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Abstract. Manifolds with infinite cylindrical ends have continuous spectrum of increasing mul-

tiplicity as energy grows, and in general embedded resonances (resonances on the real line, embed-

ded in the continuous spectrum) and embedded eigenvalues can accumulate at infinity. However,

we prove that if geodesic trapping is sufficiently mild, then the number of embedded resonances

and eigenvalues is finite, and moreover the cutoff resolvent is uniformly bounded at high energies.

We obtain as a corollary the existence of resonance free regions near the continuous spectrum.

We also obtain improved estimates when the resolvent is cut off away from part of the trapping,

and along the way we prove some resolvent estimates for repulsive potentials on the half line which

may be of independent interest.

1. Introduction

1.1. Resolvent estimates for manifolds with infinite cylindrical ends. The high energy

behavior of the Laplacian on a manifold of infinite volume is, in many situations, well known

to be related to the geometry of the trapped set ; this is the set of bounded maximally extended

geodesics. In the best understood cases, such as when the manifold has asymptotically Euclidean

or hyperbolic ends (see [Zw2, §3] for a recent survey), the trapped set is compact. Some results

have been obtained for more general trapped sets (e.g. manifolds with cusps were studied in

[CaVo]) but less detailed information is available.

In this paper we study manifolds with infinite asymptotically cylindrical ends, which have

noncompact trapped sets. A motivation for this study comes from waveguides and quantum dots

connected to leads. The spectral geometry of these is closely related to that of asymptotically

cylindrical manifolds, and they appear in certain models of electron motion in semiconductors and

of propagation of electromagnetic and sound waves. We give just a few pointers to the physics

and applied math literature here [LoCaMu, Ra, RaBaBaHu, ExKo, BoGaWo]. In [ChDa2], we

prove analogues of some of the results below for suitable (star-shaped) waveguides.

The fundamental example of a manifold with cylindrical ends is the Riemannian product R×S1,

which has an unbounded trapped set consisting of the circular geodesics. We are interested in the

behavior of the resolvent of the Laplacian (and its meromorphic continuation, when this exists)

for perturbations of such cylinders and their generalizations. As we discuss below, this behavior

can sometimes be very complicated, but we show that if some geometric properties of the manifold

are favorable, then the resolvent is uniformly bounded at high energy. In the companion paper

[ChDa1], we study the closely related problem of long time wave asymptotics on such manifolds.
1
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We begin with an illustration of a more general theorem to follow, by stating a high energy

resolvent estimate for two kinds of mildly trapping manifolds (X, g) with infinite cylindrical ends.

Example 1. Let (r, θ) be polar coordinates in Rd for some d ≥ 2, and let

X = Rd, g0 = dr2 + F (r)dS,

where dS is the usual metric on the unit sphere, F (r) = r2 near r = 0, and F ′ is compactly

supported on some interval [0, R] and positive on (0, R); see Figure 1.1.

Figure 1.1. A cigar-shaped warped product.

Then for r(t) > 0 all g0-geodesics obey

r̈(t) :=
d2

dt2
r(t) = 2|η|2F ′(r(t))F (r(t))−2 ≥ 0,

where r(t) is the r coordinate of the geodesic at time t and η is the angular momentum. Con-

sequently, the only trapped geodesics are the ones with ṙ(t) ≡ F ′(r(t)) ≡ 0, that is the circular

ones in the cylindrical end. This is the smallest amount of trapping a manifold with a cylindrical

end can have.

Let g be any metric such that g − g0 is supported in {(r, θ) | r < R}, and such that g and

g0 have the same trapped geodesics. For example we may take g = g0 + cg1, where g1 is any

symmetric two-tensor with support in {(r, θ) | r < R}, and c ∈ R is chosen sufficiently small

depending on g1. Alternatively, we may take g = dr2 + gS(r), where gS(r) is a smooth family of

metrics on the sphere such that gS(r) = r2dS near r = 0 and gS(r) = F (r)dS near r ≥ R, and

such that ∂rgS(r) > 0 on (0, R). This way we can construct examples where g − g0 is not small.

Example 2. Let (X, gH) be a convex cocompact hyperbolic surface, such as the symmetric

hyperbolic ‘pair of pants’ surface with three funnels depicted in Figure 1.2.

In particular, there is a compact set N ⊂ X (the convex core of X) such that

X \N = (0,∞)r × Yy, gH |X\N = dr2 + cosh2r dy2,

where Y is a disjoint union of k ≥ 1 geodesic circles (possibly having different lengths).

We modify the metric in the funnel ends so as to change them into cylindrical ends in the

following way. Take g such that

g|N = gH |N , g|X\N = dr2 + F (r)dy2,

where F (r) = cosh2r near r = 0, and F ′ is compactly supported and positive on the interior of

the convex hull of its support.
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Figure 1.2. A hyperbolic surface (X, gH) with three funnels, and a modification

of the metric which changes the funnel ends to cylindrical ends.

To obtain higher dimensional examples, we can take (X, gH) to be a conformally compact

manifold of constant negative curvature, with dimension d ≥ 3, but in this case we need the

additional assumption that the dimension of the limit set is less than (d− 1)/2. The construction

of g now becomes more complicated and we give it in §3.3 below.

Our first result concerns only the above examples.

Theorem 1.1. Let (X, g) be as in Example 1 or 2 above, and let ∆ ≤ 0 be its Laplacian. There

is z0 > 0 such that for any χ ∈ C∞c (X) there is C > 0 such that

‖χ(−∆− z)−1χ‖L2(X)→L2(X) ≤ C, (1.1)

for all z ∈ C with Re z ≥ z0 and Im z 6= 0.

Here (−∆ − z)−1 denotes the standard resolvent which maps L2(X) → L2(X), and not its

meromorphic continuation. Below, in Theorem 5.6, we also obtain bounds for the meromorphic

continuation, but these are more complicated to state.

The bound (1.1) is optimal in the sense that we cannot replace the right hand side by a

function of z which tends to 0 as Re z →∞. Indeed, taking the case of Example 1 with d = 2 for

definiteness, we have (−∆− k2)v(r)eikθ = −v′′(r)eikθ for any v ∈ C∞c ((R,∞)) and k ∈ Z.

Note also that the resolvent in these examples is better behaved than it is for the (geometri-

cally simpler) Riemannian product (X, g) = (R × Y, g = dr2 + gY ), where (Y, gY ) is a compact

Riemannian manifold. Indeed, take χ ∈ C∞c (X) a function of r such that χ ≥ 0 and χ 6≡ 0, and

take χ0 ∈ C∞c (X) such that χ0χ = χ, and let φ be an eigenfunction of the Laplacian on (Y, gY )

with −∆φ = σ2φ. Then, by separation of variables,

‖χ(−∆− z)−1χχ0φ‖L2(X) = ‖φ‖L2(Y )‖χ(−∂2
r − z + σ2)−1χ‖L2(R)

z→σ2

−−−→ +∞, (1.2)

where we take the limit using the explicit formula for the resolvent [DyZw, (2.2.1)]. For our proof

of Theorem 1.1 it will be crucial that F ′ > 0 near the cylindrical ends in Examples 1 and 2, and

this is what is missing in the Riemannian product just discussed.
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We will deduce Theorem 1.1 from Theorem 3.1 below, which gives a stronger result (allowing χ

to be replaced by a noncompactly supported weight) and also applies to Schrödinger operators on

more general manifolds with asymptotically cylindrical ends. We will further prove in Theorem

3.2 that we can obtain stronger resolvent bounds by suitably refining the cutoffs χ.

An estimate like (1.1) has well-known implications for the spectrum of −∆. In particular, by

[ReSi, Theorem XIII.20], the spectrum is purely absolutely continuous on (z0,∞), which rules

out any embedded eigenvalues there, and we will see below, in §5, that embedded resonances

(resonances on the real line, embedded in the continuous spectrum) are also ruled out.

To our knowledge ours is the first result ruling out the presence of infinitely many embedded

eigenvalues or resonances for a large class of examples of manifolds with infinite cylindrical ends.

The situation can be very different for other manifolds with cylindrical ends. For example,

let X = R × Y and g = dr2 + F (r)gY , where (Y, gY ) is a compact Riemannian manifold and

F ∈ C∞(R; (0,∞)), 1−F is compactly supported, and maxF > 1. Then −∆ has infinitely many

embedded eigenvalues converging to +∞ ([ChZw, §3], [Pa2, (3.6)]).

The study of the spectral and scattering theory of the Laplacian on manifolds with cylindrical

ends, and their perturbations, goes back to Guillopé [Gu] and Melrose [Me] and is an active

and wide-ranging area of research: see for example [IsKuLa, MüSt, RiTi] for some recent results

and more references. There is also a large of body of literature on the closely related study of

the Laplacian on waveguides: something of a survey can be found in [KrKř], and let us also

mention the older result [Go], and that there is a nonexistence result for eigenvalues in [DaPa].

In a slightly different direction, weighted resolvent estimates up to the spectrum and limiting

absorption principles have been investigated using Mourre theory [Mo, AmBoGe, DeGé], and this

has been applied to geometric situations such as ours in [Ni].

Our results also have implications for the distribution of resonances; these are the poles of

the meromorphic continuation of the resolvent, and their study in this context also goes back to

[Gu, Me]. An existence result for resolvent poles (in the presence of appropriate quasimodes, and

which may be embedded in the real line or complex) on waveguides can be found in [Ed], and for

more such results see [KrKř]. Upper bounds on the number resonances for manifolds with infinite

cylindrical ends are given in [Ch1].

In Theorem 5.6, we will use an identity due to Vodev [Vo] to prove that (1.1) (or a more general

resolvent estimate up to the spectrum) implies the existence of a resonance free region near the

continuous spectrum. In a companion paper to this one, [ChDa1], we use these results to prove

an asymptotic expansion for solutions to the wave equation.

1.2. Repulsive potentials on the half line. In this paper we also obtain some resolvent esti-

mates for Schrödinger operators on the half line which we need in the course of the proofs of our

main results, and which may be of independent interest. We state them here.

Let VD be a bounded, nonnegative, nonincreasing potential on the half line, such that

V ′D(r) ≤ −δV (1 + r)−1VD(r) ≤ 0, (1.3)
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for some δV > 0 and for all r ≥ 0, where if VD is not everywhere differentiable then (1.3) is meant

in the sense of measures. Note that in particular the potential is repulsive in the sense of classical

mechanics, since V ′D(r) < 0 except where VD(r) = 0.

For h > 0 and ζ ∈ C \ [0,∞) let

(−h2∂2
r + VD − ζ)−1

denote the Dirichlet resolvent. In this paper we prove the following semiclassical resolvent esti-

mates:

Theorem 1.2. For all s, s1, s2 > 1/2 with s1 + s2 > 2 there is C > 0 such that for all

ζ ∈ C \ [0,∞) and h > 0 we have

‖(1 + r)−s(−h2∂2
r + VD(r)− ζ)−1(1 + r)−s‖ ≤ C

h
√
|ζ|
, (1.4)

‖(1 + r)−s1(−h2∂2
r + VD(r)− ζ)−1(1 + r)−s2‖ ≤ C

h2
, (1.5)

and

‖VD(r)1/2(1 + r)−1/2(−h2∂2
r + VD(r)− ζ)−1(1 + r)−s‖ ≤ C

h
, (1.6)

where the norms are L2(R+)→ L2(R+).

Recall that, in the case VD ≡ 0, (1.4) and (1.5) are well known to be sharp as dist(ζ, [0,∞))→ 0;

this can be checked from the explicit formula for the resolvent in that case, which we give below

in (5.4).

In fact, we will deduce these estimates from some uniform estimates for Schrödinger operators

with repulsive potentials, replacing C by an explicit constant. To state them, let

PD := −∂2
r + VD(r),

regarded as a self-adjoint operator on L2(R+) with domain {u ∈ H2(R+) | u(0) = 0}.

Theorem 1.3. For all δ > 0, θ ∈ [0, 1], and z ∈ C \ [0,∞), we have

‖(1 + r)−
1+δ
2 (PD − z)−1(1 + r)−

1+δ
2 ‖ ≤ 1 +

√
2√

|z|

(
1

δ
+

1

δV

)
, (1.7)

‖(1 + r)−
1+δ
2
−θ(PD − z)−1(1 + r)−

1+δ
2
−(1−θ)‖ ≤ (1 +

√
2)

(
1

δ
+

1

δV

)
, (1.8)

and

‖VD(r)
θ
2 (1 + r)−

1+(1−θ)δ
2 (PD − z)−1VD(r)

1−θ
2 (1 + r)−

1+θδ
2 ‖ ≤ 2

√
2

δV

√
1 +

δV
δ
, (1.9)

where the norms are L2(R+)→ L2(R+).

Note that Theorem 1.3 implies Theorem 1.2.

If VD ∈ C1([0,∞)) is compactly supported and has V ′D < 0 on the interior of the support of VD,

then (1.3) is satisfied for some δV > 0 (because log VD and (log VD)′ tend to −∞ at the boundary

of the support). Moreover the class of potentials satisfying (1.3) for a given δV > 0 is closed under
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nonnegative linear combinations and contains all functions of the form (1 + r)−m with m ≥ δV .

