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Abstract
Classic mean–variance optimization is very sensitive to expected returns. An alternative and more robust approach is to calculate 
the implied returns given the current portfolio allocation and risk profile. Portfolio managers can then do a reality check on the 
implied returns and find opportunities for better allocations. The most common implied return calculation assumes normal dis-
tribution and unlimited leverage, and use volatility as risk measure and covariance matrix as model input. However, practitioners 
usually have leverage constraints, often use non-parametric risk models, and care about portfolio tail risk. This paper presents a 
new approach to calculate expected returns with leverage constraints. This approach is flexible enough to alleviate normal distri-
bution assumption, connect with non-parametric risk models, and use tail risk measures, such as conditional VaR.

Keywords  Portfolio optimization · Black-Litterman · Implied return · Expected return · Leverage constraint

Introduction

It is well documented that the classic mean–variance optimi-
zation is very sensitive to small changes in expected returns.1 
An alternative and more robust approach is to calculate the 
implied returns given the allocation and risk profile of the 
current portfolio or benchmark, with the assumption that the 
current portfolio is efficient. Portfolio managers can then do 
a reality check on the implied returns and find opportunities 
for better allocations.

Numerous papers, such as Idzorek (2007), Guangliang 
and Litterman (2002) and Satchell and Scowcroft (2000), 
show the way of calculating implied returns with no leverage 
constraints. Sharpe (1974), Fisher (1975) and Herold (2005) 
calculated implied returns in a mean–variance optimization 
with leverage constraint.

We know that asset returns often have fatter tails than 
normal distribution. So portfolio optimization models based 
on downside risk measures, such as Value-at-Risk (VaR) 
and conditional VaR (CVaR), are researched in Lucas and 

Klaassen (1998), Fabozzi et al. (2007), Harlow (1991), and 
Krokhmal et al. (2002).2 Pang and Karan (2018) in search of 
a close form of CVaR optimization generalized the implied 
return calculation using elliptical distribution.

In addition, the models mentioned above use variance/
covariance, and thus cannot be easily implemented with 
commercial risk models using non-parametric approach, 
such as Monte Carlo simulation, or risk measures empha-
sizing tail risk, such as VaR and conditional VaR.

This paper proposes an implied return calculation that 
addresses the above issues.

The rest of this paper first review some existing models 
on implied returns, and then discusses the intuition on the 
objectives of portfolio optimization with leverage constraints 
and target returns. This analysis leads to the new implied 
return model. Finally, we use an example to illustrate the 
usage and advantages of this model.
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Existing models on implied returns

The objective of mean–variance optimization is to maximize 
the expectation of utility:

where U is investor’s utility, rp is expected portfolio return, 
� is risk aversion coefficient, �p is the volatility of portfolio.

If the portfolio has N assets, then

where R is a N by 1 vector of asset returns and W  is a N by 
1 vector of asset weights. In the portfolio

where � is asset covariance matrix.
Assuming the current portfolio or benchmark allocation is 

efficient, the implied returns are [see Idzorek (2007)]

Herold (2005) added a condition that the portfolio lever-
age is equal to 1, so the optimization problem (1) becomes 
to maximize

where θ is the Lagrange multiplier. Then, 

Herold’s model can be improved on three directions:

•	 First, the model uses covariance matrix of investment 
assets. In practice, institutional investment portfolios 
usually have hundreds or thousands of assets, so the 
covariance matrix is too large to be directly used in risk 
calculation.

•	 Second, the model cannot be easily generalized to tail 
risk measures, such as VaR or conditional VaR.

•	 Finally, the economic meaning of θ is unclear, other than 
the fact that it is the Lagrange multiplier used for optimi-
zation. Herold (2005) assumes two of the asset returns 
are known, so as to calibrate the Lagrange multiplier and 
risk aversion ratio. This might partially defeat the pur-
pose of finding implied returns.

The new model proposed in this article will improve Her-
old’s model on those directions. Before we dive into techni-
cal development, let’s first look at the investment case we 
work with.

