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ABSTRACT

We study the response of hot Jupiters to a static tidal perturbation using the Concentric MacLaurin
Spheroid (CMS) method. For strongly irradiated planets, we first performed radiative transfer calcu-
lations to relate the planet’s equilibrium temperature, T,q, to its interior entropy. We then determined
the gravity harmonics, shape, moment of inertia, and the static Love numbers for a range of two-layer
interior models that assume a rocky core plus a homogeneous and isentropic envelope composed of
hydrogen, helium, and heavier elements. We identify general trends and then study HAT-P-13b, the
WASP planets 4b, 12b, 18b, 103b, and 121b, as well as Kepler-75b and CoRot-3b. We compute the
Love numbers, k,,,, and transit radius correction, AR, which we compare with predictions in the liter-
ature. We find that the Love number, koo, of tidally locked giant planets cannot exceed the value 0.6,
and that the high 7., consistent with strongly irradiated hot Jupiters tend to further lower ka2. While
most tidally locked planets are well described by a linear-regime response of koo = 3J2/qo (where ¢q is
the rotation parameter of the gravitational potential), for extreme cases such as WASP-12b;, WASP-
103b and WASP-121b, nonlinear effects can account for over 10% of the predicted kop. koo values
larger than 0.6, as they have been reported for planets WASP-4b and HAT-P13B, cannot result from
a static tidal response without extremely rapid rotation, and thus are inconsistent with their expected
tidally-locked state.
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1. INTRODUCTION

In this paper, we study the response of rotating gi-
ant exoplanets to tidal perturbations using the non-
perturbative Concentric MacLaurin Spheroid (CMS)
method (Hubbard 2013). The shape of a fluid planet
results from a balance of tidal interactions with other ce-
lestial bodies and the planets’ rotation with self-gravity
from the planets’ interior mass distribution. While the
gas giant planets in our solar system, Jupiter and Sat-
urn, have had their interiors probed by precise space-
craft gravity measurements (Folkner et al. 2017; Iess
et al. 2019), the tremendous distance to exoplanets ne-
cessitates more indirect means for studying their inte-
riors. A class of exoplanets that is well suited for the
study of tidal interactions is the hot Jupiters, whose
relatively large masses and close-in orbits with their
host star lead to much stronger tidal interactions than
for any planet in our solar system. In addition, in-
tense insolation allows their interiors to maintain much

of their primordial heat, with equilibrium temperature,
Teq > 1000 K (Miller & Fortney 2011), leading to their
well-documented, inflated gaseous envelopes (Charbon-
neau et al. 2000; Henry et al. 2000; Guillot & Showman
2002), which are even more prone to deformation by
tidal interactions than colder planets.

The deformation of a planet can be characterized by
the shape of its observable surface, via ratios radii along
the of principle axes, a, b and ¢, or through normalized
moments of its gravity field. For tidal interactions in
particular, the first order response is conventionally re-
ported as the second-degree fluid Love number koo (Love
1909).

Batygin et al. (2009) identified a means of constrain-
ing kg for HAT-P-13b by considering its special orbital
configuration with a highly eccentric outer companion
planet. Buhler et al. (2016) applied this technique us-
ing observations of secondary eclipses to measure the

eccentricity, e, and found a kgo = 0.31700%. Mean-
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while, Hardy et al. (2017) used independent observations
of HAT-P-13b secondary eclipses and inferred a much
larger value of koo = 0.81 £ 0.10. Ragozzine & Wolf
(2009) put forward another method for measuring koo
by relating it to apsidal precession, which can manifest
itself as transit timing variations (TTV) between tempo-
rally separated transit observations. This method was
applied to WASP-4b by Bouma et al. (2019) who esti-
mated a kop = 1.2070 30 from TESS observations show-
ing an offset in transit time with respect to predictions
based on observations stretching back to 2007. Like-
wise, Csizmadia et al. (2019) estimated kop = 0.627055
for WASP-18b using a similar technique, but with ap-
sidal precession rate inferred radial velocity variations
(RV) instead. An initial suggestion of a detection of ap-
sidal precision for WASP 12-b was ruled out by Campo
et al. (2011).

The shape of the observable surface of a sufficiently
nonspherical planet can be inferred from transit light
curves for both fast-rotating oblate planets (Seager
& Hui 2002) and tidally-elongated, prolate planets
(Leconte et al. 2011; Burton et al. 2014). With the
exception of special-case interactions with asecondary
companion planet, most close-in hot Jupiters are ex-
pected to have evolved to a tidally-locked state with
negligible eccentricity (Lin & Gu 2004; Jackson et al.
2008). Because tidal locking limits the rotation rate to
match the orbital period, the tidally induce prolateness
is generally more pronounced than the rotational oblate-
ness. For sufficiently close-in hot Jupiters this can lead
to a systematic underestimation of reported planetary
radius and, by consequence, and overestimation of the
bulk density. The effects of rotation and tidal pertur-
bation were analyzed in detail by Leconte et al. (2011)
who derived a predictive theory how to correct the ob-
served radii. We will compare our prediction of the
radius correction of WASP-12b with their work. Cor-
reia (2014) formulated an analytical shape model with
an assumed ellipsoidal shape, and a tidal response fol-
lowing the Darwin-Radau equation and calculated a, b
and ¢ for a number of hot Jupiters, including WASP-
4b, WASP-12b, WASP19b and WASP-103b. Akinsanmi
et al. (2019) applied the Correia’s shape model to a pre-
dict the number of transits required to constrain the
shape Love number hy of WASP-103b and WASP-121b
for the TESS, PLATO and JWST spacecraft. Simi-
larly, Hellard et al. (2019) and Hellard et al. (2020)
predicted the sensitivity of a number of spacecraft, in-
cluding TESS, PLATO and JWST, to measuring koo for
Wasp-121b.

There is extensive literature on the theory of calculat-
ing the shape of a liquid planet, dating back over a cen-

tury (H. & Jeans 1920), with pioneering calculations on
giant planets presented in Gavrilov & Zharkov (1977).
The most commonly used method, known as the theory
of figures (Zharkov & Trubitsyn 1978), uses a pertur-
bative approach to determine the planet’s response to
small deviations of the potential from spherical symme-
try. Other works have extended the theory of figures
to consider second order effects through higher order
perturbative theory (Zharkov 2004; Zharkov & Gudkova
2010; Correia & Rodriguez 2013). Padovan et al. (2018)
adapted a related perturbative method using a matrix-
propagator approach, more common in geophysical ap-
plications, to exoplanets.

Hubbard (2013) introduced the concentric Maclau-
rin spheroid (CMS) technique, an nonperturbative, it-
erative method for more precise calculations of self-
consistent shape and gravitational field. The CMS
method was subsequently extended to three dimensions
and applied to the cases of Jupiter and Saturn (Wahl
et al. 2016, 2017a; Nettelmann 2019; Wahl et al. 2020).
In this work we apply the CMS method to hot Jupiter
exoplanets for the first time. While more computa-
tionally expensive than the theory of figures, the CMS
method correctly accounts for non-linear effects that be-
come relevant for extremely deformed planets, most no-
tably effects on the order of the product of rotational
and tidal perturbations (Wahl et al. 2017a). These non-
linear effects lead to a splitting of the static k., with
degree m, and an enhancement of koo that is significant
for Jupiter and Saturn (Lainey et al. 2017, 2020; Du-
rante et al. 2020; Wahl et al. 2020).

In addition to the numerical technique, models of
shape and gravity also depend on the assumed inte-
rior structure and the hydrogen-helium equation of state
(EOS). The relationship between tidal response and core
mass is discussed in numerous works, (e.g. Batygin et al.
2009; Ragozzine & Wolf 2009), with more centrally con-
centrated density distributions leading to smaller val-
ues of koy. Many studies of giant planet interiors em-
ploy the semi-empirical Saumon et al. (1995b) EOS,
while more recent studies have considered equations of
state fit to ab-initio molecular dynamics simulations of
hydrogen-helium mixtures based on density functional
theory (DFT-MD) (Militzer & Hubbard 2013; Becker
et al. 2015; Chabrier et al. 2019), while some theoretical
works consider the simpler, more analytically tractable
polytropic EOS, (e.g. Leconte et al. 2011). The most
pronounced difference between DFT-MD bases equa-
tions and Saumon et al. (1995b) occurs at pressures of
~ 100 GPa; as hydrogen transitions from a molecular in-
sulator to an atomic metal (Vorberger et al. 2010), DFT-
MD predicts adiabatic temperature profiles that are are



cooler and denser. Kramm et al. (2012) explored the
possible interior structure of giant planet, HAT-P13b
using interior models with the Saumon et al. (1995b)
EOS and the theory of figures to calculate Love num-
ber, koo. Becker et al. (2018) calculated Love numbers
using a DFT-MD EOS and the theory of figures for two
giant exoplanets Kepler-75b (formerly KOI-889b) and
Corot-3b. A similar study of planets in the super-Earth
exoplanet regime was carried out by Kellermann et al.
(2018).

