algorithm,
as used in [15], [16], [27]. Another common approach is the
Majorization-Minimization (MM) framework [1], [49] that re-
laxes the non-convex optimization problem (4) into a sequence
of convex optimization problems. Other strategies include the
iterative reweighted ¢; and /5 methods [32] and Generalized
Approximate Message Passing (GAMP) [31].
The fundamental difference in the underlying block-counting
measures between the Conventional TV in (6) and RAR TV in
(9) classifies the optimization procedures for the TV-SBL cost
(5) under their respective labels.
1) Conventional TV Optimization: The linear and log TV
penalties in (7) and (8) can be tackled by convex optimiza-
tion tools after appropriately relaxing the problem (5), e.g.,
using the MM framework. We address such MM-based
optimization in Section III-A.

2) RAR TV Optimization: The DoL penalty in (11) pre-
cludes the use of convex solvers, as will be discussed in
Section III-B. We approach this by splitting the overall

2Some of our experiments (not provided herein) have shown that the concave
square root penalty g(7;) = \/7: is another potential variant for (10), perform-
ing similar to the log(-) penalty.
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TABLE I
COMPARISON OF THE KEY PROPERTIES FOR THE TV-SBL REGULARIZERS (7), (8), AND (11)

Property Linear TV (7)

Log TV (8) DoL TV (11)

Block-counting function Conventional TV (6)

Conventional TV (6)

Region-aware using TV (9)

Analogous CS regularizer {1-norm regularization

log-sum regularization

No conventional CS regularizer

Block structure enforcement Minimize ~y; variation

Minimize ~y; variation

Minimize ~y; zero—nonzero transition

Block type symmetry Invariant to block type

Invariant to block type

Differential zero—nonzero ~y; regularizer

Convex optimization solution | Possible through MM

Possible through MM

Not possible (EM-based optimization used)

Performance Weakest TV-SBL regularizer

Stronger than Linear TV

Strongest TV-SBL regularizer

optimization into two sequential sub-problems, and com-
bining the solutions. We use the EM-based inference to
generate closed-form update expressions. The EM pre-
liminaries are presented in Section III-C and our overall
optimization procedure is detailed in Section IV.
Both these frameworks reformulate the original TV-SBL cost
(5), to be handled by different optimization tools.

A. Conventional TV-SBL Through Convex Optimization

We apply the MM approach and derive an iterative algorithm
for minimizing the TV-SBL cost in (5) under the linear TV and
log TV regularizer in (7) and (8), respectively.

1) Linear TV: The TV-SBL optimization (5) for the linear
TV regularizer in (7) is

L
7 = argmin Llog|y 1+ vy,
~=0 -1

~ N
+8) =il

=2

(12)

Following [49], we majorize (i.e., linearize) the concave term
log|3,| by its first-order Taylor approximation at point 1N
and solve at iteration j a convex optimization problem

. A\ —1
~G+D — argmin LTr <(2<yﬂ>) AI‘AH)
70

L N
Y YISy + B i — il

=1 =2

13)

and then update the measurement covariance matrix Eg,j ) using

the newly obtained v/+1). Any convex solver can be employed
to solve (13).

2) Log TV: The TV-SBL optimization (5) for the log TV
regularizer in (8) is

L
~* = argmin L log|Xy | + Z y?E;lyl
=0 1=1

N
+5 Zlog(\’yi —Yic1| +€).
i=2

(14)

The MM approach for this cost function is similar to (12),
but we additionally majorize the concave log TV penalty by

its first-order Taylor approximation at points (%(j ) ’yl(f )1),

i1 =2,...,N.Thus, at iteration j, we solve the convex problem

. A\ —1
~G*D = argmin LTr <(2<yﬂ>) AI‘AH)
~=0

L N
- > 1vi — i1l
+ ZWHZ 'y, +5Z ——, (15)
=1 Y i—=2 ‘71‘0) - ’77,(1)1| +e

followed by updating Eg,j ) using the newly obtained ~v(+1.
Hence, even though the log TV penalty is not convex, the
majorization (15) finds an upper-bound solution to (14) via
convex solvers. Implementation via common solvers such as
CVX [50] is detailed in our earlier work [1].

B. Difficulty in Majorizing DoL TV Penalty

Consider the DoL penalty in (11). The term |log(y;) —
log(~y;—1)] is concave in ~y; for 7; > ~;_1 and convex in ~; for
i < %¥i—1. Thus, unlike the linear and log TV in (12) and (14)
respectively, we cannot find a universal majorizer for the DoL
function. In fact, this holds true for any DoF TV penalty in (10)
with a concave function g(-). Until further notice, we proceed
with the DoF regularizer (10) while keeping in mind that its
special case g(-) = log(-) realizes the DoL in (11).

The TV-SBL optimization (5) under the DoF TV penalty in
(10) reads as

L
v* = argminLlog|Sy |+ > yI'=)ly;
~v=0 —1

N
+B8Y 19(w) — 9(vi-1)l- (16)
i=2

We solve (16) with the EM method. In particular, as it will be seen
in Section IV, this converts the minimization (16) into a form
that can be solved efficiently using cyclic optimization. Before
elaborating further, we describe the general EM procedure used
in the TV-SBL optimization.