(1)U = rp −
�

2
�2
p

(2)rp = R�W,

(3)�2
p
= W ��W,

(4)Rimp = ��W,

(5)U = rp −
�

2
�2
p
+ �(W

�

1N − 1),

(6)Rimp = ��W − �1N

Proposed model

In practice, institutional investors often need to reach a target 
return with constraints on leverage. Active mutual funds, 
hedge funds, pension, insurance company and endowment 
funds usually have target returns in their marketing docu-
ments, offering memorandum, financial statements or invest-
ment policies. From modeling perspective, without target 
returns, there would be no basis for portfolio managers to 
choose the best leverage, and thus the constraints on leverage 
would be irrelevant. Exhibit 1 shows the efficient frontier 
and the capital market line.

There can be three cases on the leverage constraints:

•	 Case 1: If there’s no leverage limit, the optimal portfolio 
is on the line of ( rf  , b, d). This is the case for Eq. (4).

•	 Case 2: If the leverage = 1 at all times, the optimal port-
folio is on the efficient frontier (a, b, c). This is the case 
for Eq. (6).

•	 Case 3: If the portfolio has maximum leverage limit at 
1, but can invest in risk free asset, the optimal portfolio 
is on ( rf  , b, c). This is the most realistic case. Obviously, 
implied return calculation must be a piece wise function.

In Exhibit 1,
Point a is the minimum variance portfolio, Point b is the 

tangency portfolio, rf  is the return of risk-free asset,rb is the 
return of tangency portfolio.

Now, we introduce some propositions. The proofs are 
given in “Appendix 1”.

To easily work with leverage constraint, we define rp in 
the following form to separate the returns from investment 
assets and financing.

where rf  is assumed to be fixed or known.

Proposition 1  By maximizing the utility function (1) with 
rp defined in (7), the following equation holds:

 for any i ∈ [1, 2,… ,N] , where ri are asset returns, IVoli are 
incremental volatilities, defined as IVoli = wi

��p

�wi

.

We prove the proposition in our framework mathemati-
cally in “Appendix 1”. The intuition of Eq. (8) is that the 
returns of assets contributing to the portfolio should be pro-
portional with their contributions to risk.

(7)rp =

N
∑

i=1

wiri −

(

N
∑

i=1

wi − 1

)

rf = W �R −W �1Nrf + rf ,

(8)ri − rf =
rp − rf

�p

(

IVoli

wi

)

,
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In fact, Eq. (8) would hold for a general form of risk 
measures, as long as the derivative of the risk measure with 
respect to W  is well defined. Litterman (2004, pp. 14–15) 
has detailed proof on that argument.

The above result is obtained when there is no leverage 
constraint on portfolios. With that insight, when the leverage 
constraint ( 

∑N

i=1
wi = 1 ) exists for portfolios, Eq. (8) can be 

reformulated by Proposition 2.

Proposition 2  Under the leverage constraint, by maximiz-
ing the utility function (1) with the constraint 

∑N

i=1
wi = 1 , 

we obtain the following equation:

for any i ∈ [1, 2,… ,N] , where � is a constant.

The proof is given in “Appendix 1”. Due to the leverage 
constraint, when the allocation to asset j increases, the allo-
cation to other assets must decrease proportionally. Thus, 
the left side of the equation represents the marginal impact 
to returns for increasing the allocation of asset j, which is the 
return of asset j, rj , minus the average return of the rest of 
the portfolio, 

∑i≠j

i
wi∗ri

1−wj

 . The part in parenthesis on the right 

side of the equation is the marginal impact to portfolio vola-
tility. That is, the change of volatility by adding/increasing 
asset j,

(

IVolj

wj

)

 , minus the average change of volatility by 

reducing the rest of the portfolio, 
(

�p−IVolj

1−wj

)

.
Similar to Eq. (8), the part on the left side of the equation 

must be proportional to the parenthesis term on the right side 
of equation, and we denote that constant proportion as �. 
Intuitively, this ratio � determines the risk-reward trade-off 

(9)rj −

∑i≠j

i
wi ∗ ri

1 − wj

= �

�

IVolj

wj

−
�p − IVolj

1 − wj

�

,

between asset returns and incremental volatility. That con-
cept is similar to that of the Sharpe ratio.