2. METHODS

We first solve the equations of hydrostatic equilib-
rium for a nonrotating planet as described in Seager
et al. (2007). For the EOS of hydrogen-helium mixtures,
we adopt the results from Militzer & Hubbard (2013),
who employed density functional theory molecular dy-
namics (DFT-MD) simulations to derive an EOS table
with absolute entropies at pressure higher than ~5 GPa.
At lower pressure, we use the Saumon-Chabrier EOS
that was derived with semi-analytical methods (Saumon
et al. 1995a). Heavier elements are incorporated into the
H-He mixture by following approach in Hubbard & Mil-
itzer (2016a). For the core, we adopted a terrestrial
iron-rock ratio of 0.325. For simplicity, we assumed
both components are homogeneously mixed. The sili-
cates are described as in Seager et al. (2007). For iron,
we employed results from DFT-MD simulations (Wilson
& Militzer 2014).

For all calculations, we assume a protosolar value for
the helium mass fraction, Y, of the envelope by setting
Y/(1 - Z) = 0.27774 (Lodders 2010). The fraction of
heavy elements, Z, and the entropy, S, of the are input
parameters of our simulations, which govern the density
structure of the hydrogen-helium envelope. We provide
entropy values in units of Boltzmann constant per elec-
tron (kg /el), which is referenced to an atomic H:He ratio
of 110:9 from Militzer & Hubbard (2013). In these units,
helium rain is predicted to start at S = 7.2 kg/el, the
maximum entropy for which the interior adiabat inter-
sects the pressure-temperature region in Fig. 1, in which
hydrogen and helium are predicted to become immisci-
ble Morales et al. (2010) because hydrogen transitions
from an insulating, molecular states to an atomic, metal-
lic fluid (Vorberger et al. 2010) while helium remains
in an insulating state. In this work, however, we are
primarily concerned with hot Jupiters that we assume
to have homogeneously mixed envelopes with entropies
S>72kg/el

In addition to the S and Z values for the envelope,
adopt values for masses the core and envelope (see
Tab. 1). We integrate the equations of hydrostatic equi-
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librium starting from a central pressure, P., to outer
pressure boundary, set to 1 bar, where we assume enve-
lope becomes transparent. We iterate over different P,
values to match the total mass of the planet. In cases for
which we have a radius measurement, we iterate over of
the core mass or envelope Z to match the planet’s mass
and radius simultaneously.

The planet mass, M, and volumetric average radius,
ag, from our calculations of nonrotating planets define
the planetary units of mass and length for all follow-
ing CMS calculations rotating and tidally perturbed
planets. In absence of a tidal perturbation, we express
the gravitational potential of a axisymmetric rotating
planet,

GM

V(r,u):T

1- i (%) nPonli)

n=1

in terms of the gravity harmonics,

+1 Tmax (1)

2
J, = _MZ(} /d,u / dr v Py(p) p(r,p) . (2)
21 0

rmax defines the outer surface of the planet as function of
p = cos(f) with 0 being the polar angle. P, are the Leg-
endre polynomials and G is the gravitational constant.
We also define two rotational parameters,

w?ad w?a?
= d ¢ = . 3
1 GM and g GM (3)

where w is the angular frequency of the planet’s assumed
solid-body rotation. ¢ is often invoked in the litera-
ture when specific planets are discussed for which the
equatorial radius, a., is known while ag is not. For the
purposes of this paper, g is more convenient because it
does not depend on w or the equatorial radius, which
will only become known once the CMS calculation has
converged.

The CMS technique (Hubbard 2013) is a nonperturba-
tive method for deriving the shape and interior structure
of rotating planets in hydrostatic equilibrium. Typically
one keeps the equatorial radius constant and adjusts the
core mass or Z of the envelop to match the observed
mass of the planet (e.g. Hubbard & Militzer 2016b).
This approach does not serve our needs because, for dif-
ferent rotation rates, we wish to study what shape is
assumed by a planet of given core and envelop masses.
The equatorial radii of the planet (and that of the core)
are results, not input parameters, of such a calculation.
Hubbard (2013) introduced a grid of A\ points, normal-
ized radii from the planet’s center to the equator that
anchor the equatorial points of all the equipotential sur-
faces as the CMS converges towards a self-consistent hy-
drostatic solution. Here we work with two A grid, one



Planet mass M [M] Input parameter

Input parameter. Sets the envelope mass to M — M.. Core shape and radius are

Core mass M. [Mg] derived.

Entropy of envelope S Input parameter chosen between 7.2 and 12.0. Sets the temperature-pressure profile
[kB/el] of the envelope in Fig. 1. Is derived from Teq.

Input parameter that sets also the mass fractions of hydrogen, X =1—-Y — Z, and
Mass fraction of heavy ele- helium Y = 0.27774x (1—Z) because we assume a protosolar helium abundance (Lod-

ments in envelope Z ders 2010).

Derived in calculations of nonrotating planet. Alternatively, Z or M, can be adjusted

Planet radius ag [Ry]

to match a certain radius.

Table 1. Parameters of our two-layer interior models.

for the core and one for the envelope. Following Mil-
itzer et al. (2019), for the jth spheroid surface, A; is
chosen so that a logarithmic grid in density emerges
(p(Nj)/p(Xjq1)=const.). We determine the p(X) relation
from a nonrotating planet calculation, which we then
employ for the subsequent calculations with rotation and
tides. The density variations throughout core and enve-
lope determine how many grid points must be invested
into representing each region accurately. We used 1025
layers in our reported CMS calculations, but already
even with 129 layers one obtains good results. For exam-
ple, for a WASP-12b model with a 0.29 M ; core and 129
layers, we calculate the Love number k95=0.16258843
and transit radius correction, AR=0.034046. With 1025
layers, we derived ko2=0.16483250 and AR=0.031489,
which are both fairly similar. As we will demonstrate,
these deviations are small compared to those resulting
from changes model assumptions and planet parameters.

In order to match the core and envelope masses in our
CMS calculations of rotating planets, we rescale the A
grids of the core and envelope separately as the CMS
method converges to a hydrostatic solution. This poses
no technical challenges unless the planets are rotating
extremely fast (go = 0.3).

Once this axisymmetric CMS calculation has con-
verged, we study the planet’s shape, compute the grav-
ity harmonics J,, and derive the moment of inertia,
C/(Ma3). The hydrostatic structure of axisymmetric
CMS calculation also serves as input for a 3D CMS cal-
culation that studies the static tidal response to an ex-
ternal perturber, which could be a the planet’s host star,
a satellite or a companion planet.

The CMS technique was extended to three dimensions
by Wahl et al. (2017a). In this version, a third poten-
tial term, the gravitational potential from a perturbing
mass, mg at distance, R, from the planet’s center of
mass,

W(rR) = @)

is added to Eqn. 1, and equipotential surfaces for the
combined potential are evaluated on a 3D grid r(r, u, ¢).
Wabhl et al. (2020) updated the 3D CMS method by mod-
ifying W by subtracting out a linear term determined by
an average force,

W(r,R)=W(r,R) — (F) -r. (5)

This enforces the constraint that the planet’s center of
mass remains at a specified distance from the perturber.
This procedure avoids an issue where the precision of the
converged solution is limited by a small shift in center of
mass that must be removed each iteration (Wahl et al.
2016, 2017a).

As with the rotational parameter, we can define two
tidal parameters,

3 3
mgsa mg ag
qtid,0 = 73M7R§ and Gtid,e = 73M7R3 ) (6)

where mg is the mass of the perturber (the stellar mass
for the purposes of this study), and R is the distance
to the perturber, in our case the orbital distance. We
once again elect to use giq,0 for convenience and refer
to simply as gtiq for the remainder of the paper. The
third and final governing parameter for the tidal calcu-
lation is simply the ratio of the planet’s radius to the
orbital radius, ag/R. In our own solar system, the rapid
rotation Jupiter and Saturn place them in the regime
where go > |gtia|, even for their strongest perturbers, Io
and Tethys respectively. In contrast, tidally-locked hot
Jupiters typically have values of ¢q is of a similar or
greater magnitude than qq.