C. TV-SBL Inference Through Expectation-Maximization

As opposed to a single-shot minimization (16), the EM algo-
rithm finds the estimate of the hyperparameter vector ~ itera-
tively. We follow the EM-SBL framework, introduced in [15]
and extended to MMV in [27]. Using the standard EM the-
ory [51],Y is the observation variable, X is the hidden variable
and ~ is the unknown parameter to be estimated. Each of the
variables Y, X, and -y is as determined in (1) and (2).
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E-step: Treating (Y, X) as the complete data and using the
Markov chain v — X — Y, the joint distribution gives
log p(X,Y,7) = log p(Y|X) + log p(X|7) + log p(7)
a7)
The Q-function is evaluated by averaging out the hidden variable

X as
QvIv™) (Y, X,7)]

p(Y|X)+log p(Xl|y)+log p(7)]

= ]EX\Y;ay(k) [log p

= Exjy.y [log

L
= Exjyym [IOgP(Y|X)+ log [[p(xi |’Y)]
=1
+ log p(7), (18)
where the expectation is with respect to the posterior
p(X[Y;~R) = Hlel p(x;]y1; 7). Removing the terms that
do not depend on =, and using the result from [27] to evaluate
the posterior expectation, we write the E-step as

L (k)
Z —Llog%—z

=1
N (k)
B
i=1 i

where, using (3), we defined the quantities for iteration k as

Qv + log p(7)

%

~log; —%T(v)}, (19)

1 L
(k) _ (k)
B =7 ZEM

=1

L
1 . .
-7 Z ““xz\yzw““) (Z)]2 + Byyyeo (6,9)| - (20)
=1

Remark 3: For the subsequent analysis, we use the regular-
ization normalized by the number of snapshots, i.e., 3 = 3/L.

Specializing (19) to the DoF TV regularizer in (10), we re-
define the E-step cost function as

®) ’7) £ i fz‘(k)
i=1

where, for brevity,

N
(v)+ B8 lg(vi) —a(
i=2
we introduced a function
(k)
£ () 2 i

i

Yi-1)l, 2D

+ log ;. (22)

M-step
) —argmax Q(v]y*))
=0

—=argmin J*) ()
~7-0

fargmm Zf(k) (Vi +5Z lg(vi)
=2

Using EM, we have converted the original TV-SBL optimiza-
tion from (16) to iterative updates as per (23). It is important to
note that besides J(*) (7) being non-convex in -, the TV term
introduces coupling of the hyperparameters, preventing updates
of {~;}X; in parallel. Consequently, the computational com-
plexity of vector optimization in (23) may become excessive for

—g(vi-1)]- (23)
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high-dimensional signal setups. Therefore, in the next section,
we propose an alternating optimization framework that enables
solving the M-step (23) efficiently via element-wise parallel
updates.

IV. ALTERNATING OPTIMIZATION FOR SOLVING THE M-STEP
OF THE EM-BASED TV-SBL

Our alternating optimization procedure for TV-SBL, detailed
in this section, has been inspired by the coordinate descent
optimization methods [52]-[56]. We extend these methods to
handle our EM-based TV-SBL framework described in Sec-
tion III-C. First, the detailed derivation is carried out for the
M-step of DoF TV-SBL in (23) (for which the MM approach is
not applicable). The section ends with establishing a universal
EM-based TV solver, providing alternative solvers to the linear
TV optimization (12) and log TV optimization (14) apart from
their MM solutions in Section III-A.

A. Alternating Optimization and Convergence

In order to use the techniques from coordinate descent to solve
(23), we first reformulate the cost function .J(¥) () in (21). We
begin by expressing the TV part T'(+y) as summations over the
even and odd indices, as shown in (24).

J®) () = Z [fi(k)(%') +8 (lgn) -

i€even

g(vi-1) |
ST P

i€odd

Hg(%) - 9(%‘+1)| )] +

= Z [fz'(k)

icodd

—9(7i-1)]

> 1P,
rEeeven

The form (24) rewrites the M-step optimization (23) as a sum-
mation over two disjoint sets of the elements of «, i.e., the even
and odd index elements of . This provides an ideal setting to use
alternating optimization and separately optimize over the even
and odd indices. For this alternating optimization procedure, we
define the following function in relation to (24):

Fi(k)(%v %(k)l’ %(-lf-)l) f(k)(%)

+ 8 (lg(v) — 90D + lg(n) — 9(380)),

where %( )1 and %( +)1 are fixed quantities at EM iteration k.

The following theorem presents our proposed EM-based al-
ternating optimization method for DoF TV-SBL along with
its convergence properties. In particular, the following update
equations form the M-step (see (23)) tailored to TV-SBL.