The same proof could also handle potentials VD satisfying (1.3) and such that VD(r) → ∞ as

r → 0, provided VD(r)|u(r)|2 → 0 as r → 0 for all u in the domain of PD.

The bounds (1.4) and (1.7) are best when the spectral parameter is not too close to 0, and

(1.5) and (1.8) are best when the spectral parameter is close to 0. We can think of (1.6) and (1.9)

as being a kind of Agmon or elliptic estimate in the limit |z| → 0 (see also (4.14) below); they

give an improvement when we are looking at the resolvent in the elliptic and classically forbidden

range in the interior of the support of VD. When VD(r) ∼ (1 + r)−m as r →∞ for some m > 0,

the weights in (1.9) are also to be compared to the weights in [Ya, Na]; see in particular [Na,

Theorem 1.3].

If we do not demand explicit constants in the estimates, then Theorem 1.3 is essentially well-

known if either VD(0) (which we can think of as a coupling constant) is not large (see [Ya, Chapter

4] for a more general discussion of scattering on the half line, and [KoTr] for some more recent

results and references), or if VD(0) and |z| are large (this is the semiclassical, nontrapping regime:

see [Ya, Chapter 7, Theorem 1.6] for a similar result). The main novelty here is that we cover all

values of VD(0) and |z| uniformly, and for our applications in §3 we will especially need the case

where VD(0) is large compared to |z|: this corresponds to a low-energy semiclassical problem.

We prove Theorem 1.3 in §2 below.

1.3. Notation. Throughout the paper C is a large constant which can change from line to line,

and all estimates are uniform for h ∈ (0, h1], where h1 can change from line to line. It will

sometimes be convenient to write derivatives with respect to r using the notation Dr := −i∂r.
We use

‖u‖Hm
h (X) := ‖(−h2∆ + 1)m/2u‖L2(X),

and similarly define ‖u‖Hm
h (R) and ‖u‖Hm

h (R+) (in the latter case we will only be concerned with

u vanishing near r = 0, so the boundary condition on the Laplacian implicit in the notation in

this case is immaterial).

The energy level E0 > 0 is fixed in §3.1, along with the rest of the notation needed for our

general abstract setup of a mildly trapping Schrödinger operator on a manifold with asymptotically

cylindrical ends. The auxiliary notations Ej and E∗ are defined in §4.2 in terms of this setup.

The notation E without a subscript is used in §2 and §5 to denote a variable positive energy, not

related in any particular way to E0 or Ej or E∗.

The radial variable r on the cylindrical end has the same meaning in §3.1, in §4, and in §5. The

usage in §2 is consistent with this usage, if we separate variables to write Schrödinger operator

on an asymptotically cylindrical end as a sum of Schrödinger operators on R+. For example, if

∆ is the Laplacian on ((0,∞)× Y, dr2 + gY ) we write

−∆ =
∞∑
j=0

(−∂2
r + σ2

j )φj ⊗ φj , to mean −∆u =

∞∑
j=0

φj

∫
Y

(−∂2
r + σ2

j )u(r, y)φj(y)dvol(y),
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where {φj}∞j=0 is a complete set of real-valued orthonormal eigenfunctions of the Laplacian on Y

and −∆Y φj = σ2
jφj .

Of course the results of §2 also apply to more general Schrödinger operators on R+.

The variable r is used a little differently in §1.1, §3.3, and §3.4. To convert the r in one of these

sections to the r in the rest of the paper, use the affine map

r 7→ 6(r −R1)/(R2 −R1), (1.10)

for suitably chosen R1 and R2, and then multiply g by (R2 − R1)2/36 to remove the factor that

appears in front of dr2. For Example 1, take R1 such that inf{r > 0 | g(r, y) = g0(r, y) for all y} <
R1 < R and use R2 = R. For Example 2, let R2 = max suppF ′, and take R1 ∈ (0, R2). For §3.3,

let R1 = R+ 1 and R2 = max suppF ′. For §3.4, let R1 = R/2 and R2 = R.

Contents

1. Introduction 1

2. Resolvent estimates on the half line 7

3. Resolvent estimates for mildly trapping manifolds 10

4. Proof of Theorems 3.1 and 3.2 16

5. Continuation of the resolvent 29

References 35

2. Resolvent estimates on the half line

In this section we prove Theorem 1.3. All function norms and inner products in this section

are in L2(R+), and operator norms are L2(R+)→ L2(R+).

Proof of (1.7). Let E := Re z and ε := | Im z|. We begin by proving an a priori estimate when

E > 0 and ε > 0. Roughly speaking, the idea is to exploit the fact that, since V ′D ≤ 0, we have

the positive commutator [PD, r∂r] = −2∂2
r − rV ′D(r) ≥ 0. However, to be able to control the

remainder terms in our positive commutator argument, we must replace r∂r with w(r)∂r where

w grows more slowly. Such commutants have been used by many authors (see [ReSi, §XIII.7] and

references therein); below we take an approach inspired by [Vo, Da1] and papers cited therein.

Take w ∈ C1([0,∞); [0, 1]) such that w′(r) > 0 for all r ≥ 0, and take u ∈ H2(R+) such that

u(0) = 0 and (w′)−1/2(PD − z)u ∈ L2; in particular, u(r) and u′(r) tend to 0 as r →∞. Adding

together the integration by parts identities

−〈(w(VD − E))′u, u〉 = 2 Re〈w(VD − E)u, u′〉,
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and

〈w′u′, u′〉+ w(0)|u′(0)|2 = −2 Re〈wu′′, u′〉,

gives

E‖
√
w′u‖2 + ‖

√
w′u′‖2 − 〈(wVD)′u, u〉+ w(0)|u′(0)|2 = 2 Re〈w(PD − z)u, u′〉 − 2 Im z Im〈wu, u′〉.

Since 0 ≤ w ≤ 1, this implies

E‖
√
w′u‖2 + ‖

√
w′u′‖2 − 〈(wVD)′u, u〉 ≤ 2

∥∥∥∥ 1√
w′

(PD − z)u
∥∥∥∥ ‖√w′u′‖+ 2ε‖u‖‖u′‖. (2.1)

Later we will choose w so that (wVD)′ ≤ 0, but first we estimate the second term on the right,

which we think of as a remainder term. Since VD ≥ 0, integrating by parts gives

‖u′‖2 ≤ Re〈(PD − z)u, u〉+ E‖u‖2 ≤
∥∥∥∥ 1√

w′
(PD − z)u

∥∥∥∥ ‖√w′u‖+ E‖u‖2,

and we also have

ε‖u‖2 = | Im〈(PD − z)u, u〉| ≤
∥∥∥∥ 1√

w′
(PD − z)u

∥∥∥∥ ‖√w′u‖.
Combining these gives

ε2‖u‖2‖u′‖2 ≤ (E + ε)

∥∥∥∥ 1√
w′

(PD − z)u
∥∥∥∥2

‖
√
w′u‖2,

and then plugging this into (2.1) gives

E‖
√
w′u‖2 + ‖

√
w′u′‖2 − 〈(wVD)′u, u〉 ≤ 2

∥∥∥∥ 1√
w′

(PD − z)u
∥∥∥∥(‖√w′u′‖+

√
E + ε‖

√
w′u‖

)
.

Completing the square gives(√
E‖
√
w′u‖ −

√
E + ε√
E

∥∥∥∥ 1√
w′

(PD − z)u
∥∥∥∥)2

+

(
‖
√
w′u′‖ −

∥∥∥∥ 1√
w′

(PD − z)u
∥∥∥∥)2

−〈(wVD)′u, u〉 ≤ 2E + ε

E

∥∥∥∥ 1√
w′

(PD − z)u
∥∥∥∥2

.

(2.2)

We now take

w(r) := 1− δV
δV + δ

(1 + r)−δ, (2.3)

so that, by (1.3), we have

(wVD)′(r) =
δδV VD(r)

(δV + δ)(1 + r)1+δ
+ w(r)V ′D(r) ≤ δV VD(r)

1 + r

(
(1 + r)−δ − 1

)
≤ 0, (2.4)

where, as with (1.3), we understand (2.4) in the sense of measures in the case that VD is not

differentiable everywhere. We may now drop the second and third terms from the left hand side

of (2.2), giving
√
E‖
√
w′u‖ ≤

√
E + ε+

√
2E + ε√

E

∥∥∥∥ 1√
w′

(PD − z)u
∥∥∥∥ . (2.5)
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From (2.5) we can deduce a weighted resolvent estimate when Re z > 0, Im z 6= 0. To obtain

an estimate for all z ∈ C \ [0,∞), we use the Phragmén–Lindelöf principle in the following way.

For u, v ∈ L2(R+), put

U(z) := 〈(1 + r)−
1+δ
2 (PD − z)−1(1 + r)−

1+δ
2 u, v〉

√
z, (2.6)

and for α > 0 put

Ωα := {z ∈ C | αRe z < | Im z|}.

Then U is holomorphic in Ωα, where it obeys

|U(z)| ≤ |
√
z|‖u‖‖v‖

dist(z, [0,∞))
≤
√

1 + α−2‖u‖‖v‖
|
√
z|

Moreover, by (2.5), for z ∈ ∂Ωα \ {0}, we have

|U(z)| ≤
(√

1 + α+
√

2 + α
) (
δ−1 + δ−1

V

)
‖u‖‖v‖. (2.7)

Then the Phragmén–Lindelöf principle (see e.g. [ReSi, p. 236]) implies (2.7) for all z ∈ Ωα.

Taking α→ 0 gives (1.7). �

Proof of (1.8). We begin by following the proof of (1.7), but we drop the first term, rather than

the second, from the left hand side of (2.2), so that in place of (2.5) we have

‖
√
w′u′‖ ≤

(
1 +

√
2 + εE−1

)∥∥∥∥ 1√
w′

(PD − z)u
∥∥∥∥ .

We now integrate by parts to obtain a weighted version of the Poincaré inequality:∥∥∥(1 + r)
−3−δ

2 u
∥∥∥2

=
2

2 + δ
Re
〈

(1 + r)−2−δu′, u
〉
≤
∥∥∥(1 + r)

−1−δ
2 u′

∥∥∥∥∥∥(1 + r)
−3−δ

2 u
∥∥∥ ,

giving ∥∥∥(1 + r)
−3−δ

2 u
∥∥∥ ≤√δ−1

V + δ−1
(

1 +
√

2 + εE−1
)∥∥∥∥ 1√

w′
(PD − z)u

∥∥∥∥ . (2.8)

We now apply the Phragmén–Lindelöf principle as in the proof of (1.7), with the difference that

in place of (2.6) we use

U(z) := 〈(1 + r)−
3+δ
2 (PD − z)−1(1 + r)−

1+δ
2 u, v〉,

to obtain (1.8) when θ = 1. Then taking the adjoint gives the result for θ = 0, and interpolating

(that is to say, applying the Phragmén–Lindelöf principle with respect to θ ∈ C such that Re θ ∈
[0, 1]) gives the result for θ ∈ (0, 1). �

Proof of (1.9). We again proceed as in the proof of (1.7), but this time we replace (2.3) by

w(r) := 1− δV
2(δV + δ)

(1 + r)−δ,

so that (2.4) is replaced by

(wVD)′(r) ≤ −δV VD(r)

2(1 + r)
.
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Now dropping the first two terms on the left hand side of (2.2) gives〈
δV VD(r)

2(1 + r)
u, u

〉
≤ 2E + ε

E

∥∥∥∥ 1√
w′

(PD − z)u
∥∥∥∥2

,

or

‖VD(r)
1
2 (1 + r)−

1
2 (PD − z)−1(1 + r)−

1+δ
2 ‖ ≤ 2

√
2 + εE−1

√
δV

√
δ−1 + δ−1

V .

We now proceed as in the proof of (1.8), applying the Phragmen–Lindelöf principle to obtain

(1.9) for θ = 1, and then taking the adjoint and interpolating to obtain (1.9) for θ ∈ [0, 1). �

3. Resolvent estimates for mildly trapping manifolds

In §3.1 we state our main resolvent estimates for mildly trapping manifolds with asymptotically

cylindrical ends, under suitable abstract assumptions. In the remainder of §3 we give examples

which satisfy the assumptions, and then in §4 we prove the estimates.

3.1. Resolvent estimates for asymptotically cylindrical manifolds. Let (X, g) be a smooth

Riemannian manifold of dimension d ≥ 2, with or without boundary, with the following kind of

asymptotically cylindrical ends: we assume there is an open set Xe ⊂ X such that ∂X ∩Xe = ∅,

X \Xe is compact, and

Xe = (0,∞)r × Y, g|Xe = dr2 + f(r)4/(d−1)gY .