As in the axisymmetric case, the converged equipo-
tential surfaces define a density structure from which
gravitational field strength can be integrated, now in
terms of the tesseral gravity moments C,,,, and Sy,
(Wahl et al. 2017b). For simplicity, we assume that
the perturber is in the planet’s equatorial plane with
p = cosf = 0. For an exoplanet-star system, this cor-
responds to a planet with zero obliquity. While this is
not a good approximation for the exoplanet population



as a whole, it is likely to be the case for many close-
in hot Jupiters (Lin & Gu 2004; Jackson et al. 2008).
We further simplify the geometry by defining the coor-
dinate system such that the perturber is at ¢ = 0, which
by symmetry requires Sy, = 0. The tidal Love num-
ber can then be expressed as (Gavrilov & Zharkov 1977;
Zharkov & Trubitsyn 1978),

knm =
3 (n—m)! P™(0)gsia.0

2(n+m)!  Cum (clzlg)Q—”7 1)

where P)"(0) is the associated Legendre polynomial
evaluated at p = 0. For a distant perturber, the m=2
moment dominates the expansion, but higher order mo-
ments become more significant as ag/R increases. We
note that the Jupiter and Saturn koo reported later
for comparison defined ky,, with gsiq. instead of gid,0
(Wahl et al. 2017a, 2020).

In the absence of rotation, k,,,, is degenerate with re-
spect to m. By contrast, rapidly rotating planets, such
as Jupiter an Saturn, are predicted to have have signifi-
cant splitting of love numbers of the same order n (Wahl
et al. 2016, 2017a, 2020). The most readily observable
manifestation of this is an enhancement of koo compared
to a nonrotating analogue planet, which is evident for
observations of both Jupiter (Durante et al. 2020) and
Saturn (Lainey et al. 2017, 2020).

3. RESULTS AND DISCUSSION
3.1. General trends

In Fig. 2, we compare the gravity harmonics of four
Saturn-mass planets with 10 Earth mass (Mg) cores as
function of the rotational parameter, ¢y. By definition,
all curves start from Jy = —1. All cases decay exponen-
tially with increasing degree, n, but their decay rates
vary with the magnitude of gg. For slowly rotating plan-
ets, the J,, decay most rapidly, which is consistent with
the fact that all J,>2 are zero for a nonrotating planet.
With increasing degree, the weight functions of the grav-
ity coefficients become more sharply peaked near the
surface (Militzer et al. 2016). This means the J, de-
cay more rapidly for a hot, puffy planet (S=11 k;/el)
that has less mass near the surface. It also implies that
the J,, decay more slowly for fast rotating planets, for
which the centrifugal force shifts more mass towards the
equator.

In Fig. 3, we compare various properties of a cold and
hot Saturn-mass planet (S = 7.2 and 11.0 kp/el) as well
as a cold Jupiter-mass planet (S = 7.2 ky/el) each with
a 10 Mg core. For moderate values of gy, we find the
gravity harmonics, Jo, Jy, and Jg scale approximately
as qo, ga, as qg, respectively, because with increasing qq,
additional mass is shifted towards the equator. For all
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three planets, we find a sizeable increase in the equato-
rial radius for large qo. However, the polar radius only
shrinks significantly for the two colder planets. The hot
Saturn-mass planet is so inflated (ag = 2.6 R;) and the
centrifugal force as large for high ¢o that polar radius
hardly shrinks as the equatorial radius increases.

In the bottom panel of Fig. 3, we plot the moment of
inertia. For the hot, puffy Saturn-mass planet, it hardly
changes over ¢p interval from 0 to 0.25. For the two
colder planets, we see a modest increase in the moment
of inertia for gp > 0.1 as the centrifugal force distributes
more mass away from the axis of rotation.

The Darwin-Radau relation gives an approximate ex-
pression for the moment of inertia, C, of slowly rotating
planets (see discussion in Zharkov & Trubitsyn 1978),

¢ 2(1 - 2\/5) (s)

Ma2 ™ 3 5
5 _
wi=1+n with n=-% and f=2"°F
2 f Qo
9qs w?s3 53
=2 with g = —
2737, 1 4 W =y T g

where ae, ¢, and s are the equatorial, polar, and spher-
icalized radii. (37s* equals the planet volume.) The
quantity x can either be derived from the oblateness, f,
or expressed in terms of the parameters J> and ¢,. Both
expressions give similar results unless the density con-
trast between core and envelope is too large, as we see for
the hot Saturn-mass planet in Fig. 3. In this case, both
Darwin-Radau expressions overestimate the moment of
inertia by ~ 50% even in the limit of a slowly rotating
planet. In this limit, Darwin-Radau results agree fairly
well with the CMS predictions of the colder Saturn- and
Jupiter-mass planets. The equatorial radii of these two
planets are 0.88 and 1.0 R; while the hot Saturn-mass
planet is significantly inflated (¢ = 2.6 Ry), which ex-
plains the break-down of the Darwin-Radau expression.
Furthermore, one should also be cautious in applying
the Darwin-Radau approximation to fast rotating plan-
ets like Saturn and Jupiter, with g, = 0.158 and 0.0892
respectively. In this case, g, is no longer a small param-
eter and the Darwin-Radau assumptions break down.
In Fig. 4, we compare the Love numbers, ki, of six
planets: three masses 0.3, 1.0, and 10.0 M; and cold
and hot (S = 7.2 and 11.0 kp/el) interiors. All have 10
Mg cores. In the limit of slow rotation, for given n, we
find that non-zero k., values of any m all approach a
common value, as expected since angular dependence
disappears for a nonrotating. All Love number rise
with increasing rotation rate. However, this rise is very
small for the hot Saturn-mass planets, which exhibit the
smallest Love numbers, followed by the hot Jupiter-mass
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Figure 2. Decay of the gravity harmonics with increasing
degree, n, is shown for Saturn-mass planets that rotate at
different rates. The thick solid lines and thin dashes lines
correspond to cold (S = 7.2 ky/el) and hot (S = 11.0 ks /el)
planets respectively. Spacecraft measurements of Jupiter and
Saturn have been included for comparison. The unexpect-
edly large values of Saturn’s Js, Jg, and Jip have been at-
tributed to differential rotation (Iess et al. 2019), which we
do not include in our exoplanet models because there are no
observations to constrain the winds on these planets.

planet. On the other hand, the cold Jupiter-mass planet
exhibits the largest Love numbers of all six planets, ex-
cept for very large gg values where the cold 10 Jupiter-
mass planet shows a larger response. For the hot plan-

ets (S=11 kp/el), the Love number increases with ris-
ing planet mass while no simple trend appears for three
colder planets.

In Fig. 5, we compare the Love number, kso, as func-
tion of various parameters in order to motivate kop =~ 0.6
as a plausible maximum for slowly rotating planets. In
the upper panel, we study the dependence on planet
mass. For a cold planets (S = 7.2 ky/el), koo assumes a
maximum value of 0.603 for a one Jupiter-mass planet.
This planet has a radius of 1.026 Ry, which is close to
the maximal radius of 1.069 R; that emerges for three
Jupiter mass planet.

In the middle panel, we plot koo as function of the
envelope entropy, S. With increasing S, the envelope
becomes less dense and thus shows a reduced tidal re-
sponse. When the entropy of a one Jupiter-mass planet
is reduced from S = 7.2 to a 6.84 k;/el, a typical value
for Saturn, koo increases from 0.603 to 0.618. Since this
represent cold planet, we argue 0.6 is still a reasonable
upper bound for kyo of slowly rotating hot Jupiters.

In the lower panel, we study the dependence of koo as
a function of core mass fraction while keeping the total
planet mass fixed at 1.0 and 10.0 M ;. As expected, koo
decreases with increasing core mass fractions because it
concentrates more mass in the planet’s center where is
responds less to tidal perturbations. It is this depen-
dence of kss on core mass that will enable inference of
an exoplanet’s core mass with future transit measure-
ments (e.g. Batygin et al. 2009; Ragozzine & Wolf 2009).
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Figure 3. Models of three rotating planets without tidal
perturbations: cold (S=7.2, black, ap = 0.876 Ry) and
hot (S=11.0 kp/el, red, ap = 2.604 R;) Saturn-mass planet
as well as a cold Jupiter-mass planet (S=7.2 ky/el, blue,
ao = 1.004 R;) are compared as function of go. The vertical
dashed and dash-dotted lines mark the g. values of Jupiter
and Saturn respectively. The upper panel shows the gravity
harmonics Ja, Js, and Jg that scale like qo, ¢o, and ¢g for
small go values. The middle panel shows how the equatorial
(solid) and polar (dash-dotted lines) radii of these planets
change with increasing rotation rate. The radii of the non-
rotating planets, ao, are used as normalization. In the lower
panel, we compare the CMS predictions (solid lines) for the
normalized moment of inertia with the Darwin-Radau ex-
pressions: one involving J2 (Eq. (9), dash-dotted line) and
the other relying on the oblateness (Eq. (8), dotted line).

