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ABSTRACT. Manifolds with infinite cylindrical ends have continuous spectrum of increasing mul-
tiplicity as energy grows, and in general embedded resonances (resonances on the real line, embed-
ded in the continuous spectrum) and embedded eigenvalues can accumulate at infinity. However,
we prove that if geodesic trapping is sufficiently mild, then the number of embedded resonances
and eigenvalues is finite, and moreover the cutoff resolvent is uniformly bounded at high energies.
We obtain as a corollary the existence of resonance free regions near the continuous spectrum.

We also obtain improved estimates when the resolvent is cut off away from part of the trapping,
and along the way we prove some resolvent estimates for repulsive potentials on the half line which
may be of independent interest.

1. INTRODUCTION

1.1. Resolvent estimates for manifolds with infinite cylindrical ends. The high energy
behavior of the Laplacian on a manifold of infinite volume is, in many situations, well known
to be related to the geometry of the trapped set; this is the set of bounded maximally extended
geodesics. In the best understood cases, such as when the manifold has asymptotically Fuclidean
or hyperbolic ends (see [Zw2, §3] for a recent survey), the trapped set is compact. Some results
have been obtained for more general trapped sets (e.g. manifolds with cusps were studied in
[CaVol) but less detailed information is available.

In this paper we study manifolds with infinite asymptotically cylindrical ends, which have
noncompact trapped sets. A motivation for this study comes from waveguides and quantum dots
connected to leads. The spectral geometry of these is closely related to that of asymptotically
cylindrical manifolds, and they appear in certain models of electron motion in semiconductors and
of propagation of electromagnetic and sound waves. We give just a few pointers to the physics
and applied math literature here [LoCaMu, Ra, RaBaBaHu, ExKo, BoGaWo]. In [ChDa2], we
prove analogues of some of the results below for suitable (star-shaped) waveguides.

The fundamental example of a manifold with cylindrical ends is the Riemannian product R xS*,
which has an unbounded trapped set consisting of the circular geodesics. We are interested in the
behavior of the resolvent of the Laplacian (and its meromorphic continuation, when this exists)
for perturbations of such cylinders and their generalizations. As we discuss below, this behavior
can sometimes be very complicated, but we show that if some geometric properties of the manifold
are favorable, then the resolvent is uniformly bounded at high energy. In the companion paper

[ChDal], we study the closely related problem of long time wave asymptotics on such manifolds.
1
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We begin with an illustration of a more general theorem to follow, by stating a high energy
resolvent estimate for two kinds of mildly trapping manifolds (X, ¢g) with infinite cylindrical ends.

Example 1. Let (r,0) be polar coordinates in R? for some d > 2, and let

X =R, go = dr’® + F(r)dS,

where dS is the usual metric on the unit sphere, F(r) = r2 near r = 0, and F’ is compactly

supported on some interval [0, R] and positive on (0, R); see Figure 1.1.

FIGURE 1.1. A cigar-shaped warped product.

Then for r(t) > 0 all go-geodesics obey

2
i(t) = %T(t) =2l F'(r(t))F(r(t)) 7 > 0,

where 7(t) is the r coordinate of the geodesic at time ¢ and 7 is the angular momentum. Con-
sequently, the only trapped geodesics are the ones with 7(t) = F'(r(t)) = 0, that is the circular
ones in the cylindrical end. This is the smallest amount of trapping a manifold with a cylindrical
end can have.

Let g be any metric such that g — go is supported in {(r,6) | » < R}, and such that g and
go have the same trapped geodesics. For example we may take g = gy + cg1, where g; is any
symmetric two-tensor with support in {(r,0) | » < R}, and ¢ € R is chosen sufficiently small
depending on g;. Alternatively, we may take g = dr? + gs(r), where gs(r) is a smooth family of
metrics on the sphere such that gg(r) = r2dS near r = 0 and gg(r) = F(r)dS near r > R, and
such that 9,gs(r) > 0 on (0, R). This way we can construct examples where g — go is not small.

Example 2. Let (X, gy) be a convex cocompact hyperbolic surface, such as the symmetric
hyperbolic ‘pair of pants’ surface with three funnels depicted in Figure 1.2.

In particular, there is a compact set N C X (the convex core of X) such that
X\ N = (0,00)r x Yy, gH\X\N = dr? + cosh?r dy?,
where Y is a disjoint union of £ > 1 geodesic circles (possibly having different lengths).

We modify the metric in the funnel ends so as to change them into cylindrical ends in the
following way. Take g such that

gln = guln, glx\w = dr? + F(r)dy?,

where F(r) = cosh?r near 7 = 0, and F’ is compactly supported and positive on the interior of
the convex hull of its support.
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FIGURE 1.2. A hyperbolic surface (X, gg) with three funnels, and a modification
of the metric which changes the funnel ends to cylindrical ends.

To obtain higher dimensional examples, we can take (X, gg) to be a conformally compact
manifold of constant negative curvature, with dimension d > 3, but in this case we need the
additional assumption that the dimension of the limit set is less than (d —1)/2. The construction
of g now becomes more complicated and we give it in §3.3 below.

Our first result concerns only the above examples.

Theorem 1.1. Let (X, g) be as in Example 1 or 2 above, and let A < 0 be its Laplacian. There
is z9 > 0 such that for any x € C°(X) there is C > 0 such that

[x(—A - Z>71XHL2(X)—>L2(X) <, (1.1)

for all z € C with Rez > zg and Im z # 0.

Here (—A — z)~! denotes the standard resolvent which maps L?(X) — L?(X), and not its
meromorphic continuation. Below, in Theorem 5.6, we also obtain bounds for the meromorphic
continuation, but these are more complicated to state.

The bound (1.1) is optimal in the sense that we cannot replace the right hand side by a
function of z which tends to 0 as Re z — oo. Indeed, taking the case of Example 1 with d = 2 for
definiteness, we have (—A — k2)v(r)e™®® = —v"(r)e* for any v € C°((R,00)) and k € Z.

Note also that the resolvent in these examples is better behaved than it is for the (geometri-
cally simpler) Riemannian product (X, g) = (R x Y, g = dr? + gy), where (Y, gy) is a compact
Riemannian manifold. Indeed, take y € C2°(X) a function of r such that xy > 0 and y # 0, and
take xo € C°(X) such that xox = x, and let ¢ be an eigenfunction of the Laplacian on (Y, gy)
with —A¢ = 02¢. Then, by separation of variables,

z 0'2
(A = 2)"Dxxodllzzx) = [l 2y X (=87 = 2+ %) xll @~ +oo,  (1:2)

where we take the limit using the explicit formula for the resolvent [DyZw, (2.2.1)]. For our proof
of Theorem 1.1 it will be crucial that F’ > 0 near the cylindrical ends in Examples 1 and 2, and
this is what is missing in the Riemannian product just discussed.
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We will deduce Theorem 1.1 from Theorem 3.1 below, which gives a stronger result (allowing x
to be replaced by a noncompactly supported weight) and also applies to Schrédinger operators on
more general manifolds with asymptotically cylindrical ends. We will further prove in Theorem
3.2 that we can obtain stronger resolvent bounds by suitably refining the cutoffs y.

An estimate like (1.1) has well-known implications for the spectrum of —A. In particular, by
[ReSi, Theorem XIII.20], the spectrum is purely absolutely continuous on (zp,00), which rules
out any embedded eigenvalues there, and we will see below, in §5, that embedded resonances
(resonances on the real line, embedded in the continuous spectrum) are also ruled out.

To our knowledge ours is the first result ruling out the presence of infinitely many embedded
eigenvalues or resonances for a large class of examples of manifolds with infinite cylindrical ends.

The situation can be very different for other manifolds with cylindrical ends. For example,
let X =R xY and g = dr? + F(r)gy, where (Y, gy) is a compact Riemannian manifold and
F € C*(R;(0,00)), 1 — F is compactly supported, and max F' > 1. Then —A has infinitely many
embedded eigenvalues converging to +oo ([ChZw, §3], [Pa2, (3.6)]).

The study of the spectral and scattering theory of the Laplacian on manifolds with cylindrical
ends, and their perturbations, goes back to Guillopé [Gu] and Melrose [Me| and is an active
and wide-ranging area of research: see for example [IsKuLa, MiiSt, RiTi] for some recent results
and more references. There is also a large of body of literature on the closely related study of
the Laplacian on waveguides: something of a survey can be found in [KrKi], and let us also
mention the older result [Go|, and that there is a nonexistence result for eigenvalues in [DaPa].
In a slightly different direction, weighted resolvent estimates up to the spectrum and limiting
absorption principles have been investigated using Mourre theory [Mo, AmBoGe, DeGé], and this
has been applied to geometric situations such as ours in [Ni].

Our results also have implications for the distribution of resonances; these are the poles of
the meromorphic continuation of the resolvent, and their study in this context also goes back to
[Gu, Me]. An existence result for resolvent poles (in the presence of appropriate quasimodes, and
which may be embedded in the real line or complex) on waveguides can be found in [Ed], and for
more such results see [KrKf|. Upper bounds on the number resonances for manifolds with infinite
cylindrical ends are given in [Chl].

In Theorem 5.6, we will use an identity due to Vodev [Vo] to prove that (1.1) (or a more general
resolvent estimate up to the spectrum) implies the existence of a resonance free region near the
continuous spectrum. In a companion paper to this one, [ChDal], we use these results to prove
an asymptotic expansion for solutions to the wave equation.

1.2. Repulsive potentials on the half line. In this paper we also obtain some resolvent esti-
mates for Schrodinger operators on the half line which we need in the course of the proofs of our
main results, and which may be of independent interest. We state them here.

Let Vp be a bounded, nonnegative, nonincreasing potential on the half line, such that

Vh(r) < =6y (1+7)"'Vp(r) <0, (1.3)
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for some 0y > 0 and for all » > 0, where if Vp is not everywhere differentiable then (1.3) is meant
in the sense of measures. Note that in particular the potential is repulsive in the sense of classical
mechanics, since V/,(r) < 0 except where Vp(r) = 0.

For h >0 and ¢ € C\ [0,00) let
(=h202 +Vp — )t
denote the Dirichlet resolvent. In this paper we prove the following semiclassical resolvent esti-
mates:

Theorem 1.2. For all s, s, sa > 1/2 with sy + so > 2 there is C > 0 such that for all
¢ e C\[0,00) and h > 0 we have

11+ 7)™ (=h202 + V() — )~ (1 + 1)~ < hcm (14)
(1 +7) " (=h?02 + Vp(r) = Q) (1 +7) 72| < hcz (1.5)

and
VD)2 (1 +r)"V2(=h207 + Vi (r) = ) (1 + 1) %) < % (1.6)

where the norms are L>(Ry) — L2(R,).

Recall that, in the case Vp = 0, (1.4) and (1.5) are well known to be sharp as dist((, [0, 00)) — 0;
this can be checked from the explicit formula for the resolvent in that case, which we give below
n (5.4).