Theorem 1: For F® (7;;9) 4%, defined by (25), if the
alternating optimization at iteration k is carried out as

%(k+ ) = = argmin Fi( )('yz,*yl( )1,71(?1) Vi even

v >0

(vi) + 8 (|g(n)

—g9(vir1)] )] + (24)

+|g(n)

(25)

%(k+1) = argmin Fi( )(7,,'yz(kf1),fyl(_]ﬁ'f1)) Vi odd,
v >0

(26)
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the cost function (21) decreases over each iteration k, i.e.,
JE (yED) < JE (55), @7)

Proof: The proof is given in Appendix A. |

By means of Theorem 1, we decouple the general DoF TV
penalty and provide IV separate update equations corresponding
to each hyperparameter element ;. Moreover, by using this two-
step alternating optimization over the even and odd indices of
~, the M-step cost function (23) decreases over each iteration as
per (27), which subsequently results in convergence to a local
minimum of problem (23).

Owing to the generality of the cost function J (%) (7) in terms
of the choice of concave function ¢(-), it may not always be
possible to find closed-form solutions to the minimization steps
in (26). However, the following corollary asserts that for a
convergent algorithm determined through (27), it is sufficient
to obtain only a decrease in the optimization steps.

Corollary 1: If the updated parameters v(**1) satisfy

k k k k k k
FF (D4 ® 8y < FP (443 48, Vi even,

k+1 k+1 k k k+1 k+1
7’)’1( 1 )777(+1 )) <F( )( z( )v 5—1 )v%'(+1 )),

Vi odd,

F) (4D

then this is sufficient to imply (27).

Proof: The proof follows from the steps similar to those
for Theorem 1. In particular, the inequalities (36) and (38)
do not require the obtained %(Hl), Vi, in (26) to be strict
minimizers. |

Corollary 1 implies that we can use different optimization
methods for (26), ranging from gradient descent to MM, to ap-
proximately solve the M-step of the TV-SBL. Having described
the alternating optimization recipe for the TV-SBL, we now
present its specific iterative algorithmic implementation.

B. Algorithm Implementation: Segment-Wise Parallel Updates

This section elaborates the steps to solve each optimization
sub-problemin (26) over the even and odd indices. We exploit the
nature of the absolute value function | - | of the DoF regularizer to
break each minimization here into individual segments, optimize
these separately, and then combine the results. Hence, we refer
to our method as the Segment-wise Parallel Update algorithm.
We begin with the update equation for the even indices in (26);
the optimization for the odd indices will follow analogously.

We start by introducing quantities that order the neighbouring

elements for each 'y( ).

(k) (k) (k)

(k)
’yz max_InaX ’yz 1771+1 ’

i ,min

k k
2min (1,75 -

(28)
Using (28), the optimization problem for the even indices in (26)
reads as
(k+1) (k) (k)

. k
Yi = argmin Fz( )(’Yz; fyz max’ 77, mm)
v: >0

= argmin [fi(k) (vi) + B( |g(%) - 9(%(?1%)‘
vi>0

+|9(v) — 92

)} , Vieven. (29)
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The objective function of (29) is differentiable,
cept at points y; € {%?"ffm,yf’jfm}. To overcome the non-
differentiability, we first define three mutually exclusive and
collectively exhaustive segments on positive reals (R.):

I = {%‘ | yi > %(,Ifl)mx 2 0}7

€X-

- k
F {’yl"yzmax—’y>’yz(n)un—0}7

T = {3 19 > % 2 0}, (30)

wherein this function is continuous and differentiable. Using
(30), the optimization problem (29) is equivalent to

%(k-i-l) argmin F(k)(71771(k171)1ax”y’b(lir)lln) Vi even, (31)

ve{s® 5 50

where the three “candidate” solutions {72 ,71( , ( )} are
found by separate segment-wise optimization problems

3 2 argmin £ (7,)+289(1) = 8 [ 907 5h) + 901 o) |
vl

50 2 argmin £ () +8 [90 ) — 901 h0in) |
meF

7yz(k) éargn}in fl(k) ('Yz) - 269( ) ﬁ |: (71 max) + 9(71( n)nn):| .

Y€l
(32)
The constrained problems in (32) present our general ap-
proach to solve the TV-SBL problem for any general DoF TV
penalty (10). However, these might be difficult to solve, espe-
cially through closed-form expressions. Fortunately, for certain
controlled cases, like the DoLL TV penalty (11), we can solve
them equivalently, yet more efficiently, through the following
two-step procedure: an unconstrained update followed by pro-
Jjection to the relevant segment.
Step 1: Unconstrained update

dgk) = argmin fi(k)(%') +2B9(7:)
'yiER
&Ek) = argmin fi(k)(%‘)
v €R
_(k . k
Olz(' ) = argmin fl-( )(’Yi) —2B9(7i)- (33)
v €R
Step 2: Segment-wise projection
509 = e (5 009)
f;/’fk) = min (’}/Z‘(f:r)laxa max {’Yz(?urﬂ ~Ek)}>
5®) — max (07 min {%Uffm @§k>}) : (34)

Elaborate justification of this segment-wise parallel update op-
timization strategy is presented in Section IV-C.