Equation (9) can be further simplified as

for any i ∈ [1, 2,… ,N] . Based on this result, we obtain the 
formula for implied returns as:

where � =
(

IVol1

w1

,
IVol2

w2

,… ,
IVolN

wN

)�

.
Again, like Eqs. (8), (9) (correspondingly (10) and (11)) 

holds for a general form of risk measures, as long as the 
derivative of the risk measure with respect to W  is well 
defined.

The ratio 𝜑 > 0 , due to the assumption of investor risk 
aversion. When � is approaching zero, the asset implied 
returns are close to identical to each other. The higher the 
ratio � , the higher the dispersion among the implied returns 
of assets. Here, rp is the target portfolio return defined by 
portfolio managers.

Equation  (11) can be calculated numerically with 
IVolidefwi

��p

�wi

 , or parametrically using

Compare Eq. (12) with Eq. (6) in Herold (2005), they are 
consistent as one can choose

where � and � are parameters used in Herold (2005). This 
relationship is also shown in our proof of Proposition 2.

In Herold’s approach, the parameter � is a Lagrange mul-
tiplier and its economic meaning is unclear. We replaced � 
and � with a function of portfolio target return rp and a ratio 
� . Those two new inputs are intuitive to investors. For many 
institutional investors, target returns are either explicitly or 
implicitly defined. For example, pension funds, insurance 
companies, endowments, foundation and family offices 
usually clearly define target returns in their investment and 
spending policies or financial statements; financial advisors 
often use target returns for financial planning; and hedge 
funds often describe their target return and risk profile in 
presentations to clients. The ratio � determines the level of 
risk premium, such as equity premium and small cap pre-
mium, depending on the investment portfolio. The higher the 
ratio � the higher the risk premium. Investors can adjust � 
to arrive at a reasonable level of risk premium.

(10)ri − rp = �

(

IVoli

wi

− �p

)

,

(11)Rimp = 1Nrp + �
(

� − 1N�p
)

,

(12)Rimp = 1Nrp + �

(

ΣW

�p
− 1N�p

)

(13)� =
�

�p
and � = ��p − rp,

Exhibit 1   Efficient frontier
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When there is no leverage constraint, from (8), 
ri = rf +

rp−rf

�p

(

IVoli

wi

)

. Thus, the implied returns can be for-
mulated as

where � =
rp−rf

�p
. This equation is a special case of (11) with 

a fixed ratio � =
rp−rf

�p
. Thus, the formulation of (11) is gen-

eral. Note that under the definition of (7), Eq. (4) is slightly 
modified as Rimp = 1Nrf + ��W. Now, we see that this equa-
tion is also a special case of Eq. (11), where � =

rp−rf

�p
 and 

� =
�

�p
 . In fact, the relationship � =

�

�p
 is also established in 

our proof of Proposition 1. By choosing � =
rp−rf

�p
 , we can 

generalize the modified Eq. (4) with Eq. (11) to obtain

Besides the intuitive inputs, this new model has two addi-
tional advantages:

First, because Eq. (11) holds for any general form of risk 
measures as long as the derivative of that risk measure to 
wi is defined, we can replace IVol with incremental VaR3 
or incremental conditional VaR, if the portfolio manager 
focuses more on tail risk management. For example,

where �VaR =
(

IVaR1

w1

,
IVaR2

w2

,… ,
IVaRN

wN

)T

.