Here Y is a compact, not necessarily connected, manifold without boundary of dimension d− 1,

gY is a fixed smooth metric on Y and f ∈ C∞([0,∞); (0, 1]). We suppose further that there is

δ0 > 0 such that

|(f − 1)(k)(r)| ≤ Ck(1 + r)−k−δ0 for all k ∈ N0 and r ≥ 0, (3.1)

and

f ′(r) ≥ δ0(1 + r)−1(1− f) ≥ 0 for all r ≥ 0. (3.2)

Suppose finally that f(r) < 1 for r < 6. Note that if we replace r < 6 by r < r0 in this last

condition, we can reduce to the case r0 = 6 by multiplying g by a constant and rescaling r (i.e.

using (1.10) with R1 = 0 and R2 = r0).

We briefly discuss the assumptions (3.1) and (3.2). Note that the class of functions f such

that (3.1) and (3.2) hold for a given δ0 > 0 is convex, and contains all functions of the form

f(r) = 1 − (1 + r)−m whenever m ≥ δ0. Moreover, all functions f , such that f ′ is compactly

supported and positive on the interior of the support of (1 − f), obey (3.1) and (3.2) for some

δ0 > 0; indeed, letting Rf := max supp(1− f), we have

lim
r↑Rf

log(1− f(r)) = lim
r↑Rf

d

dr
log(1− f(r)) = −∞.

If f ′ is compactly supported then the ends are cylindrical, rather than just asymptotically

cylindrical.
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For notational convenience let us extend r to be a continuous function on X with −1/2 ≤ r < 0

on X \Xe, and extend f to be constant for r ≤ 0.

Let ∆ ≤ 0 be the Laplacian on X. Let

P = Ph := −h2∆ + V,

where h ∈ (0, h0] for some h0 > 0, and:

• V = Vh ∈ C∞(X × (0, h0];R) is bounded, together with all derivatives, uniformly in

h ∈ (0, h0].

• V |Xe is a function of r and h only, and has a decomposition V |Xe = VL+hVS , where VL and

VS may also depend on h, and VS = 0 for r ≥ 5 and |V (k)
S (r)|+ |V (k)

L (r)| ≤ Ck(1 + r)−k−δ0

for all k ≥ 0, uniformly in h.

• V ′L(r) ≤ −δ0(1 + r)−1VL(r) ≤ 0 for all r ≥ 0.

Note that the assumptions allow V ≡ 0 but not f ≡ 1. Such a restriction is necessary to obtain

a resolvent bound which is uniform up to the spectrum, in light of the computation in (1.2), which

rules out such a bound in the case (X, g) = (R× Y, dr2 + dS) and P = −h2∆.

Fix E0 > 0. We suppose that E0 is a “mildly trapping” energy level for P in the sense that

adding a complex absorbing barrier supported on Xe gives a polynomial resolvent bound. More

specifically, suppose that for some WK ∈ C∞(R; [0, 1]) with WK = 0 near (−∞, 5] and WK = 1

near [6,∞), there is N ∈ R such that

‖(P − iWK(r)− E0)−1‖L2(X)→L2(X) =: a(h)h−1 ≤ h−N , (3.3)

for all h ∈ (0, h0].

We have the following weighted resolvent bound up to the spectrum.

Theorem 3.1. Let (X, g), P, E0, and a(h) be as above. Fix s1, s2 > 1/2 such that s1 + s2 > 2.

There are C > 0 and h1 > 0 such that

‖(1 + r)−s1(P − E0 − iε)−1(1 + r)−s2‖L2(X)→L2(X) ≤ C(a(h) + h−1)h−1, (3.4)

for all ε ∈ R \ 0 and for all h ∈ (0, h1].

Note that the condition on s1 and s2 is the same as the one in §1.2 above, see in particular

(1.5) and (1.8). This is the resolvent weighting needed to have a low energy bound for scattering

on the half line (and for more general Euclidean scattering problems).

To deduce Theorem 1.1 from Theorem 3.1, in Examples 1 and 2 we let Xe be the part of X

where r ≥ r1, for any r1 > 0 such that F ′(r1) > 0, and put V ≡ 0. Then, after redefining r as

in the remark following (3.2), we see that g has the desired form in Xe, and it remains to check

that (3.3) holds with N ≤ 2. Below in §3.2 and §3.3 we will show this for some examples which

generalize Examples 1 and 2 above.

We also have an improved bound when we cut off away from the trapping in the end. To state

it, let χΠ ∈ C∞(R; [0, 1]) be 0 near (−∞, 0] and 1 near [1,∞). Let ∆Y ≤ 0 be the Laplacian
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on (Y, gY ), and let {φj}∞j=0 be a complete real-valued orthonormal set of its eigenfunctions, with

−∆Y φj = σ2
jφj , where 0 = σ0 ≤ σ1 ≤ · · · . For any J ⊂ {0, 1, . . . }, we denote the orthogonal

projection onto modes corresponding to J by ΠJ : L2(Xe)→ L2(Xe), so that

(ΠJ u)(r, y) :=
∑
j∈J

φj(y)

∫
Y
u(r, y′)φj(y

′)dvol(y′),

where y and y′ denote points in Y . Then ‖ΠJχΠ(r)‖L2(X)→L2(X) = 1, unless J is empty.

Theorem 3.2. Fix s > 1/2 and cJ > 0. Let J := {j | Ej := E0 − h2σ2
j 6∈ [−cJ h, cJ ]}. Define a

microlocal cutoff χJ : L2(X)→ L2(X) by putting

χJ u :=


(

ΠJχΠ(r) +
√
VL(r) + f(r)−4/(d−1) − 1

)
u, u ∈ L2(Xe),

u, u ∈ L2(X \Xe),
(3.5)

and then extending to general u ∈ L2(X) by linearity. There are C > 0 and h1 > 0 such that

‖(1 + r)−sχJ (P − E0 − iε)−1(1 + r)−s‖L2(X)→L2(X) ≤ C(1 + a(h))h−1, (3.6)

for all ε ∈ R \ 0 and for all h ∈ (0, h1].

By taking the adjoint, we see that (3.6) implies

‖(1 + r)−s(P − E0 − iε)−1χJ (1 + r)−s‖L2(X)→L2(X) ≤ C(1 + a(h))h−1. (3.7)

Note that the statement is strongest when cJ is chosen very small, much smaller than E0. We

think of χJ as cutting off away from (or, almost, projecting away from)

TJ = {u ∈ L2(Xe) | fu = u, VLu = 0, ΠJ u = 0} ⊂ L2(X).

Observe that the condition Ej ∈ [−cJ h, cJ ] corresponds, when VL = 0 and f = 1, to the

condition that ρ2 ∈ [−cJ h, cJ ], where ρ is the dual variable to r. In this sense TJ corresponds

to a neighborhood of the bicharacteristics in T ∗Xe along which r is constant, that is to say

bicharacteristics trapped in the cylindrical ends. In this sense χJ cuts off away from the trapping

in the cylindrical ends. The asymmetry in the interval [−cJ h, cJ ] is due to the fact that our

estimates are much easier when Ej ≤ −Ch for any C > 0 (see in particular the sentence following

(4.41) below); we do not expect this form of the interval to be optimal.

To simplify matters, in our discussion of the interpretation and context of this result we focus

on the special case of the following Corollary, although most of the statements could be adapted

to apply to the more general case.

Corollary 3.3. Let (X, g) = (Rd, g) be as in Example 1. In the notation of that example, fix

χ ∈ C∞c (X) with suppχ ⊂ {(r, θ) ∈ Rd | r < R}, and fix s > 1/2. Then there are z0 > 0 and

C > 0 such that

‖(1 + r)−s(−∆− z)−1χ‖L2(X)→L2(X) + ‖χ(−∆− z)−1(1 + r)−s‖L2(X)→L2(X) ≤ C/
√

Re z, (3.8)

for all z ∈ C with Re z ≥ z0 and Im z 6= 0.
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Note that this χ is local, in contrast to the microlocal χJ of Theorem 3.2. Recall that R

is the radius at which the cylindrical end begins; hence χ is a cut off away from the trapping

on the cylindrical end, and in this example there is no other trapping. The right hand side of

(3.8) is the usual nontrapping upper bound, cf. (1.7) and the bound of Ch−1 in (1.4). There

have been many results in asymptotically Euclidean, conic, and hyperbolic scattering proving

that such nontrapping bounds hold when one cuts off away from trapping on both sides of the

resolvent: these go back to work of Cardoso and Vodev [CaVo], refining an earlier result of

Burq [Bu1]. Intriguingly, in (3.8) we get a nontrapping bound by applying a spatial cutoff away

from trapping on only one side of the resolvent; to our knowledge no such result is known in

asymptotically Euclidean, conic, and hyperbolic scattering, although a related weaker bound can

be found in [BuZw, Ch2, DaVa2] (and note that the weaker bound is shown to be optimal in a

special example in [Dy]). A possible interpretation is the following: unlike in any of the examples

studied in [BuZw, DaVa2], in Example 1 the set K of bicharacteristics trapped as t → +∞ and

t→ −∞ is the same as the set Γ± of bicharacteristics trapped as t→ +∞ or t→ −∞, and one

expects resolvent estimate losses due to mild trapping to be concentrated on Γ±.

On the other hand, in [DaDyZw] it is shown that for a “well in an island” semiclassical

Schrödinger operator (in which case incidentally K does equal Γ±), losses due to trapping extend

beyond Γ± and cutting off on one side only is not enough to give nontrapping bounds; as discussed

in that paper, this is closely related to the fact that the trapping in this case is stable (so that

tunneling can produce losses away from Γ±), unlike in Example 1 or in the examples in [DaVa2].

It is then natural to ask: when is cutting off a resolvent away from trapping on one side sufficient

to give nontrapping bounds, and when is it necessary to cut off on both sides?

3.2. Examples with no trapping away from the ends. Let X have no boundary and let

KE0 be the set of bicharacteristics of P at energy E0 which do not intersect T ∗Xe. If KE0 = ∅,

then it is essentially well-known that

‖(P − iWK(r)− E0)−1‖L2(X)→L2(X) ≤ Ch−1; (3.9)

the proof of (3.9) follows from the proof of [DyZw, Theorem 6.11] or that of [Da2, Proposition

3.2]. In the case that |V | ≤ Ch, demanding that KE0 = ∅ is equivalent to demanding that all

maximally extended geodesics on X intersect Xe; specific examples are given in Example 1.

3.3. Hyperbolic and normally hyperbolic trapped sets. If KE0 6= ∅ we cannot hope to

have (3.9), but if KE0 is hyperbolic or normally hyperbolic then we may have

‖(P − iWK(r)− E0)−1‖L2(X)→L2(X) ≤ C log(h−1)h−1. (3.10)

In the case of a closed hyperbolic orbit, such bounds are due to Burq [Bu2] and Christianson

[Ch2]. For hyperbolic trapped sets satisfying a pressure condition they are due to Nonnenmacher

and Zworski [NoZw1], and for normally hyperbolic trapped sets to Wunsch and Zworski [WuZw]

and to Nonnenmacher and Zworski [NoZw2] (and see also [Dy]). Some recent surveys of the

substantial wider literature concerning estimates like (3.10) can be found in [No, Zw2].
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To deduce (3.10) from [NoZw1] or [NoZw2], note that the difference between (3.10) and [NoZw1,

(2.7)] or [NoZw2, (1.18)] lies in the assumptions in the region where WK = 1. But in this region

P − iWK is semiclassically elliptic, so the discrepancy can be removed using a parametrix G′

analogous to the one in (4.1) below, and rather than having to go through a procedure like that

in §4.5 we just have (P − iWK(r)− E0)G′ = I +O(h∞).

Rather than discussing the general dynamical assumptions further, we now specialize to more

concrete examples.

Let (X, gH) be a conformally compact manifold of constant negative curvature. We recall that

this means that the metric gH is asymptotically hyperbolic in the sense of [MaMe] (see also [DyZw,

§5.1]), so there is an open set X ′e and R ∈ R such that X \X ′e is compact and

X ′e = (R,∞)r × Y, gH |X′e = dr2 + e2rgY (e−r),

where Y is a compact, not necessarily connected, manifold without boundary and gY (x) is a

family of metrics on Y depending smoothly on x up to x = 0. Such a ‘normal form’ of the metric

was first found in [GrLe], and it is also in [DyZw, §5.1.1].

We modify the metric to obtain a manifold with cylindrical ends in the following way. We first

observe that, denoting points in T ∗X ′e by (r, y, ρ, η), where y ∈ Y , ρ is dual to r, and η is dual to

y, along gH -geodesics we have

d2

dt2
r =: r̈ = −2∂r(e

−2r|η|2r,y) = 4e−2r|η|2r,y(1 +O(e−r)),

where the length |η|r,y is taken with respect to the dual metric to gY (e−r). Hence, after possibly

redefining R to be larger, we may suppose that r̈ ≥ 2e−2r|η|2r,y for r ≥ R, and in particular that no

bounded gH -geodesics intersect X ′e. Indeed, since E0 := ρ2 + e−2r|η|2r,y is conserved and ṙ = 2ρ,

in X ′e we have

r̈ ≥ 2e−2r|η|2r,y = 2E0 − ṙ2/2,

which means r is not bounded for all t.