3.2. Results for selected exoplanets

Meaningful models of the interior structure of a given
planet require constraints on both planetary mass and
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radius, which are determined by independent observa-
tion techniques. Table 2 summarizes the input param-
eters for eight exoplanets considered here. Three of
the selected planets, HAT-P-13b (Buhler et al. 2016;
Hardy et al. 2017), WASP-18b (Csizmadia et al. 2019)
and WASP-4b (Bouma et al. 2019) have reported obser-
vational constraints on koo, while WASP-12b (Campo
et al. 2011), WASP-103b (Akinsanmi et al. 2019) and
WASP-121b (Hellard et al. 2020) have each been in-
voked in studies of the detectibility of kso. Figure 6
shows reported koo observations compared to the limits
on koo we find for all eight selected exoplanets.

Modelling a realistic interior structure of a giant
planet necessarily involves calculating its thermal struc-
ture. For the two-layer models considered, it is natu-
ral to parameterize this in terms of the specific entropy
of the envelope, S. Cool giant planets like Jupiter and
Saturn begin their life with a high specific entropy (from
their formation heat) and gradually cool over time (Fort-
ney et al. 2007, e.g). Giant planets whose incident flux
exceed 2 x 108 erg / s / cm?, however, exhibit large radii
indicative of hotter interiors than is expected from the
physical processes seen in their cooler cousins (Miller &
Fortney 2011; Demory & Seager 2011).

This hot Jupiter inflation effect may be modeled as
an additional heat source within the planet which varies
with the incident stellar flux (Thorngren & Fortney
2018; Sarkis et al. 2021). As they evolve, these plan-
ets will, therefore, approach a steady state where the
energy flux out of the interior (parameterized by the
intrinsic temperature Tin) is equal to the anomalous
heating (Thorngren et al. 2019). Using the atmosphere
models of Fortney et al. (2009), we can relate the en-
velope’s specific entropy to Tiy. Then we apply the
results of Thorngren & Fortney (2018), which relate the
anomalous heating to the incident flux. The final prod-
uct is a relationship between the specific entropy of the
planet with the incident flux onto the planet (Fig. 7).
This is helpful because the entropy is extremely diffi-
cult to measure observationally, but the incident flux is
easily calculated from stellar and orbital properties. To
aide the reader, we represent fluxes as the correspond-
ing equilibrium temperatures assuming zero albedo and
full heat redistribution: T3, = F/(40y), where oy, is the
Stefan-Boltzmann constant.

Figure 7 shows the relationship between equilibrium
temperature and entropy for planets with masses be-
tween 0.1 and 10 M in thermal equilibrium with T¢,
between 1000 and 2500 K. For planet’s within this range
the entropy is interpolated with T¢, at a constant mass
from the two T¢,-S curves with closest temperatures.
More massive planets were considered by extrapolating
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the T,q-S curves as a function of log,o(M). Cooler plan-
ets were considered using a curve constant entropy of
S = 7.2 kg/el., which is the condition for the onset of
helium rain as shown in Figure 1. The temperature for
this ‘cold’ curve is then defined by the reported effec-
tive temperatures for Jupiter and Saturn at the onset
of helium rain by Mankovich & Fortney (2020). How-
ever, planets with lower incoming stellar energy flux are
likely to be further from the assumed equilibrium state.
Our relationship between specific entropy and T, relies

on a fit to the observed population of hot Jupiters (in
Thorngren & Fortney 2018). As such, we have avoided
extrapolating very far into regions of mass-flux space
where few to no hot Jupiters are found. In general, this
cutoff moves to higher masses as the temperature in-
creases, as a result of planet formation processes outside
the scope of this paper.

Statistical uncertainties in the heating efficiency from
Thorngren & Fortney (2018) are approximately 0.5%,
which leads to an uncertainty in the resulting Ti,iof



Name torbit Rorbit e M, R, M Rst Terst  Teqp S

(days) (AU) (M) (Rs) (Mo) (Ro) (K) (K) (ks/e")
HAT-P-13b  2.916 0.04269 0.0133 0.851 1.272 1.22 1.56 5653 1649 11.14
WASP-18b 0.9415 0.02009 0.0091 10.40 1.191 1.22 1.23 6400 2416 10.92
WASP-4b 1.338 0.02261 0 1.186 1.321 0.86 0.89 5400 1634 10.99
WASP-12b 1.091 0.02338 0 1.465 1.937 1.43 1.66 6360 2585 11.87
WASP-121b  1.275 0.02544 0 1.183 1.865 1.35 1.46 6459 2361 11.84
WASP-103b  0.9255 0.01987 0 1.49 1.528 1.22 1.44 6110 2509 11.81
Kepler-75b 8.885 0.08164 0.57 10.1 1.05 0.91 0.89 5200 870 8.26
CoRoT-3b 4.257 0.05738 0 21.66 1.01 1.37 1.56 6740 1695 9.90

Table 2. Parameters for selected exoplanets. (a) Winn et al. (2010), (b) Shporer et al. (2019), (c) Bouma et al. (2019), (d)
Chakrabarty & Sengupta (2019), (e) Delrez et al. (2016), (f) Gillon et al. (2014), (g) Bonomo et al. (2015), (h) Deleuil et al.
(2008). All parameters from (NASA Exoplanet Science Institute 2011). Tiq,p assumes zero albedo. S interpolated from the

relationships in Fig. 7.

around 35 K, varying with the incident flux. However,
these statistical uncertainties are less significant than
the modelling uncertainty, which is much more difficult
to quantify. An alternate approach was presented by
Sarkis et al. (2021) who found broadly similar values for
the heating efficiency, though their peak heating of 2.5%
was at a higher temperature of ~ 1860 K. Thorngren &
Fortney (2018) found a peak of 2.5% at 1500 — 1600 K.
This difference appears to be the result of differences in
the atmosphere models. (Molliere et al. 2015) included
the effects of TiO and VO species on upper atmosphere
opacities, whereas Fortney et al. (2007) and therefore
Thorngren & Fortney (2018) did not. Both papers are
fitting to the observed radius via the entropy, so the dif-
ference in the predicted entropy for a given planet likely
does not differ as much as the heating efficiency. How-
ever, this fit relies on assumptions for a planet’s compo-
sition (abundance of helium and heavier elements) and
the equation of states that defines isentropic paths in
P-T space and the corresponding density. Uncertainties
in the equation of state of hydrogen-helium mixtures
and their impact on giant planet structure have been
discussed by Saumon & Guillot (2004); Militzer et al.
(2016); Helled et al. (2020)

The interior density profile is determined by the isen-
tropic pressure-density curve derived from the equation
of state, which depends both on the entropy and on the
heavy element fraction of the envelope, Z. Given the ob-
servational constraints on mass and radius, a two-layer
model exoplanet can accommodate heavy element mass
in both the core and envelope. Figure 8 shows the den-
sity profiles of two end-member cases for each selected
exoplanet. The first end-member is the case of a core-
less model, which corresponds to a maximum value for
Z in the envelope. The second case is a model in which
Z = 0 in the envelope, corresponding to a maximum core

mass. These are compared to two-layer analogue mod-
els of Jupiter and Saturn, which match the observed Js
for each (Iess et al. 2019; Durante et al. 2020), in ad-
dition to the mass and radius. Two-layer models are
known to do a poor job in reproducing the full grav-
itational field of Jupiter and Saturn, since they ignore
the redistribution of helium, as well as a possible ‘dilute’
core (Wahl et al. 2017b; Mankovich & Fuller 2021) or in-
homogeneity of Z across the helium rain layer (Miguel
et al. 2016; Debras & Chabrier 2019). For this reason
the two-layer analogues of Jupiter and Saturn have more
massive central cores and require either negative val-
ues of Z or significantly higher temperatures than more
complicated interior models. In Figure 8 there are evi-
dent influences from both planet mass and equilibrium
temperature, with the very massive CoRoT-3b exhibit-
ing the highest densities in the deep envelope, and the
highly irradiated WASP-12b and WASP-121b exhibiting
far more extended envelopes with notably lower density
gradients in the outer portion of the planet.