In Eq. (15), we may choose �VaR directly. In order to make 
�VaR consistent with the level of � when using volatility, we 
may calculate �VaR =

�

Zp

√

n , where p is the confidence level 
of VaR, such as 0.95 and 0.99, Zp is the Z-score according 
to the confidence level p , and n is the annualize factor of 
VaR, such as 252 for daily VaR or 52 for weekly VaR.

Second, in practice, institutional investment portfolios 
usually have so many assets that the covariance matrix of the 
assets is too large to be directly used in calculation. Equa-
tion (11) does not use covariance matrix as input, so �p can 
be calculated with Monte Carlo simulation or factor models, 
and IVoli can be calculated numerically with its definition 
wi

��p

�wi

 . With Eq. (11), risk managers can use outputs from 
commercial risk systems as inputs to calculate implied 
returns. See Mina and Xiao (2001), RiskMetrics (2009) and 

Rimp = 1Nrf + ��

= 1Nrp + �
(

� − 1N�p
)

,

(14)Rimp = 1Nrf +
rp − rf

�p
� .

(15)Rimp = 1Nrp + �VaR

(

�VaR − 1NVaRp

)

,

Barra (1998) for examples of how commercial risk systems 
calculate risk measures with simulations and factor models. 
See RiskMetrics (2009) for an example of calculating incre-
mental VaR with numerical approach.

So far we have been assuming that there is no risk free 
asset in the portfolio. As mentioned earlier, when the target 
return is lower than the tangent portfolio return, a combina-
tion of risk-free asset and tangent portfolio is more efficient 
than efficient frontier. If the portfolio allocation has risk-free 
asset for investment, rather than liquidity purpose, then the 
part of the portfolio excluding risk-free asset is the tangent 
portfolio. We should then use Eq. (14) to calculate implied 
returns.

In practice, if the portfolio or benchmark has allocation to 
cash, we need to decide the purpose of the cash allocation. 
Suppose that the cash allocation in the portfolio is wf .

1.	 If the cash allocation is for liquidity or consumption pur-
pose, then that means there is a leverage constraint. In 
this case, we need to exclude the cash from the invest-
ment portfolio, and adjust the target return and risky 
asset weights using

where wf  is the weight for risk-free asset.
Then use r̃p and W̃  and Eqs. (11) or (12) to calculate 

implied returns.

2.	 If the cash allocation is for investment purpose, then 
that means the target return of the investor is so low that 
it can be achieved with some asset allocated to cash. In 
that case, leverage is not needed, so it’s not a constraint 
anymore. Therefore, we should use the model without 
constraint, i.e., Eq. (14). Since the optimized portfolio is 
a combination of cash and tangency portfolio, we should 
use Eq. (16) to adjust rp and W  , and then use Eq. (14) to 
calculate implied returns.

That two-step process is consistent with the piecewise 
optimization function discussed earlier in Case 3 of the effi-
cient frontier analysis.

Example analysis

Now let’s look at an example. Suppose a portfolio manager 
starts from the initial portfolio or benchmark in Exhibit 2.

We now compare three approaches in calculating implied 
returns:

1.	 The original model, Eq. (4).
2.	 The new model with parametric approach, Eq. (12).

(16)r̃p =
rp − rf wf

1 − wf

and W̃ =
W

1 − wf

,

3  Incremental VaR does not always exist, as VaR is non-convex and 
non-smooth as a function of positions in some special cases, but it 
exists for most investment portfolios or strategies, so is calculated by 
many commercial risk systems. See Rockafellar et al. (2000), Artzner 
et al. (1999) and RiskMetrics (2009).
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3.	 The new model with historical simulation VaR, Eq. (15).

Let’s assume

•	 Target return rp = 7%

•	 Risk aversion ratio used for Eq. (4) � =
rp

�2
p

= 10 . Again, 

please note that � =
rp

�2
p

 does not necessarily hold for 

Eqs. (12) and (13).