As we mentioned earlier, the steps above are used to update the
hyperparameter values in parallel, obtaining %(k'H) for the even
indices. Then, these updated values are used in the optimization
over the odd indices through the optimization steps analogous
to (28), (34), and (31).
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Algorithm 1: Universal EM-Based Segment-Wise Parallel
Update Algorithm for TV-SBL.

Input: A, Y~ X 8
Output: ~(Fmax), ,u(k“"“") Vi

X ‘yl ;fy(kmax) ’

for £ = 0 to kyax do

Evaluate ESZT; and ui’j‘)yl ()5 VI using (3)

Evaluate Efk) using (20)
Evaluate oll(.k), d(k), and o?l(.k), Vi using Table 11

for ¢ € even indices do
Evaluate 7§2ax and 'y(k) using (28)

7, min

Evaluate ‘yl(k) :yi(k), ’_yi(k) using (34)
Obtain v ¥
end for
for 7 € odd indices do
Evaluate %(’;;2 and %(I;E) using (28)
Evaluate ’yi(k), &Z-(k), Wi(k) using (34)
Obtain 7 * )
end for
end for

using (31)

using (31)

C. Unifying TV-SBL Using Alternating Optimization

We now specialize this framework and set up a universal TV-
SBL solver to handle all the introduced TV regularizers: the
Linear TV (7), the Log TV (8), and the DoL TV (11).

To begin, it is clear that for a convex cost (29), the segment-
wise algorithm — following the steps (33), (34), and (31) —
converges to a local minimum of (29), enjoying the con-
vergence properties of Theorem 1, i.e., the TV-SBL M-step
cost (23) decreases over each iteration. Since the Dol TV-
SBL cost function (29) is non-convex, it is not immediately
clear whether the unconstrained updates (33) in conjunction
with the segment-wise projections in (34) work. To this end,
Appendix B shows the segment-wise parallel updates for the
DoL TV cost to be equivalent to (29), i.e., this optimization
strategy finds a local minimum of the M-step cost (23). Thus, the
DoL TV-SBL optimization, via the controlled nature of the DoL
TV, adheres to the convergence results of Theorem 1, despite
the non-convexity. Appendix B also derives the closed-form
solutions to the unconstrained updates (33) for the DoL TV.

We derive an EM-based solution to the TV-SBL with the
linear TV penalty (7) and the log TV penalty (8) as follows. For
each penalty, we majorize the involved non-convex TV-SBL cost

Fi(k) (vi; ’Yi(,]iiax’ ’Yi(,lf1)nn> in (29) by a convex surrogate. Applying
the segment-wise algorithm on the majorized convex cost func-
tion ensures the convergence of (23) according to Corollary 1,
i.e., the TV-SBL M-step cost (23) decreases over each iteration.
The closed-form solutions to the unconstrained updates (33)
for the linear and log TV under this majorization approach are
derived in Appendix C and D, respectively.

Finally, our universal EM-based TV-SBL algorithm ex-
ploiting the segment-wise parallel updating is summarized in
Algorithm 1; the required unconstrained update rules for (33)
for each TV-SBL penalty type are summarized in Table II.
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D. Algorithm Complexity

Since the E-Step of TV-SBL is the same as the original
M-SBL, the complexity of TV-SBL is similar to M-SBL. The
main computational burden at each iteration of our proposed
EM-based TV-SBL, as summarized in Algorithm 1, is the com-

putation of the matrix inverse in the E-step in evaluating Effl:l))’l’
VI, via (3). The number of floating-point operations is of order
O(M?N) per iteration k. It has been shown in [27] that the
overall covariance computation can be done independent of the
number of snapshots L. Thus, the overall order of the entire
algorithm is O(kpaxM2N), where kyax is the (maximum)
number of iterations taken. For the M-step update (23) using the
TV-SBL regularizers (7), (8), and (11), we have an O(1) parallel
update procedure for each of the hyperparameter components -y,
(see Algorithm 1); thus faster computation than the E-step update
(20), leaving the overall TV-SBL complexity as O (kyax M2 N).

V. NUMERICAL RESULTS

We provide numerical results for the block-sparse signal
recovery using the proposed TV-SBL algorithm, implemented
via Algorithm 1. For the MMV setup (1), we consider a signal
of length N =300 with M = 30 measurements and L =5
snapshots. We form the dictionary A € RM*N by first draw-
ing its elements from a Gaussian distribution, and then nor-
malizing the columns as || - || = 1. The signal ensemble X
contains K nonzero rows and each nonzero element is drawn
from N(0,1/K). We consider three classes of sparse signal
distributions:

1) Homogeneous block-sparse signal with total sparsity

K = 20, composed of 4 blocks of length 5 each;

2) Random sparse signal with K = 15 randomly placed

nonzero components, which are thus mostly isolated;

3) Hybrid sparse signal with total sparsity K = 20, compos-

ing 3 blocks of length 5, and 5 isolated components.