In fact, we will deduce these estimates from some uniform estimates for Schrédinger operators
with repulsive potentials, replacing C' by an explicit constant. To state them, let
Pp = =02 + Vp(r),
regarded as a self-adjoint operator on L?(R; ) with domain {u € H?(Ry) | u(0) = 0}.
Theorem 1.3. For all 6 >0, § € [0,1], and z € C\ [0,00), we have

10+ )2 (P~ 2) <1+r>”“||_”*f( 1)

o

O R R B R ¢ ;) 1)

VoS (14 n) 52 B 2 Vo) T (e < 22 e W )

where the norms are L*(R,) — L*(R,).

and

Note that Theorem 1.3 implies Theorem 1.2.

If Vp € C1([0,00)) is compactly supported and has V}, < 0 on the interior of the support of Vp,
then (1.3) is satisfied for some dy > 0 (because log Vp and (log Vp)' tend to —oo at the boundary
of the support). Moreover the class of potentials satisfying (1.3) for a given dy > 0 is closed under
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nonnegative linear combinations and contains all functions of the form (1 + 7)™ with m > dy.
The same proof could also handle potentials Vp satisfying (1.3) and such that Vp(r) — oo as
r — 0, provided Vp(r)|u(r)|> = 0 as 7 — 0 for all u in the domain of Pp.

The bounds (1.4) and (1.7) are best when the spectral parameter is not too close to 0, and
(1.5) and (1.8) are best when the spectral parameter is close to 0. We can think of (1.6) and (1.9)
as being a kind of Agmon or elliptic estimate in the limit |z| — 0 (see also (4.14) below); they
give an improvement when we are looking at the resolvent in the elliptic and classically forbidden
range in the interior of the support of Vp. When Vp(r) ~ (1 4+7)~™ as r — oo for some m > 0,
the weights in (1.9) are also to be compared to the weights in [Ya, Naj; see in particular [Na,
Theorem 1.3].

If we do not demand explicit constants in the estimates, then Theorem 1.3 is essentially well-
known if either Vp(0) (which we can think of as a coupling constant) is not large (see [Ya, Chapter
4] for a more general discussion of scattering on the half line, and [KoTr| for some more recent
results and references), or if Vp(0) and |z| are large (this is the semiclassical, nontrapping regime:
see [Ya, Chapter 7, Theorem 1.6] for a similar result). The main novelty here is that we cover all
values of Vp(0) and |z| uniformly, and for our applications in §3 we will especially need the case
where Vp(0) is large compared to |z|: this corresponds to a low-energy semiclassical problem.

We prove Theorem 1.3 in §2 below.

1.3. Notation. Throughout the paper C is a large constant which can change from line to line,
and all estimates are uniform for h € (0, h;], where h; can change from line to line. It will
sometimes be convenient to write derivatives with respect to r using the notation D, := —i0,.
We use

lull m(x) = [(—h*A + 1)m/2uHL2(X)7

and similarly define [lu[|gm®) and |[ul gm(r,) (in the latter case we will only be concerned with
u vanishing near » = 0, so the boundary condition on the Laplacian implicit in the notation in
this case is immaterial).

The energy level Ey > 0 is fixed in §3.1, along with the rest of the notation needed for our
general abstract setup of a mildly trapping Schrédinger operator on a manifold with asymptotically
cylindrical ends. The auxiliary notations F; and E, are defined in §4.2 in terms of this setup.
The notation E without a subscript is used in §2 and §5 to denote a variable positive energy, not
related in any particular way to Egy or Ej or E.

The radial variable r on the cylindrical end has the same meaning in §3.1, in §4, and in §5. The
usage in §2 is consistent with this usage, if we separate variables to write Schrédinger operator
on an asymptotically cylindrical end as a sum of Schrédinger operators on R;. For example, if
A is the Laplacian on ((0,00) x Y, dr? + gy) we write

o0

A= (=07 +07)¢; ® ¢;, to mean — Au= Y ¢; /Y (=02 + o ulr,y)é; (y)dvol(y),
J

7=0 =0
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where {‘f’j}?io is a complete set of real-valued orthonormal eigenfunctions of the Laplacian on Y
_ 2
and *qubj = Uj¢j«
Of course the results of §2 also apply to more general Schrédinger operators on R .

The variable r is used a little differently in §1.1, §3.3, and §3.4. To convert the r in one of these
sections to the r in the rest of the paper, use the affine map

7“*—)6(7“—R1)/(R2—R1), (1.10)

for suitably chosen R; and Rg, and then multiply g by (Re — R1)?/36 to remove the factor that
appears in front of dr?. For Example 1, take Ry such that inf{r > 0 | g(r,y) = go(r,y) for all y} <
R; < R and use Ry = R. For Example 2, let Ry = maxsupp F’, and take R; € (0, Rg). For §3.3,
let R1 = R+ 1 and Ry = maxsupp F’. For §3.4, let Ry = R/2 and Ry = R.
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5.  Continuation of the resolvent 29
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2. RESOLVENT ESTIMATES ON THE HALF LINE

In this section we prove Theorem 1.3. All function norms and inner products in this section
are in L2(R, ), and operator norms are L?(R) — L%(R.).

Proof of (1.7). Let F := Rez and ¢ := |Im z|. We begin by proving an a priori estimate when
E > 0 and ¢ > 0. Roughly speaking, the idea is to exploit the fact that, since V}, < 0, we have
the positive commutator [Pp,rd,] = —282 — rV},(r) > 0. However, to be able to control the
remainder terms in our positive commutator argument, we must replace rd, with w(r)d, where
w grows more slowly. Such commutants have been used by many authors (see [ReSi, §XIIL.7] and
references therein); below we take an approach inspired by [Vo, Dal] and papers cited therein.

Take w € C*(]0,00);[0,1]) such that w'(r) > 0 for all » > 0, and take u € H?(R) such that
u(0) = 0 and (w')~Y2(Pp — z)u € L?; in particular, u(r) and «/(r) tend to 0 as 7 — oo. Adding
together the integration by parts identities

—{(w(Vp — E))u,u) = 2Re{w(Vp — E)u,u’),
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and
(w'!,u'y 4+ w(0)|u'(0)]* = —2Re(wu”, '),
gives
E|[Vwul? + |V ||? = (wVp) u, u) + w(0)[u'(0)> = 2Re(w(Pp — 2)u, u') — 2Im z Im(wu, u').

Since 0 < w < 1, this implies

E|[Vwul? + [Vw'd'||? = (wVp) u,u) <2 (Pp — 2)u (2.1)

|7

Later we will choose w so that (wVp)" < 0, but first we estimate the second term on the right,
which we think of as a remainder term. Since Vp > 0, integrating by parts gives

1
u’2<ReP—zu,u—|—Eu2<HP—zu
oI < Re((Pp — 2Ju,) + Eful < ||~ (Pp - 2)
and we also have
1
2 _ _ _
elull® = [Im((Pp 2)u7u>!SH ﬁw,(PD z)u

Combining these gives

1 2
e¥llull?llw']* < (B +e) (Pp = 2)ul| [|Vw'ul?,

3

and then plugging this into (2.1) gives

—_

E|[Vw'u|® + V' | = (wVb)'u, u) < 2

(Po = 2)u|| (V|| + VE +&|[Varull)

2

Completing the square gives

(@u\@uu _ V? J%,(pD _ 2 >2+ (H\/Ju'n - H;W(PD ) )2 -
—((wVp) u,u) < 2EE+E 1w' (Pp — 2)u 2
We now take
w(r) i=1- 5= 5(1 +7)7, (2.3)
so that, by (1.3), we have
(wVp)'(r) = o j_(sg/)‘(/;[)_(:i)l-’_(s +w(r)Vp(r) < (Svl‘jfff) ((1 +7)70 — 1) <0, (2.4)

where, as with (1.3), we understand (2.4) in the sense of measures in the case that Vp is not
differentiable everywhere. We may now drop the second and third terms from the left hand side
of (2.2), giving

1
/'

\/EH\/JUH < \/E—f-e\—l/—f;/QE—f-E

(Pp — 2)ul|. (2.5)
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From (2.5) we can deduce a weighted resolvent estimate when Rez > 0, Imz # 0. To obtain
an estimate for all z € C\ [0, 00), we use the Phragmén-Lindel6f principle in the following way.
For u, v € L?(Ry), put

U(z) = ((1471)" % (Pp—2) (1 4+7)" = u,0)Vz, (2.6)
and for o > 0 put
Qp:={z€ClaRez <|Imz|}.
Then U is holomorphic in €Q,, where it obeys

VAol V14 a”?[u]o]

VEIS Gt ooy = VA
Moreover, by (2.5), for z € 09, \ {0}, we have
U < (VI+a+v2+a) (@ +6,") ulllv]- (2.7)
Then the Phragmén-Lindeldf principle (see e.g. [ReSi, p. 236]) implies (2.7) for all z € €.
Taking o — 0 gives (1.7). O

Proof of (1.8). We begin by following the proof of (1.7), but we drop the first term, rather than
the second, from the left hand side of (2.2), so that in place of (2.5) we have

V|| < (14 V2 +eE7T) H\/%(

We now integrate by parts to obtain a weighted version of the Poincaré inequality:

— 2)ul|.

oo - 2w ) < e

Jon= < it ot (1 Ve | L

We now apply the Phragmén—Lindel6f principle as in the proof of ( .7), with the difference that
in place of (2.6) we use

—3-3
2w

giving

-(Pp — z)u|| . (2.8)

U(z) = ((1+7)"2 (Pp—2) "' (1+7) "2 u,0),
to obtain (1.8) when # = 1. Then taking the adjoint gives the result for § = 0, and interpolating
(that is to say, applying the Phragmén—Lindel6f principle with respect to 6 € C such that Ref €
[0,1]) gives the result for 6 € (0,1). O

Proof of (1.9). We again proceed as in the proof of (1.7), but this time we replace (2.3) by
oy

=5
26y o) T

w(r):=1-

so that (2.4) is replaced by
(5\/VD(7‘)

(wVp)'(r) < T4
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Now dropping the first two terms on the left hand side of (2.2) gives

(5\/[/[)(7“) 2F + ¢
-~ 7 <
<2(1+r)“’“ =T F

1 2

N7

(Pp — 2)u

9

or

1
Vo 51+ 1)~ — 2741+ 0~ < 2 i
1%

We now proceed as in the proof of (1.8), applying the Phragmen—Lindel6f principle to obtain
(1.9) for 6 = 1, and then taking the adjoint and interpolating to obtain (1.9) for 6 € [0, 1). O

3. RESOLVENT ESTIMATES FOR MILDLY TRAPPING MANIFOLDS

In §3.1 we state our main resolvent estimates for mildly trapping manifolds with asymptotically
cylindrical ends, under suitable abstract assumptions. In the remainder of §3 we give examples
which satisfy the assumptions, and then in §4 we prove the estimates.

3.1. Resolvent estimates for asymptotically cylindrical manifolds. Let (X, g) be a smooth
Riemannian manifold of dimension d > 2, with or without boundary, with the following kind of
asymptotically cylindrical ends: we assume there is an open set X, C X such that 0X N X, = &,
X \ X, is compact, and

X, =(0,00), XY,  g|x. =dr?+ f(r)"/@Vgy.