•	 Risk-free return rf = 0

•	 Portfolio weight W is in Exhibit 2

We use the daily returns of the indices in Exhibit 2 from 
January 1st, 2011 to Sept. 30th, 2016, to obtain the rest of 
inputs to Eqs. (4), (12) and (15) as following:

•	 Obtain the annualized sample covariance matrix as an 
estimate of Σ. The annualized volatility and the corre-
sponding sample correlation matrix based on the sample 
covariance matrix are given in “Appendix 2”.

•	 Use Eq. (3) to calculate portfolio volatility �p = 8.36%.
•	 Portfolio historical VaR, VaRp = 0.858 %, is calculated 

as the 95th percentile of portfolio return from Eq. (2).
•	 Historical incremental VaR, IVaRi , for asset i ∈ [1,… ,N] 

is calculated with the simulation method detailed in Risk-
Metrics (2009). The results are in “Appendix 2”.

•	 To make the results from VaR comparable to other mod-
els, use �VaR =

�

Zp

√

n =
0.4

1.645

√

252 = 3.86.

The results are in Exhibit 3.
Here, we have some observations:
First, the implied returns from the new models have much 

lower equity risk premium than those from the original 
model, and the lower equity risk premiums are closer to real-
ity. The implied returns from the original model are negative 
or close to zero for bonds and double digits for equities, and 
thus imply a double digit equity risk premium. According 
to Appendix 6 in Damodaran, et al. (2017), equity risk pre-
mium in the US market was never higher than 6.5% from 
1961 to 2016. Additionally, projected equity risk premiums 
in the next 10–15 years by JP Morgan (2020) are in low sin-
gle digit as well, closer to the results from the new models.

Second, the implied returns calculated with parametric 
approach are slightly different from those calculated with 
historical simulation VaR. For example, the implied returns 
for US Long-Term Bonds calculated by parametric approach 
is 2.6% more than those by VaR approach, while for US 
Large Cap Equity the difference is the other way around. 
From the following QQ plot (Exhibit 4), we can see that 
US Large Cap Equities not only have higher volatility, but 
also have larger left tail than US Long-Term Bonds. If the 

� = 0.4

portfolio manager focuses more on the left tail and uses VaR 
as the risk measure, the implied or required return for US 
Long-Term Bonds should be even smaller.

Finally, the implied returns from the new model can be 
very useful for portfolio managers. For example, using the 
returns calculated with VaR, a portfolio manager may con-
sider the 3.5% implied return for emerging market debt is 
low compared with Global ex-US Government Bonds. With 
that observation, the portfolio manager may increase allo-
cation to Emerging Market Bonds and reduce allocation to 
ex-US Government Bonds until the implied returns are con-
sistent with expectation.

One may have noticed that the sample portfolio is very 
similar to Morningstar Asset Allocation Index4 and just 
doesn’t have allocation to cash. If we use Morningstar Asset 
Allocation Index as the benchmark and think the allocation 
to cash from the index is for liquidity or consumption pur-
pose, the above analysis is exactly what we should do. Of 
course, before calculating implied returns, we should first 
adjust target returns and risky asset weight using Eq. (16).5

If we believe that the 4% allocation to cash in the index 
is purely for investment purpose, we should use the implied 
returns from the original model. As discussed before, 
the large divergence of the equity and fixed income asset 
returns look too big to be realistic. That means the 40/60 
asset allocation is not optimal, and the allocation to fixed 
income assets are too low. If we increase the allocation to 
fixed income assets, their implied returns will increase and 
implied returns for equities will decrease to more realistic 
levels. Intuitively, that makes a lot of sense. If the portfo-
lio manager’s target return is so low that he/she didn’t even 
deploy 100% of assets, he/she probably should allocate 
more assets into fixed income than the typical 40/60 asset 
allocation.

