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Abstract

Classic mean—variance optimization is very sensitive to expected returns. An alternative and more robust approach is to calculate
the implied returns given the current portfolio allocation and risk profile. Portfolio managers can then do a reality check on the
implied returns and find opportunities for better allocations. The most common implied return calculation assumes normal dis-
tribution and unlimited leverage, and use volatility as risk measure and covariance matrix as model input. However, practitioners
usually have leverage constraints, often use non-parametric risk models, and care about portfolio tail risk. This paper presents a
new approach to calculate expected returns with leverage constraints. This approach is flexible enough to alleviate normal distri-

bution assumption, connect with non-parametric risk models, and use tail risk measures, such as conditional VaR.
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Introduction

It is well documented that the classic mean—variance optimi-
zation is very sensitive to small changes in expected returns. !
An alternative and more robust approach is to calculate the
implied returns given the allocation and risk profile of the
current portfolio or benchmark, with the assumption that the
current portfolio is efficient. Portfolio managers can then do
a reality check on the implied returns and find opportunities
for better allocations.

Numerous papers, such as Idzorek (2007), Guangliang
and Litterman (2002) and Satchell and Scowcroft (2000),
show the way of calculating implied returns with no leverage
constraints. Sharpe (1974), Fisher (1975) and Herold (2005)
calculated implied returns in a mean—variance optimization
with leverage constraint.

We know that asset returns often have fatter tails than
normal distribution. So portfolio optimization models based
on downside risk measures, such as Value-at-Risk (VaR)
and conditional VaR (CVaR), are researched in Lucas and
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Klaassen (1998), Fabozzi et al. (2007), Harlow (1991), and
Krokhmal et al. (2002). Pang and Karan (2018) in search of
a close form of CVaR optimization generalized the implied
return calculation using elliptical distribution.

In addition, the models mentioned above use variance/
covariance, and thus cannot be easily implemented with
commercial risk models using non-parametric approach,
such as Monte Carlo simulation, or risk measures empha-
sizing tail risk, such as VaR and conditional VaR.

This paper proposes an implied return calculation that
addresses the above issues.

The rest of this paper first review some existing models
on implied returns, and then discusses the intuition on the
objectives of portfolio optimization with leverage constraints
and target returns. This analysis leads to the new implied
return model. Finally, we use an example to illustrate the
usage and advantages of this model.

' See Fabozzi, F. J., Kolm, P. N., Pachamanova, D. A., and Focardi,
S. M. “Robust Portfolio Optimization and Management”. (John Wiley
& Sons. 2007) p. 4, Black, Fischer, and Robert Litterman. 1992.
Global portfolio optimization. Financial Analysts Journal 48(5):
28-43, and Litterman, Robert B. “Modern Investment Management:
An Equilibrium Approach” (Hoboken, N.J.: John Wiley, 2003) p. 76,
for detailed discussions.

2 CVaR is a better risk measure than VaR for optimization, because
VaR is not coherent (Krokhmal et al. 2002; Artzner et al. 1999).
However, VaR is coherent where all portfolios can be modeled as lin-
ear combinations of elliptically distributed risk factors (McNeil et al.
(2015), so optimization using VaR is reasonable for portfolios with-
out derivatives or strategies with discrete return distributions.
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Existing models on implied returns

The objective of mean—variance optimization is to maximize
the expectation of utility:
A
U= r,— Eap (D
where U is investor’s utility, r,, is expected portfolio return,
Ais risk aversion coefficient, o, is the volatility of portfolio.
If the portfolio has N assets, then

r,=R'W, Q)

where R is a N by 1 vector of asset returns and W is a N by
1 vector of asset weights. In the portfolio

2 _ wt
ap—WZW, 3)

where X is asset covariance matrix.
Assuming the current portfolio or benchmark allocation is
efficient, the implied returns are [see Idzorek (2007)]

R, = AZW, 4)

Herold (2005) added a condition that the portfolio lever-
age is equal to 1, so the optimization problem (1) becomes
to maximize

A ,
U=r,— Eajw(w Iy—1), )

where 6 is the Lagrange multiplier. Then,
Ry, = AZW =01y (6)

Herold’s model can be improved on three directions:

e First, the model uses covariance matrix of investment
assets. In practice, institutional investment portfolios
usually have hundreds or thousands of assets, so the
covariance matrix is too large to be directly used in risk
calculation.

e Second, the model cannot be easily generalized to tail
risk measures, such as VaR or conditional VaR.