Here Y is a compact, not necessarily connected, manifold without boundary of dimension d — 1,
gy is a fixed smooth metric on Y and f € C*°([0,00); (0, 1]). We suppose further that there is
do > 0 such that

I(f = 1)® ()] < Cr(1 +r)7*7% for all k € Ny and r > 0, (3.1)

and
f'(r) > 81 +7)" (1 = f) >0 for all 7 > 0. (3.2)

Suppose finally that f(r) < 1 for r < 6. Note that if we replace r < 6 by r < rg in this last
condition, we can reduce to the case g = 6 by multiplying g by a constant and rescaling r (i.e.
using (1.10) with Ry = 0 and Rz = r9).

We briefly discuss the assumptions (3.1) and (3.2). Note that the class of functions f such
that (3.1) and (3.2) hold for a given Jp > 0 is convex, and contains all functions of the form
f(r) =1—(1+r)"™ whenever m > dyp. Moreover, all functions f, such that f’ is compactly
supported and positive on the interior of the support of (1 — f), obey (3.1) and (3.2) for some
do > 0; indeed, letting Ry := maxsupp(l — f), we have

d
7}%1}% log(1 — f(r)) = rl%%; oy los(1 = f(r)) = —c0.

If f' is compactly supported then the ends are cylindrical, rather than just asymptotically
cylindrical.
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For notational convenience let us extend r to be a continuous function on X with —1/2 <r <0
on X \ X, and extend f to be constant for r < 0.

Let A < 0 be the Laplacian on X. Let
P =P, :=-h*A+V,

where h € (0, ho] for some hg > 0, and:

oV =1V, € C®(X x (0,ho];R) is bounded, together with all derivatives, uniformly in
h e (0, h()].

e V|x, is a function of r and h only, and has a decomposition V|x, = V. +hVg, where V7, and
Vs may also depend on h, and Vs = 0 for > 5 and |V§k) (r)] + |VL(k) (r)] < Cp(147)~F=%
for all k£ > 0, uniformly in h.

o V/(r) < —6o(14 7)1V (r) <0 for all r > 0.

Note that the assumptions allow V = 0 but not f = 1. Such a restriction is necessary to obtain
a resolvent bound which is uniform up to the spectrum, in light of the computation in (1.2), which
rules out such a bound in the case (X, g) = (R x Y, dr? + dS) and P = —h2A.

Fix Fy > 0. We suppose that Fy is a “mildly trapping” energy level for P in the sense that
adding a complex absorbing barrier supported on X, gives a polynomial resolvent bound. More
specifically, suppose that for some Wx € C*(R;[0,1]) with Wx = 0 near (—o0,5] and Wi =1
near [6,00), there is N € R such that

(P — iWk(r) — Bo) 22 = a(h)h ™t < BN, (3.3)
for all h € (0, hg].
We have the following weighted resolvent bound up to the spectrum.

Theorem 3.1. Let (X,g), P, Ey, and a(h) be as above. Fix s1, sy > 1/2 such that s; + sy > 2.
There are C > 0 and hy > 0 such that

(L4 7) 751 (P — Bo —ie) ™ (1 +7) 72| 2 (x)12(x) < Clalh) +hHRT, (3.4)
for alle € R\ 0 and for all h € (0, hy].

Note that the condition on s; and so is the same as the one in §1.2 above, see in particular
(1.5) and (1.8). This is the resolvent weighting needed to have a low energy bound for scattering
on the half line (and for more general Euclidean scattering problems).

To deduce Theorem 1.1 from Theorem 3.1, in Examples 1 and 2 we let X, be the part of X
where r > rq, for any 1 > 0 such that F'(r;) > 0, and put V = 0. Then, after redefining r as
in the remark following (3.2), we see that g has the desired form in X, and it remains to check
that (3.3) holds with N < 2. Below in §3.2 and §3.3 we will show this for some examples which
generalize Examples 1 and 2 above.

We also have an improved bound when we cut off away from the trapping in the end. To state
it, let xg € C*(R;[0,1]) be 0 near (—oo,0] and 1 near [1,00). Let Ay < 0 be the Laplacian
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on (Y, gy), and let {gbj 2o be a complete real-valued orthonormal set of its eigenfunctions, with
—Ay¢; = o; gb], where 0 =09 <0y <---. Forany J C {0, 1, ...}, we denote the orthogonal
projection onto modes corresponding to J by I1.7: L?(X,) — LQ(Xe), so that

M) = 30 ¢5(0) | ulra/)o,(5)dvols)),
JjeJ
where y and y’ denote points in Y. Then |[TL7x11(r)||z2(x)-r2(x) = 1, unless J is empty.

Theorem 3.2. Fiz s >1/2 and cy > 0. Let J :={j | E; :== Eo — hza?- & [—cyh,c7]}. Define a
microlocal cutoff x.7: L*(X) — L*(X) by putting

(Mxn() + VVE) + F0) TED =T)u, e L¥(X.),

u, uwe LA(X\ X.), (35)

XU =

and then extending to general u € L?(X) by linearity. There are C > 0 and hy > 0 such that
11+ 1) X (P = By — i2) ™ (1 + 1) 2y s 1200y < O+ a(h)h~, (3.6)
for alle € R\ 0 and for all h € (0, hy].

By taking the adjoint, we see that (3.6) implies
1L+ 7)75(P = By — i) g (1 + 1) 2y 1200 < OO+ a(h)h~™. (3.7)

Note that the statement is strongest when c s is chosen very small, much smaller than Ey. We
think of x 7 as cutting off away from (or, almost, projecting away from)

Ty ={ue L*X.) | fu=mu, Vpu=0, Tlyu =0} C L*(X).

Observe that the condition E; € [—cgh,cy] corresponds, when V; = 0 and f = 1, to the
condition that p? € [~czh,cz], where p is the dual variable to . In this sense 77 corresponds
to a neighborhood of the bicharacteristics in 7% X, along which r is constant, that is to say
bicharacteristics trapped in the cylindrical ends. In this sense x 7 cuts off away from the trapping
in the cylindrical ends. The asymmetry in the interval [—czh,c7] is due to the fact that our
estimates are much easier when E; < —Ch for any C' > 0 (see in particular the sentence following
(4.41) below); we do not expect this form of the interval to be optimal.

To simplify matters, in our discussion of the interpretation and context of this result we focus
on the special case of the following Corollary, although most of the statements could be adapted
to apply to the more general case.

Corollary 3.3. Let (X,g) = (R%, g) be as in Example 1. In the notation of that example, fir
X € C®(X) with suppx C {(r,0) € R? | r < R}, and fix s > 1/2. Then there are zo > 0 and
C > 0 such that

11 +7) 75 (A = 2) Xl 2= 200 + IX(-A = 2) 7 (1 +7)7* |l 2 (x) 22 x) < C/VRez, (3.8)

for all z € C with Rez > zg and Im z # 0.



RESOLVENT ESTIMATES ON CYLINDRICAL MANIFOLDS AND ON THE HALF LINE 13

Note that this x is local, in contrast to the microlocal x s of Theorem 3.2. Recall that R
is the radius at which the cylindrical end begins; hence x is a cut off away from the trapping
on the cylindrical end, and in this example there is no other trapping. The right hand side of
(3.8) is the usual nontrapping upper bound, cf. (1.7) and the bound of Ch~! in (1.4). There
have been many results in asymptotically Euclidean, conic, and hyperbolic scattering proving
that such nontrapping bounds hold when one cuts off away from trapping on both sides of the
resolvent: these go back to work of Cardoso and Vodev [CaVol, refining an earlier result of
Burq [Bul]. Intriguingly, in (3.8) we get a nontrapping bound by applying a spatial cutoff away
from trapping on only one side of the resolvent; to our knowledge no such result is known in
asymptotically Euclidean, conic, and hyperbolic scattering, although a related weaker bound can
be found in [BuZw, Ch2, DaVa2] (and note that the weaker bound is shown to be optimal in a
special example in [Dy]). A possible interpretation is the following: unlike in any of the examples
studied in [BuZw, DaVa2], in Example 1 the set K of bicharacteristics trapped as t — +o0o and
t — —oo is the same as the set I'y of bicharacteristics trapped as t — 400 or t — —oo, and one
expects resolvent estimate losses due to mild trapping to be concentrated on I'.

On the other hand, in [DaDyZw] it is shown that for a “well in an island” semiclassical
Schrodinger operator (in which case incidentally K does equal I'y), losses due to trapping extend
beyond I'+ and cutting off on one side only is not enough to give nontrapping bounds; as discussed
in that paper, this is closely related to the fact that the trapping in this case is stable (so that
tunneling can produce losses away from I'y ), unlike in Example 1 or in the examples in [DaVa2].
It is then natural to ask: when is cutting off a resolvent away from trapping on one side sufficient
to give nontrapping bounds, and when is it necessary to cut off on both sides?

3.2. Examples with no trapping away from the ends. Let X have no boundary and let
K, be the set of bicharacteristics of P at energy Ey which do not intersect T*X,. If Kg, = @,
then it is essentially well-known that

I(P = iWk (r) = Eo) 'l z2(x)—12(x) < R (3.9)

the proof of (3.9) follows from the proof of [DyZw, Theorem 6.11] or that of [Da2, Proposition
3.2]. In the case that |V| < Ch, demanding that K, = @ is equivalent to demanding that all
maximally extended geodesics on X intersect X.; specific examples are given in Example 1.

3.3. Hyperbolic and normally hyperbolic trapped sets. If Kg, # @ we cannot hope to
have (3.9), but if K, is hyperbolic or normally hyperbolic then we may have

I(P = iWie(r) = Eo) l12(x) s 120x) < Clog(h™ )k, (3.10)

In the case of a closed hyperbolic orbit, such bounds are due to Burq [Bu2] and Christianson
[Ch2]. For hyperbolic trapped sets satisfying a pressure condition they are due to Nonnenmacher
and Zworski [NoZwl], and for normally hyperbolic trapped sets to Wunsch and Zworski [WuZw]
and to Nonnenmacher and Zworski [NoZw2| (and see also [Dy]). Some recent surveys of the
substantial wider literature concerning estimates like (3.10) can be found in [No, Zw2].
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To deduce (3.10) from [NoZw1] or [NoZw2], note that the difference between (3.10) and [NoZw1,
(2.7)] or [NoZw2, (1.18)] lies in the assumptions in the region where Wy = 1. But in this region
P — iWk is semiclassically elliptic, so the discrepancy can be removed using a parametrix G’
analogous to the one in (4.1) below, and rather than having to go through a procedure like that
in §4.5 we just have (P — iWk(r) — Eg)G' = I + O(h*>).

Rather than discussing the general dynamical assumptions further, we now specialize to more
concrete examples.

Let (X, gr) be a conformally compact manifold of constant negative curvature. We recall that
this means that the metric g is asymptotically hyperbolic in the sense of [MaMe] (see also [DyZw,
§5.1]), so there is an open set X! and R € R such that X \ X/ is compact and

Xé = (R7 OO)T X }/a .gH|X{i = drz + 627’gy(e—7")’

where Y is a compact, not necessarily connected, manifold without boundary and gy (z) is a
family of metrics on Y depending smoothly on z up to = 0. Such a ‘normal form’ of the metric
was first found in [GrLe], and it is also in [DyZw, §5.1.1].