Conclusion

To calculate implied returns, we introduced a new model 
that provide improvements for practical usage, and yet inter-
connected with existing models. The improvements include:

4  Morningstar, “Morningstar Global Allocation Index Fact Sheet,” 
accessed October 20, 2016, https​://corpo​rate.morni​ngsta​r.com/US/
docum​ents/Index​es/Morni​ngsta​rGlob​alAll​ocati​onInd​exFac​tShee​
t.pdf I replaced the Morningstar Emerging Market Index with MSCI 
Emerging Market index, as the history of the Morningstar index is 
incomplete on Bloomberg.
5  To avoid too many decimal points and for illustration purpose, I 
rounded the weights calculated by Eq. (16) in sample portfolio earlier.

https://corporate.morningstar.com/US/documents/Indexes/MorningstarGlobalAllocationIndexFactSheet.pdf
https://corporate.morningstar.com/US/documents/Indexes/MorningstarGlobalAllocationIndexFactSheet.pdf
https://corporate.morningstar.com/US/documents/Indexes/MorningstarGlobalAllocationIndexFactSheet.pdf
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•	 First, this model is applicable for general form of risk 
measures so that investors who care about tail risk can 
use VaR or CVaR to calculate implied returns.

•	 Second, the model does not directly use the covariance 
matrix of assets in calculation, so that for many insti-
tutional portfolios where covariance matrix of assets is 
very large, risk measures can be calculated with simula-
tion or factor models.

•	 Finally, the assumption parameters, including the target 
return rp and ratio � , are more intuitive than parameters 
in existing models as they have economic meanings.

Appendix 1: Proofs of Propositions

Proof of Proposition 1  Under the definition (7), the utility 
function (1) becomes

Exhibit 2   Sample Portfolio Asset class Index Allocation  %

Equities 60
U.S. large cap equities Morningstar US Large Cap Index 13.5
U.S. mid cap equities Morningstar US Mid Cap Index 11.5
U.S. small cap equities Morningstar Small Cap Index 3
Non-U.S. developed equities Morningstar Developed Markets ex-US Index 28
Emerging markets equities MSCI Emerging Market Index 6
Fixed income 40
Long-term U.S. bonds Morningstar Long-Term Core Bond Index 4
Intermediate-term U.S. bonds Morningstar Intermediate Core Bond Index 11
Short-term U.S. bonds Morningstar Short-Term Core Bond Index 3
Non-U.S. developed bonds Morningstar Global ex-US Government Bond Index 15
Emerging markets bonds Morningstar Emerging Markets Composite Bond Index 5

Exhibit 3   Implied returns of sample portfolio

Name Implied returns

Original model (%) New model with parametric 
approach (%)

New model with 
historical VaR (%)

Morningstar US large cap index 10.2 8.5 10.2
Morningstar US mid cap index 11.9 9.4 10.3
Morningstar small cap index 13.2 10.0 10.6
Morningstar developed markets ex-US index 11.7 9.3 9.5
MSCI emerging markets index 10.3 8.6 5.5
Morningstar long-term core bond index − 2.0 2.7 0.1
Morningstar intermediate core bond index − 0.3 3.5 2.6
Morningstar short-term core bond index 0.1 3.7 3.2
Morningstar global ex-US government bond index − 0.1 3.6 3.8
Morningstar emerging markets composite bond index 1.6 4.4 3.5

Exhibit 4   QQ plot of index returns
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To maximize (17), consider

Then, we have

Since ��p
�W

=
�W

�p
, then �W = �p

(

IVol1

w1

,
IVol2

w2

,… ,
IVolN

wN

)�

, and 

t h u s  
(

r1 − rf ,… , rN − rf
)�

= ��p

(

IVol1

w1

,… ,
IVolN

wN

)�

  . 
Correspondingly,

for any i ∈ [1, 2,… ,N] . Now from (18), it is easy to see that 
W �R −W �1Nrf  = rp − rf = ��2

p
 and thus rp−rf

�p
= ��p. Conse-

quently, ri − rf =
rp−rf

�p

(

IVoli∕wi

)

, for any i ∈ [1, 2,… ,N]. 
This completes the proof. From the proof, we see that � = 
rp−rf

�2
p

.

