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A continuum membrane model can predict
curvature sensing by helix insertion†

Yiben Fu,a Wade F. Zeno,b Jeanne C. Stachowiak c and Margaret E. Johnson *a

Protein domains, such as ENTH (epsin N-terminal homology) and BAR (bin/amphiphysin/rvs), contain

amphipathic helices that drive preferential binding to curved membranes. However, predicting how the

physical parameters of these domains control this ‘curvature sensing’ behavior is challenging due to the

local membrane deformations generated by the nanoscopic helix on the surface of a large sphere.

We here use a deformable continuum model that accounts for the physical properties of the membrane

and the helix insertion to predict curvature sensing behavior, with direct validation against multiple

experimental datasets. We show that the insertion can be modeled as a local change to the membrane’s

spontaneous curvature, cins0 , producing excellent agreement with the energetics extracted from

experiments on ENTH binding to vesicles and cylinders, and of ArfGAP helices to vesicles. For small

vesicles with high curvature, the insertion lowers the membrane energy by relieving strain on a

membrane that is far from its preferred curvature of zero. For larger vesicles, however, the insertion has

the inverse effect, de-stabilizing the membrane by introducing more strain. We formulate here an

empirical expression that accurately captures numerically calculated membrane energies as a function

of both basic membrane properties (bending modulus k and radius R) as well as stresses applied by the

inserted helix (cins0 and area Ains). We therefore predict how these physical parameters will alter the

energetics of helix binding to curved vesicles, which is an essential step in understanding their

localization dynamics during membrane remodeling processes.

I. Introduction

The recruitment of cytosolic proteins to membranes is an

essential step in a variety of membrane remodeling processes,

including clathrin-mediated endocytosis1 and cell division.2,3

Proteins that participate in membrane remodeling contain

membrane binding domains that use positively charged inter-

faces to specifically target negatively charged lipids such as

PI(4,5)P2 on cell membranes.4–6 In addition to this electrostatic

interaction, these proteins exploit additional mechanisms,

including helix insertion, scaffolding, crowding, and entropy gain

by disordered proteins.7–10 These mechanisms cause proteins to

bind more strongly to more highly curved membranes, driving

them to both sense and induce membrane curvature.11 Amphi-

pathic a-helices are common protein domains that are frequently

found in peripheral membrane proteins like septins, epsins,

endophilins, and amphiphysins. Playing key remodeling roles in

cell division and endocytosis, these proteins insert themselves

into a single leaflet of a membrane, where they can sense

curvature independently of any additional curvature sensing

mechanisms.9 The stronger binding of helix-containing domains

to membranes of high curvature can thus control their localiza-

tion dynamics, helping to regulate subsequent steps in assembly

and remodeling. Understanding how the strength of membrane

binding depends on helix insertion and membrane properties is

thus an essential component of predicting the spatial control of

protein localization and corresponding remodeling dynamics.

Several lines of experimental evidence support curvature

sensing by amphipathic helices and its direct coupling to

membrane deformations and membrane energy changes. Teth-

ered vesicle assays visualize increased binding to highly curved

membranes for domains with a-helix.9,12 Without the a-helix

present, these same domains are insensitive to membrane

curvature, demonstrating the significance of the helix in curvature

sensing. The insertion or the a-helix changes the membrane local

curvature and induces curvature generation.13–15 Equilibrium

observations of proteins bound to small unilamellar vesicles

(SUVs) can be converted into dissociation constants by deter-

mining the relative partitioning of proteins to smaller vesicles

(Fig. 1A). These dissociation constants can then be used to extract
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changes of energy upon binding (Fig. 1B). This data on ENTH

binding to vesicles provides a basis for our modeling comparison,

where we can then address how the key parameters of curvature,

bending modulus, tension, insertion size, and spontaneous

curvature control membrane energies following helix insertion.

As further validation for this modeling approach, we perform

similar comparisons with experimental measurements of binding

of the ArfGAP1 ALPS motifs on vesicles,16 and of ENTH binding to

cylindrical membrane tethers.17

Modeling and simulation using other approaches have illu-

minated several ways in which helix insertion alters membrane

structure and stress. Molecular dynamics simulations have

measured depth and orientation of helices in bilayers, defor-

mations of the surface and lipid structure,18,19 and corres-

ponding changes to membrane stress around the insertion.20

However, these simulations are limited to relatively small

(nanometer scale) and typically flat membranes. Curved all-

atom membranes have shown that the underlying deformation

matches molecular factors, like protein shape,21 but measure-

ments of the energy changes arising from helices inserted into

membranes of varying curvature have remained intractable

using molecular dynamics. In contrast, models that use elasti-

city theory have quantified how stress profiles and energetics22

in initially curved membranes will respond to helix insertion

differentially, depending on how the curvature was generated

and the depth of the insertion.13 However, the modeled

membrane patch varies with only two variables (thickness in

one dimension, arc length in the other dimension), whereas

our modeled vesicles exist in 3D space. These elasticity calcula-

tions thus only capture variation along one axis of principal

curvature on a surface, assuming translational symmetry along

the other. They cannot directly model spherical vesicles, where

a highly localized and anisotropic insertion will impact curva-

ture along both principal axes.

Deformable continuummembrane surfaces are an attractive

model for studying membrane mechanics because they can

adopt diverse geometries in 3D space, and their shape and

energy will relax in response to perturbations. The calculations

are relatively efficient, typically taking on the order of minutes

or days depending on surface size (see Methods), vs. molecular

simulations, where protein binding energy calculations would

only be computationally tractable on the smallest of vesicles.