We modify the metric to obtain a manifold with cylindrical ends in the following way. We first
observe that, denoting points in 7* X/ by (r,y, p,n), where y € Y, p is dual to r, and 7 is dual to
y, along gg-geodesics we have

T == =20, Inl?,) = 4eInl2, (1+ Oe),

where the length 7|, is taken with respect to the dual metric to gy (e™"). Hence, after possibly
redefining R to be larger, we may suppose that # > 26*2”|77|37y for » > R, and in particular that no
bounded gp-geodesics intersect X/. Indeed, since Fy := p? + e_2r|n|g’y is conserved and 7 = 2p,
in X/ we have

i >2e|n|2, = 2E — #*/2,

which means r is not bounded for all ¢.

Fix xg € C*(R;[0,1]) such that xg(r) = 1 near (—oo, R] and xg(r) = 0 near [R+ 1, 00), and
fix F € C*°([R,0),(0,00)) such that F’ is compactly supported, positive on the interior of its
support, and such that F'(r) >0 for r < R + 2. Take g such that g|x\x; = gu|x\x:, and

glx: = xu(r)ga + Cy(1 — xu(r)) (dr2 + F(r)gy(0)) .
We claim that if C, is large enough, then # > 0 along g-geodesics in X,. Indeed,
/2 = —xu ()0 (e nl7,) + Co(L = xu(r)F'(r)nl§ — X (r) (e nl7, — CoF(r)nlg),
so it is enough to take Cy large enough that on T™* supp x'y (r) we have e=*"|n|2 < CyF(r)[nl3.

Now we may take X, to be the part of X/ in which » > R+ 1, and, after redefining r by (1.10),
we see that it remains only to check (3.3).

We take Wi € C*(R; |0, 1]) which is 1 near [R + 2,00) and 0 near (—oo, R + 1], and suppose
|[V| < Ch and Ey = 1. Let K denote the set of trapped unit speed geodesics of (X, gr), regarded
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as a subset of T*X. We see that K is also the set of the bicharacteristics of P at energy Fy which
do not intersect T*X,, and that gy = ¢ near the projection of K onto X.

Let dg be the Hausdorff dimension of K. If dx < d, then the assumptions of [NoZwl] are
satisfied, and (3.10) holds.

If d = 2 and V = 0, then we can dispense with the requirement that dx < d thanks to a
recent result of Bourgain and Dyatlov [BoDy, Theorem 2] (this is the case presented in Example
2 above). To do this we use the fact (see [Bu2, Lemma 4.7] or e.g. [DyZw, Proof of (6.3.10)])
that [BoDy, (1.1)] implies

Ix(—=h*Ao — Eo — i0)71XHL2(X)—>L2(X) < Clog(h™")n ™,
for any x € C°(X). Then the gluing result of [DaVal, Theorem 2.1] together with the semiclas-

sically outgoing property of (—h2A¢ — Eg—1i0)~! (established by Vasy in [Va] and see also [DyZw,
Theorem 5.34]) implies (3.10). In the interest of brevity we do not discuss this further here.

3.4. Warped products with embedded eigenvalues. Let X := R x Y and ¢ := dr? +
f(r)*(@=Dgy for some f € C®(R;(0,1]) which is 1 on R\ (=R, R) for some R > 0 and has a
nondegenerate minimum as its only critical point in (—R, R): see Figure 3.1.

FIGURE 3.1. An hourglass shaped surface of revolution.

Suppose V' = h?Viy, with Viy = Viy(r) € C°((—R, R)). Then the part of the trapped set
away from the cylindrical ends is normally hyperbolic and we have (3.10) (see [DyZw, (6.3.10)],
and see also [ChWu, Ch3] for the case of a degenerate minumum where incidentally we also have
(3.3)). Consequently, by Theorem 3.1, there is zg > 0 such that for all s, so > 1/2 such that
81+ s > 2, there is C' > 0 such that

I+ )™ (A + Viv = 2) A+ ) ™2 2 22x) < O

for all z € C with Rez > zp and Im z # 0. In particular the spectrum of —A 4 Vy is absolutely
continuous on (zg, 00).

But if f and Vjy are suitably chosen, then A+ Vjy has an eigenvalue embedded in the spectrum
in [0, z]. Indeed, we have

o0

A=f0) (@ - e = V) b | f),

§=0
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where {¢; };?‘;0 is a complete set of real-valued orthonormal eigenfunctions of the Laplacian on Y
and —Ay¢; = a?gi)j. For J € Ny, consider the effective potential

Vy(r) = f"(r) f(r) ™"+ o5 (f(r) 9D — 1) 4 Vig (r).

Then D? 4+ V; has an eigenvalue as long as [ V;(r)dr < 0 by [ReSi, Theorem XII1.110], and this
corresponds to an embedded eigenvalue for —A 4+ Vjy as long as it is positive, for which it suffices
to have min V;(r) > —o?2. For example, we may take f such that [(f(r)~%/(¢=1) —1) < 1/4 and
Vi € C2°((—R, R);[—0%/2,0]) such that Viy(r) = —0%/2 on [—~R/2, R/2], and then J sufficiently
large.

By elaborating the above constuction one can also find examples with any finite number of
embedded eigenvalues.

It is not clear whether there are examples of manifolds with cylindrical ends such that —A
has a finite but nonzero number of eigenvalues. For all known examples where eigenvalues occur,
the existence of infinitely many eigenvalues is either also established [ChZw, Pa2] or at the least
it is not ruled out [KrKi]. On the other hand 0 is always a resonance of —A on a manifold
with cylindrical ends, with the constant functions as resonant states, unless there is a boundary
condition somewhere that eliminates them.

4. PROOF OF THEOREMS 3.1 AND 3.2

4.1. Outline of proof. The idea of the proofs is to define a parametrix for P — z by
G = x(r—1)(P —iWk(r) = 2) "Xk (r) + xe(r + 1)(Pe = 2) " xe(r), (4.1)

where ., xx € C°(R) obey x. + xx = 1, supp xe C (3,0), and supp xx C (—00,4), and P, is
a suitably chosen differential operator such that P. = P on the part of X where r > 2. Then

(P —2)G =1+ 0D}, xx(r = DI(P — iWk(r) — 2) " 'xx (r) + [R2D}, xe(r + 1)](Pe — 2) " xe(r),

and we will construct an inverse for (P — z) by removing this remainder using a Neumann series;
although the remainder above need not be small, we will see that powers of it are. We call the
part of X where r € (2,5) the resolvent gluing region, because the functions in the range of the
remainder are supported in that region. To prove that powers of the remainder are small, we will
need to know that:

(1) The resolvents of P —iWg(r) and P, obey estimates analogous to (3.4) and (3.6). This is
the case for P —iWg (r) thanks to the assumption (3.3), and we will prove it for a suitable
choice of P, in §4.3 and §4.4.

(2) The resolvents of P —iWx(r) and P. obey improved estimates when multiplied by cutoffs
with suitable support properties in the resolvent gluing region, corresponding to a (special
case of a) semiclassically outgoing condition so that we are able to remove the remainders.
The needed estimates are proved in [DaVal] for P — iWg(r) and in §4.3 and §4.4 for P..

We combine these estimates to prove Theorems 3.1 and 3.2 in §4.5. There we follow a procedure
analogous to that in [DaVal], but with some finer analysis of remainders to remove the losses due
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to trapping in the cylindrical end (see also [Da2, §3] for another, in some ways related, variation
on this resolvent gluing procedure).

4.2. Model operators for X.. On X., A can be written as a direct sum of one-dimensional
Schrédinger operators:

o0

Alx, = S| 30 (82 = 1) f) = a2 ) YD) g | (),

J=0

where {¢; }?O:o is a complete set of real-valued orthonormal eigenfunctions of the Laplacian on Y
and —Ay¢; = sz(ﬁj. We will introduce model operators P; obeying

Pilpoy = —=h27 + Vi(r),  Vi(r) =V (r) + B2 f () f(r) " + B2 (F(r) "D 1), (42)
and we will be studying them near the energy levels

Ej = Ey — h*o3.

We will study two ranges of j separately, and the model operators P; will act on different spaces
depending on j. These two ranges correspond to different behavior in the resolvent gluing region,
which is the part of X where r € (2,5) (see §4.1). To define the ranges, fix E, € R, independent
of h, such that

0 < Ey <cy,

where ¢ is as in the statement of Theorem 3.2, and
Ej < B, = W22 f(5)74/\4 > Ey; (4.3)
note that the conditions are compatible because E; = 0 when Ey = hza? and f(5) < 1.

The first range we consider is F/; < F; in this range the set where r < 5 is classically forbidden
because V; > E;, and we control remainders in the gluing region using Agmon estimates, taking
care to prove that our estimates are uniform as j — oo (although the effective potentials V
become unbounded as j — oo, they are nonnegative, so the relevant estimates actually get better
in this limit). The second range is E; > E.; in this range the set where r < 5 is not classically
forbidden, but the energy levels E; are bounded below by a positive constant and the effective
potentials V; are repulsive, so nontrapping propagation of singularities estimates hold, which we
can use to control the remainders in the gluing region (once again we take care to prove that the
estimates are uniform in j).

For the first range of j we define the operators P; to act on L?(R;), with a Dirichlet boundary
condition at 0, in order to be able to use Theorem 1.3 (the Dirichlet boundary condition makes it
easier to analyze the behavior of the resolvent when |E;| is small). For the second range of j it is
more convenient to work over R than R, in order to avoid reflection phenomena when studying
propagation of singularities.
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4.3. Analysis when E; < E,. In §4.3 all function norms and inner products are in L*(R, ), and
operator norms are L?(Ry) — L?(R, ), unless otherwise specified.

For this range of j, we put
Pj:= h*D? + V;(r), (4.4)
regarded as a self-adjoint operator on L?(R; ) with a Dirichlet boundary condition at r = 0.
We first prove resolvent estimates for P; analogous to (3.4) and (3.6).
Proposition 4.1. Fix s1, sa, s> 1/2 such that s; + so > 2. Then
(L4 7)Y (P; — E; —ie) ' (L+7)"%|| < Ch ™2, (4.5)
and
I(L+7) "X (r) (B = Ej —ie) " (L4r) 7|+ [|(L4+7) (P — By —ie) " x(r)(1+7)7°| < Ch™Y, (4.6)
for alle € R\ 0, j € N such that E; < E,, where

x(r) = Vi) + J(r) 460D 1.

Proof. The idea of the proof is to apply Theorem 1.3; more precisely (4.5) corresponds to (1.8)
(see also (1.5)), and (4.6) corresponds to (1.9) (see also (1.6)).

Before beginning the proof proper, by way of outline let us briefly discuss the terms in Vj, and
explain how they each do or do not satisfy (1.3). The term h20]2-(f(7")_4/<d_1) — 1) does satisfy
it thanks to (3.2) and (4.3), and moreover those bounds and f(r) < 1 for r < 6 imply that the
term is nontrivial when r < 6. The term V7, satisfies it, and we think of it as being harmless.
The terms Vg does not satisfy it, but we will show that its effect is compensated by that of the
h2a]2~(f(7“)*4/(d*1) — 1) term. The most difficult term to treat is the h2f”(r)f(r)~! term. This
term may prevent h~2V; from satisfying (1.3), but we will show that thanks to (4.3) we can treat
it as a small perturbation.