As a consequence of their assumed tidally-locked state,
both the tidal and rotational parameters, gy and giq,
are tied to the orbital distance of the planet. Table 3
presents qo and gyiq for the eight selected exoplanets in
the assumed 1:1 resonance locked state, along with re-
sults from computed tidal responses, koo and koo, and
shape for the two end-member interior structures. For
the planet shape we report the three principle axes
lengths: a, equatorial radius along the star-planet axis,
b, equatorial radius perpendicular star-planet axis, and
¢, polar radius along the rotation axis. Additionally, we
report the prolateness and oblateness, defined as

a=c and fbc:bgc, (9)

respectively. Although the aforementioned shape pa-
rameters are commonly used to describe triaxial ellip-

fac:
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Planet Grot Qria Z M. R. k2o ka0 a b c fac fre AR C/(Ma3)
name [M;5] [Ry] R3] [Rs) [Rs]
HAT-P-13b  4.06e-2 -0.0122  0.389 0 0 034 0.337 1.27600 1.26561 1.26223 1.08e-2 2.67e-3 6.39%e-3 0.220
0 0.387 0232 0.0866 0.0862 1.27956 1.27103 1.26825 8.84e-3 2.18¢-3 1.86e-3 0.108
WASP-18b  2.6le-2 -7.78e-2  0.212 0 0 0424 0422 1.19632 1.18967 1.18748 7.39e-3 1.84e-3 2.04e-3 0.240
0 253 0.225 0.226 0225 1.19595 1.19022 1.18832 6.38¢-3 1.59e-3 1.45e-3 0.177
WASP-4b 0.0155 -0.0464  0.308 0 0 0.393 0.381 1.35600 1.31136 1.29796 4.28¢-2 1.02e-2 1.25e-2 0.230
0 0409 0227 0.139 0.136 1.35369 1.31667 1.30546 3.56e-2 8.51le-3 7.59e-3 0.137
WASP-121b  0.0481  -0.144  0.238 0 0 0296 0.275 2.02633 1.82110 1.77207  0.125 2.69-2 3.82e-2 0.200
0 0313 0228 0.122 0.115 203212 1.84487 1.79998  0.114 2.43e¢-2 2.34e-2 0.130
WASP-12b  0.0594  -0.178 0.19 0 0 0.332 0.304 216934 1.88228 1.82032  0.161 3.29e-2 4.64e-2 0.206
0 0294 0223 0.165 0.154 217185 1.90686 1.84932  0.149 3.02e-2 3.15e-2 0.150
WASP-103b  0.0399  -0.119  0.347 0 0 0.388 0.362 1.64989 1.50378 1.46720  0.111 2.43e-2 2.87e-2 0.223
0 0589 0237 0.109 0.104 1.63427 1.51422 1.48355 9.22e-2 2.03e-2 1.95e-2 0.117
Kepler-75b  2.07e-5 -6.15¢e-5 4.21e-3 0 0 0.447 0447 1.04978 1.04973 1.04971 591e-5 1.52e-5 2.64e-4 0.246
0 4.40e-2 T7.11e-2 0442 0.442 1.04987 1.04982 1.04981 6.00e-5 1.52e-5 1.76e-4 0.244
CoRoT-3b  3.74e-5 -l.1le-4 8.32e-2 0 0 0.387 0.387 1.00894 1.00886 1.00883 1.02e-4 2.58¢-5 1.14e-3 0.232
0 230 0.178  0.301  0.301 1.00992 1.00984 1.00982 9.6e-5 2.48e-5 1.67e-4 0.207

Table 3. Predictioned shape and tidal response for selected exoplanets assuming a tidally-locked state and a two-layer interior
models with N = 1025 CMS layers. For every planet, the top line is for the fully-mixed case with no central core. The lower
line corresponds to the fully separated case with envelope Z = 0 and maximum core mass.

soids, we note that the spheroidal surface predicted by
CMS represents a more general shape. In fact, the cal-
culated surface is only an exact ellipsoid in the case of
a constant density planet (Wahl et al. 2017a).

HAT-P-13b and the five planets selected from the
WASP catalog exhibit extremely short orbital periods,
and are expected expected to be tidally locked. Kepler-
75b and CoRoT-3b orbit much more distantly, leading
to much smaller values of gy. For reasonable values of
tidal quality factor, @), the two more distantly orbiting
plates are also likely to be tidally locked. Alternatively,
if like Jupiter and Saturn, these planets rotatation rates
have not been significantly slowed by tidal torques, then
the values of gy could be orders of magnitude higher
than for the tidally-locked state reported here.

For all eight exoplanets, the end-member interior
structure case with Z = 0 in the envelope determines
the maximum core mass and radii, and corresponds to a
minimum minimum prediction of, f,. and f., as well as
minimal values in kg and kos. Conversely, the case with
no central core yields the maximum Z in the envelope,
as well as a maximum values for fu.. fpe, koo, and kog.
While not explicitly considered here, planets with dilute
cores (Wahl et al. 2017b) are expected to exhibit tidal
responses between these two end-member cases, since
they represent intermediate degree of concentration of
heavy elements between a fully mixed planet, and one
with all heavy elements in a dense, central core.

While the central concentration of heavy elements has
the strongest influence on koo for a given planet, the
planet mass and equilibrium temperature are significant
over the full parameter space of giant exoplanets. Fig-
ure 9 shows five mass-radius relationships calculated for
two-layer models with a constant 10 Mg core and Z = 0

in the envelope, along with the corresponding koo for a
tidal response in the linear regime, qo < 1 x 107° and
Geia > —1x 1075, The blue curve shows the mass-radius
relationship for “cold” exoplanets with S = 7.2 kp/el.
This shows the characteristic trend with radius first in-
creasing with mass to a maximum of ~ 1.05 Ry at ~ 3
My, and then decreasing as additional mass leads to a
shrinking radius due to compaction of the the hydrogen-
helium envelope. The calculated koo follows a qualita-
tively similar trend with a 0.1 Mj planet exhibiting a
koo of ~ 0.2 and increasing with mass to a maximum at
~0.56 at ~1.5 Mj, and then decreasing to ~0.46 at 10
Mj.

The mass-radius relationship for a constant Toq, =
1000 K has a quite different appearance, with an inflated
0.1 Mj planet first decreasing with mass, flattening out
at ~0.6 My, and then decreasing further for M > 2 Mj.
The slope at low masses becomes steeper with increas-
ing T4q, and the radius decreases monotonically, with an
inflection point moving to higher masses for higher T¢q.
Meanwhile, the calculated k9o decreases with increas-
ing Toq, with the maximum koo for a given mass-radius
relationship shifting to higher masses. While increas-
ing envelope Z leads to a decrease in radius, it has a
somewhat less intuitive influence on k9. For a colder
Jupiter-mass planet with S = 7.20 kp/el., increasing Z
leads to a very slight decrease in koo, while an identical
mass planet with Ti,q= 2500 K exhibits a more substan-
tial increase in koo with Z.

The observed koo values for exoplanets, summarized in
Figure 6, cover a wider range of values, most of which are
larger than our models can account for with a two-layer
interior structure and static tidal response. The Hardy
et al. (2017) observation of HAT-P-13b and the Bouma
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et al. (2019) observation of WASP-4b are both signifi-
cantly larger than our model predictions, and even con-
sidering the reported uncertainties. They are, in fact,
larger than the maximum of ~ 0.6 for any combination
of parameters considered, with the possible exception of
models undergoing extremely fast rotation. Our calcu-
lated range for WASP-18b has a maximum quite close
to lower limit of their prediction with the reported un-
certainty (Csizmadia et al. 2019). Given the uncertain-
ties on exoplanet mass, radius and equilibrium temper-
ature be observation may, therefore, be compatible with
a static tidal response of a core-less planet, or one in
which the core is a small fraction of the planet mass.
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The observation of HAT-P-13b by (Buhler et al. 2016)
is the only observation showing significant overlap with
the range of kos predicted here. Figure 10 demonstrates
how Z, koo, and f vary as a function of core mass for
our models of HAT-P13b and WASP-121b. The koy
observed by Buhler et al. (2016), is consistent with a
model planet ranging from no core to ~ 0.075 My (~24
Mg) and Z between ~ 0.34 — 0.39. It would, therefore,
suggest that HAT-P-13b has both a more massive core
and an envelope more enriched in heavy elements than
Jupiter (Miguel et al. 2016; Wahl et al. 2017b). The
magnitudes of the proplateness and oblateness are gov-
erned primarily by qo and g¢i;q, but both shows 18%
decrease between the fully mixed and fully separated
HAT-P-13b models. The hotter, more expanded WASP-
121b exhibits qualitatively similar dependence on M.,
but with the observed mass and radius permitting a nar-
rower range of Z and M., and consequently, a smaller
range of kos.

In the linear regime, the static tidal response is fully
determined by the density profile, and koo = kog (Wahl
et al. 2017a). Figure 11 demonstrates that the simula-
tions for the various mass-radii relationships, calculated
with low gg and qiq precisely follow the relationship
koo = 3J2/qo. For larger values of gp and gq, non-
linearity in the tidal response leads to splitting between
the Love numbers koo and kog. Jupiter and Saturn are in
a regime with gg > ¢iq and exhibit significant deviation
form the linear regime relationship (Lainey et al. 2017,
2020; Wahl et al. 2017a; Durante et al. 2020; Wahl et al.
2020). For hot Jupiters, go is limited to be of similar
order of magnitude as ¢ijq due to tidal locking, which
means that significant deviations from the linear rela-
tionship occur only in the most extreme cases. Of the
selected exoplanets, WASP-12b, WASP-103b, WASP-
121b all have koo values enhanced by over 10% from
3J2/qo, with WASP-4b a slightly lesser ~ 8% deviation.
The largest deviation of ~ 19% is found for a core-less
WASP-12 model. Thus we find that in the most extreme
cases, tidally-locked hot Jupiters can exhibit appreciably
non-linear tidal responses, though still to a lesser extent
than the faster rotating solar system giants. Conversely,
non-linearities can be safely ignored for exoplanets with
qo < 0.01.