¢ Finally, the economic meaning of @ is unclear, other than
the fact that it is the Lagrange multiplier used for optimi-
zation. Herold (2005) assumes two of the asset returns
are known, so as to calibrate the Lagrange multiplier and
risk aversion ratio. This might partially defeat the pur-
pose of finding implied returns.

The new model proposed in this article will improve Her-
old’s model on those directions. Before we dive into techni-
cal development, let’s first look at the investment case we
work with.

Proposed model

In practice, institutional investors often need to reach a target
return with constraints on leverage. Active mutual funds,
hedge funds, pension, insurance company and endowment
funds usually have target returns in their marketing docu-
ments, offering memorandum, financial statements or invest-
ment policies. From modeling perspective, without target
returns, there would be no basis for portfolio managers to
choose the best leverage, and thus the constraints on leverage
would be irrelevant. Exhibit 1 shows the efficient frontier
and the capital market line.
There can be three cases on the leverage constraints:

e Case l: If there’s no leverage limit, the optimal portfolio
is on the line of (iff, b, d). This is the case for Eq. (4).

e Case 2: If the leverage =1 at all times, the optimal port-
folio is on the efficient frontier (a, b, c). This is the case
for Eq. (6).

e Case 3: If the portfolio has maximum leverage limit at
1, but can invest in risk free asset, the optimal portfolio
is on (rf, b, c¢). This is the most realistic case. Obviously,
implied return calculation must be a piece wise function.

In Exhibit 1,

Point a is the minimum variance portfolio, Point b is the
tangency portfolio, r, is the return of risk-free asset,r, is the
return of tangency portfolio.

Now, we introduce some propositions. The proofs are
given in “Appendix 1”.

To easily work with leverage constraint, we define r,, in
the following form to separate the returns from investment
assets and financing.

N

N
i=1

i=1
where Iy is assumed to be fixed or known.

Proposition 1 By maximizing the utility function (1) with
r, defined in (7), the following equation holds:

r, = Is (IVol,
ri—ry =L < , )

o, w;

foranyi € [1,2,...,N], where r; are asset returns, IVol; are
incremental volatilities, defined as IVol; = wiﬂ

ow;

We prove the proposition in our framework mathemati-
cally in “Appendix 1”. The intuition of Eq. (8) is that the
returns of assets contributing to the portfolio should be pro-
portional with their contributions to risk.

¥



202

L. Xin, S. Ding

Expected Return

Volatility

Exhibit 1 Efficient frontier

In fact, Eq. (8) would hold for a general form of risk
measures, as long as the derivative of the risk measure with
respect to W is well defined. Litterman (2004, pp. 14-15)
has detailed proof on that argument.

The above result is obtained when there is no leverage
constraint on portfolios. With that insight, when the leverage
constraint (Zi.il w; = 1) exists for portfolios, Eq. (8) can be
reformulated by Proposition 2.

Proposition 2 Under the leverage constraint, by maximiz-
ing the utility function (1) with the constraint Zf;l w; =1,
we obtain the following equation:

o, —IV01j>

w; 1—w;

®

) S w ke, Vol
I=w

foranyi € [1,2,...,N], where @ is a constant.