More precisely, let
Var(r) = Vj(r) = B2 f"(r) f(r)
and observe that for h sufficiently small Vj; obeys (1.3) for some dy > 0, since V7, and f/d=1_q
obey it and |Vs|+|VE| < C(f~%(@=1 —1) thanks to (4.3). Indeed, to see that f~4/(4=1) —1 obeys
it we write, using o :=4/(d — 1) and (3.2),

N —a flr)y= ot =fr) ™ _ fr) -1
—) = 1) = af () ) = s s T
where we also used the fact that if ¢ < b then
cl - < - <ea- . (4.7)

Hence by (1.8) with Vp = h=2V), we have
(14 7)1 (h?D? + Vs — Bj —ie) (1 +7r)"%2| < Ch ™2 (4.8)
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Note that by the resolvent identity
(L+7)5(P;— Ej —ie) *(1+7)"*2 = (1+7) 5 (h*D2 + Vyy — Ej —ie) (1 +7r)~*

X Z 1+ )2 02 f"(r) f(r) " (D2 + Vi — Bj —ie) (1 +1)7%2]",

the proof of (4.5) is reduced to the proof of
(L + )22 f"(r) f(r) " (W2 D} + Vag — By —ie) (1 41) 72| < 1/2. (4.10)
But by (1.9), with § = 1 and Vp = h=2Vy; > h=2(f~#(@=1) _1)/C (again using (4.3)), we have
(Fr) @D 1) 3 (14 7) "2 (h2D2 + Vg — Bj —ie) " (1+1) 2| < Ch7Y,
and interpolating this with (4.8) gives
) 1) (1)~ F R R2DF 4 Vg = By = i) (1) < O

Hence to prove (4.10), and consequently also (4.5), it is enough to show that

1

(L)1) < O~ = (1)~ 75 (4.11)
To prove (4.11) we will use the fact that any bounded ¢ € C?([r, 00);[0,00)) satisfies

| (r)]* < 2sup @sup |¢”], (4.12)

where the suprema are taken over [r,o00). Indeed, by Taylor’s theorem, for every ¢ > 0 there is
to € [r,r + t] such that

tl' (r)] = lo(r +1) — p(r) — 29" (t0) /2] < supp + t*sup "] /2,
and taking t = |¢'(r)|/sup |¢"| gives (4.12). Applying (4.12) once with ¢ = f’ and once with
p=1— f gives
£/r)1* < dsup| 2 sup | £? < 8sup(1 — ) sup | sup| £[2 = 8(1  f(r)) sup| ] sup | "
where the suprema are still all taken over [r,c0). Applying (3.1) gives

(0]

£ < (1= )i +7) 725

By (4.7) this implies (4.11) as long as s1 + 2s2 < (7 + 3d¢)/2, which we may suppose without loss
of generality. This completes the proof of (4.5).

The proof of (4.6) proceeds along similar lines. Applying (4.9) with s; = s3 = s allows us to
reduce the proof of the bound on the first term in (4.6) to the proof of

(14 7)"5x(r)(h*D? + Vi — E; — ie) Y14+ r)7%|| < ChTL. (4.13)

But (4.13) follows from (1.9) with & = 1 and Vp = h™2Vy; > h=2(Vy + f~¥=D _1)/C =
h=2x2?/C. The bound on the second term of (4.6) follows from the bound on the first term after
taking the adjoint. O

We will also need the following Agmon estimates:
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Proposition 4.2. Let R € (0,5], x— € CX((0,R)), x4+ € C°((R,0)), and s > 1/2. Then
IX- (P = Bj —ie) 7 (14 1)l pa)mmpe) + 11 +7)75(P) = By —ie) x| < C,  (4.14)

= (P = Bj — ie) x| < eV, (4.15)
for alle € R\ 0, and j € N such that E; < E,.

Recall that the norms without subscripts are L?(R;) — L?(R. ) here, and that y_ is supported
in the classically forbidden region for P; — Ej.

Proof. These are similar to the usual Agmon estimates as in [Zw1, §7.1] but we keep track of the
7 dependence.

Let v € L*(Ry), and let u := (P; — E; —ie) "' (1 +r)*v. Fix @9 € C((0, R);[0,1]) which
is identically 1 on a neighborhood I of supp x—, and let ¢(r) := mpo(r), for a constant m to be
chosen later. Then define

P,:=e?"(Pj — Ej —ic)e /"
= h*D2 + 2ip'hD, + V; — ¢* + h¢" — Ej — ic.
Put w := xoe?/Mu, where o € C°((0, R)) is 1 near supp o. Using Re(2h¢'w’, w) = —h(p"w, w),
write
Re(Pyw, w) = [[h/||* +{(V; — ¢ — Ej)w, w).

We now observe that, using (4.3) and the fact that 1 — f(r)~%@=1) > 1 — f(5)=4/(@=1) > 0 for
r € (0,5), we can choose m > 0 small enough, independent of h and j, such that there is ¢ > 0
independent of h and j for which V; — ¢/ 2 E; > ¢y on suppw for h small enough. This implies

lw]| < ClIPywl| < Clle?™xov|| + CII[P, xolull,

where we used px§ = 0 to deduce [Py, xole¥/"u = [P, xo]u. We use an elliptic estimate to bound
the commutator term: for x; € C2°((0, R)) we have, using V; — E; > Vo — Ey > —C,

Clxavllllxaull = Re{(1 +7)"*v, xiu) = Re((P; — Ej)u, xTu)

(4.16)
> [Ixahd || = Chllxihu'ull e,y = Clxaull?,
from which it follows that, provided x2 = 1 near supp xo,
I[P, xolull < Chllxzull + Chlxav] < Ch7H o],
where we used (4.5). Consequently
[l =i [ < ce i (el + 172 ol?) < Clff, (@)
I I

where we used ¢ < m.

To estimate u' we apply (4.16) with x1 € C2°([), giving

mmesc(zm&w+mmwﬁ,
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which implies the bound on the first term of (4.14). The bound on the second term follows from
taking the adjoint, and (4.15) follows from the fact that if suppv C (R, 00), then xov = 0 and we
can improve (4.17) to

/‘u’2 _ e—2m/h/’w‘2 < Ce_Qm/hh_QHUH2.
1 I

0

4.4. Analysis when E; > F,. In §4.4 all function norms and inner products are in L?(R), and
operator norms are L?(R) — L?(R), unless otherwise specified.

For this range of j the Agmon estimate (4.15) must be replaced by a propagation of singularities
estimate. It is convenient to introduce a complex absorbing barrier and to work over R: let
We € C*(R;[0,1]) be 1 near (—oo, 1] and 0 near [2,00), and let

Vio == xoV
where xo € C(R; [0, 1]) is 0 near (—o0,0] and 1 near [1,00). We now put
P; := h*D? + Vjo(r) — iWe(r),

regarded as an unbounded operator on L?(R) with domain H?(R). We will prove
Proposition 4.3. For any s > 1/2 we have

10+ 7)™ (P — By — i) (14 )™ < CR 7Y, (4.18)
where r4 = max{0,r}. For any x— € C((0,3)), x+ € C((3,00)), ¥ € C((0,00)), we have

IX_ () (P} — Bj — i) x4 (r)(hD,) | = O(h). (4.19)
Both (4.18) and (4.19) hold uniformly for all e > 0, and for all j € Ng such that E; > E,.

Note that since F; is bounded from below away from 0, we can think of (4.18) as the analogue
of (1.7) in this setting; we do not need a weight for r < 0 because the —iW, term makes the
operator P; — E; — ie semiclassically elliptic there. It is also similar to the usual nontrapping
resolvent estimate as in [VaZw] and in other papers cited therein, but we need an estimate which
is uniform in j.

The propagation of singularities estimate (4.19) is a microlocalized version of (4.18). The
improved bound is due to the fact that solutions to the classical equations of motion 7 = 2p,
p = —Vj(r) with r(0) > 3 and p(0) > 0 cannot have r(t) < 3 for any ¢ > 0.

Proof of (4.18). We prove (4.18) using a microlocal positive commutator argument, rather than
(as is probably possible) integration by parts arguments as in the proof of (1.7). We do this
because the proof of (4.19) follows along very similar lines, and the latter estimate does not
seem to be provable by integration by parts arguments. The idea is to construct a microlocal
commutant, based on the w(r)d, of the proof of (1.7), but which is nonnegative. This will be
obtained as the quantization of an escape function, defined in (4.26) below.
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As in [VaZw] we will use the semiclassical scattering calculus, and we begin by recalling its
relevant properties. We use (7, p) to denote points in T*R, and for I, m € R we define the symbol
class S]" to be the set of a € C*°(T*R) such that, for any n;, ne € Ny there is Cy, ,, such that

1071052 a(r, p)| < Cyng (14 [r))" (1 + |o)™ 72, (4.20)

for all (r,p) € T*R. We also write Sp° := {,, S]", S; ™ = [),, 5/", and similarly for ST} and
S™ . Below we will consider symbols depending on h and j, and the constants Cy, ,, in (4.20)
will always be uniform with respect to those parameters. For such a, we denote the semiclassical
quantization by Opy,(a), which we define by

Opy,(a)u = // =m0l (v pyu(r!)dr' dp. (4.21)

When a symbol is denoted by a lowercase letter (with possible subscripts and superscripts), we
will denote its quantization by the corresponding uppercase letter (with the same subscripts and
superscripts, if any).

We recall the composition and adjoint formulas. If a € SZ” and b € SZ:Q, then there is

a#b € Slmﬂ”m such that

AB = Opy,(a#b),
and, for any N € N,

a#tb(r, p) = e~ % (a(r, p)(r", p))

(rp)=(1".p")
N e ) N (4.22)
= o Opalr, p)ORb(r, p) + hTan(r, p),
k=0 '
where zy € Sﬁzﬂ;mQ N'is given by
zn(ryp) == i /1(1 — )Nl ithd 9y (8 Va(r, p )N b(r, p)) dt. (4.23)
’ (N =1 Jo (r.p)=(r",p")

Indeed, [Zw1, Theorem 4.14] gives the formula for Schwartz symbols, and [Zw1, Theorems 4.13
and 4.18] give it for a larger class of symbols than the ones we consider, but with weaker bounds
on zy. The statement that zy € S{?}rgmz’ N follows from applying [Zw1, Theorem 4.17] to (4.23).
See also [DyZw, Proposition E.8], [Pal, (3) and (9)], [Sh], and [HG, §18.5] for similar expansions,

and [HeSj] for a much more general version.

Similarly, if a € S;™ there is a* € 5] such that the formal adjoint of A is given by

A" = Opy(a®),
and, for any N € N,
N— 1
a*(r, p) = e M %q(r, ak (r, p) + b 2 (r, p), (4.24)
=0

where this time zy € SﬁYVN is given by

(_Z>N ! N—1_—ithd,0, QN QN
)/(1—15) et 09N NG (1, ).