Fix χH ∈ C∞(R; [0, 1]) such that χH(r) = 1 near (−∞, R] and χH(r) = 0 near [R+ 1,∞), and

fix F ∈ C∞([R,∞), (0,∞)) such that F ′ is compactly supported, positive on the interior of its

support, and such that F ′(r) > 0 for r ≤ R+ 2. Take g such that g|X\X′e = gH |X\X′e , and

g|X′e = χH(r)gH + Cg(1− χH(r))
(
dr2 + F (r)gY (0)

)
.

We claim that if Cg is large enough, then r̈ ≥ 0 along g-geodesics in Xe. Indeed,

r̈/2 = −χH(r)∂r(e
−2r|η|2r,y) + Cg(1− χH(r))F ′(r)|η|20 − χ′H(r)(e−2r|η|2r,y − CgF (r)|η|20),

so it is enough to take Cg large enough that on T ∗ suppχ′H(r) we have e−2r|η|2r,y ≤ CgF (r)|η|20.

Now we may take Xe to be the part of X ′e in which r > R+ 1, and, after redefining r by (1.10),

we see that it remains only to check (3.3).

We take WK ∈ C∞(R; [0, 1]) which is 1 near [R + 2,∞) and 0 near (−∞, R + 1], and suppose

|V | ≤ Ch and E0 = 1. Let K denote the set of trapped unit speed geodesics of (X, gH), regarded
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as a subset of T ∗X. We see that K is also the set of the bicharacteristics of P at energy E0 which

do not intersect T ∗Xe, and that gH = g near the projection of K onto X.

Let dK be the Hausdorff dimension of K. If dK < d, then the assumptions of [NoZw1] are

satisfied, and (3.10) holds.

If d = 2 and V ≡ 0, then we can dispense with the requirement that dK < d thanks to a

recent result of Bourgain and Dyatlov [BoDy, Theorem 2] (this is the case presented in Example

2 above). To do this we use the fact (see [Bu2, Lemma 4.7] or e.g. [DyZw, Proof of (6.3.10)])

that [BoDy, (1.1)] implies

‖χ(−h2∆0 − E0 − i0)−1χ‖L2(X)→L2(X) ≤ C log(h−1)h−1,

for any χ ∈ C∞c (X). Then the gluing result of [DaVa1, Theorem 2.1] together with the semiclas-

sically outgoing property of (−h2∆0−E0− i0)−1 (established by Vasy in [Va] and see also [DyZw,

Theorem 5.34]) implies (3.10). In the interest of brevity we do not discuss this further here.

3.4. Warped products with embedded eigenvalues. Let X := R × Y and g := dr2 +

f(r)4/(d−1)gY for some f ∈ C∞(R; (0, 1]) which is 1 on R \ (−R,R) for some R > 0 and has a

nondegenerate minimum as its only critical point in (−R,R): see Figure 3.1.

Figure 3.1. An hourglass shaped surface of revolution.

Suppose V = h2VW , with VW = VW (r) ∈ C∞c ((−R,R)). Then the part of the trapped set

away from the cylindrical ends is normally hyperbolic and we have (3.10) (see [DyZw, (6.3.10)],

and see also [ChWu, Ch3] for the case of a degenerate minumum where incidentally we also have

(3.3)). Consequently, by Theorem 3.1, there is z0 > 0 such that for all s1, s2 > 1/2 such that

s1 + s2 > 2, there is C > 0 such that

‖(1 + |r|)−s1(−∆ + VW − z)−1(1 + |r|)−s2‖L2(X)→L2(X) ≤ C,

for all z ∈ C with Re z ≥ z0 and Im z 6= 0. In particular the spectrum of −∆ + VW is absolutely

continuous on (z0,∞).

But if f and VW are suitably chosen, then ∆+VW has an eigenvalue embedded in the spectrum

in [0, z0]. Indeed, we have

∆ = f(r)−1

 ∞∑
j=0

(
∂2
r − f ′′(r)f(r)−1 − σ2

j f(r)−4/(d−1)
)
φ⊗ φ

 f(r),
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where {φj}∞j=0 is a complete set of real-valued orthonormal eigenfunctions of the Laplacian on Y

and −∆Y φj = σ2
jφj . For J ∈ N0, consider the effective potential

VJ(r) := f ′′(r)f(r)−1 + σ2
J(f(r)−4/(d−1) − 1) + VW (r).

Then D2
r + VJ has an eigenvalue as long as

∫
VJ(r)dr ≤ 0 by [ReSi, Theorem XIII.110], and this

corresponds to an embedded eigenvalue for −∆ +VW as long as it is positive, for which it suffices

to have minVJ(r) > −σ2
J . For example, we may take f such that

∫
(f(r)−4/(d−1) − 1) ≤ 1/4 and

VW ∈ C∞c ((−R,R); [−σ2
J/2, 0]) such that VW (r) = −σ2

J/2 on [−R/2, R/2], and then J sufficiently

large.

By elaborating the above constuction one can also find examples with any finite number of

embedded eigenvalues.

It is not clear whether there are examples of manifolds with cylindrical ends such that −∆

has a finite but nonzero number of eigenvalues. For all known examples where eigenvalues occur,

the existence of infinitely many eigenvalues is either also established [ChZw, Pa2] or at the least

it is not ruled out [KrKř]. On the other hand 0 is always a resonance of −∆ on a manifold

with cylindrical ends, with the constant functions as resonant states, unless there is a boundary

condition somewhere that eliminates them.

4. Proof of Theorems 3.1 and 3.2

4.1. Outline of proof. The idea of the proofs is to define a parametrix for P − z by

G := χK(r − 1)(P − iWK(r)− z)−1χK(r) + χe(r + 1)(Pe − z)−1χe(r), (4.1)

where χe, χK ∈ C∞(R) obey χe + χK = 1, suppχe ⊂ (3,∞), and suppχK ⊂ (−∞, 4), and Pe is

a suitably chosen differential operator such that Pe = P on the part of X where r > 2. Then

(P − z)G = I + [h2D2
r , χK(r − 1)](P − iWK(r)− z)−1χK(r) + [h2D2

r , χe(r + 1)](Pe − z)−1χe(r),

and we will construct an inverse for (P − z) by removing this remainder using a Neumann series;

although the remainder above need not be small, we will see that powers of it are. We call the

part of X where r ∈ (2, 5) the resolvent gluing region, because the functions in the range of the

remainder are supported in that region. To prove that powers of the remainder are small, we will

need to know that:

(1) The resolvents of P − iWK(r) and Pe obey estimates analogous to (3.4) and (3.6). This is

the case for P − iWK(r) thanks to the assumption (3.3), and we will prove it for a suitable

choice of Pe in §4.3 and §4.4.

(2) The resolvents of P − iWK(r) and Pe obey improved estimates when multiplied by cutoffs

with suitable support properties in the resolvent gluing region, corresponding to a (special

case of a) semiclassically outgoing condition so that we are able to remove the remainders.

The needed estimates are proved in [DaVa1] for P − iWK(r) and in §4.3 and §4.4 for Pe.

We combine these estimates to prove Theorems 3.1 and 3.2 in §4.5. There we follow a procedure

analogous to that in [DaVa1], but with some finer analysis of remainders to remove the losses due
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to trapping in the cylindrical end (see also [Da2, §3] for another, in some ways related, variation

on this resolvent gluing procedure).

4.2. Model operators for Xe. On Xe, ∆ can be written as a direct sum of one-dimensional

Schrödinger operators:

∆|Xe = f(r)−1

 ∞∑
j=0

(
∂2
r − f ′′(r)f(r)−1 − σ2

j f(r)−4/(d−1)
)
φ⊗ φ

 f(r),

where {φj}∞j=0 is a complete set of real-valued orthonormal eigenfunctions of the Laplacian on Y

and −∆Y φj = σ2
jφj . We will introduce model operators Pj obeying

Pj |[2,∞) = −h2∂2
r + Vj(r), Vj(r) := V (r) + h2f ′′(r)f(r)−1 + h2σ2

j (f(r)−4/(d−1) − 1), (4.2)

and we will be studying them near the energy levels

Ej := E0 − h2σ2
j .

We will study two ranges of j separately, and the model operators Pj will act on different spaces

depending on j. These two ranges correspond to different behavior in the resolvent gluing region,

which is the part of X where r ∈ (2, 5) (see §4.1). To define the ranges, fix E∗ ∈ R, independent

of h, such that

0 < E∗ ≤ cJ ,

where cJ is as in the statement of Theorem 3.2, and

Ej ≤ E∗ =⇒ h2σ2
j f(5)−4/(d−1) ≥ E0; (4.3)

note that the conditions are compatible because Ej = 0 when E0 = h2σ2
j and f(5) < 1.

The first range we consider is Ej ≤ E∗; in this range the set where r < 5 is classically forbidden

because Vj > Ej , and we control remainders in the gluing region using Agmon estimates, taking

care to prove that our estimates are uniform as j → ∞ (although the effective potentials Vj
become unbounded as j →∞, they are nonnegative, so the relevant estimates actually get better

in this limit). The second range is Ej ≥ E∗; in this range the set where r < 5 is not classically

forbidden, but the energy levels Ej are bounded below by a positive constant and the effective

potentials Vj are repulsive, so nontrapping propagation of singularities estimates hold, which we

can use to control the remainders in the gluing region (once again we take care to prove that the

estimates are uniform in j).

For the first range of j we define the operators Pj to act on L2(R+), with a Dirichlet boundary

condition at 0, in order to be able to use Theorem 1.3 (the Dirichlet boundary condition makes it

easier to analyze the behavior of the resolvent when |Ej | is small). For the second range of j it is

more convenient to work over R than R+, in order to avoid reflection phenomena when studying

propagation of singularities.
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4.3. Analysis when Ej ≤ E∗. In §4.3 all function norms and inner products are in L2(R+), and

operator norms are L2(R+)→ L2(R+), unless otherwise specified.

For this range of j, we put

Pj := h2D2
r + Vj(r), (4.4)

regarded as a self-adjoint operator on L2(R+) with a Dirichlet boundary condition at r = 0.

We first prove resolvent estimates for Pj analogous to (3.4) and (3.6).

Proposition 4.1. Fix s1, s2, s > 1/2 such that s1 + s2 > 2. Then

‖(1 + r)−s1(Pj − Ej − iε)−1(1 + r)−s2‖ ≤ Ch−2, (4.5)

and

‖(1+r)−sχ(r)(Pj−Ej−iε)−1(1+r)−s‖+‖(1+r)−s(Pj−Ej−iε)−1χ(r)(1+r)−s‖ ≤ Ch−1, (4.6)

for all ε ∈ R \ 0, j ∈ N such that Ej ≤ E∗, where

χ(r) =
√
VL(r) + f(r)−4/(d−1) − 1.

Proof. The idea of the proof is to apply Theorem 1.3; more precisely (4.5) corresponds to (1.8)

(see also (1.5)), and (4.6) corresponds to (1.9) (see also (1.6)).

Before beginning the proof proper, by way of outline let us briefly discuss the terms in Vj , and

explain how they each do or do not satisfy (1.3). The term h2σ2
j (f(r)−4/(d−1) − 1) does satisfy

it thanks to (3.2) and (4.3), and moreover those bounds and f(r) < 1 for r < 6 imply that the

term is nontrivial when r < 6. The term VL satisfies it, and we think of it as being harmless.

The terms VS does not satisfy it, but we will show that its effect is compensated by that of the

h2σ2
j (f(r)−4/(d−1) − 1) term. The most difficult term to treat is the h2f ′′(r)f(r)−1 term. This

term may prevent h−2Vj from satisfying (1.3), but we will show that thanks to (4.3) we can treat

it as a small perturbation.

More precisely, let

VM (r) := Vj(r)− h2f ′′(r)f(r)−1,

and observe that for h sufficiently small VM obeys (1.3) for some δV > 0, since VL and f−4/(d−1)−1

obey it and |VS |+ |V ′S | ≤ C(f−4/(d−1)−1) thanks to (4.3). Indeed, to see that f−4/(d−1)−1 obeys

it we write, using α := 4/(d− 1) and (3.2),

−(f(r)−α − 1)′ = αf ′(r)f(r)−α−1 ≥ αδ0
f(r)−α−1 − f(r)−α

1 + r
≥ f(r)−α − 1

C(1 + r)
,

where we also used the fact that if a < b then

C−1(1− f) ≤ fa − f b ≤ C(1− f). (4.7)

Hence by (1.8) with VD = h−2VM , we have

‖(1 + r)−s1(h2D2
r + VM − Ej − iε)−1(1 + r)−s2‖ ≤ Ch−2. (4.8)
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Note that by the resolvent identity

(1 + r)−s1(Pj − Ej − iε)−1(1 + r)−s2 = (1 + r)−s1(h2D2
r + VM − Ej − iε)−1(1 + r)−s2

×
∞∑
k=0

[
−(1 + r)s2h2f ′′(r)f(r)−1(h2D2

r + VM − Ej − iε)−1(1 + r)−s2
]k
,

(4.9)

the proof of (4.5) is reduced to the proof of

‖(1 + r)s2h2f ′′(r)f(r)−1(h2D2
r + VM − Ej − iε)−1(1 + r)−s2‖ ≤ 1/2. (4.10)

But by (1.9), with θ = 1 and VD = h−2VM ≥ h−2(f−4/(d−1) − 1)/C (again using (4.3)), we have

‖(f(r)−4/(d−1) − 1)
1
2 (1 + r)−

1
2 (h2D2

r + VM − Ej − iε)−1(1 + r)−s2‖ ≤ Ch−1,

and interpolating this with (4.8) gives

‖(f(r)−4/(d−1) − 1)
1
4 (1 + r)−

s1
2
− 1

4 (h2D2
r + VM − Ej − iε)−1(1 + r)−s2‖ ≤ Ch−3/2.