Each entry of noise signal n; is generated from N (0, \) with
noise variance A chosen so that the signal-to-noise ratio (SNR),

1010g10(%’;"‘!?]), varies from —5 to 25 dB. All expectations
E[-] are evaluated over 200 Monte Carlo trials.
We assess the performance with the following two metrics:
1) Estimation accuracy is measured by the normalized mean
square error (NMSE), E[%
mated source matrix.
2) Support recovery is evaluated using the F;-Score [57],

= precisionxrecall .
F| = 2E[precision+recall]’ where  precision = e,

recall = tpi}:ms’ tp is the number of true positives, fa
is the number of false alarms, and mis is the number
of misdetections. The F;-Score is a balanced support
recovery metric as it penalizes misdetections and false
alarms equally. F'; = 1 implies perfect recovery.

Remark 4: For ease of comparison, we form a support esti-
mate for an algorithm by preserving the K largest rows of X
while setting the rest to zero. In practice, the support could also
be estimated using a fixed threshold. The choice for setting this
fixed threshold is not static and we use empirical methods to set
the best minimum threshold based on the signal values.

], where X is the esti-
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TABLE II
TV-SBL: UNCONSTRAINED UPDATES (33) FOR THE LINEAR, LOG, AND DOL TV PENALTIES
~(k ~ (k _(k
TV Penalty a al® al®)
s — i1 B B B
v at™ 28 q® max(eo,q. ") —26)
B® PR M
log(lvi — vi-1] +€) SRR GENTC - :
| ‘11{ )-‘rﬁ(ag )+b§ )) max(eo,qgk)Jrﬁ(bEk)faEk))) max(emqgk)7ﬂ(a£k>+bgk')))
£ (k) E®
[log(vi) — log(vi-1)| 1128 E; =33
NMSE Performance . Support Recovery Performance
~< - I I I I I . _ &
Block-sparse Signal Structure 0% - ~a_ 09 /)'-" - 1
03 \\‘s.\\ 0.8 //
3025 S| Ta gl //"
£ 02 =) AN © .
e = N 2 o6l ,
E 0.15 = RS N r; , ~
3 = -0+ A E = 05F i3
R 2 N = s
5 04f P-4
0.05 L
0 15 L[-o- M-SBL (No TV) 03} e —o- M-SBL (No TV) |
—e—Linear TV = —o—Linear TV
lOSOiu’nal indeioo 0 —4—Log TV > 0.3 —a—Log'TV
5 ——DoL-TV r ——DoL-TV
20 0 5 10 15 20 25 U'l-s 0 5 10 15 20 25
SNR. [dB] SNR [dB]
(@) (b) ©

Fig. 1.
(b) NMSE, and (c) Support recovery.

Remark 5: For implementation convenience, we first run the
M-SBL algorithm [27] to convergence and use the obtained -~y
values as a warm start (i.e., initialize (%)) for all subsequent
block-sparse recovery algorithms.

A. Performance of Different TV Penalties

We first compare the relative performance of the different TV-
based SBL regularizers (7), (8), and (11) for the homogeneous
block-sparse scenario (see Fig. 1(a)). As evident in Figs. 1(b)
and 1(c), all three TV-SBL regularizers outperform the M-SBL
algorithm [27] which imposes no prior on <. Both conventional
TV regularizers (linear TV and log TV) have very similar perfor-
mance in terms of the NMSE and support recovery.’. However,
the region-aware DoLL TV clearly outperforms the conventional
TV regularizers. This performance boost reinforces the strategy
to selectively penalize signal and zero regions in block-sparse
recovery

Remark 6: Based on the analysis in Section V-A, we use the
DoL TV version of the TV-SBL for all subsequent simulations.

B. Comparison With Benchmark Algorithms

We investigate all the three signal classes and compare the
performance of our TV-SBL algorithm (using DoL TV) against

3 As opposed to the EM-based approaches herein, our results in [1] show that
the log TV considerably outperforms the linear TV when optimized via their
MM approaches (13) and (15), respectively.

Performance of TV-SBL under the different TV penalties for N = 300, M = 30, and L = 5: (a) Homogeneous block-sparsity (4 blocks of length 5),

the following SBL-based block-sparse recovery algorithms: (i)
BSBL [17], (ii) PC-SBL [19], and (iii) Burst Sparsity Learn-
ing [20]. The M-SBL algorithm [27] is used as a reference to
show recovery without regularization.

Remark 7: In order to assess the robustness of each algorithm
to the changes in block patterns, the parameters of each algo-
rithm were empirically tuned for the homogeneous block-sparse
signal, and then left unchanged for random and hybrid sparse
signals. This tuning is crucial for all hyperparameter-coupling
based algorithms, including our TV-SBL, because it would
be evidently optimal to disable the coupling (i.e., set 3 =0
for TV-SBL) for random sparse signals. Thus, we simulate a
practical signal recovery scenario where the parameter tuning
might not be viable.