Zn(r, p) == m 0
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Let
pj = p" + Vio(r) — iWe(r)
be the semiclassical symbol of P; (in the sense that p; € S3 and P; = Opy,(p;)), let
R; :=inf{r > 0 | both Vj(r) = Vjo(r) and Vjo(r) < E,/2},
so that Ry < Ry < ---, and let
Fj:={(r,p) |7 >1and p* <2Eo}\ {(r,p) | R; < r and p? < E,/3}.

Note that each Fj is a closed neighborhood of the energy surface p; = E;, and they have been
chosen such that they form a nested sequence Fy C F; C ---. Moreover, since we only consider j
such that F; > E,, all of the F; agree outside of a compact set: see Figure 4.1.

Ap Ap
2E0 1 1

3y
A

the case R; > 1 the case R; <1

FIGURE 4.1. The shaded regions are the sets F}. They are closed nested neigh-
borhoods of the energy surfaces p; = E; which agree outside of a compact set.

Observe that we have |p; — Ej — ie| > ¢(1 + p?) on T*R \ F}, for some ¢ > 0, which implies
the following elliptic estimate: for any a € S/, o’ € Slm72 satisfying suppa N F; = @ and
la’(r, p)| > (1 + |7 (1 + |p|)™2 for (r,p) € suppa, and for any N € R, we have

lAul| < ClA'(P; = Bj — ie)ul| + ™| Zwul, (4.25)

for some 2y € Sl"lij . This follows from (4.22) by the usual iterative elliptic parametrix construc-
tion as in [DyZw, Theorem E.32].

To handle Fj, we define an escape function (based on the usual —rp but modified to be non-
negative near F; and more slowly growing) as follows. For ¢ € (0,1/4), take g5 € C*°(R) with
Gs(z) = 2° for x > 2, Gs(z) = |z|~° for x < —2, and ¢4(z) > 0 for |z| < 2, and put

q(r, p) := Gs(=7p)xq(r; p); (4.26)
where x, € Sy is real valued, is 1 near all of the F}, and vanishes in a neighborhood of

{(r.p) | r g (-1,1 —I-m]aXRj) and p =0}

whose boundary consists of two line segments and four half lines as in Figure 4.2.
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Tp

-1 1+ max; R; r

\/

FIGURE 4.2. The kind of neighborhood where x, must vanish.

Then q € S5 °°, and near F; we have
{Repj, ¢*} = 2(=20” + 1V} (r)d5(—rp)is(—rp) < —er™ 7%, (4.27)
for some ¢ > 0 (here we used V; > E, /2 = rV] < -1/C).

Consequently, there are real valued symbols b € S:ii 5 and ap € ST 55 such that
2
b* = {¢*, Rep;} + ao, (4.28)

and such that suppao N F}; = @ and b > er=370 > 0 near Fj; for example we can take b :=

{qQ,Repj}1/2Xb for some x; € S, with x; = 1 near F; and supported in the set where (4.27)
holds. Note that ¢ depends on §, and b and ag depend on § and j, although our notation does
not reflect this.

Using (4.28), (4.22), and (4.24), we can write
)
B*B = E[Q*Q,RGPJ] + Ag + hAq,
for some a1 € 557,55, giving

| Bul|* = %<[Q*Q, Re Pjlu, u) + (Aou, u) + h{Aju, u),
Combining this with (4.25) and the similar elliptic estimate
1B"u|| < C||Bull + h™ || Znu], (4.29)
which holds for all &’ € S7%° | which is supported in a small enough neighborhood of F}j and for

1
—1-s

suitable zy € S~ , we have (since ¢ < 1/4),

o0
1
1-6-N

10+ 7) 72 %u]* < 05 (1Q°Q. Re Pylu,w) + C|(P; — E; — ie)ul

Next
i([Q"Q,Re Pjlu,u) = —2Im(Q(P; — E; — ie)u, Qu) — 2Re(Q(We(r) + ¢)u, Qu),
giving
_1l_5 2 C l+35 . 2 C
1473wl < 4 )P — By — il — T Re(QUWelr) +<)u, Qu)
But

—Re(Q(We(r) + €)u, Qu) < |Re(Q7[Q, We(r)]u, u)],
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thanks to W, + & > 0, and by (4.22) and (4.24) we have Re Q*[Q, W.(r)] = hZay for some
az € SZ, giving

| R6<Q*[Q7 We (r)]u’ ’LL>| = h? <A2u7 U)
This proves (4.18) with s = % + 36, and taking 6 > 0 small enough proves it for all s > 1/2. O

Proof of (4.19). Let

u:= (P = Ej — i)~ x4.(r)Y(hDy)v,
with [jv|]] = 1, and fix 6 € (0,1/4). We will use the following argument by induction to prove
(4.19).

The inductive hypothesis is that for a given k € R there is a neighborhood U of F} \ (3,00) x

(0,00) such that ||Au|| < Ch* for any a € Sk_ﬁﬂ; which is supported in U.
2

The inductive step is that there is a (smaller) neighborhood U’ of F}\ (3, 00) x (0, 00) such that
|Au|| < CRFFL/2, (4.30)
for any o' € S, 77, 5 which is supported in U’

Let us see first that (4.30) for arbitrary k implies (4.19). Indeed, by the elliptic estimate (4.25),
the composition formula (4.22), and the resolvent estimate (4.18), we see that

A" ul| < Cxh™ (4.31)
for any N € R and a” € S° such that suppa” C (0,3) x R and suppa” N F; = @. Then we can

write

X—(r)u = x-(r)er(hDr)u+ x-(r)(1 = @r(hDr))u
for o € C°(R) chosen such that (4.30) applies to the first term on the right and (4.31) applies
to the second.

We remark in passing that elaborating this argument we can actually show that u is semiclas-
sically trivial everywhere away from the union of two sets (including uniformly as |r| — oo and
|p| = 00): the first is supp x4 x supp ¢, and the second is F; N (3, 00) x (0, c0) which we can think
of as a neighborhood of the forward bicharacteristic flowout of the first. Here we are focusing on
a more concrete and narrower version of this conclusion which is sufficient for our purposes.

Next observe that the base case (the inductive hypothesis with £ = —1 and U = T*R) follows
from the resolvent estimate (4.18).

It remains to prove (4.30) under the inductive hypothesis. Roughly speaking, we use an escape
function which on Fj \ (3,00) x (0, 00) agrees with the one used in the proof of (4.18) above, but
is adapted to vanish near supp x4+ x supp® and F; \ U. (Note that F; \ U = @ when k = —1 but
that for k > —1 we expect F; \ U # @ in general).

More specifically, to define the escape function, fix xx, ¥r € C°°(R) nondecreasing, and satis-

fying xr = 0 near (—o0, 3], ¥ = 0 near (—o0,0], ¥ = 1 near [/ E,/3,00), and xx(r)Yr(p) = 1
near F; \ U. Then let

qak(r, p) :== Qk+%—5(_rp)XQ(Tv P)(L = xk(r)ve(p)),
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where g, 3_5 and x, are as in (4.26), so that g € S Calculating as in (4.27), we see that
2

— 00
k+3-5
near F; we have

{Repj7 ql%} < Oa

and near F}\ (3,00) x (0, 0o) we have x(r)¥(p) = 0 and hence {Rep;, g2} < —er? 2720 < 0 (this
is slightly better than (4.27) because outside of a compact set we have p < 0 on F;\ (3, 00) x (0, 00)
and in particular we are staying away from the outgoing part of the energy surface).

Consequently, as before, we can write
2 2
by, = {aqx, Rep;} + ao k,

where b € Sk_ffﬂ;, agp.k € S;koi%%, supp by, C supp gk, supp ao, N (F; Usupp x4 X supp¢)) = &,
and by, > cr*T179 > 0 near F} \ (3,00) x (0,00). Hence

* Z‘ *
BBy, = ﬁ[Qka, Re Pj] + Ao i + hA1k,

for some ay j, € SQ_kofl_%. We refine this by using (4.22) and (4.24) to expand a; j in powers of h
up to AV in terms of by, g, Dj, aok, and their derivatives, which gives

)
BiB;, = E[Q;Qk, Re Pj] + Aoy + hA| , + WV Zy,
where a ;. € 55,7, o5 has suppaj , C supp g and zn € Sy 7y o5 . Consequently

b
| Brul||? = E([Qka,Re Pjlu,u) + (Ao pu, u) + h(A’Lku, u) + hN<ZNu,u>.

By the elliptic estimate (4.29) with by in place of b we see that to deduce (4.30) it is enough to
show

| Bul|? < Ch2F+. (4.32)

Now (Ag ru,u) = O(h™) by (4.25). Also, since g, vanishes near F;\U, it follows that a) , vanishes
near F; \ U, so by (4.25), (4.22), and the inductive hypothesis, we have

\(A'lku,uﬂ < Ch?k,
Hence to show (4.32) it suffices to show that

i([Q1 Qg Re Pju, u) < Ch?+2, (4.33)

As before we write, for any N € R,

i([QLQk, Re Pjlu, u) = —2Im(Qr(P; — Ej — ie)u, Qru) — 2Re(Qr(We(r) + €)u, Qru)
< 2| Re(Qp[Qr, We(r)]u, u)| + O(h™),
where we used supp g Nsupp x+ X supp ¥ = &. Now (4.33) follows from the inductive hypothesis

together with the fact that (arguing as in the construction of a) , above) Re Q}[Qr, We(r)] =
h2Asj + kN Zy, with asy, Z2N € S_5, and suppagy N F; C U. O
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4.5. Proof of Theorems 3.1 and 3.2. In this section all operator norms are L*(X) — L?(X).
We implement the outline discussed in §4.1. We assume without loss of generality that ¢ € (0, 1],
as the statements with ¢ > 1 follow from self-adjointness and the statements with ¢ < 0 then
follow by taking the adjoint.

We first explain the key dynamical property of the bicharacteristic flow in X, which allows us
to remove the remainders in the parametrix construction.

Let us denote points in T* X, by (r,y,p,n), where y € Y, p is dual to r, and 7 is dual to y.
The energy surface for P in T* X, at energy FEjy is the subset of 7% X, defined by

p(r,y, p.n) = p + [n]2f (r) =D 1 Vi, (r) = Eq,

and bicharacteristics in T* X, of this energy surface are solutions ~(t) := ((r(t),y(t), p(t),n(t))
to the Hamiltonian equation of motion (t) := dt'y( ) = {p,v(t)}. The backward bicharacteristic
flowout in T* X, of a point 79 € T* X, is the set of points ' € T* X, such that if y(¢) is the bichar-
acteristic in 7% X, with v(0) = 7o, then v(¢) = 4/ for some ¢ < 0; note that some bicharacteristics
enter T*(X \ X) in finite time, and our definition only counts them while they stay in 7% X.

If v(t) := ((r(t),y(t), p(t),n(t)) is a bicharacteristic, then

M) =2p(t), ) = %!n|Qf’(r(t))f(?"(t))_(d”)/(d_” = Vi(r(t)) 20, (4.34)

and hence 7 = 2p > 0. Consequently no bicharacteristic can visit the sets 7%((0,4)), T*((4,5)),
and 77%((2,3)) in that order (here and below 7%((a,b)) denotes the subset of 7% X, on which
a < r <b), and this fact is exploited to prove the crucial remainder estimate in (4.38) below.