The proof is given in “Appendix 1”. Due to the leverage
constraint, when the allocation to asset j increases, the allo-
cation to other assets must decrease proportionally. Thus,
the left side of the equation represents the marginal impact
to returns for increasing the allocation of asset j, which is the
return of asset j, Tjs minus the average return of the rest of

o,
Z’l_—t*r The part in parenthesis on the right
i
side of the equation is the marginal impact to portfolio vola-
tility. That is, the change of volatility by adding/increasing

Vol

asset j,(—), minus the average change of volatility by
! o,~IVol; )
1-w; )

Similar to Eq. (8), the part on the left side of the equation
must be proportional to the parenthesis term on the right side
of equation, and we denote that constant proportion as .
Intuitively, this ratio ¢ determines the risk-reward trade-off

the portfolio,

reducing the rest of the portfolio, <

¥

between asset returns and incremental volatility. That con-
cept is similar to that of the Sharpe ratio.
Equation (9) can be further simplified as

IVol,
ri_rp=¢ w _O-p s (10)

i

foranyi € [1,2,...,N]. Based on this result, we obtain the
formula for implied returns as:

Rimp= lNrp+(p(y_ lNO-p)’ an

’
IVol, Vol Vol
where Y = (J, =, 22
wy Wy Wn

Again, like Egs. (8), (9) (correspondingly (10) and (11))
holds for a general form of risk measures, as long as the
derivative of the risk measure with respect to W is well
defined.

The ratio @ > 0, due to the assumption of investor risk
aversion. When ¢ is approaching zero, the asset implied
returns are close to identical to each other. The higher the
ratio @, the higher the dispersion among the implied returns
of assets. Here, r, is the target portfolio return defined by
portfolio managers.

Equaticz)g (11) can be calculated numerically with

IVolid_efwiE, or parametrically using

W
Rimp = lNr[, + (p<— — 1N0'p> (12)

%p
Compare Eq. (12) with Eq. (6) in Herold (2005), they are
consistent as one can choose

%

Op

and 6= (pO'p - rp, (13)

where A and 6 are parameters used in Herold (2005). This
relationship is also shown in our proof of Proposition 2.

In Herold’s approach, the parameter 6 is a Lagrange mul-
tiplier and its economic meaning is unclear. We replaced A
and 0 with a function of portfolio target return r, and a ratio
@. Those two new inputs are intuitive to investors. For many
institutional investors, target returns are either explicitly or
implicitly defined. For example, pension funds, insurance
companies, endowments, foundation and family offices
usually clearly define target returns in their investment and
spending policies or financial statements; financial advisors
often use target returns for financial planning; and hedge
funds often describe their target return and risk profile in
presentations to clients. The ratio ¢ determines the level of
risk premium, such as equity premium and small cap pre-
mium, depending on the investment portfolio. The higher the
ratio ¢ the higher the risk premium. Investors can adjust @
to arrive at a reasonable level of risk premium.
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When there is no leverage constraint, from (8),

r=rp+ "’G;rf (IV—UZ) Thus, the implied returns can be for-

P Wi

mulated as
Rimp = 1Nrf + (pY
= lNrp + (p(Y - lNap),

where ¢ = r”a;rf This equation is a special case of (11) with
a fixed ratio ¢ = r”g;r’ Thus, the formulation of (11) is gen-
eral. Note that under the definition of (7), Eq. (4) is slightly

modified as R,,,,, = 1yr; + AZW.Now, we see that this equa-

tion is also a special case of Eq. (11), where ¢ = 27 and

A= aﬁ. In fact, the relationship A = Gﬂ is also established in

our proof of Proposition 1. By choosing ¢ = o

, WE can

P
generalize the modified Eq. (4) with Eq. (11) to obtain

Ty =1y

Rimp = lNrf + Y. (14)

P
Besides the intuitive inputs, this new model has two addi-
tional advantages:

First, because Eq. (11) holds for any general form of risk
measures as long as the derivative of that risk measure to
w; is defined, we can replace IVol with incremental VaR?
or incremental conditional VaR, if the portfolio manager
focuses more on tail risk management. For example,

Ry = 1yr, + (PVaR(}’VaR - leaRp)’ (15)
T
where 7y, = (1 ‘f:fe‘ , —"f:fz yeers —”ijf” ) .