1) Homogeneous Block-Sparse Signals: As seen in Fig. 2,
all algorithms, unsurprisingly, outperform M-SBL. BSBL, being
provided block size and boundary information apriori, attains
the best F'1-Score (Fig. 2(c)). However, as the NMSE (Fig. 2(b))
illustrates, we need regularization/coupling in addition to fixed
block partitioning to recover the signal effectively. TV-SBL
shows superior recovery performance at high SNR values; how-
ever it is outperformed by Burst Sparsity Learning at lower SNR
owing to the softer prior imposed. TV-SBL induces hyperparam-
eter coupling implicitly through the DoLL TV prior (11). This,
combined with its region-aware nature, illustrates the utility of
TV-SBL for block-sparse recovery.

There is an important caveat to explicit coupling-based priors
like PC-SBL and Burst Sparsity Learning: searching for blocks
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NMSE Performance
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Support Recovery Performance
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Fig. 2.

Performance of TV-SBL (DoL TV) versus the benchmark algorithms for N = 300, M = 30, and L = 5: (a) Homogeneous block-sparsity (4 blocks of

length 5), (b) NMSE, and (c) Support recovery.
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even when there are none. We now demonstrate that a softer prior
for block-sparsity in TV-SBL enjoys increased flexibility to a
block structure, showing TV-SBL’s utility beyond homogeneous
block-sparsity.

2) Sparse Signals: Fig. 3(a) represents the extreme scenario
for the block-sparse algorithms: the block size is one. First,
as seen in Figs. 3(b) and 3(c), M-SBL achieves the best per-
formance, as expected, establishing a justified performance
bound. TV-SBL significantly outperforms the coupling-based
algorithms, while being comparable to M-SBL. Explicit hy-
perparameter coupling in PC-SBL and Burst Sparsity Learning
biases the algorithms to block structures, and thus renders them
ineffective for isolated sparsity. Using a softer prior, TV-SBL
supports block-sparsity without such excessive bias; it is re-
markably adept at isolated sparsity as well. This motivates
us to analyze a hybrid signal, containing both isolated and
block-patterned components, which is typically the case in
practice.

3) Hybrid Sparse Signals: The hybrid block structure in
Fig. 4(a) is a representative of a practical scenario for, e.g.,
multiple-input multiple-output (MIMO) wireless channels. As
seen in Figs. 4(b) and (c), TV-SBL outperforms all the other
algorithms. The soft prior of TV-SBL flexibly accommodates
both block-patterned and isolated components, whereas PC-SBL

Performance of TV-SBL (DoL TV) versus the benchmark algorithms for N = 300, M = 30, and L = 5: (a) Isolated sparsity (15 blocks of length 1),

and Burst Sparsity Learning, imposing explicit hyperparameter
coupling, are sensitive to isolated components in the underlying
signal. This reinforces the fact that TV-SBL presents a balanced
approach to block-sparse signal recovery; it does not compro-
mise on sparse signal recovery at the cost of block-sparse signal
recovery.

C. Effect of Compression Ratio

We highlight the effect of increasing the compression ratio
M/N for the hybrid sparse signals in Fig. 5. We increase the
number of measurements by 50 % from that in Fig. 4, i.e.,
from M = 30 to M = 45, for the SNR analysis. As observed
in Figs. 5(b) and (c), the relative gap between the algorithms
reduces. Here too, similar to Fig. 4, TV-SBL slightly outper-
forms the other algorithms. The improved performance for all
algorithms is now attributed to the increase in the number of
measurements, which reduces the effect of a block-sparsity
prior. This is reinforced by analyzing the system performance
for varying the number of measurements M at SNR 20 dB,
as seen in Fig. 6. As seen from the results in Figs. 6(b) and
(c), the performance saturates as we increase the number of
measurements. This is in line with the general estimation theory
in that the impact of a prior is overridden by having increased
amount of data to perform the inference. However, it may
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not always be feasible to acquire more measurements in a
fixed data acquisition setup. Nonetheless, for a scenario with
a limited number of measurements and snapshots and vary-
ing block-sparse structures, our proposed TV-SBL algorithm
represents a robust regularization-enforced SBL method for
general-patterned block-sparse signal recovery.

(©)

Performance of TV-SBL (DoL TV) versus the benchmark algorithms for N = 300, M = 30, and L = 5: (a) Hybrid sparsity (3 blocks of length 5 and
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Performance of TV-SBL (DoL TV) versus the benchmark algorithms with varying number of measurements for N = 300, L = 5 at SNR = 20dB: (a)
Hybrid sparsity (3 blocks of length 5 and 5 blocks of length 1), (b) NMSE, and (c) Support recovery.

We analyze the performance of the TV-SBL algorithm as we
vary the number of snapshots L in Fig. 7. The NMSE (Fig. 7(a))
and support recovery (Fig. 7(b)) are evaluated at SNR 20 dB
for the hybrid block-sparse signal structure (Fig. 7(a)). The
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Hybrid sparsity (3 blocks of length 5 and 5 blocks of length 1), (b) NMSE, and (c) Support recovery.

performance plots illustrate that by increasing the number of
snapshots, the performance of M-SBL improves significantly,
as is expected from the reduced dependency on the prior. It is
interesting to note that while the algorithms using rigid coupling,
i.e., PC-SBL and Burst Sparsity Learning saturate at a lower
NMSE, the softer prior of the TV-SBL is able to follow the
M-SBL algorithm, thereby showing the flexibility of the chosen
prior.