Hence to prove (4.10), and consequently also (4.5), it is enough to show that

(1 + r)s2 |f ′′(r)| ≤ C(f(r)−4/(d−1) − 1)
1
4 (1 + r)−

s1
2
− 1

4 . (4.11)

To prove (4.11) we will use the fact that any bounded ϕ ∈ C2([r,∞); [0,∞)) satisfies

|ϕ′(r)|2 ≤ 2 supϕ sup |ϕ′′|, (4.12)

where the suprema are taken over [r,∞). Indeed, by Taylor’s theorem, for every t ≥ 0 there is

t0 ∈ [r, r + t] such that

t|ϕ′(r)| = |ϕ(r + t)− ϕ(r)− t2ϕ′′(t0)/2| ≤ supϕ+ t2 sup |ϕ′′|/2,

and taking t = |ϕ′(r)|/ sup |ϕ′′| gives (4.12). Applying (4.12) once with ϕ = f ′ and once with

ϕ = 1− f gives

|f ′′(r)|4 ≤ 4 sup |f ′|2 sup |f ′′′|2 ≤ 8 sup(1− f) sup |f ′′| sup |f ′′′|2 = 8(1− f(r)) sup |f ′′| sup |f ′′′|2,

where the suprema are still all taken over [r,∞). Applying (3.1) gives

|f ′′(r)| ≤ C(1− f(r))
1
4 (1 + r)−2− 3δ0

4 .

By (4.7) this implies (4.11) as long as s1 + 2s2 ≤ (7 + 3δ0)/2, which we may suppose without loss

of generality. This completes the proof of (4.5).

The proof of (4.6) proceeds along similar lines. Applying (4.9) with s1 = s2 = s allows us to

reduce the proof of the bound on the first term in (4.6) to the proof of

‖(1 + r)−sχ(r)(h2D2
r + VM − Ej − iε)−1(1 + r)−s‖ ≤ Ch−1. (4.13)

But (4.13) follows from (1.9) with θ = 1 and VD = h−2VM ≥ h−2(VL + f−4/(d−1) − 1)/C =

h−2χ2/C. The bound on the second term of (4.6) follows from the bound on the first term after

taking the adjoint. �

We will also need the following Agmon estimates:
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Proposition 4.2. Let R ∈ (0, 5], χ− ∈ C∞c ((0, R)), χ+ ∈ C∞c ((R,∞)), and s > 1/2. Then

‖χ−(Pj − Ej − iε)−1(1 + r)−s‖L2(R+)→H1
h(R+) + ‖(1 + r)−s(Pj − Ej − iε)−1χ−‖ ≤ C, (4.14)

‖χ−(Pj − Ej − iε)−1χ+‖ ≤ e−1/(Ch), (4.15)

for all ε ∈ R \ 0, and j ∈ N such that Ej ≤ E∗.

Recall that the norms without subscripts are L2(R+)→ L2(R+) here, and that χ− is supported

in the classically forbidden region for Pj − Ej .

Proof. These are similar to the usual Agmon estimates as in [Zw1, §7.1] but we keep track of the

j dependence.

Let v ∈ L2(R+), and let u := (Pj − Ej − iε)−1(1 + r)−sv. Fix ϕ0 ∈ C∞c ((0, R); [0, 1]) which

is identically 1 on a neighborhood I of suppχ−, and let ϕ(r) := mϕ0(r), for a constant m to be

chosen later. Then define

Pϕ : = eϕ/h(Pj − Ej − iε)e−ϕ/h

= h2D2
r + 2iϕ′hDr + Vj − ϕ′2 + hϕ′′ − Ej − iε.

Put w := χ0e
ϕ/hu, where χ0 ∈ C∞c ((0, R)) is 1 near suppϕ. Using Re〈2hϕ′w′, w〉 = −h〈ϕ′′w,w〉,

write

Re〈Pϕw,w〉 = ‖hw′‖2 + 〈(Vj − ϕ′2 − Ej)w,w〉.
We now observe that, using (4.3) and the fact that 1 − f(r)−4/(d−1) > 1 − f(5)−4/(d−1) > 0 for

r ∈ (0, 5), we can choose m > 0 small enough, independent of h and j, such that there is c0 > 0

independent of h and j for which Vj − ϕ′2 − Ej > c0 on suppw for h small enough. This implies

‖w‖ ≤ C‖Pϕw‖ ≤ C‖eϕ/hχ0v‖+ C‖[P, χ0]u‖,

where we used ϕχ′0 = 0 to deduce [Pϕ, χ0]eϕ/hu = [P, χ0]u. We use an elliptic estimate to bound

the commutator term: for χ1 ∈ C∞c ((0, R)) we have, using Vj − Ej ≥ V0 − E0 ≥ −C,

C‖χ1v‖‖χ1u‖ ≥ Re〈(1 + r)−sv, χ2
1u〉 = Re〈(Pj − Ej)u, χ2

1u〉

≥ ‖χ1hu
′‖2 − Ch‖χ1hu

′u‖L1(R+) − C‖χ1u‖2,
(4.16)

from which it follows that, provided χ2 = 1 near suppχ0,

‖[P, χ0]u‖ ≤ Ch‖χ2u‖+ Ch‖χ2v‖ ≤ Ch−1‖v‖,

where we used (4.5). Consequently∫
I
|u|2 = e−2m/h

∫
I
|w|2 ≤ Ce−2m/h

(
‖eϕ/hχ0v‖2 + h−2‖v‖2

)
≤ C‖v‖2, (4.17)

where we used ϕ ≤ m.

To estimate u′ we apply (4.16) with χ1 ∈ C∞c (I), giving

‖χ1hu
′‖2 ≤ C

(∫
I
|u|2dr + ‖χ1hv‖2

)
,
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which implies the bound on the first term of (4.14). The bound on the second term follows from

taking the adjoint, and (4.15) follows from the fact that if supp v ⊂ (R,∞), then χ0v = 0 and we

can improve (4.17) to ∫
I
|u|2 = e−2m/h

∫
I
|w|2 ≤ Ce−2m/hh−2‖v‖2.

�

4.4. Analysis when Ej > E∗. In §4.4 all function norms and inner products are in L2(R), and

operator norms are L2(R)→ L2(R), unless otherwise specified.

For this range of j the Agmon estimate (4.15) must be replaced by a propagation of singularities

estimate. It is convenient to introduce a complex absorbing barrier and to work over R: let

We ∈ C∞(R; [0, 1]) be 1 near (−∞, 1] and 0 near [2,∞), and let

Vj,0 := χ0Vj ,

where χ0 ∈ C∞(R; [0, 1]) is 0 near (−∞, 0] and 1 near [1,∞). We now put

Pj := h2D2
r + Vj,0(r)− iWe(r),

regarded as an unbounded operator on L2(R) with domain H2(R). We will prove

Proposition 4.3. For any s > 1/2 we have

‖(1 + r+)−s(Pj − Ej − iε)−1(1 + r+)−s‖ ≤ Ch−1, (4.18)

where r+ := max{0, r}. For any χ− ∈ C∞c ((0, 3)), χ+ ∈ C∞c ((3,∞)), ψ ∈ C∞c ((0,∞)), we have

‖χ−(r)(Pj − Ej − iε)−1χ+(r)ψ(hDr)‖ = O(h∞). (4.19)

Both (4.18) and (4.19) hold uniformly for all ε > 0, and for all j ∈ N0 such that Ej > E∗.

Note that since Ej is bounded from below away from 0, we can think of (4.18) as the analogue

of (1.7) in this setting; we do not need a weight for r < 0 because the −iWe term makes the

operator Pj − Ej − iε semiclassically elliptic there. It is also similar to the usual nontrapping

resolvent estimate as in [VaZw] and in other papers cited therein, but we need an estimate which

is uniform in j.

The propagation of singularities estimate (4.19) is a microlocalized version of (4.18). The

improved bound is due to the fact that solutions to the classical equations of motion ṙ = 2ρ,

ρ̇ = −V ′j (r) with r(0) > 3 and ρ(0) > 0 cannot have r(t) < 3 for any t > 0.

Proof of (4.18). We prove (4.18) using a microlocal positive commutator argument, rather than

(as is probably possible) integration by parts arguments as in the proof of (1.7). We do this

because the proof of (4.19) follows along very similar lines, and the latter estimate does not

seem to be provable by integration by parts arguments. The idea is to construct a microlocal

commutant, based on the w(r)∂r of the proof of (1.7), but which is nonnegative. This will be

obtained as the quantization of an escape function, defined in (4.26) below.
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As in [VaZw] we will use the semiclassical scattering calculus, and we begin by recalling its

relevant properties. We use (r, ρ) to denote points in T ∗R, and for l, m ∈ R we define the symbol

class Sml to be the set of a ∈ C∞(T ∗R) such that, for any n1, n2 ∈ N0 there is Cn1,n2 such that

|∂n1
r ∂n2

ρ a(r, ρ)| ≤ Cn1,n2(1 + |r|)l−n1(1 + |ρ|)m−n2 , (4.20)

for all (r, ρ) ∈ T ∗R. We also write S∞l :=
⋃
m S

m
l , S−∞l :=

⋂
m S

m
l , and similarly for Sm∞ and

Sm−∞. Below we will consider symbols depending on h and j, and the constants Cn1,n2 in (4.20)

will always be uniform with respect to those parameters. For such a, we denote the semiclassical

quantization by Oph(a), which we define by

Oph(a)u :=
1

2πh

∫∫
ei(r−r

′)ρ/ha(r, ρ)u(r′)dr′dρ. (4.21)

When a symbol is denoted by a lowercase letter (with possible subscripts and superscripts), we

will denote its quantization by the corresponding uppercase letter (with the same subscripts and

superscripts, if any).

We recall the composition and adjoint formulas. If a ∈ Sm1
l1

and b ∈ Sm2
l2

, then there is

a#b ∈ Sm1+m2
l1+l2

such that

AB = Oph(a#b),

and, for any N ∈ N,

a#b(r, ρ) = e−ih∂r′∂ρ′
(
a(r, ρ′)b(r′, ρ)

) ∣∣∣
(r,ρ)=(r′,ρ′)

=
N−1∑
k=0

(−ih)k

k!
∂kρa(r, ρ)∂kr b(r, ρ) + hNzN (r, ρ),

(4.22)

where zN ∈ Sm1+m2−N
l1+l2−N is given by

zN (r, ρ) :=
(−i)N

(N − 1)!

∫ 1

0
(1− t)N−1e−ith∂r′∂ρ′

(
∂Nρ′ a(r, ρ′)∂Nr′ b(r

′, ρ)
) ∣∣∣

(r,ρ)=(r′,ρ′)
dt. (4.23)

Indeed, [Zw1, Theorem 4.14] gives the formula for Schwartz symbols, and [Zw1, Theorems 4.13

and 4.18] give it for a larger class of symbols than the ones we consider, but with weaker bounds

on zN . The statement that zN ∈ Sm1+m2−N
l1+l2−N follows from applying [Zw1, Theorem 4.17] to (4.23).

See also [DyZw, Proposition E.8], [Pa1, (3) and (9)], [Sh], and [Hö, §18.5] for similar expansions,

and [HeSj] for a much more general version.

Similarly, if a ∈ Sml there is a∗ ∈ Sml such that the formal adjoint of A is given by

A∗ = Oph(a∗),

and, for any N ∈ N,

a∗(r, ρ) = e−ih∂r∂ρ ā(r, ρ) =
N−1∑
k=0

(−ih)k

k!
∂kr ∂

k
ρ ā(r, ρ) + hNzN (r, ρ), (4.24)

where this time zN ∈ Sm−Nl−N is given by

zN (r, ρ) :=
(−i)N

(N − 1)!