In Eq. (15), we may choose @y, directly. In order to make
@v.r consistent with the level of ¢ when using volatility, we
may calculate @y, = Zi;\/ﬁ, where p is the confidence level

of VaR, such as 0.95 and 0.99, Zp is the Z-score according
to the confidence level p, and n is the annualize factor of
VaR, such as 252 for daily VaR or 52 for weekly VaR.
Second, in practice, institutional investment portfolios
usually have so many assets that the covariance matrix of the
assets is too large to be directly used in calculation. Equa-
tion (11) does not use covariance matrix as input, so o, can
be calculated with Monte Carlo simulation or factor models,
and /Vol; can be calculated numerically with its definition

P . .
wiaiw’:. With Eq. (11), risk managers can use outputs from

commercial risk systems as inputs to calculate implied
returns. See Mina and Xiao (2001), RiskMetrics (2009) and

3 Incremental VaR does not always exist, as VaR is non-convex and
non-smooth as a function of positions in some special cases, but it
exists for most investment portfolios or strategies, so is calculated by
many commercial risk systems. See Rockafellar et al. (2000), Artzner
et al. (1999) and RiskMetrics (2009).

Barra (1998) for examples of how commercial risk systems
calculate risk measures with simulations and factor models.
See RiskMetrics (2009) for an example of calculating incre-
mental VaR with numerical approach.

So far we have been assuming that there is no risk free
asset in the portfolio. As mentioned earlier, when the target
return is lower than the tangent portfolio return, a combina-
tion of risk-free asset and tangent portfolio is more efficient
than efficient frontier. If the portfolio allocation has risk-free
asset for investment, rather than liquidity purpose, then the
part of the portfolio excluding risk-free asset is the tangent
portfolio. We should then use Eq. (14) to calculate implied
returns.

In practice, if the portfolio or benchmark has allocation to
cash, we need to decide the purpose of the cash allocation.
Suppose that the cash allocation in the portfolio is w;.

1. If the cash allocation is for liquidity or consumption pur-
pose, then that means there is a leverage constraint. In
this case, we need to exclude the cash from the invest-
ment portfolio, and adjust the target return and risky
asset weights using

r, — 1w -
Fo=2 T and W= W , (16)

where w, is the weight for risk-free asset.
Then use 7, and W and Egs. (11) or (12) to calculate
implied returns.

2. 1If the cash allocation is for investment purpose, then
that means the target return of the investor is so low that
it can be achieved with some asset allocated to cash. In
that case, leverage is not needed, so it’s not a constraint
anymore. Therefore, we should use the model without
constraint, i.e., Eq. (14). Since the optimized portfolio is
a combination of cash and tangency portfolio, we should
use Eq. (16) to adjust 7, and W, and then use Eq. (14) to
calculate implied returns.

That two-step process is consistent with the piecewise
optimization function discussed earlier in Case 3 of the effi-
cient frontier analysis.

Example analysis

Now let’s look at an example. Suppose a portfolio manager
starts from the initial portfolio or benchmark in Exhibit 2.

We now compare three approaches in calculating implied
returns:

1. The original model, Eq. (4).
2. The new model with parametric approach, Eq. (12).

¥
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3. The new model with historical simulation VaR, Eq. (15).
Let’s assume

o Targetreturnr, = 7%
e Risk aversion ratio used for Eq. (4) A = % = 10. Again,

please note that A = l% does not necessarily hold for
Eqgs. (12) and (13).
=04

¢ Risk-free returnr, = 0
e Portfolio weight W is in Exhibit 2

We use the daily returns of the indices in Exhibit 2 from
January Ist, 2011 to Sept. 30th, 2016, to obtain the rest of
inputs to Egs. (4), (12) and (15) as following:

e (Obtain the annualized sample covariance matrix as an
estimate of X. The annualized volatility and the corre-
sponding sample correlation matrix based on the sample
covariance matrix are given in “Appendix 2”.