VI. CONCLUSION

We proposed TV-based hyperparameter regularizers for SBL
to perform robust block-sparse signal recovery under unknown
block patterns. We introduced a new SBL algorithm, TV-SBL,
with two perspectives to handle block regularization: 1) the
conventional TV regularization (linear TV and log TV) and 2)
the RAR using TV (DoL TV). We showed that, after appropriate
relaxations, the conventional TV regularization reduces to a
sequence of convex optimization problems, enabling a multitude
of numerical solvers. The majority of our analysis, algorithms,
and experiments focused on the DoL TV regularizer, motivated
by its superior performance reported herein. We developed an
EM-based alternating optimization solution algorithm, which
has universal applicability to all the introduced TV regularizers.
The soft TV prior of the TV-SBL — especially when incorporat-
ing the region-aware DoL TV — presents a novel balanced per-
spective on handling block-sparsity. The numerical results show
the TV-SBL algorithm to be an efficient method in recovering
sparse signals with both block-patterned and isolated compo-
nents, proving immensely useful for practical signal recovery
systems, like mmWave channel estimation with non-uniform
sparse scattering.

APPENDIX
A. Proof of Theorem 1
Using (24) and (25), the right-hand side of (27), J ) (v(¥)),
is written as

k (k k k
19)= T OO A

I ED)

i€even ieodd

Given an initial value for J*) (v(¥)) in (35), by implementing the
first step of the algorithm (26), i.e., updating the even elements

in y*+1) | we get
k), (k1) (k) (K k), (k

ZFi() ( )’,YL( )1’%(+)1+Zf() ()

1€0dd

i€even
< JW (™).

The inequality (36) expresses the reduction in the cost func-
tion .J(¥) () by only minimizing over the even indices of . We
now show the same for the odd indices, corresponding to the
second step of the algorithm (26), finally leading to (27).

Let us rewrite the left-hand side of (36) equivalently as

k k: k k k k
PP S CRARRR R PP A Ch

1€even ic€odd

k), (k). (k+1) _(k+1 k), (k41
ZFi( )( z( ) z( 1 )’%(+1 )) Zfi( )('Yi( i ))-

ie€odd

(36)

(37
1€even

Since the second step of the algorithm (26) minimizes
Zleodd F(k) (’y,,’yl(kfl),fyz(ﬂrl)) over the odd coefficients, by
using the equlvalence in (37), the second step results in

k k k k
J*) ,},(k+1) Z F( ) ( )7%( 1%1),%‘(+-f1))
i€odd
+ 3 ), (38)
1€even

where .J () (4(+1) represents the M-step cost function value
after completing one iteration cycle in the EM algorithm.

Combining (36), (37), and (38) results in J*) (y(F+1)) <
J®) ()} in (27), which completes the proof.

B. Segment-Wise Optimization for DoL TV Penalty
Using the definition of f,i(k) (7:) in (22), we rewrite (33) as

E®
S (L4 28)log s,

)

dgk) = argmin, g Fl(k) (7) £

~ (k) . (k) A '(k)
" = argmin,, g Fy () £

+ log v,

i
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(k)
af?) = argmin,, g 75" () £ Z— + (1 - 28)log .
These can be solved by equating the derivative to zero, generat-

ing the unconstrained update expressions as

(k)

:Ei,.—, =—t— (40

1428 ¢ ¢ ¢ 1-28
We choose the regularization parameter 8 < 0.5 to ensure posi-
tive minima. Next, we show the validity of the two-step strategy
in (33) and (34), separately for each three segments I;, Ty, and
I'; given by (30).

Segment ; € I';: The derivative of the cost function Fl(k) (74)
in (39) is

(39)

alk)

0 W 1
5 LY 00) = ==+ (1+26) (41)
It is evident that ﬂ > 0 for ~; > a( ), where dl(-k) is

defined in (40). Addltlonally, if d(k) ¢ FZ, then, by the defi-
A" < ) - This
implies that if a( ) ¢ F- then a( ) < Yi, V’yz S 1"1. Using the

fact that (41) is positive for y; > a(k) Iy (k )( ;) is continuously

nition of segment F in (30), we must have &

increasing in the segment I‘Z, if agk) ¢ I‘l. Thus, the minimum

of Fl(k) (7;) under the constraint set y; € I; is located either at

the stationary point dgk) (when dz(-k) e I';) or at the lowest value

of the segment (when dgk) ¢ f‘i). This leads to the solution of
the form (34) as

® e 6.