∫ 1

0
(1− t)N−1e−ith∂r∂ρ∂Nr ∂

N
ρ ā(r, ρ)dt.
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Let

pj := ρ2 + Vj,0(r)− iWe(r)

be the semiclassical symbol of Pj (in the sense that pj ∈ S2
0 and Pj = Oph(pj)), let

Rj := inf{r > 0 | both Vj(r) = Vj,0(r) and Vj,0(r) ≤ E∗/2},

so that R0 ≤ R1 ≤ · · · , and let

Fj := {(r, ρ) | r ≥ 1 and ρ2 ≤ 2E0} \ {(r, ρ) | Rj < r and ρ2 < E∗/3}.

Note that each Fj is a closed neighborhood of the energy surface pj = Ej , and they have been

chosen such that they form a nested sequence F0 ⊂ F1 ⊂ · · · . Moreover, since we only consider j

such that Ej > E∗, all of the Fj agree outside of a compact set: see Figure 4.1.

r r

ρ ρ

Rj1

√
E∗/3

√
2E0

the case Rj > 1 the case Rj < 1

Figure 4.1. The shaded regions are the sets Fj . They are closed nested neigh-

borhoods of the energy surfaces pj = Ej which agree outside of a compact set.

Observe that we have |pj − Ej − iε| ≥ c(1 + ρ2) on T ∗R \ Fj , for some c > 0, which implies

the following elliptic estimate: for any a ∈ Sml , a
′ ∈ Sm−2

l satisfying supp a ∩ Fj = ∅ and

|a′(r, ρ)| ≥ (1 + |r|)l(1 + |ρ|)m−2 for (r, ρ) ∈ supp a, and for any N ∈ R, we have

‖Au‖ ≤ C‖A′(Pj − Ej − iε)u‖+ hN‖ZNu‖, (4.25)

for some zN ∈ Sm−Nl−N . This follows from (4.22) by the usual iterative elliptic parametrix construc-

tion as in [DyZw, Theorem E.32].

To handle Fj , we define an escape function (based on the usual −rρ but modified to be non-

negative near Fj and more slowly growing) as follows. For δ ∈ (0, 1/4), take q̃δ ∈ C∞(R) with

q̃δ(x) = xδ for x ≥ 2, q̃δ(x) = |x|−δ for x ≤ −2, and q̃′δ(x) > 0 for |x| < 2, and put

q(r, ρ) := q̃δ(−rρ)χq(r, ρ), (4.26)

where χq ∈ S−∞0 is real valued, is 1 near all of the Fj , and vanishes in a neighborhood of

{(r, ρ) | r 6∈ (−1, 1 + max
j
Rj) and ρ = 0}

whose boundary consists of two line segments and four half lines as in Figure 4.2.
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r

ρ

−1 1 + maxjRj

Figure 4.2. The kind of neighborhood where χq must vanish.

Then q ∈ S−∞δ , and near Fj we have

{Re pj , q
2} = 2(−2ρ2 + rV ′j (r))q̃′δ(−rρ)q̃δ(−rρ) ≤ −cr−1−2δ, (4.27)

for some c > 0 (here we used Vj ≥ E∗/2 =⇒ rV ′j ≤ −1/C).

Consequently, there are real valued symbols b ∈ S−∞− 1
2

+δ
and a0 ∈ S−∞−1+2δ such that

b2 = {q2,Re pj}+ a0, (4.28)

and such that supp a0 ∩ Fj = ∅ and b ≥ cr−
1
2
−δ > 0 near Fj ; for example we can take b :=

{q2,Re pj}1/2χb for some χb ∈ S−∞0 with χb = 1 near Fj and supported in the set where (4.27)

holds. Note that q depends on δ, and b and a0 depend on δ and j, although our notation does

not reflect this.

Using (4.28), (4.22), and (4.24), we can write

B∗B =
i

h
[Q∗Q,RePj ] +A0 + hA1,

for some a1 ∈ S−∞−2+2δ, giving

‖Bu‖2 =
i

h
〈[Q∗Q,RePj ]u, u〉+ 〈A0u, u〉+ h〈A1u, u〉,

Combining this with (4.25) and the similar elliptic estimate

‖B′u‖ ≤ C‖Bu‖+ hN‖ZNu‖, (4.29)

which holds for all b′ ∈ S−∞− 1
2
−δ which is supported in a small enough neighborhood of Fj and for

suitable zN ∈ S−∞− 1
2
−δ−N , we have (since δ < 1/4),

‖(1 + r+)−
1
2
−δu‖2 ≤ C i

h
〈[Q∗Q,RePj ]u, u〉+ C‖(Pj − Ej − iε)u‖2.

Next

i〈[Q∗Q,RePj ]u, u〉 = −2 Im〈Q(Pj − Ej − iε)u,Qu〉 − 2 Re〈Q(We(r) + ε)u,Qu〉,

giving

‖(1 + r+)−
1
2
−δu‖2 ≤ C

h2
‖(1 + r+)

1
2

+3δ(Pj − Ej − iε)u‖2 −
C

h
Re〈Q(We(r) + ε)u,Qu〉.

But

−Re〈Q(We(r) + ε)u,Qu〉 ≤ |Re〈Q∗[Q,We(r)]u, u〉|,
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thanks to We + ε ≥ 0, and by (4.22) and (4.24) we have ReQ∗[Q,We(r)] = h2a2 for some

a2 ∈ S−∞−∞ , giving

|Re〈Q∗[Q,We(r)]u, u〉| = h2〈A2u, u〉.
This proves (4.18) with s = 1

2 + 3δ, and taking δ > 0 small enough proves it for all s > 1/2. �

Proof of (4.19). Let

u := (Pj − Ej − iε)−1χ+(r)ψ(hDr)v,

with ‖v‖ = 1, and fix δ ∈ (0, 1/4). We will use the following argument by induction to prove

(4.19).

The inductive hypothesis is that for a given k ∈ R there is a neighborhood U of Fj \ (3,∞)×
(0,∞) such that ‖Au‖ ≤ Chk for any a ∈ S−∞

k+ 1
2
−δ which is supported in U .

The inductive step is that there is a (smaller) neighborhood U ′ of Fj \ (3,∞)× (0,∞) such that

‖A′u‖ ≤ Chk+1/2, (4.30)

for any a′ ∈ S−∞k+1+δ which is supported in U ′.

Let us see first that (4.30) for arbitrary k implies (4.19). Indeed, by the elliptic estimate (4.25),

the composition formula (4.22), and the resolvent estimate (4.18), we see that

‖A′′u‖ ≤ CNhN (4.31)

for any N ∈ R and a′′ ∈ S∞−∞ such that supp a′′ ⊂ (0, 3)×R and supp a′′ ∩ Fj = ∅. Then we can

write

χ−(r)u = χ−(r)ϕF (hDr)u+ χ−(r)(1− ϕF (hDr))u

for ϕF ∈ C∞c (R) chosen such that (4.30) applies to the first term on the right and (4.31) applies

to the second.

We remark in passing that elaborating this argument we can actually show that u is semiclas-

sically trivial everywhere away from the union of two sets (including uniformly as |r| → ∞ and

|ρ| → ∞): the first is suppχ+× suppψ, and the second is Fj ∩ (3,∞)× (0,∞) which we can think

of as a neighborhood of the forward bicharacteristic flowout of the first. Here we are focusing on

a more concrete and narrower version of this conclusion which is sufficient for our purposes.

Next observe that the base case (the inductive hypothesis with k = −1 and U = T ∗R) follows

from the resolvent estimate (4.18).

It remains to prove (4.30) under the inductive hypothesis. Roughly speaking, we use an escape

function which on Fj \ (3,∞)× (0,∞) agrees with the one used in the proof of (4.18) above, but

is adapted to vanish near suppχ+ × suppψ and Fj \U . (Note that Fj \U = ∅ when k = −1 but

that for k > −1 we expect Fj \ U 6= ∅ in general).

More specifically, to define the escape function, fix χk, ψk ∈ C∞(R) nondecreasing, and satis-

fying χk = 0 near (−∞, 3], ψk = 0 near (−∞, 0], ψk = 1 near [
√
E∗/3,∞), and χk(r)ψk(ρ) = 1

near Fj \ U . Then let

qk(r, ρ) := q̃k+ 3
2
−δ(−rρ)χq(r, ρ)(1− χk(r)ψk(ρ)),
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where q̃k+ 3
2
−δ and χq are as in (4.26), so that qk ∈ S−∞k+ 3

2
−δ. Calculating as in (4.27), we see that

near Fj we have

{Re pj , q
2
k} ≤ 0,

and near Fj\(3,∞)×(0,∞) we have χk(r)ψk(ρ) = 0 and hence {Re pj , q
2
k} ≤ −cr2k+2−2δ < 0 (this

is slightly better than (4.27) because outside of a compact set we have ρ < 0 on Fj \(3,∞)×(0,∞)

and in particular we are staying away from the outgoing part of the energy surface).

Consequently, as before, we can write

b2k = {q2
k,Re pj}+ a0,k,

where bk ∈ S−∞k+1−δ, a0,k ∈ S−∞2k+2−2δ, supp bk ⊂ supp qk, supp a0,k ∩ (Fj ∪ suppχ+× suppψ) = ∅,

and bk ≥ crk+1−δ > 0 near Fj \ (3,∞)× (0,∞). Hence

B∗kBk =
i

h
[Q∗kQk,RePj ] +A0,k + hA1,k,

for some a1,k ∈ S−∞2k+1−2δ. We refine this by using (4.22) and (4.24) to expand a1,k in powers of h

up to hN in terms of bk, qk, pj , a0,k, and their derivatives, which gives

B∗kBk =
i

h
[Q∗kQk,RePj ] +A0,k + hA′1,k + hNZN ,

where a′1,k ∈ S
−∞
2k+1−2δ has supp a′1,k ⊂ supp qk and zN ∈ S−∞2k+2−2δ−N . Consequently

‖Bku‖2 =
i

h
〈[Q∗kQk,RePj ]u, u〉+ 〈A0,ku, u〉+ h〈A′1,ku, u〉+ hN 〈ZNu, u〉.

By the elliptic estimate (4.29) with bk in place of b we see that to deduce (4.30) it is enough to

show

‖Bku‖2 ≤ Ch2k+1. (4.32)

Now 〈A0,ku, u〉 = O(h∞) by (4.25). Also, since qk vanishes near Fj \U , it follows that a′1,k vanishes

near Fj \ U , so by (4.25), (4.22), and the inductive hypothesis, we have

|〈A′1,ku, u〉| ≤ Ch2k.

Hence to show (4.32) it suffices to show that

i〈[Q∗kQk,RePj ]u, u〉 ≤ Ch2k+2. (4.33)

As before we write, for any N ∈ R,

i〈[Q∗kQk,RePj ]u, u〉 = −2 Im〈Qk(Pj − Ej − iε)u,Qku〉 − 2 Re〈Qk(We(r) + ε)u,Qku〉
≤ 2|Re〈Q∗k[Qk,We(r)]u, u〉|+O(h∞),

where we used supp qk ∩ suppχ+× suppψ = ∅. Now (4.33) follows from the inductive hypothesis

together with the fact that (arguing as in the construction of a′1,k above) ReQ∗k[Qk,We(r)] =

h2A2.k + hNZN , with a2,k, zN ∈ S−∞−∞ , and supp a2,k ∩ Fj ⊂ U . �
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4.5. Proof of Theorems 3.1 and 3.2. In this section all operator norms are L2(X)→ L2(X).

We implement the outline discussed in §4.1. We assume without loss of generality that ε ∈ (0, 1],

as the statements with ε > 1 follow from self-adjointness and the statements with ε < 0 then

follow by taking the adjoint.

We first explain the key dynamical property of the bicharacteristic flow in Xe which allows us

to remove the remainders in the parametrix construction.

Let us denote points in T ∗Xe by (r, y, ρ, η), where y ∈ Y , ρ is dual to r, and η is dual to y.

The energy surface for P in T ∗Xe at energy E0 is the subset of T ∗Xe defined by

p(r, y, ρ, η) := ρ2 + |η|2f(r)−4/(d−1) + VL(r) = E0,

and bicharacteristics in T ∗Xe of this energy surface are solutions γ(t) := ((r(t), y(t), ρ(t), η(t))

to the Hamiltonian equation of motion γ̇(t) := d
dtγ(t) = {p, γ(t)}. The backward bicharacteristic

flowout in T ∗Xe of a point γ0 ∈ T ∗Xe is the set of points γ′ ∈ T ∗Xe such that if γ(t) is the bichar-

acteristic in T ∗Xe with γ(0) = γ0, then γ(t) = γ′ for some t ≤ 0; note that some bicharacteristics

enter T ∗(X \Xe) in finite time, and our definition only counts them while they stay in T ∗Xe.

If γ(t) := ((r(t), y(t), ρ(t), η(t)) is a bicharacteristic, then

ṙ(t) = 2ρ(t), ρ̇(t) =
4

d− 1
|η|2f ′(r(t))f(r(t))−(d+3)/(d−1) − V ′L(r(t)) ≥ 0, (4.34)

and hence r̈ = 2ρ̇ ≥ 0. Consequently no bicharacteristic can visit the sets T ∗((0, 4)), T ∗((4, 5)),

and T ∗((2, 3)) in that order (here and below T ∗((a, b)) denotes the subset of T ∗Xe on which

a < r < b), and this fact is exploited to prove the crucial remainder estimate in (4.38) below.