¢ Use Eq. (3) to calculate portfolio volatility o, = 8.36%.

e Portfolio historical VaR, VaRp = 0.858%, is calculated
as the 95th percentile of portfolio return from Eq. (2).

e Historical incremental VaR, IVaR,, for asseti € [1, ..., N]
is calculated with the simulation method detailed in Risk-
Metrics (2009). The results are in “Appendix 2”.

e To make the results from VaR comparable to other mod-
els, use @y, = Zi;\/ﬁ = 23-1/252=3.86.

The results are in Exhibit 3.

Here, we have some observations:

First, the implied returns from the new models have much
lower equity risk premium than those from the original
model, and the lower equity risk premiums are closer to real-
ity. The implied returns from the original model are negative
or close to zero for bonds and double digits for equities, and
thus imply a double digit equity risk premium. According
to Appendix 6 in Damodaran, et al. (2017), equity risk pre-
mium in the US market was never higher than 6.5% from
1961 to 2016. Additionally, projected equity risk premiums
in the next 10—15 years by JP Morgan (2020) are in low sin-
gle digit as well, closer to the results from the new models.

Second, the implied returns calculated with parametric
approach are slightly different from those calculated with
historical simulation VaR. For example, the implied returns
for US Long-Term Bonds calculated by parametric approach
is 2.6% more than those by VaR approach, while for US
Large Cap Equity the difference is the other way around.
From the following QQ plot (Exhibit 4), we can see that
US Large Cap Equities not only have higher volatility, but
also have larger left tail than US Long-Term Bonds. If the

¥

portfolio manager focuses more on the left tail and uses VaR
as the risk measure, the implied or required return for US
Long-Term Bonds should be even smaller.

Finally, the implied returns from the new model can be
very useful for portfolio managers. For example, using the
returns calculated with VaR, a portfolio manager may con-
sider the 3.5% implied return for emerging market debt is
low compared with Global ex-US Government Bonds. With
that observation, the portfolio manager may increase allo-
cation to Emerging Market Bonds and reduce allocation to
ex-US Government Bonds until the implied returns are con-
sistent with expectation.

One may have noticed that the sample portfolio is very
similar to Morningstar Asset Allocation Index* and just
doesn’t have allocation to cash. If we use Morningstar Asset
Allocation Index as the benchmark and think the allocation
to cash from the index is for liquidity or consumption pur-
pose, the above analysis is exactly what we should do. Of
course, before calculating implied returns, we should first
adjust target returns and risky asset weight using Eq. (16).

If we believe that the 4% allocation to cash in the index
is purely for investment purpose, we should use the implied
returns from the original model. As discussed before,
the large divergence of the equity and fixed income asset
returns look too big to be realistic. That means the 40/60
asset allocation is not optimal, and the allocation to fixed
income assets are too low. If we increase the allocation to
fixed income assets, their implied returns will increase and
implied returns for equities will decrease to more realistic
levels. Intuitively, that makes a lot of sense. If the portfo-
lio manager’s target return is so low that he/she didn’t even
deploy 100% of assets, he/she probably should allocate
more assets into fixed income than the typical 40/60 asset
allocation.

Conclusion

To calculate implied returns, we introduced a new model
that provide improvements for practical usage, and yet inter-
connected with existing models. The improvements include:

4 Morningstar, “Morningstar Global Allocation Index Fact Sheet,”
accessed October 20, 2016, https://corporate.morningstar.com/US/
documents/Indexes/MorningstarGlobalAllocationIndexFactShee
t.pdf I replaced the Morningstar Emerging Market Index with MSCI
Emerging Market index, as the history of the Morningstar index is
incomplete on Bloomberg.