Proof of Proposition 2  When the leverage con-
straint ( 

∑N

i=1
wi = 1) exists for portfolios, we have 

rp =
∑

i wiri = W �R with 
∑N

i=1
wi = 1, according to (7). To 

maximize the utility function (1) under the leverage con-
straint, we consider the utility function incorporating the 
constraint as:

(17)
U = rp −

�

2
�2
p

= W �R −W �1Nrf + rf −
�

2
W ��W

�U

�W
= R − 1Nrf − ��W = 0.

(18)R = 1Nrf + ��W.

(19)ri − rf = ��p(IVoli∕wi),

B y  s e t t i n g �U1

�W
= R + 1N� − ��W = 0  ,  w e  h ave 

R = −1N� + ��W  . Then, following the proof of Proposi-
tion 1 with rf  replaced by −� , we can obtain

for any j ∈ [1, 2,… ,N].

Let � =
rp+�

�p
. Then, we have (rj + �)wj = �IVolj , for 

j ∈ [1, 2,… ,N] ,  a n d  rp + � = ��p  .  T h e r e fo r e , 
rp + � − (rj + �)wj = �(�p − IVolj) .  Cor respondingly, 
rp − wjrj + �

(

1 − wj

)

= �(�p − IVolj) . Under the leverage 
c o n s t r a i n t  

∑N

i=1
wi = 1  ,  i t  f o l l o w s  t h a t 

∑i≠j

i
wiri + �

�

1 − wj

�

= �(�p − IVolj) , and thus

Subtracting (22) from (21), we have
rj −

∑i≠j

i
wi∗ri

1−wj

= �

�

IVolj

wj

−
�p−IVolj

1−wj

�

  ,  f o r  a n y 

j ∈ [1, 2,… ,N] . This completes the proof. From the proof, 
we see the relationship � = ��p − rp . With this new ratio �, 
the proposed model has more economic meanings and is 
more interpretable.

(20)
U1 = rp −

�

2
�2
p
+ �(W �1N − 1) = W �R −

�

2
W ��W + �W �1N − �.

(21)rj + � =
rp + �

�p

(

IVolj∕wj

)

,

(22)
∑i≠j

i
wiri

1 − wj

+ � = �

�

�p − IVolj

1 − wj

�

.

Exhibit 5   Statistics on sample portfolio

Name Weight (%) CVaRAsset (%) ICVaR (%) ICVaRPct (%) IVaR (%) IVaRPct (%) VaRAsset (%) VolAsset (%)

US large cap 13.5 2.182 0.2382 18.6 0.225 26.80 1.469 14.43
US mid cap 11.5 2.508 0.2789 21.8 0.195 23.24 1.653 16.58
Small cap 3.0 2.809 0.3068 24.0 0.053 6.29 1.846 19.05
Developed markets ex-US 28.0 2.346 0.2697 21.1 0.416 49.54 1.569 15.37
Emerging markets 6.0 2.353 0.2400 18.8 0.028 3.31 1.666 16.00
Long-term core bond 4.0 1.099 − 0.0641 − 5.0 − 0.038 − 4.47 0.845 7.92
Intermediate core bond 11.0 0.363 − 0.0149 − 1.2 − 0.032 − 3.85 0.254 2.57
Short-term core bond 3.0 0.154 − 0.0001 0.0 − 0.005 − 0.54 0.101 1.10
Global ex-US government 

bond
15.0 0.392 − 0.0091 − 0.7 0.000 0.01 0.246 2.73

Emerging markets compos-
ite bond

5.0 0.852 0.0338 2.6 − 0.003 − 0.34 0.359 6.58

Portfolio Vol 8.357
Portfolio VaR 0.858
Portfolio CVaR 1.301
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Appendix 2: Statistics for the sample 
portfolio

For the risk calculation of the sample portfolio, we use the 
daily returns from January 1st, 2011 to September 30th, 
2016. Following are some statistics of the sample portfolio 
(Exhibits 5, 6).
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