Fix χe, χK ∈ C∞(R) such that χe+χK = 1, suppχe ⊂ (3,∞), and suppχK ⊂ (−∞, 4). Define

a parametrix for P − E − iε by

G := χK(r − 1)RKχK(r) + χe(r + 1)Reχe(r).

Here

RK = RK(E0 + iε) := (−h2∆− iWK(r)− E0 − iε)−1,

and

Re = Re(E0 + iε) := f(r)

∞∑
j=0

(
(Pj − iε)−1φj ⊗ φj

)
f(r)−1,

and

‖RK‖ ≤ Ca(h)h−1, ‖(1 + r)−s1χe(r + 1)Reχe(r)(1 + r)−s2‖ ≤ Ch−2. (4.35)

Indeed, RK is well defined and obeys (4.35) thanks to (3.3); this follows from the resolvent identity

for ε > 0 small enough and then from the bound Im(−h2∆ − iWK(r) − E0 − iε) ≤ −ε for all

ε > 0. Meanwhile χe(r + 1)Reχe(r) acts on L2(X) thanks to (4.2) and the support property of

χe, even though Re acts on a funny space due to the way we defined the operators Pj differently

depending on j; moreover Re obeys (4.35) by (4.5) and (4.18).

Define operators AK and Ae by

(P − E0 − iε)G = I + [h2D2
r , χK(r − 1)]RKχK(r) + [h2D2

r , χe(r + 1)]Reχe(r) =: I +AK +Ae.
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Our next step is to remove the remainders AK and Ae. The idea of [DaVa1] is to do this using

a semiclassically outgiong property of the resolvents RK and Re.

To explain this property, we use the following notation: if U ⊂ T ∗Xe, then Γ+U is the set of

points in T ∗Xe whose backward bicharacteristic flowout intersects U . Now in the case of RK ,

the needed semiclassically outgoing property says (in the notation of (4.20) and (4.21)) that if

χ̃ ∈ C∞c ((0,∞)) and a ∈ S0
l , then

‖χ̃(r) Oph(a)AK‖ = O(h∞), (4.36)

provided |∂n1
r ∂n2

ρ a(r, ρ)| = O(h∞) for every n1, n2 ∈ N0 and for every (r, ρ) ∈ T ∗((0, 4)) ∪
Γ+T

∗((0, 4)). This property follows from [DaVa1, Lemma 5.1].

On the other hand, the resolvent Re is only semiclassically outgoing for j such that Ej ≥ c > 0

(the relevant statement for us is (4.19)); as Ej → 0 this property fails, but then the gluing region

(the part of X such that r ∈ (2, 5)) becomes classically forbidden, and so we will be able to

estimate and remove remainders using the Agmon estimates of §4.3.

More specifically, we observe that

‖AK‖ ≤ C(1 + a(h)), ‖Ae(1 + r)−s2‖ ≤ C. (4.37)

Indeed, AK obeys the bound thanks to the corresponding bound on RK in (4.35); note that

‖RK‖L2→H2
h(X) ≤ C‖RK‖ since V , W , and ε are bounded, and E0 is fixed. Meanwhile Ae obeys

the bound by (4.14) and (4.18).

We refine the parametrix with some correction terms, observing that A2
K = A2

e = 0:

(P − E0 − iε)G(I −AK −Ae +AKAe) = I −AeAK +AeAKAe.

We will show that

‖AeAK‖ = O(h∞). (4.38)

Assuming (4.38) for the moment, we may write (using Reχe(r)Ae = RKχK(r)AK = 0)

(P − E0−iε)−1 = G(I −AK −Ae +AKAe)(I −AeAK +AeAKAe)
−1

=χe(r + 1)Reχe(r) + χK(r − 1)RKχK(r)− χe(r + 1)ReAK

− χK(r − 1)RKAe + χe(r + 1)ReAKAe +O(h∞).

(4.39)

Note that by by (4.14), (4.18), and the bound on ‖RK‖ in (4.35), we have

‖(1 + r)−s1χe(r + 1)ReAK‖ ≤ Ca(h)h−1. (4.40)

Now multiplying (4.39) on the left by (1 + r)−s1 and on the right by (1 + r)−s2 and estimating

the norm on the right term by term, we see that by (4.35) the first term on the right has norm

bounded by Ch−2, while by (4.35), (4.37), and (4.40), the next four terms have norm bounded

by Ca(h)h−1. This implies (3.4).

We similarly deduce (3.6) from (4.39), but rather than using the bound on Re in (4.35), we use

‖(1 + r)−sχe(r + 1)χJReχe(r)(1 + r)−s‖ ≤ Ch−1. (4.41)
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To prove (4.41), we use (4.6) when Ej ∈ [−cJ h, cJ ], we use (4.18) when Ej ≥ cJ , and we use

the fact that Pj is almost nonnegative (more precisely, Pj ≥ −Ch2 by (4.2) and (4.4)) when

Ej ≤ −cJ h.

To complete the proofs of Theorems 3.1 and 3.2, it remains to show (4.38). We have

AeAK = [χe(r + 1), h2D2
r ]Re[χK(r − 1), h2D2

r ]RKχK(r).

Fix χ̃ ∈ C∞c ((3, 6)) which is 1 on [4, 5], so that

AeAK = [χe(r + 1), h2D2
r ]Reχ̃(r)[χK(r − 1), h2D2

r ]RKχK(r).

For any ψ ∈ C∞c ((0,∞)) we have

‖[χe(r + 1), h2D2
r ]Reχ̃(r)ψ(hDr)[χK(r − 1), h2D2

r ]‖ = O(h∞),

by (4.15) and (4.19), so it remains to show that there is ψ ∈ C∞c ((0,∞)) such that

‖χ̃(r)(I − ψ(hDr))[χK(r − 1), h2D2
r ]RKχK(r)‖ = O(h∞).

We will deduce this from (4.36). Indeed, it is enough to check that there is ρ0 > 0 such that if γ(t)

is a bicharacteristic at energy E0 with γ(0) ∈ T ∗ suppχK(r) and with γ(T ) ∈ T ∗ suppχ′K(r − 1)

for some T > 0, then ρ(T ) ≥ ρ0 (we already know that ρ(T )2 ≤ E0, so we may then take ψ to be

1 near [ρ0,
√
E0]).

Thanks to (4.34) we know that ρ(t) is nondecreasing, so we may assume that max suppχK(r) <

r(t) < min suppχ′K(r − 1) when t ∈ (0, T ), which implies in particular ρ(0) ≥ 0. Then, for

t ∈ (0, T ), we have f(r(t)) ≤ Cf ′(r(t)) and VL(r(t)) ≤ −CV ′L(r(t)), so that

ρ̇(t) ≥ (|η|2f(r)−4/(d−1) + VL(r))/C0 = (E0 − ρ(t)2)/C0.

If ρ(0) =
√
E0, then ρ(T ) =

√
E0 and we are done; otherwise we can integrate and use ρ(0) ≥ 0

to obtain
C0√
E0

tanh−1

(
ρ(T )√
E0

)
≥ T =

r(T )− r(0)

2ρ̄
≥ r(T )− r(0)

2ρ(T )
,

where we used ρ̄ := T−1
∫ T

0 ρ(t)dt ≤ ρ(T ). This implies ρ(T ) ≥ ρ0, for some ρ0 > 0 depending on

C0, E0, and χK .

5. Continuation of the resolvent

In this section we keep all of the assumptions of §3.1, and add the assumption that

r ≥ 6 =⇒ VL(r) = f(r)− 1 = 0.

In §5.1 we briefly review how meromorphic continuation works in this setting, following [Gu]

and [Me, §6.7], and introduce the relevant notation. In §5.2 we prove some useful estimates for a

model problem on the cylindrical end. In §5.3 we use an identity of Vodev from [Vo] to deduce

the existence of a resonance free region.
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Roughly speaking, writing R(z) for the resolvent (P − z)−1 and for its meromorphic continua-

tion, we deduce from (3.4) that

‖χR(E0 ± i0)χ‖ . 1/µ(h),

where χ ∈ C∞c (X) and 0 < µ(h) ≤ h2. Then we use Vodev’s identity to show that this implies

‖χR(z)χ‖ . 1/µ(h),

as long as the distance from z to E0± i0 is small compared to µ(h). However some care is needed

due to the complicated nature of the Riemann surface to which R(z) continues (see §5.1), and

due to the fact that our model resolvent obeys somewhat weaker bounds than the one used in

[Vo] (see §5.2). The precise statement and proof are in §5.3.

Although we keep all of the assumptions of §3.1 in this section, strictly speaking they are not all

needed once we have (3.4). Instead, as long as we had (3.4), we could allow X to be a more general

manifold with cylindrical ends, or allow P to be a black-box perturbation of the Laplacian e.g.

in the sense of [ChDa1, §2]. The proof could also be adapted to include the case of waveguides.

We omit these generalizations here, to simplify the presentation and because all of our interesting

examples satisfy the assumptions of §3.1.

5.1. Meromorphic continuation of the resolvent. In §5.1 we think of h > 0 as being fixed,

until Lemma 5.2, in which we prove an estimate which is uniform as h→ 0.

The spectrum of P is given by [0,∞) together with a finite (possibly empty) set of negative

eigenvalues. For z not in the spectrum we define the resolvent

R(z) := (P − z)−1 : L2(X)→ L2(X).

To define the Riemann surface onto which R(z) meromorphically continues, for each j ∈ N0, and

z ∈ C \ [h2σ2
j ,∞), we introduce the notation

ρj(z) :=
√
z − h2σ2

j ,

with the branch of the square root chosen such that Im ρj(z) > 0 for this range of z (recall that

0 = σ0 ≤ σ1 ≤ · · · are the square roots of the eigenvalues of the nonnegative Laplacian on (Y, gY )

included according to multiplicity).

For each j ∈ N0, there is a minimal Riemann surface Ẑh,j onto which ρj continues analytically

from C \ [h2σ2
j ,∞); this is a double cover of C ramified at the singular point z = h2σ2

j . By

elaborating the construction of Ẑh,j , we see that there is a minimal Riemann surface Ẑh onto

which all the ρj extend simultaneously from C \ [0,∞). This is a countable cover of C, ramified

at z = h2σ2
j for each j, and for each z ∈ Ẑh we have Im ρj(z) > 0 for all but finitely many j. For

more details, see [Gu] and [Me, §6.7].

We use p to denote the projection Ẑh → C, we use the term physical region to refer to the

sheet over C \ [0,∞) on which Im ρj > 0 for all j, and for notational convenience we identify

the physical region with C \ [0,∞). Then R(z) continues meromorphically from the resolvent set
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in C \ [0,∞) to all of Ẑh, as an operator from compactly supported L2 functions to locally L2

functions, and we have (P − p(z))R(z) = I. We refer to the poles of R(z) as resonances.

For E ≥ 0, we denote by E ± i0 the points in Ẑh on the boundary of the physical region which

are obtained as limits lim±δ↓0E+iδ. Note that ρj(E±i0) ∈ iR+ if E < h2σ2
j , and ±ρj(E±i0) > 0

if h2σ2
j < E. Below we will only be concerned with points on Ẑh which are quite close to the

boundary of the physical region. To measure how far apart two points on Ẑh are we use the

following

Lemma 5.1. The function dh : Ẑh × Ẑh → [0,∞] given by

dh(z, z′) := sup
j
|ρj(z)− ρj(z′)| (5.1)

takes only finite values and is a metric on Ẑh.

Proof. To see that |ρj(z)− ρj(z′)| is bounded in j, note that

p(z)− p(z′) = ρ2
j (z)− ρ2

j (z
′) = (ρj(z)− ρj(z′))(ρj(z) + ρj(z

′)). (5.2)

Using that ρ2
j (z) = p(z) − h2σ2

j , we find Re ρ2
j (z) → −∞ as j → ∞. Since Im ρj(z) > 0 if j is

sufficiently large, Im ρj(z) → ∞ as j → ∞ and we find, since the same is true for z′, that for j

large enough |ρj(z)− ρj(z′)| < |ρj(z) + ρj(z
′)|. Since by (5.2), we have

min{|ρj(z)− ρj(z′)|, |ρj(z) + ρj(z
′)|} ≤ |p(z)− p(z′)|1/2,

we have for j sufficiently large, |ρj(z)− ρj(z′)| ≤ |p(z)− p(z′)|1/2.

That dh is a metric is fairly straightforward; for completeness we check the triangle inequality.

Let z, z′, w ∈ Ẑh. Then

|ρj(z)− ρj(z′)| ≤ |ρj(z)− ρj(w)|+ |ρj(w)− ρj(z′)|.

But then

dh(z, z′) = sup
j
|ρj(z)− ρj(z′)| ≤ sup

j
(|ρj(z)− ρj(w)|+ |ρj(w)− ρj(z′)|)

≤ sup
j
|ρj(z)− ρj(w)|+ sup

j
|ρj(w)− ρj(z′)| = dh(z, w) + dh(w, z′).