3 To avoid too many decimal points and for illustration purpose, I
rounded the weights calculated by Eq. (16) in sample portfolio earlier.


https://corporate.morningstar.com/US/documents/Indexes/MorningstarGlobalAllocationIndexFactSheet.pdf
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Exhibit2 Sample Portfolio Asset class

Index

Allocation %

Equities

U.S. large cap equities

U.S. mid cap equities

U.S. small cap equities
Non-U.S. developed equities
Emerging markets equities
Fixed income

Long-term U.S. bonds
Intermediate-term U.S. bonds
Short-term U.S. bonds
Non-U.S. developed bonds
Emerging markets bonds

Morningstar US Large Cap Index
Morningstar US Mid Cap Index
Morningstar Small Cap Index

Morningstar Developed Markets ex-US Index
MSCI Emerging Market Index

Morningstar Long-Term Core Bond Index

Morningstar Intermediate Core Bond Index

Morningstar Short-Term Core Bond Index

Morningstar Global ex-US Government Bond Index

Morningstar Emerging Markets Composite Bond Index

60

135

11.5

28

40

11

15
5

Exhibit 3 Implied returns of sample portfolio

Name

Implied returns

Original model (%) New model with parametric New model with
approach (%) historical VaR (%)

Morningstar US large cap index 10.2 8.5 10.2
Morningstar US mid cap index 11.9 9.4 10.3
Morningstar small cap index 13.2 10.0 10.6
Morningstar developed markets ex-US index 11.7 9.3 9.5
MSCI emerging markets index 10.3 8.6 5.5
Morningstar long-term core bond index -2.0 2.7 0.1
Morningstar intermediate core bond index -03 35 2.6
Morningstar short-term core bond index 0.1 3.7 32
Morningstar global ex-US government bond index -0.1 3.6 3.8
Morningstar emerging markets composite bond index 1.6 44 3.5
e First, this model is applicable for general form of risk

measures so that investors who care about tail risk can 0.06

use VaR or CVaR to calculate implied returns. 6 P
e Second, the model does not directly use the covariance '/

matrix of assets in calculation, so that for many insti- 5 002

tutional portfolios where covariance matrix of assets is ‘:’i —

very large, risk measures can be calculated with simula- g

tion or factor models. g o2
¢ Finally, the assumption parameters, including the target - i

return 7, and ratio ¢, are more intuitive than parameters o *

in existing models as they have economic meanings. -006F e

-0.08
-0.03 -0.02 -0.01 0.00 0.01 0.02

Appendix 1: Proofs of Propositions

Proof of Proposition 1 Under the definition (7), the utility

function (1) becomes

Long Duration Bond Index

Exhibit 4 QQ plot of index returns
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Exhibit 5 Statistics on sample portfolio