Figure 12 shows influence of ¢y on the second-order
Love numbers, koo and koo, while maintaining qiq at
the value in Table 2 for the HAT-P-13b and WASP-121b
models. As qq is increased, koo and ko split from their
initial degenerate state. While this suggests that an ob-
served ks as large Hardy et al. (2017) might be possible
for static tidal response of a planet of HAT-P-13b’s inte-
rior parameters, it would a require gg ~ 0.2, roughly two
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orders of magnitude larger than for the tidally-locked
state. Figure 13 considers the complimentary exercise
of raising the magnitude of ¢ijq while maintaining gq.
In this case the degree of splitting of koo and koo re-
mains similar, while the overall of magnitude increase
at large magnitudes of gtijq. In both cases both gy and
qtia exhibit a comparable effect on the deviation from
the linear regime response, but nonlinear response ac-
counting for ~16% of WASP-121b’s kso, but < 2% for
HAT-P-13b.

When a tidally locked planet transits, the star’s flux
is dimmed by a disk of radius vbe. Leconte et al. (2011)
compared this value to the radius of nonrotating, unper-
turbed planet, ag, and introduced the radius correction

factor,
AR = %= Vi
Ve

For WASP-12b, the largest correction in their dataset,
they obtained a AR range of 0.025-0.035. When we use
the same planet parameters, we find reasonable agree-
ment with this correction despite the fact that Leconte
et al. (2011) based their work on the theory of figures
while we use the nonperturbative CMS theory here.
They represented the interiors of hot Jupiters with a
polytropic EOS while we used a more realistic EOS
for hydrogen-helium-Z mixtures that was derived from
ab initio computer simulations and yielded models for
Jupiter and Saturn that agreed well with spacecraft ob-

(10)

servations (Iess et al. 2018; Wahl et al. 2017b). When
we calculated AR for WASP-12b for M = 1.465 M
and ag = 1.937 Ry, we obtained AR=0.0340 for mod-
els with M, = 0.293M; and Z = 0 and AR=0.0481
for M. = 0 and Z=0.19. However, when we adopt the
earlier parameters for WASP-12b, M = 1.404 M; and
ag = 1.736 R, we respectively obtain AR=0.0220 and
0.0330 for our models with and without a core, a dif-
ference of only ~ 6% from Leconte et al. (2011). In
general one finds that giant planets with large cores re-
spond less of tidal perturbations and thus their transit
radius correction is smaller.

Akinsanmi et al. (2019) investigated how many transit
observations with current instruments would be needed
to determine the Love number of WASP-103b. They
adopted a very wide range of shape Love number, hos,
ranging from 0.0 to 2.5 (For fluid planets, hos = 1+ koo
holds.) Based on our interior models, we predict a much
narrower range for this planet with koo values between
0.109 and 0.388 depending on whether planet has core
of 0.588 My or no core at all.

Correia (2014) assumed koo = 0.5 and studied the
shape and light curves for a number of exoplanets. Hel-
lard et al. (2019) investigated how koo can be derived
from the transit light curves and constructed models for
the shape of exoplanets under very specific assumptions.
Qualitatively our results for WASP 4b, 12b and 18b in
Tab. 3 agree with these model predictions but one also
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notices some deviations. Correia (2014) predicted much
larger values for the flattenings f,. and f,. of WASP-
18b because they used a larger planet radius of 1.52 R,
while we used 1.191 R;. Although we derived a koo
range from 0.226 to 0.424 rather than setting it to 0.5.
Our predictions for WASP-18b agree fairly well Hellard
et al. (2019) with only a small deviation for f,.; they
derived 0.0077, which is slightly outside of our range of
0.0064-0.0074.

For WASP-4b, the predictions by Hellard et al. (2019)
for fap, foe, and f,. are all found to be slightly outside
the range that is spanned by our models with and with-
out cores. For example, we determined f,. = 0.036—
0.043 while they predicted 0.045.

For WASP-12b, we find better agreement with the
shapes predicted by Correia (2014) once we adopted the
older planet radius. However, even in this case their
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are shown: (solid) fully mixed with no core and maximum en-
velope Z, and (dashed) fully separated with maximum core
mass and envelope Z = 0. Saturn and Jupiter analogues
have M. and Z chosen to match the observed J> (Iess et al.
2019; Durante et al. 2020).

f5¢=0.031 and that of Hellard et al. (2019), 0.036, are
above of our predicted range of 0.023-0.026 by ~ 20%.

Hellard et al. (2020) reported a tentative measurement
of WASP-121b Love number, hgy = 1.3970-21, which is
compatible with the range of hoy — 1 = koo = 0.122 to
0.296, but not well constrained given the large reported
uncertainty.

It is worth noting that in all cases summarized above,
once parameters were selected to best match the pre-
vious estimates, that our models consistently predict
values of fuc, foe and AR slightly below the reported
values. This suggests a systematic overestimation of the
flattening by these models, possibly resulting from a less
realistic hydrogen-helium equation of state, neglecting
non-linear effects or artificially or constraining the sur-
face shape to an perfect ellipsoid.

4. CONCLUSIONS

We studied the tidal response and shape of hot
Jupiters, identified a number of general trends, and
modeled eight specific exoplanets. Most tidally locked
exoplanets are slowly rotating. They are thus in the
linear regime, for which Love number is well approxi-
mated by koo = 3J2/qp and cannot be greater than 0.6.
This limit was derived under realistic assumptions for gi-
ant planet interiors in which the density strongly varies
throughout the envelope. For close-in hot Jupiters, we
studies how the high interior temperatures reduce the
density profile of the envelope and demonstrate that this
change further reduces kos.

We also studied how the tidal response changes with
increasing rotation rate. For extremely close-in hot
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Figure 9. (Top) mass-radius relationship for two-layer in-
terior models with M. = 10 Mg,Z = 0 and constant Teq be-
tween 1000 and 2500 K (red, magenta, yellow, green squares)
and for a constant entropy S = 7.2 kp/el. (blue squares).
Shown for comparison are masses and radii of confirmed ex-
oplanets (cyan circles) (NASA Exoplanet Science Institute
2011) and selected exoplanets (black and gray diamonds).
(Bottom) corresponding Love number, k22, for mass-radius
curves. Predicted range of k22 for selected exoplanets shown
as in Fig. 6.

Jupiters, we find that, in spite of tidal locking, rota-
tion rates are sufficient to have a noticeable effect tidal
response. For three of the selected exoplanets, WASP-
12b, WASP-103b and WASP-121b, we predict koo to
exceed the linear value of kay = 3.J3/qo by over 10%,
with the largest deviation of ~ 19% for WASP-12.

For realistic planet and stellar parameters, we find
koo < 0.45 for all eight selected exoplanets. This limit
is not compatible with much larger koo values that have
been reported in the literature of number of hot Jupiters
(Hardy et al. 2017; Bouma et al. 2019; Csizmadia et al.
2019), which may indicate a systematic overestimation
of koo by these observation methods. Only the observa-
tion of HAT-P-13b by Buhler et al. (2016) overlaps with
our predicted koo range.

If the larger koo observations are confirmed, they im-
ply that these planets are either fast rotating and thus
not tidally locked, or that dynamic tidal effects increase
koo in ways that are not understood. For Jupiter, how-

Core Radius (R))
o o o
=) P =
7T

0.204 /
—— HAT-P-13b

0.00— WASP-121b
I I

i S
w E
| |

Envelope Z
°
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Figure 10. Variation of two-layer model features for HAT-
P-13b and WASP-121b with core mass. (Top panel) Core
radius, (second panel) heavy element fraction, Z, of the enve-
lope, (third panel) Love number, k22, (bottom) prolateness,
fac (solid) and oblateness, fp. (dashed). The horizontal line
in panel 3 shows the minimum value consistent with the ob-
served k22 from Buhler et al. (2016).

ever, dynamic contributions to the tidal response (Idini
& Stevenson 2021; Lai 2021) have been shown to reduce
the static value (Wahl et al. 2020) by approximately
Akoo /K55 ~ 4% bringing it in agreement with ob-
servations made by the Juno spacecraft (Durante et al.
2020). For dynamic tidal effects to explain the discrep-
ancy between the large observed values and our model
predictions, they would not only have to have the op-
posite sign as for Jupiter but also be much larger in
magnitude.