�

Later we will want to use dh(z, z′) in a resolvent identity, and now we show that dh(z, z′)

controls |p(z)− p(z′)|, at least when z′ is on the boundary of the physical region:

Lemma 5.2. Let E > 0, and let E ± i0 denote one of the points on the boundary of the physical

space in Ẑh as described above. Then for any δ > 0, if h > 0 is sufficiently small,

|p(z)− E| ≤ dh(z, E ± i0)[dh(z, E ± i0) +O(h1/2−δ)]

for z ∈ Ẑh.
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Proof. We have, for any j ∈ N,

|p(z)− E| = |ρ2
j (z)− ρ2

j (E ± i0)|
= |ρj(z)− ρj(E ± i0))||ρj(z)− ρj(E ± i0) + 2ρj(E ± i0)|
≤ |ρj(z)− ρj(E ± i0)| (|ρj(z)− ρj(E ± i0)|+ 2|ρj(E ± i0)|) . (5.3)

By the Weyl law, for any δ′ > 0 there is an h0 = h0(δ′) > 0 so that if 0 < h < h0, the interval

[Eh−2 − h−1−δ′ , Eh−2 + h−1−δ′ ] contains an element of the spectrum of −∆Y ; call this σ2
j0

. We

note that j0 depends on E and on h, but our notation does not reflect that dependence. Then

|ρj0(E ± i0)|2 = |E − h2σ2
j0 | ≤ h

1−δ′ .

Using this in (5.3) with j = j0 proves the lemma, since |ρj0(z)− ρj0(E ± i0)| ≤ dh(z, E ± i0). �

5.2. Resolvent estimates for the model problem on the cylindrical end. Let X0 =

[0,∞)× Y , let ∆0 ≤ 0 be the Laplacian on (X0, dr
2 + gY ), and for h > 0 and z ∈ C \ [0,∞), let

R0(z) := (−h2∆0 − z)−1

denote the semiclassical Dirichlet resolvent.

For Im ξ > 0, let RD(ξ) be the resolvent for the Dirichlet Laplacian on the half-line with spectral

parameter ξ2 and Schwartz kernel given by

RD(ξ, r, r′) =
i

2hξ
(eiξ|r−r

′|/h − eiξ(r+r′)/h). (5.4)

Then, for z in the physical region of Ẑh (see §5.1), we have

R0(z) =
∞∑
j=0

RD(ρj(z))φj ⊗ φj , (5.5)

where {φj}∞j=0 is a complete set of real-valued orthonormal eigenfunctions of the Laplacian on Y

and −∆Y φj = σ2
jφj .

Moreover, R0(z) continues holomorphically to Ẑh as an operator from compactly supported L2

functions to locally L2 functions. In this section we prove some estimates for R0(z) which will be

needed when we use a resolvent identity to find a neighborhood of the boundary of the physical

region in which R(z) has no poles.

Proposition 5.3. Let χ ∈ C∞c ([0,∞)) and fix N > 0. If Im ξ, Im ξ′ > −Nh, then

‖χRD(ξ)χ− χRD(ξ′)χ‖ ≤ Ch−3|ξ − ξ′|. (5.6)

If Im ξ, Im ξ′ > −Nh and α1 + α2 = 1, 2, then

‖χhα1Dα1
r RD(ξ)hα2Dα2

r χ−χhα1Dα1
r RD(ξ′)hα2Dα2

r χ‖ ≤ Ch−2|ξ−ξ′|(|ξ|+ |ξ′|+1)α1+α2−1. (5.7)

Fix δ > 0 and suppose δ < arg ξ, arg ξ′ < π − δ and |ξ|, |ξ′| ≥ 1. Then if α1 + α2 ≤ 2,

‖hα1Dα1
r RD(ξ)hα2Dα2

r χ− χhα1Dα1
r RD(ξ′)hα2Dα2

r ‖ ≤ C|ξ − ξ′|. (5.8)

All the norms above are L2(R+)→ L2(R+), and the constants depend on χ, N , and δ.
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Proof. We begin with (5.6). Note that χ d
dξRD(ξ)χ has Schwartz kernel

iχ(r)

2h3(ξ/h)2

(
(−1 + i|r − r′| ξ

h
)eiξ|r−r

′|/h − (−1 + i(r + r′)
ξ

h
)eiξ(r+r

′)/h

)
χ(r′).

With Im ξ > −Nh, this can be pointwise bounded by C/h3, even when ξ → 0, and hence since

χ is compactly supported we have ‖χ d
dτRD(τ)χ‖ ≤ C

h3
. Integrating from ξ to ξ′ gives (5.6). We

note for future reference that if |ξ| ≥ h, then we can improve the estimate to∣∣∣∣ iχ(r)

2h3(ξ/h)2

((
−1 + i|r − r′| ξ

h

)
eiξ|r−r

′|/h −
(
−1 + i(r + r′)

ξ

h

)
eiξ(r+r

′)/h

)
χ(r′)

∣∣∣∣
≤ C/(h2|ξ|), when |ξ| ≥ h.

(5.9)

Next consider the operator h ∂
∂rRD(ξ). It has Schwartz kernel

−1

2h

(
sgn(r − r′)eiξ|r−r′|/h − eiξ(r+r′)/h

)
.

Differentiating this with respect to ξ and proceeding as above gives
∥∥χ d

dτ h
∂
∂rRD(τ)χ

∥∥ ≤ C
h2
.

Integrating in τ from ξ to ξ′ gives (5.7) for α1 = 1, α2 = 0. To prove (5.7) for α1 = 2, α2 = 0,

we can argue as before using the Schwartz kernel. Alternately, we can note that h2 ∂2

∂r2
RD(ξ) =

I + ξ2RD(ξ) and proceed as in the proof of the first inequality, using the improvement (5.9).

Similar techniques give (5.7) when α2 6= 0, if we consider the Schwartz kernel of RD(ξ) ∂∂r .

When ξ, ξ′ satisfy δ < arg ξ, arg ξ′ < π − δ they are both in the physical region and we can

use the resolvent equation RD(ξ)− RD(ξ′) = (ξ2 − ξ′2)RD(ξ)RD(ξ′). If |ξ| ≥ 1, using the bound

on arg ξ we have ‖hα1Dα1
r RD(ξ)hα2Dα2

r ‖ ≤ C|ξ|α1+α2−2, where the constant depends on δ. The

same inequality holds if ξ is replaced by ξ′ everywhere. Using this in the resolvent equation

proves (5.8). �

Proposition 5.4. Let E > 0 and consider one of the points E ± i0 ∈ Ẑh which lies on the

boundary of the physical region. Fix N > 0 and χ ∈ C∞c (X0). Then

‖χR0(z)χ− χR0(E ± i0)χ‖ ≤ Ch−3dh(z, E ± i0), (5.10)

for all z ∈ Ẑh such that dh(z, E ± i0) < Nh. If α1 + α2 = 1, 2, then instead

‖χhα1Dα1
r R0(z)hα2Dα2

r χ− χhα1Dα1
r R0(E ± i0)hα2Dα2

r χ‖ ≤ Ch−2dh(z, E ± i0), (5.11)

for all z ∈ Ẑh such that dh(z, E ± i0) < Nh.

Proof. We begin by noting that for any j ∈ N, Im ρj(E ± i0) ≥ 0, and for h2σ2
j > E we have

ρj(E ± i0) ∈ iR+. Hence if dh(z, E ± i0) < Nh, then Im ρj(z) ≥ −Nh and Im ρj(z) → ∞ as

j →∞.

Without loss of generality, we may assume χ is a function of r only, so that we may consider

χ as a function defined on [0,∞). Using the expression (5.5), we find that

‖χR0(z)χ−χR0(E±i0)χ‖L2(X0)→L2(X0) = sup
j
‖χRD(ρj(z))χ−χRD(ρj(E±i0))χ‖L2(R+)→L2(R+).

Now (5.10) follows directly from (5.6) and the definition (5.1) of dh(z, E ± i0).
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To prove (5.11), we note that for j sufficiently large we have h2σ2
j > E + 5, and π/4 <

arg ρj(z), arg ρj(E ± i0) < 3π/4. Using (5.7) when h2σ2
j ≤ E + 5 and (5.8) when h2σ2

j > E + 5,

along with the definition of dh(z, E ± i0) proves (5.11). �

5.3. The resonance free region. Throughout §5.3, we keep all of the assumptions of §3.1, as

well as the assumption that

r ≥ 6 =⇒ VL(r) = f(r)− 1 = 0.

To show the existence of a resonance free region, we use an identity due to Vodev [Vo, (5.4)]. In

[Vo] the identity is stated only for operators which are potential perturbations of the Laplacian on

Rd. However, it in fact holds in far greater generality for operators which are, in an appropriate

sense, compactly supported perturbations of each other. Here we state a version adapted to our

circumstance.

Lemma 5.5. ([Vo, (5.4)]) Let χ1 ∈ C∞c (X; [0, 1]) be such that r ≥ 6 near supp 1 − χ1. Choose

χ ∈ C∞c (X; [0, 1]) so that χχ1 = χ1. Then for z, z0 ∈ Ẑh,

χR(z)χ− χR(z0)χ = (p(z)− p(z0))χR(z)χχ1(2− χ1)χR(z0)χ

+ (1− χ1 − χR(z)χ[h2∆, χ1]) (χR0(z)χ− χR0(z0)χ) (1− χ1 + [h2∆, χ1]χR(z0)χ).

It is important to note in the identity above that χR0χ only appears where it is multiplied

both on the left and right by an operator (either 1− χ1 or [h2∆, χ1]) supported in the set where

r ≥ 6. If we think of this set as a subset of X0 = [0,∞)×Y , then the appearance of χR0χ makes

sense.

We omit the proof of Lemma 5.5 because it is essentially the same as that of [Vo, (5.4)] (see

also [DyZw, Lemma 6.26] and, for another version in the setting of cylindrical ends, [ChDa1,

Lemma 2.1]).

The proof we give of the following theorem follows the proof of [Vo, Theorem 1.5], but we write

it out in detail because it is short and to highlight the role of the estimates we proved in §5.2.

Theorem 5.6. With χ as in Lemma 5.5, using (3.4) take constants C and µ(h) such that

‖χR(E ± i0)χ‖L2(X)→L2(X) ≤
C

µ(h)
,

where E = E0 and 0 < µ(h) ≤ h2. Then there are constants C ′, C̃ so that for h > 0 sufficiently

small, χR(z)χ is analytic in {z ∈ Ẑh : dh(z, E ± i0) < C ′µ(h)}. Moreover, in this region the

cutoff resolvent satisfies the estimate

‖χR(z)χ‖L2(X)→L2(X) ≤
C̃

µ(h)
,

with C̃ depending on χ.
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Proof. We use the identity from Lemma 5.5, with z0 = E ± i0. Rearranging, we find (all norms

here are L2(X)→ L2(X))

‖χR(z)χ‖ ≤ ‖χR(E ± i0)χ‖+ 2|p(z)− E|‖χR(z)χ‖‖χR(E ± i0)χ‖
+ ‖(1− χ1)(χR0(z)χ− χR0(E ± i0)χ)(1− χ1)‖

+ ‖χR(z)χ‖‖[h2∆, χ1])(χR0(z)χ− χR0(E ± i0)χ)(1− χ1)‖

+ ‖(1− χ1) (χ(R0(z)χ− χR0(E ± i0)χ) [h2∆, χ1‖‖χR(E ± i0)χ‖

+ ‖χR(z)χ‖‖χR(E ± i0)χ‖‖[h2∆, χ1] (χR0(z)χ− χR0(E ± i0)χ) [h2∆, χ1]‖.

By writing this bound in this detailed fashion we hope to indicate the importance of the improved

estimate (5.11) as compared to (5.10), so that, for example,

‖[h2∆, χ1](χR0(z)χ− χR0(E ± i0)χ)(1− χ1)‖

= ‖[h2∆, χ1](R0(z)χ−R0(E ± i0)χ)(1− χ1)‖ ≤ Cdh(z, E ± i0)/h. (5.12)

Using the bound on ‖χR(E ± i0)χ‖ from the assumptions along with bounds of Proposition 5.4,

we find

‖χR(z)χ‖ ≤ C

µ(h)
+
Cdh(z, E ± i0)

µ(h)
‖χR(z)χ‖+

Cdh(z, E ± i0)

hµ(h)

+ Cdh(z, E ± i0)

(
1

h
+

1

µ(h)

)
‖χR(z)χ‖.

Here we have also bounded |p(z) − E| ≤ dh(z, E ± i0), which is weaker than the estimate from

Lemma 5.2 since we will have dh(z, E ± i0) = O(µ(h)). If we choose C ′ sufficiently small, the

coefficients of ‖χR(z)χ‖ on the right hand side above will be small enough that the terms with

‖χR(z)χ‖ can be absorbed in the left hand side, proving the result. �
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