Fix Xxe, xx € C°°(R) such that x.+ xx = 1, supp xe C (3,00), and supp xx C (—00,4). Define
a parametrix for P — E — ie by

G = xr(r—1)Rrxr(r) + Xe(r + 1) Rexe(r).

Here
Rk = Ri(Ey +ig) :== (—h®A — iWk(r) — Ey —ie) ™1,
and
Re = Re(Eq + ig) := f(r) Y _ ((P )o@ ;) fr)7h
7=0
and
IRk || < Ca(h)h™h, (14 7)"" xe(r + D Rexe(r)(1 +7) 72| < Ch™2. (4.35)

Indeed, Rk is well defined and obeys (4.35) thanks to (3.3); this follows from the resolvent identity
for £ > 0 small enough and then from the bound Im(—h2?A — iWk(r) — Ey — ic) < —e for all
e > 0. Meanwhile y.(r + 1)Rexe(r) acts on L?(X) thanks to (4.2) and the support property of
Xe, even though R, acts on a funny space due to the way we defined the operators P; differently
depending on j; moreover R, obeys (4.35) by (4.5) and (4.18).

Define operators Ax and A, by
(P — Eg —ie)G = I+ [h?D?% xx(r — V)]Rrxr(r) + [W2D2, xe(r + 1)]Rexe(r) =: I + Ax + A..
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Our next step is to remove the remainders Ax and A.. The idea of [DaVal] is to do this using

a semiclassically outgiong property of the resolvents Rx and R..

To explain this property, we use the following notation: if U C T*X,, then ', U is the set of
points in T* X, whose backward bicharacteristic flowout intersects U. Now in the case of R,
the needed semiclassically outgoing property says (in the notation of (4.20) and (4.21)) that if
X € C((0,00)) and a € S, then

1X(r) Opp(a) Akl = O(h%), (4.36)

provided [0;107%a(r, p)| = O(h™) for every ni1, na € Ny and for every (r,p) € T7((0,4)) U
', T*((0,4)). This property follows from [DaVal, Lemma 5.1].

On the other hand, the resolvent R, is only semiclassically outgoing for j such that £; > ¢ >0
(the relevant statement for us is (4.19)); as E; — 0 this property fails, but then the gluing region
(the part of X such that r € (2,5)) becomes classically forbidden, and so we will be able to
estimate and remove remainders using the Agmon estimates of §4.3.

More specifically, we observe that
[Akll < C(A+a(h),  [[Ae(1+7r)"7| <C. (4.37)

Indeed, Ax obeys the bound thanks to the corresponding bound on Ry in (4.35); note that
HRKHL2_>H’21(X) < C||Rk]| since V, W, and ¢ are bounded, and Ej is fixed. Meanwhile A, obeys
the bound by (4.14) and (4.18).

We refine the parametrix with some correction terms, observing that A%( =A%2=0:
(P—Ey—ie)G(I — Ax — Ae + AxAc) =1 — A Ak + Ac Ak Ae.
We will show that
|4 A = O(h). (4.38)
Assuming (4.38) for the moment, we may write (using Rexe(r)Ae = Rxxk(r)Ax = 0)
(P— Eg—ie) ' =G — A — Ac + A A)(I — AAp + AcAgA) !

:Xe(T + I)REXE(T) + XK(T — 1)RKXK(7’) — Xe(r + 1R Ak (4.39)
— Xk (r —1)RgAc + Xe(r + 1)Re A Ac + O(R™).

Note that by by (4.14), (4.18), and the bound on |Rk|| in (4.35), we have
(14 7) " xe(r + 1) ReAk || < Ca(R)h™". (4.40)

Now multiplying (4.39) on the left by (1 + r)™®' and on the right by (1 + r)7%2 and estimating
the norm on the right term by term, we see that by (4.35) the first term on the right has norm
bounded by Ch~2, while by (4.35), (4.37), and (4.40), the next four terms have norm bounded
by Ca(h)h~!. This implies (3.4).

We similarly deduce (3.6) from (4.39), but rather than using the bound on R, in (4.35), we use
(14 7) " xe(r + DxgRexe(r) (1 +7)7%|| < Ch7L. (4.41)
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To prove (4.41), we use (4.6) when E; € [—cgh,cy], we use (4.18) when E; > cy, and we use
the fact that P; is almost nonnegative (more precisely, P; > —Ch? by (4.2) and (4.4)) when
Ej < —cgh.

To complete the proofs of Theorems 3.1 and 3.2, it remains to show (4.38). We have
AcAr = [Xe(r + 1), D7) Re[xx (r — 1), 2D} Ric x e (1)
Fix x € C2°((3,6)) which is 1 on [4, 5], so that
AcAr = [xe(r +1), DIRX(r) [xx (r = 1), D7 Rc x e (7).
For any ¢ € C2°((0,00)) we have
Ilxe(r + 1), K2 D] Rex ()0 (h Dy ) [xx (r — 1), i D[] = O(h™),
by (4.15) and (4.19), so it remains to show that there is ¢» € C°((0,00)) such that
IX(r)(I = (hDy))[xx (r = 1), D] Ricx e (r) || = O(h™).

We will deduce this from (4.36). Indeed, it is enough to check that there is pg > 0 such that if v(¢)
is a bicharacteristic at energy Ey with v(0) € T% supp xx (r) and with v(T") € T* supp ' (r — 1)
for some T' > 0, then p(T) > pg (we already know that p(T)? < Ep, so we may then take 1 to be

1 near [pg, vEo))-

Thanks to (4.34) we know that p(t) is nondecreasing, so we may assume that max supp xx (r) <
r(t) < minsupp X (r — 1) when ¢t € (0,7'), which implies in particular p(0) > 0. Then, for
t € (0,T), we have f(r(t)) < Cf'(r(t)) and V(r(t)) < —CV](r(t)), so that

p(t) = (Inf* f(r) =@V 1 Vi(r)) /Co = (Eo — p(t)*)/Co-

If p(0) = v/Ep, then p(T) = v/Ep and we are done; otherwise we can integrate and use p(0) > 0
to obtain

Co_ o1 (PO _ (@) =r(0) _ r(T) =r(0)
VB (EO)ZT %~ o)

where we used p:=T7! fOT p(t)dt < p(T'). This implies p(T") > po, for some py > 0 depending on
Co, Eo, and xk.

5. CONTINUATION OF THE RESOLVENT

In this section we keep all of the assumptions of §3.1, and add the assumption that

r>6=Vy(r)=f(r)—1=0.

In §5.1 we briefly review how meromorphic continuation works in this setting, following [Gu]
and [Me, §6.7], and introduce the relevant notation. In §5.2 we prove some useful estimates for a
model problem on the cylindrical end. In §5.3 we use an identity of Vodev from [Vo| to deduce
the existence of a resonance free region.
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Roughly speaking, writing R(z) for the resolvent (P — z)~! and for its meromorphic continua-
tion, we deduce from (3.4) that

IXR(Eo £ 0)x| < 1/p(h),

where x € C°(X) and 0 < u(h) < h?. Then we use Vodev’s identity to show that this implies

IXB(2)x|l < 1/p(h),

as long as the distance from z to Ey %10 is small compared to u(h). However some care is needed
due to the complicated nature of the Riemann surface to which R(z) continues (see §5.1), and
due to the fact that our model resolvent obeys somewhat weaker bounds than the one used in
[Vo] (see §5.2). The precise statement and proof are in §5.3.

Although we keep all of the assumptions of §3.1 in this section, strictly speaking they are not all
needed once we have (3.4). Instead, as long as we had (3.4), we could allow X to be a more general
manifold with cylindrical ends, or allow P to be a black-box perturbation of the Laplacian e.g.
in the sense of [ChDal, §2]. The proof could also be adapted to include the case of waveguides.
We omit these generalizations here, to simplify the presentation and because all of our interesting
examples satisfy the assumptions of §3.1.

5.1. Meromorphic continuation of the resolvent. In §5.1 we think of h > 0 as being fixed,
until Lemma 5.2, in which we prove an estimate which is uniform as h — 0.

The spectrum of P is given by [0,00) together with a finite (possibly empty) set of negative
eigenvalues. For z not in the spectrum we define the resolvent

R(z) := (P —2)"': L*(X) — L*(X).

To define the Riemann surface onto which R(z) meromorphically continues, for each j € Ny, and
zeC\ [hzajz, 00), we introduce the notation

pj(2) = /2 — h?d7,

with the branch of the square root chosen such that Imp;(z) > 0 for this range of z (recall that
0 =09 <oy <--- are the square roots of the eigenvalues of the nonnegative Laplacian on (Y, gy)
included according to multiplicity).

For each j € Ny, there is a minimal Riemann surface Zh,j onto which p; continues analytically
from C\ [h20'j2»,00); this is a double cover of C ramified at the singular point z = h20j2». By
elaborating the construction of Zh’j, we see that there is a minimal Riemann surface Zh onto
which all the p; extend simultaneously from C \ [0, 00). This is a countable cover of C, ramified
at z = h20]2 for each j, and for each z € Z, we have Im pj(z) > 0 for all but finitely many j. For
more details, see [Gu] and [Me, §6.7].

We use p to denote the projection Zy — C, we use the term physical region to refer to the
sheet over C\ [0,00) on which Imp; > 0 for all j, and for notational convenience we identify
the physical region with C\ [0,00). Then R(z) continues meromorphically from the resolvent set



RESOLVENT ESTIMATES ON CYLINDRICAL MANIFOLDS AND ON THE HALF LINE 31

in C\ [0,00) to all of Zh, as an operator from compactly supported L? functions to locally L2
functions, and we have (P — p(z))R(z) = I. We refer to the poles of R(z) as resonances.

For E > 0, we denote by E %40 the points in Zj, on the boundary of the physical region which
are obtained as limits lim5)9 £ +14d. Note that p;j(E+i0) € iR; if £ < hzajz, and £p;(E£+i0) > 0
if h20j2~ < E. Below we will only be concerned with points on 7y, which are quite close to the

boundary of the physical region. To measure how far apart two points on Z), are we use the
following

Lemma 5.1. The function dy, : Z, X Zp, — [0, 0] given by

dn(z, ) = sup |p; (=) — py() (5.1)
J
takes only finite values and is a metric on Z.

Proof. To see that |p;(z) — pj(2')] is bounded in j, note that

p(z) = p(') = 5 (2) = pj (') = (p;(2) = (') (pj(2) + pj(2))- (5.2)

Using that p?(z) =p(z) — h20]2-, we find Rep?(z) — —o0 as j — oo. Since Impj(z) > 0if j is

sufficiently large, Im p;(z) — oo as j — oo and we find, since the same is true for 2/, that for j
large enough |p;(2) — p;j(2")] < |pj(2) + p;(2’)|. Since by (5.2), we have

min{|p;(2) — pj ()], [ps(2) + ps ()} < Ip(2) = p()['/?,
we have for j sufficiently large, [p;(z) — p;(2')| < |p(2) — p(2")|"/2.