We compare our predictions for the shape of selected
planets with earlier models by Leconte et al. (2011);
Correia (2014); Akinsanmi et al. (2019); Hellard et al.
(2019) that relied on perturbative approaches and sim-
pler assumptions for planetary interiors. Although we
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Figure 11. Comparison of the tidal response to the ex-
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relation k22 = 3J2/qo. Colored squares show results from
the mass-radius curves and, triangles show results for the
selected exoplanets following the same notation as Figure 9.
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2017; Durante et al. 2020) and calculated (Wahl et al. 2017a,
2020) static koo for Jupiter and Saturn for comparison. Also
labeled are the four exoplanet models with the largest non-
linearities.
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Figure 12. Variation of second-order Love numbers koo
and koo with magnitude of rotational parameter go. Red
curves are are for HAT-P-13b, yellow for WASP-121b. kqs
is a solid curve with filled squares, koo dashed with open
squares. kan, for the tidally-locked state with the observed
orbital period is denoted with stars. For each planet the
linear-regime tidal response of 3J2/qo is shown with a dash
dot. Simulations for this figure use fewer (N; = 128) CMS
layers.

find reasonably good agreement for the shape and the
transit radius correction if we assume the same masses
and radii as the other authors, we also suggest these
models may have a small but systematic overestimation
of the nlanet’s flattenine.
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Figure 13. Variation of second-order Love numbers k22 and
k2o with magnitude of tidal parameter giiq. Quantities are
depicted the same as in Figure 12. Simulations for this figure
use fewer (N; = 128) CMS layers.

ACKNOWLEDGEMENTS

This work was in part supported by the NASA mission
Juno. BM acknowledges support from the Center for
Matter at Atomic Pressure (CMAP) that is funded by
the U.S. National Science Foundation (PHY-2020249).
DT acknowledges support by the Trottier Fellowship
from the Exoplanet Research Institute (iREx). This re-
search has made use of the NASA Exoplanet Archive
and data provided by the WASP consortium.



16

REFERENCES

Akinsanmi, B., Barros, S. C., Santos, N. C., et al. 2019,
Astron. Astrophys., 621, A117

Batygin, K., Bodenheimer, P., & Laughlin, G. 2009,
Astrophysical Journal, 704, 49,
doi: 10.1088/0004-637X /704/1/L49

Becker, A., Bethkenhagen, M., Kellermann, C., Wicht, J.,
& Redmer, R. 2018, The Astronomical Journal, 156, 149,
doi: 10.3847/1538-3881/aad735

Becker, A., Lorenzen, W., Fortney, J. J., et al. 2015,
Astrophysical Journal, Supplement Series, 215,
doi: 10.1088/0067-0049/215/2/21

Bonomo, A. S., Sozzetti, A., Santerne, A., et al. 2015,
A&A, 575, A85, doi: 10.1051/0004-6361/201323042

Bouma, L. G., Winn, J. N.; Baxter, C., et al. 2019, The
Astronomical Journal, 157, 217,
doi: 10.3847/1538-3881/ab189f

Buhler, P., Knutson, H., Batygin, K., et al. 2016, The
Astrophysical Journal, 821, 26,
doi: 10.3847/0004-637X/821/1/26

Burton, J. R., Watson, C. A., Fitzsimmons, A., et al. 2014,
Astrophysical Journal, 789,
doi: 10.1088/0004-637X /789/2/113

Campo, C. J., Harrington, J., Hardy, R. A., et al. 2011,
Astrophysical Journal, 727,
doi: 10.1088,/0004-637X/727/2/125

Chabrier, G., Mazevet, S., & Soubiran, F. 2019, ApJ, 872,
51

Chakrabarty, A., & Sengupta, S. 2019, AJ, 158, 39,
doi: 10.3847/1538-3881/ab24dd

Charbonneau, D., Brown, T. M., Latham, D. W., & Mayor,
M. 2000, The Astrophysical Journal, 529, 145,
doi: 10.1086/312457

Correia, A. C. 2014, Astronomy and Astrophysics, 570, 1,
doi: 10.1051/0004-6361,/201424733

Correia, A. C. M., & Rodriguez, A. 2013, The Astrophysical
Journal, 767, 128, doi: 10.1088/0004-637X/767/2/128

Csizmadia, S., Hellard, H., & Smith, A. M. 2019,
Astronomy and Astrophysics, 623, 1,
doi: 10.1051/0004-6361/201834376

Debras, F., & Chabrier, G. 2019, The Astrophysical
Journal, 872, 100, doi: 10.3847/1538-4357 /aaff65

Deleuil, M., Deeg, H. J., Alonso, R., et al. 2008, A&A, 491,
889, doi: 10.1051,/0004-6361:200810625

Delrez, L., Santerne, A., Almenara, J. M., et al. 2016,
MNRAS, 458, 4025, doi: 10.1093/mnras/stw522

Demory, B.-O., & Seager, S. 2011, ApJS, 197, 12,
doi: 10.1088/0067-0049/197/1/12

Durante, D., Parisi, M., Serra, D., et al. 2020,
Geophys. Res. Lett., 47, e86572,
doi: 10.1029/2019GL086572

Folkner, W. M., Iess, L., Anderson, J. D., et al. 2017,
Geophys. Res. Lett., 44, 4694,
doi: 10.1002/2017GL073140

Fortney, J. J., Glenzer, S. H., Koenig, M., et al. 2009, Phys.
Plasmas, 16, 041003

Fortney, J. J., Marley, M. S., & Barnes, J. W. 2007, ApJ,
659, 1661, doi: 10.1086/512120

Gavrilov, S. V., & Zharkov, V. N. 1977, Icarus, 32, 443,
doi: 10.1016/0019-1035(77)90015-X

Gillon, M., Anderson, D. R., Collier-Cameron, A., et al.
2014, A&A, 562, L3, doi: 10.1051/0004-6361/201323014

Guillot, T., & Showman, A. P. 2002, Astron. Astrophys.,
385, 156, doi: 10.1051/0004-6361

H., A. R., & Jeans, J. H. 1920, The Geographical Journal,
56, 69, doi: 10.2307/1781302

Hardy, R. A., Harrington, J., Hardin, M. R., et al. 2017,
The Astrophysical Journal, 836, 1,
doi: 10.3847/1538-4357/836/1/143

Hellard, H., Csizmadia, S., Padovan, S., Sohl, F., & Rauer,
H. 2020, The Astrophysical Journal, 889, 66,
doi: 10.3847/1538-4357 /ab616e

Hellard, H., Csizmadia, S., Spohn, T., & Breuer, D. 2019,
The Astrophysical Journal, 878, 119,
doi: 10.3847/1538-4357/ab2048

Helled, R., Mazzola, G., & Redmer, R. 2020, Nature
Reviews Physics, 2, 562

Henry, G. W., Marcy, G. W., Butler, R. P., & Vogt, S. S.
2000, The Astrophysical Journal, 529, 141,
doi: 10.1086/312458

Hubbard, W. B. 2013, Astrophys. J., 768, 43,
doi: 10.1088/0004-637X/768/1/43

Hubbard, W. B., & Militzer, B. 2016a, Astrophys. J., 820.
https://arxiv.org/abs/1602.05143

—. 2016b. https://arxiv.org/abs/1602.05143

Idini, B., & Stevenson, D. J. 2021.
https://arxiv.org/abs/2102.09072

less, L., Folkner, W. M., Durante, D., et al. 2018, Nature,
555, 220, doi: 10.1038/nature25776

Tess, L., Militzer, B., Kaspi, Y., et al. 2019, Science, 2965,
eaat2965, doi: 10.1126/science.aat2965

Jackson, B., Greenberg, R., & Barnes, R. 2008, The
Astrophysical Journal, 678, 1396, doi: 10.1086/529187