Name Weight (%) CVaRAsset (%) ICVaR (%) ICVaRPct (%) IVaR (%) IVaRPct(%) VaRAsset (%) VolAsset (%)
US large cap 13.5 2.182 0.2382 18.6 0.225 26.80 1.469 14.43
US mid cap 11.5 2.508 0.2789 21.8 0.195 23.24 1.653 16.58
Small cap 3.0 2.809 0.3068 24.0 0.053 6.29 1.846 19.05
Developed markets ex-US ~ 28.0 2.346 0.2697 21.1 0.416 49.54 1.569 15.37
Emerging markets 6.0 2.353 0.2400 18.8 0.028 3.31 1.666 16.00
Long-term core bond 4.0 1.099 -0.0641 =50 —-0.038 —4.47 0.845 7.92
Intermediate core bond 11.0 0.363 -0.0149 -1.2 -0.032 -3.85 0.254 2.57
Short-term core bond 3.0 0.154 —0.0001 0.0 —-0.005 -0.54 0.101 1.10
Global ex-US government  15.0 0.392 —0.0091 -0.7 0.000 0.01 0.246 2.73
bond
Emerging markets compos- 5.0 0.852 0.0338 2.6 —-0.003 -0.34 0.359 6.58
ite bond
Portfolio Vol 8.357
Portfolio VaR 0.858
Portfolio CVaR 1.301
A U=r,— 26 +0W'1y—1)= WR-2Wsw +ow'1, -0
U=r,- EO’; L e N 2 N
1 17) (20)
! ! !
=WR-Wlyr, +1, - EW zw By setting% =R+ 1,0 - AZW =0, we have
R =—-1y0 4+ AXW. Then, following the proof of Proposi-
To maximize (17), consider tion 1 with r; replaced by —6, we can obtain
oUu _ r,+0
aw =R~ Ly =AW =0 1+ 0 = L— (1vol;/w)). @
%p
Then, we have
forany j € [1,2,...,N].
R=1yr,+ AZW. (18) o
/ Let ¢ = =—. Then, we have (r; + O)w; = @IVol;, for
Since 22 = Z¥ then SW = o (Voh Vb Moly ) and %
ow g TP\ wy  wy, T wy ) ) jell,2,...,N], and rp+9=qoap. Therefore,
thus (V1 —rf,...,rN—rf)/ =/10'p<lv,0[l,...,—lv,olN) 1, +0 = (r;+0)w; = @(c, —IVol;) . Correspondingly,
) ' i N r,—wir;+0(1- w2 = @(c, — IVol;). Under the leverage
Correspondingly, poI Y p )
constraint . w;=1, it follows that
r; =1y = Ao, (IVol,/w,), (19) Z?ﬁj wir;+0(1 - wj) = @(o, — [Vol;), and thus
foranyi € [1,2,...,N]. Now from (18), it is easy to see that Z;# w;T; 4o 0p — IVOlj 22)
r,=r, _— = _ ).
W'R = W'lyrp=r, = r; = Ao? and thus - = o, Conse- 1w, \Tiow,
uentl ,r~—rv=M IVol./w:), for any i € [1,2,...,N].
q Y Iy % ( /i) Y Subtracting (22) from (21), we have
This completes the proof. From the proof, we see that A = T wr, ol o,~IVol;
By T T T (——1—> for —any

o2
»

Proof of Proposition 2 When the leverage con-
straint (Z?/:l w; = 1) exists for portfolios, we have
r, = 2 wir; = W'R with Ziil w; = 1, according to (7). To
maximize the utility function (1) under the leverage con-
straint, we consider the utility function incorporating the
constraint as:

¥

j€[1,2,...,N]. This completes the proof. From the proof,
we see the relationship 6 = @o,, — r,,. With this new ratio ¢,
the proposed model has more economic meanings and is
more interpretable.
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Exhibit 6 Correlation matrix of sample portfolio

EM bonds (%)

Non-US

Intermediate- Short-term (%)

term (%)

Long-term (%)

EM equities (%)

Non-US

Small cap (%)

Mid cap (%)

Large cap (%)

bonds (%)

equities (%)

14
14
12
25

-14
-12
-12
—13

-12
-10

—11

-28
-26
-27
—15
-11

—43
42
-4
-28
-21

91 60 47
61

95

100

Large cap
Mid cap

49

97
100

100

95

47

58
100

97
61

91

Small cap

78

58
47
—-42
-27
-11

-12

Non-US equities

32
10

11

100
-21
-11

78
—-28
—15

49
-42
-26
-10
-12

47
—43
-28
-12
~14

EM equities

43

64
80
100

84
100

100

Long-term

41

84
64
43

Intermediate-term

19
14
100

29
100

80
41

Short-term

29
19

—13

Non-US bonds
EM bonds

14

11

10

32

25

12

14

14

Appendix 2: Statistics for the sample
portfolio

For the risk calculation of the sample portfolio, we use the
daily returns from January 1st, 2011 to September 30th,
2016. Following are some statistics of the sample portfolio
(Exhibits 5, 6).
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