That dj, is a metric is fairly straightforward; for completeness we check the triangle inequality.
Let 2, 2/,w € Zj,. Then

1pj(2) = pi(2")] < |pj(2) = pj(w)] + |pj(w) — p;i(2')].
But then

dn(z,2) = sup |pi(2) = pi(2)] < Stj}p(lpj(Z) = pi(w)] + |pj(w) = p;()])

< sup |pj(2) — pj(w)] +sup |pj(w) — pj(2')] = dn(z, w) + dn(w, 2").
J j
g
Later we will want to use dp(z,2') in a resolvent identity, and now we show that dp(z,2’)
controls |p(z) — p(2’)|, at least when 2’ is on the boundary of the physical region:

Lemma 5.2. Let £ > 0, and let E £i0 denote one of the points on the boundary of the physical
space in Zy as described above. Then for any § > 0, if h > 0 is sufficiently small,

p(2) — E| < dp(z, E £i0)[dy, (2, E +i0) + O(h'/279)]

for z € Zh.
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Proof. We have, for any j € N,
p(2) — E| = |p}(2) — p}(E £ i0)]
= |pj(2) — p;(E £10))||p;(2) — pj(E £10) + 2p;(E £ i0)|
< |pj(2) = pi(E £i0)| (|p(2) — pi(E +i0)| + 2|p; (E £i0)]) . (5.3)

By the Weyl law, for any &’ > 0 there is an hg = hg(d’) > 0 so that if 0 < h < hg, the interval
[Eh—2 — h1-0" Eh—2 4+ h_l_‘;/] contains an element of the spectrum of —Ay; call this 0]20. We
note that jy depends on E and on A, but our notation does not reflect that dependence. Then

pjo(E +i0)]* = |E — ka7 | < A7
Using this in (5.3) with j = jo proves the lemma, since |p;,(2) — pjo (E £10)| < dp(2, E £i0). O

5.2. Resolvent estimates for the model problem on the cylindrical end. Let Xy =
[0,00) x Y, let Ag < 0 be the Laplacian on (X, dr? + gy ), and for h > 0 and z € C \ [0, 00), let

Ro(z) == (=h*Ao = 2) 7"
denote the semiclassical Dirichlet resolvent.

ForIm¢ > 0, let Rp(&) be the resolvent for the Dirichlet Laplacian on the half-line with spectral
parameter ¢2 and Schwartz kernel given by

i i&|r—1’ & (r+r’
Rp(&,r,1) = gy (477711 — ST, (5.4)

Then, for z in the physical region of Z, (see §5.1), we have
oo
Ro(2) = Rplp;(2))¢; ® ¢, (5.5)
j=0
where {¢; 720 Is a complete set of real-valued orthonormal eigenfunctions of the Laplacian on Y’
and —Ay(bj = Uj2¢j.

Moreover, Ry(z) continues holomorphically to Zp, as an operator from compactly supported L?
functions to locally L? functions. In this section we prove some estimates for Ry(z) which will be
needed when we use a resolvent identity to find a neighborhood of the boundary of the physical
region in which R(z) has no poles.

Proposition 5.3. Let x € C°([0,00)) and fix N > 0. If Im¢&, Im&’ > —Nh, then
IXRp(&)x — xRp(€)x|l < Ch°|E — €. (5.6)
IfImé, Im& > —Nh and a1 + ay = 1,2, then
IXh® D Rp ()2 D2 x — xh® D' Rp(§)h*2 D2 x| < Ch™2 | —€/|(J€] + [¢/] + 1)1 T2~ (5.7)
Fiz § > 0 and suppose 6 < arg&,argl < — 0 and [€],|¢'| > 1. Then if a; + ag < 2,
1 D2 R ()22 DR2x — xh Dt Ry (€)h2 D22 < Clé — €. (5.5)
All the norms above are L*>(Ry) — L*(R,), and the constants depend on x, N, and 6.
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Proof. We begin with (5.6). Note that Xd%RD(f)X has Schwartz kernel

With Im ¢ > —Nh, this can be pointwise bounded by C/h?, even when ¢ — 0, and hence since
X is compactly supported we have ||X%RD(T)XH < h% Integrating from & to &' gives (5.6). We
note for future reference that if |{| > h, then we can improve the estimate to

2]]2)((5(7“/)}02 (<1 n Z’;,« B T/|i> eiﬂT—"“"/h - (1 + ’L(T + rl)i) eig(’r'-‘y-r/)/h) X('r/)
< C/(2I€]), when €] > h

(5.9)

Next consider the operator A2 Rp(€). It has Schwartz kernel

% <Sgn(r )il I/n eiﬁ(rJrr’)/h) .

Differentiating this with respect to £ and proceeding as above gives HX%h%RD(T)XH < &

5.
Integrating in 7 from &£ to & gives (5.7) for a3 = 1, ag = 0. To prove (5.7) for a; = 2, an :hO,
we can argue as before using the Schwartz kernel. Alternately, we can note that h2§722RD(§) =
I+ €2Rp(€) and proceed as in the proof of the first inequality, using the improvement (5.9).
Similar techniques give (5.7) when g # 0, if we consider the Schwartz kernel of Rp(§ )a%.

When &, & satisfy § < argé,arg¢’ < m — § they are both in the physical region and we can
use the resolvent equation Rp(€¢) — Rp(&') = (€2 — €?)Rp(&)Rp(€'). If |€] > 1, using the bound
on arg & we have |h® DM Rp(£)h*2D22|| < C|¢|*1H*2=2 where the constant depends on §. The
same inequality holds if £ is replaced by & everywhere. Using this in the resolvent equation
proves (5.8). O

Proposition 5.4. Let E > 0 and consider one of the points E + 10 € Zh which lies on the
boundary of the physical region. Fix N >0 and x € C°(Xy). Then

IxRo(2)x — xRo(E £1i0)x]|| < Ch~3dy(z, E £0), (5.10)
for all z € Zp, such that dp(z, E£1i0) < Nh. If a1 + ag = 1,2, then instead
[ xh® D& Ry(2)h*2 D22y — xh® DX Ro(E 4 i0)h*2 D22 x|| < Ch™2dy(2, E =+ i0), (5.11)

for all z € Zy, such that dy,(z, E £ i0) < Nh.

Proof. We begin by noting that for any j € N, Im p;(E £ ¢0) > 0, and for h20]2 > E we have
p;i(E £1i0) € iRy. Hence if dy(z, E +i0) < Nh, then Imp;j(z) > —Nh and Im p;(z) — oo as
J — o0.

Without loss of generality, we may assume Y is a function of r only, so that we may consider
X as a function defined on [0, 00). Using the expression (5.5), we find that

X Ro(2)x — xBo(E£i0)x|| £2(x0)—12(x0) = SuP [[XED(pj(2))x — XBp(p;(E£i0))X| L2, )— L2 (R )-
J

Now (5.10) follows directly from (5.6) and the definition (5.1) of dj(z, E £ i0).
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To prove (5.11), we note that for j sufficiently large we have h2a]2 > E +5, and 7/4 <
arg p;j(z),arg p;(E +£1i0) < 3w/4. Using (5.7) when h20]2- < E +5 and (5.8) when h20]2- > FE + 5,

along with the definition of dj(z, E' £ i0) proves (5.11). O

5.3. The resonance free region. Throughout §5.3, we keep all of the assumptions of §3.1, as
well as the assumption that

r>6=Vy(r)=f(r)—1=0.

To show the existence of a resonance free region, we use an identity due to Vodev [Vo, (5.4)]. In
[Vo] the identity is stated only for operators which are potential perturbations of the Laplacian on
R?. However, it in fact holds in far greater generality for operators which are, in an appropriate
sense, compactly supported perturbations of each other. Here we state a version adapted to our
circumstance.

Lemma 5.5. ([Vo, (5.4)]) Let x1 € C°(X;[0,1]) be such that r > 6 near suppl — x1. Choose
X € CX(X;[0,1]) so that xx1 = x1. Then for z,zy € Zn,
XR(z)x — xR(20)x = (p(2) — p(20))xB(2)xx1(2 — x1)xR(20)x
+ (1= x1 — xR(2)x[P*A, xa]) (xRo(2)x — xRo(20)x) (1 — x1 + [*A, xa]xR(z0)x)-

It is important to note in the identity above that xRgx only appears where it is multiplied
both on the left and right by an operator (either 1 — x1 or [h2A, x1]) supported in the set where
r > 6. If we think of this set as a subset of Xy = [0,00) x Y, then the appearance of xRpx makes
sense.

We omit the proof of Lemma 5.5 because it is essentially the same as that of [Vo, (5.4)] (see
also [DyZw, Lemma 6.26] and, for another version in the setting of cylindrical ends, [ChDal,
Lemma 2.1]).

The proof we give of the following theorem follows the proof of [Vo, Theorem 1.5], but we write
it out in detail because it is short and to highlight the role of the estimates we proved in §5.2.

Theorem 5.6. With x as in Lemma 5.5, using (3.4) take constants C' and u(h) such that
R(E +1i0 < —
IXR(E £i0)x|L2(x)—12(x) < )’
where E = Ey and 0 < p(h) < h?. Then there are constants C', C so that for h > 0 sufficiently

small, YR(z)x is analytic in {z € Zy : dp(z, E £1i0) < C'u(h)}. Moreover, in this region the
cutoff resolvent satisfies the estimate

C

HXR(Z)XHL2(X)—>L2(X) < T(h)’

with C depending on x.
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Proof. We use the identity from Lemma 5.5, with zp = F £ i0. Rearranging, we find (all norms
here are L?(X) — L*(X))
IXR(z)x|l < IXR(E £ i0)x|| + 2[p(2) — EllIxB(z)x|[IXR(E £ i0)x|
+[[(1 = x1) (xRo(2)x — xBo(E +i0)x)(1 — x1)
+IIXRE)XNIAA, xa]) (xRo(2)x — xRo(E £ i0)x)(1 = x1)|
+ 11 = x1) (x(Ro(2)x — xRo(E £1i0)x) [A*A, xa[[IXR(E = i0)x||
+IXRE)XIIXR(E £ i0)x][[|[R*A, xa] (xRo(2)x — xRo(E £1i0)x) [B*A, x4]]|.

By writing this bound in this detailed fashion we hope to indicate the importance of the improved
estimate (5.11) as compared to (5.10), so that, for example,

I[A2A, x1](xRo(2)x — xRo(E +i0)x)(1 — x1)|
= [I[h*A, xa)(Ro(2)x = Ro(E £ i0)x)(1 = x1)ll < Cdn(z, E £i0)/h. (5.12)
Using the bound on ||[xR(E £ i0)x|| from the assumptions along with bounds of Proposition 5.4,
we find
C  Cdy(z, E +i0)
+
p(h) p(h)

. 1 1
+ G, %) (7 + s ) DRI

Cdp(z, E +i0)

[xR(2)x| < i)

IxR(2)x|l +

p(h)
Here we have also bounded |p(z) — E| < dj(z, E £ i0), which is weaker than the estimate from
Lemma 5.2 since we will have dy(z, E +i0) = O(u(h)). If we choose C’ sufficiently small, the
coefficients of ||[xR(z)x| on the right hand side above will be small enough that the terms with
IXxR(z)x]|| can be absorbed in the left hand side, proving the result. O
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