. k
argmin Fl( )(%) = max (% max> ¥

’Y%eri

(42)

Segment +; € I';: The derivative of the cost function Fg(k) (74)
in (39) is

9 *) (k)
—FP () = - 1-23 43)
o (7i) % +( )%
It is evident that % <0for0 <y < a( ) , where a(k)

is defined in (40). By the definition of segment T'; in (30), if
ik) ¢ I';, then al(-k) > 'y?(];)lm, this implies ag ) > iV, € T,
Using the fact that (43) is negative for 0 < ; < d(k) F(k)( i)
is continuously decreasing in the segment L, if a §é I';. Fol-
lowing the logic similar to segment I';, the solution is of the
form (34), i.e.,
argmin FQ(k)(%) = max (O, min {%Ufl)lm, dgk) }) (44)
Y€l

Segment ~; € T';: The derivative of the cost function Fék) (74)
in (39) is

o E® 1
T%Fo( () = - o (45)

i<0for0<%<a() and (ii)

It is evident that (i)
aF (W’) > 0 for v; > a( ) , Where a( ) s deﬁned in (40). By
the deﬁnltlon of segment L; in (30), if a

¢ T, then either
o < ora™ >0 el < 7( Jins then F§*™ ()

7, min’

(k) (k)

is increasing in [;; in this case, Vi = Yimin- Analogously,
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if dgk) > ’Yi(,’;)qax’ then ’yi( ) = fyf H)lax Putting these conditions

together, we obtain the solution in (34) as

argn_lin Fék)(fyl) = min (’Y,i(fir)laxy max {7’5711)11117 d’fk)}) : (46)
vi €l

C. Unconstrained Updates in (33) for Linear TV

We begin by reformulating the M-step (23) to correspond to
the linear TV penalty in (7) as
N k) N
J(k)(’Y):Z{ ‘Hog%] +5Z|%—%71|'
i=1 i=2
We majorize log v, by its first-order Taylor approximation at

point fyz(k) 1=1,.

5k o E(k) (k)
J()(’Y):E {7 +q; %]JrBE 1vi — Yi-1l,
i=1 d

=2

(47)

, N. Consequently, (47) is majorized as

(48)

(k) _

where g, (k>+ and € is a small stability parameter. Fol-

lowing the steps similar to Section IV-A and IV-B, we obtain
the majorized cost function equivalent to (29) as

. E®
Fl(k) (’Y“ ’Yl(ljr)lax7 ryz(ljx)nn) - + q(k)
+ B (11 = Vo] + i = vf’;lm| ), (49)

Accordingly, using the definition of fi( )(%-) in (22), we write
the updates in (33) for linear TV as
EY

dv(;k) = argmin + (q;k) +28)v;
v; R Vi
EM
dl(-k) = argmin —— + qi(k)%
vi€R Vi
(k)
B
al® = argmin Zi— + (¢ — 28);, (50)
v €R Vi
For the first two problems in (50), differentiating with re-
*)
spect to 7; and equating to zero, we get a(k) = (g+2ﬁ and
~ (k) E®
a; = (k) For the third problem in (50), it is possible
that q(k) — 28 <0, i.e., the cost function is unbounded below

and theoretically, o?l(-k) = o0. In a practical implementation, we

account for the negativity qi(k) — 20 < Oviasetting alarge value
(k)
(k) . Thus, the update rule becomes a( ) = Eii(k),
max(eo,q;" —23)

where € is a small number.

D. Unconstrained Updates in (33) for Log TV

We begin by formulating the M-step (23) with respect to the
log TV penalty in (8) as

N pk)
) () = Z[ L +log%}
i=1 v
N
+8) log(lvi —vical +e). G
1=2
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Besides majorizing log ~y; similar to the linear TV case in Ap-
pendix C, we majorize log(|y; — vi—1| + €1) by its first-order
Taylor approximation at point (yfk) — ’Yl(lj)i)’ 1=2,...,N.

Consequently, (51) is majorized as

79 =3 [E 1 0]

+ﬁzc yi — il

i=1 =2
(52)
where qz( ) = (’“1)+e and c( ) = me 71,)|+6

Following the steps similar to Section IV-A and IV- B, we
obtain the majorized cost function having the form similar to
(29):

N E®)
k k k i k
F (365 Yy Yiomin) = —— + 4
k k)
+8 (at )y =) 0 v =), 63)
k
where a,g ) = W and b( ) — W Observ-

ing the similarity to (49), the unconstrained updates (33) for log
TV become

NO L BY (k) | p(0)
a; = argmin —— + (qi +B(e; +b; )) i
’)’ieR 72
E®
dgk) = argmin —— + ( k) 4 ﬁ( (k) k))> Vi
v €R Vi
(k)
B
o) = argmin —— (qgk) — Ba" + bgk))) Vi (54)
’YiGR ’yl
Based on the same logic as for the linear TV updates,
the solutions to these unconstrained updates are o?l(k) =
(k) (k) _ Ek)
(k)+/3(a<’“)+b(")) Q; - = max(eoﬁq(k)Jrﬁ(b(k)7a(k))), and
O_é(k) _ E(k)
B max(eo,q ﬂ(a(k)+b(k)))
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