Kellermann, C., Becker, A., & Redmer, R. 2018, Astronomy
& Astrophysics, 615, A39,
doi: 10.1051/0004-6361/201731775


http://doi.org/10.1088/0004-637X/704/1/L49
http://doi.org/10.3847/1538-3881/aad735
http://doi.org/10.1088/0067-0049/215/2/21
http://doi.org/10.1051/0004-6361/201323042
http://doi.org/10.3847/1538-3881/ab189f
http://doi.org/10.3847/0004-637X/821/1/26
http://doi.org/10.1088/0004-637X/789/2/113
http://doi.org/10.1088/0004-637X/727/2/125
http://doi.org/10.3847/1538-3881/ab24dd
http://doi.org/10.1086/312457
http://doi.org/10.1051/0004-6361/201424733
http://doi.org/10.1088/0004-637X/767/2/128
http://doi.org/10.1051/0004-6361/201834376
http://doi.org/10.3847/1538-4357/aaff65
http://doi.org/10.1051/0004-6361:200810625
http://doi.org/10.1093/mnras/stw522
http://doi.org/10.1088/0067-0049/197/1/12
http://doi.org/10.1029/2019GL086572
http://doi.org/10.1002/2017GL073140
http://doi.org/10.1086/512120
http://doi.org/10.1016/0019-1035(77)90015-X
http://doi.org/10.1051/0004-6361/201323014
http://doi.org/10.1051/0004-6361
http://doi.org/10.2307/1781302
http://doi.org/10.3847/1538-4357/836/1/143
http://doi.org/10.3847/1538-4357/ab616e
http://doi.org/10.3847/1538-4357/ab2048
http://doi.org/10.1086/312458
http://doi.org/10.1088/0004-637X/768/1/43
https://arxiv.org/abs/1602.05143
https://arxiv.org/abs/1602.05143
https://arxiv.org/abs/2102.09072
http://doi.org/10.1038/nature25776
http://doi.org/10.1126/science.aat2965
http://doi.org/10.1086/529187
http://doi.org/10.1051/0004-6361/201731775

Kramm, U., Nettelmann, N., Fortney, J. J., Neuh&auser, R.,
& Redmer, R. 2012, Astronomy and Astrophysics, 538, 1,
doi: 10.1051/0004-6361/201118141

Lai, D. 2021. https://arxiv.org/abs/2103.06186

Lainey, V., Jacobson, R. A., Tajeddine, R., et al. 2017,
Icarus, 281, 286, doi: 10.1016/j.icarus.2016.07.014

Lainey, V., Casajus, L. G., Fuller, J., et al. 2020, Nature
Astronomy, 4, 1053

Leconte, J., Lai, D., & Chabrier, G. 2011, Astronomy and
Astrophysics, 528, doi: 10.1051,/0004-6361/201015811

Lin, D. N., & Gu, P. G. 2004, Revista Mexicana de
Astronomia y Astrofisica: Serie de Conferencias, 22, 95

Lodders, K. 2010, in Formation and Evolution of
Exoplanets, ed. R. Barnes (Wiley), 157-186,
arXiv:0910.0811

Love, A. E. H. 1909, Proceedings of the Royal Society of
London. Series A, Containing Papers of a Mathematical
and Physical Character, 82, 73,
doi: 10.1098 /rspa.1909.0008

Mankovich, C. R., & Fortney, J. J. 2020, ApJ, 889, 51,
doi: 10.3847/1538-4357 /ab6210

Mankovich, C. R., & Fuller, J. 2021, Nature Astronomy, 0, 0

Miguel, Y., Guillot, T., & Fayon, L. 2016, Astron.
Astrophys., 114, 1, doi: 10.1051/0004-6361/201629732

Militzer, B., & Hubbard, W. B. 2013, ApJ, 774, 148,
doi: 10.1088/0004-637X/774/2/148

Militzer, B., Soubiran, F., Wahl, S. M., & Hubbard, W.
2016, Journal of Geophysical Research: Planets, 121,
1552, doi: 10.1002/2016JE005080

Militzer, B., Wahl, S., & Hubbard, W. 2019, ApJ, 879, 78

Miller, N., & Fortney, J. J. 2011, ApJL, 736, L.29,
doi: 10.1088/2041-8205/736,/2/L29

Molliére, P., van Boekel, R., Dullemond, C., Henning, T., &
Mordasini, C. 2015, ApJ, 813, 47,
doi: 10.1088/0004-637X /813/1/47

Morales, M. A., Pierleoni, C., Schwegler, E., & Ceperley,
D. M. 2010, Proc. Nat. Acad. Sci., 107, 12799

NASA Exoplanet Science Institute. 2011, NASA Exoplanet
Archive, doi: 10.26133/NEA1

Nettelmann, N. 2019, The Astrophysical Journal, 874, 156,
doi: 10.3847/1538-4357 /ab0c03

Padovan, S., Spohn, T., Baumeister, P., et al. 2018, Astron.
Astrophys., 620, A178,
doi: 10.1051/0004-6361,/201834181

17

Ragozzine, D., & Wolf, A. S. 2009, Astrophysical Journal,
698, 1778, doi: 10.1088/0004-637X,/698/2/1778

Sarkis, P., Mordasini, C., Henning, T., Marleau, G. D., &
Molliere, P. 2021, A&A, 645, A79,
doi: 10.1051/0004-6361/202038361

Saumon, D., Chabrier, G., & Horn, H. M. V. 1995a,
Astrophys. J. Suppl., 99, 713

Saumon, D.; Chabrier, G., & van Horn, H. M. 1995b,
AplJSS, 99, 713

Saumon, D., & Guillot, T. 2004, Astrophys. J., 609, 1170

Seager, S., & Hui, L. 2002, The Astrophysical Journal, 574,
1004, doi: 10.1086/340994

Seager, S., Kuchner, M., Hier-Majumder, C. A., & Militzer,
B. 2007, ApJ, 669, 1279, doi: 10.1086/521346

Shporer, A., Wong, 1., Huang, C. X., et al. 2019, AJ, 157,
178, doi: 10.3847/1538-3881/ab0f96

Thorngren, D., Gao, P., & Fortney, J. J. 2019, ApJL, 884,
L6, doi: 10.3847/2041-8213/ab43d0

Thorngren, D. P.,; & Fortney, J. J. 2018, The Astronomical
Journal, 155, 214, doi: 10.3847/1538-3881/aabal3

Vorberger, J., Gericke, D. O., Bornath, T., & Schlanges, M.
2010, Phys. Rev. E, 81, 046404

Wahl, S. M., Hubbard, W. B., & Militzer, B. 2016, The
Astrophysical Journal, 831, 14,
doi: 10.3847/0004-637X/831/1/14

—. 2017a, Icarus, 282, 183, doi: 10.1016/j.icarus.2016.09.011

Wahl, S. M., Parisi, M., Folkner, W. M., Hubbard, W. B.,
& Militzer, B. 2020, Astrophysical Journal, 891, 15,
doi: 10.3847/1538-4357 /ab6cf9

Wahl, S. M., Hubbard, W. B., Militzer, B., et al. 2017b,
Geophys. Res. Lett., 44, 4649,
doi: 10.1002/2017GL073160

Wilson, H. F., & Militzer, B. 2014, Astrophys. J., 973, 34

Winn, J. N., Johnson, J. A., Howard, A. W., et al. 2010,
ApJ, 718, 575, doi: 10.1088,/0004-637X/718/1/575

Zharkov, V. N. 2004, Astronomy Letters, 30, 496,
doi: 10.1134/1.1774402

Zharkov, V. N., & Gudkova, T. V. 2010, Planetary and
Space Science, 58, 1381, doi: 10.1016/j.pss.2010.06.004

Zharkov, V. N., & Trubitsyn, V. P. 1978, The physics of
planetary interiors, ed. W. B. Hubbard (Tucson, AZ:
Parchart), 380


http://doi.org/10.1051/0004-6361/201118141
https://arxiv.org/abs/2103.06186
http://doi.org/10.1016/j.icarus.2016.07.014
http://doi.org/10.1051/0004-6361/201015811
http://doi.org/10.1098/rspa.1909.0008
http://doi.org/10.3847/1538-4357/ab6210
http://doi.org/10.1051/0004-6361/201629732
http://doi.org/10.1088/0004-637X/774/2/148
http://doi.org/10.1002/2016JE005080
http://doi.org/10.1088/2041-8205/736/2/L29
http://doi.org/10.1088/0004-637X/813/1/47
http://doi.org/10.26133/NEA1
http://doi.org/10.3847/1538-4357/ab0c03
http://doi.org/10.1051/0004-6361/201834181
http://doi.org/10.1088/0004-637X/698/2/1778
http://doi.org/10.1051/0004-6361/202038361
http://doi.org/10.1086/340994
http://doi.org/10.1086/521346
http://doi.org/10.3847/1538-3881/ab0f96
http://doi.org/10.3847/2041-8213/ab43d0
http://doi.org/10.3847/1538-3881/aaba13
http://doi.org/10.3847/0004-637X/831/1/14
http://doi.org/10.1016/j.icarus.2016.09.011
http://doi.org/10.3847/1538-4357/ab6cf9
http://doi.org/10.1002/2017GL073160
http://doi.org/10.1088/0004-637X/718/1/575
http://doi.org/10.1134/1.1774402
http://doi.org/10.1016/j.pss.2010.06.004

	Introduction
	Methods
	Results and Discussion
	General trends
	Results for selected exoplanets

	Conclusions