Continuum membranes capture how the material bending

modulus of the membrane, the membrane tension, and osmo-

tic pressure will impact energetics and membrane shape.23

Local perturbations driven by proteins adsorbed to the surface

can be modeled via changes to the membrane’s spontaneous

curvature c0, with values that can vary from 0 to B1 nm�1.24

The spontaneous curvature can vary spatially across the mem-

brane surface, driving changes in membrane shape and tension,25

thus providing an effective material parameter that captures

changes to membrane stress on the outer vs. inner bilayer leaflets.24

Fig. 1 Experimental curvature sensing by ENTH domains with amphipathic helices and the corresponding model design to quantify these results. (A) The

dissociation constant of the amphipathic helix-containing ENTH domain is stronger with more highly curved (smaller) vesicles. The solution

concentration of the ENTH domain is 150 nM and the PI(4,5)P2 density on the vesicle is 0.125 nm�2. (B) From the KD, we can measure the difference

in binding energy with vesicle size, using the smallest vesicle as the zero point. The positive energy changes reflect weaker binding. (C) The helix insertion

is modeled as occupying four adjacent triangles on the vesicle surface (R = 7 nm), which are assigned a nonzero spontaneous curvature, cins0 , while the

rest of the surface has a spontaneous curvature of zero. (D) The insertion modifies the membrane energy, with equilibrated structures deforming to

produce local bulges that increase with larger cins0 . Here cins0 = 0.4 nm�1 and the color bar shows the distance of triangular face to the center of the

vesicle. (E) Five vesicles of different sizes in our simulations. The vesicle radii are 7 nm, 14 nm, 28 nm, 56 nm and 112 nm from left to right.
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Even before protein adsorption, any asymmetries in lipid composi-

tion between the inner and outer leaflets can contribute to a

nonzero spontaneous curvature across the bilayer surface,26

since each lipid has its own spontaneous curvature (see ref. 27).

Continuum models can capture this asymmetry, as we show

below, by specifying an initial spontaneous curvature to the

bilayer, prior to any insertion. Continuum models can be

coupled to models with attached and diffusing proteins28–30 to

capture interactions that drive membrane-mediated collective

behavior,31 or response of cell-shape to flow.32 Thus, these

models provide a flexible platform for integrating mechanical

responses with environmental changes or biochemical inter-

actions. We apply this detailed curvature model here to protein

curvature sensing, showing that changing the local spontaneous

curvature is an effective parameter for capturing a helix

insertion.

In this paper, we first describe the model design, and the

approach used to compare model results with in vitro experi-

ments measuring surface coverage on SUVs of varying curva-

ture. We then show how the spontaneous curvature of the

insertion, cins0 , and the bending modulus k have dominant

effects on the membrane energy changes following insertion.

Both the size and spread of the insertion further modulate the

magnitude of the energy changes. In contrast, constraints on

the area and volume that would arise due to area compressi-

bility and osmotic pressure have minimal impact on control-

ling energetic responses to insertion. With these results we are

able to define parameter regimes that produce excellent agree-

ment with the experimental observations of curvature sensing.

We validate that the results are robust to our numerical

methods, including mesh size, integration scheme, and opti-

mization protocol. We then recapitulate curvature sensing by

helices reported in experiments on ENTH binding to

membrane tethers and ALPS motifs binding to vesicles, also

showing that the model reproduces stronger binding to mem-

branes with higher diacylglycerol content.33 Finally, through

our numerical results we derive an empirical formula that

predicts how membrane energies will change following inser-

tion as a function of variations in cins0 , k, radius and insertion

area. This expression can thus be used to estimate curvature

sensing by amphipathic helices without additional computa-

tional measurements, and we show it provides an excellent

model fit to curvature sensing observed by the eAH and aAH

helices.9

II. Model design
Continuum membrane model

The membrane is modeled using a continuum thin-film surface

captured via a triangular mesh using the subdivision limit

surface method23 (Fig. 1). Given M as the membrane surface

that is parameterized by curvilinear coordinates s1 and s2, the

position s of each point on the surface in three-dimensional

space (s A R
3) is given by s = s(s1,s2). The energy of the

membrane is due to a bending energy (via the Helfrich

Hamiltonian34) and constraints on the volume V and area A,

defined as:23

E ¼
ð

M

1

2
k 2HðsÞ � c0ðsÞ½ �2

ffiffiffi

a
p

ds1ds2 þ
1

2
mA

A� A0ð Þ2
A0

þ 1

2
mV

V � V0ð Þ2
V0

þ Ereg

(1)

The first bending energy term integrates over all positions s on

the surface M, where
ffiffiffi

a
p ¼ @s

@s1
� @s

@s2

�

�

�

�

�

�

�

�

. The energy varies with

mean curvature, H(s), and the spontaneous curvature of the

membrane, c0(s), where k is the constant bending modulus.

H(s) is the mean of the calculated curvature summed along the

two principal axes at point s; for a sphere of radius R, it is a

constant 1/R at all points. For a cylinder, the mean curvature is

1/2R. H(s) thus changes when the membrane deforms. c0(s) is

zero for membrane bilayers (without proteins attached) when

both leaflets have the same lipid composition. The second and

third terms capture the area and volume constraints, with

respective coefficients mA and mV. A is the membrane area,

A0 is the target area of the membrane, V is the vesicle volume,

and V0 is the target volume of the vesicle. The fourth term is the

regularization energy, Ereg, which is added to eliminate the

in-plane shearing deformations of the triangular mesh as the

structure is optimized. This technical rather than physical

constraint (due to the numerical mesh) should go to zero in

equilibrated structures, and in Methods we describe specific

forms we tested to minimize its contribution to the total energy.

Although the insertion is localized to a few mesh points,

it drives the local region of the surface to bulge and deform to

minimize the energy after the insertion, and thus requires

integration over the 3D surface to evaluate energy changes

(Methods). To study the curvature sensing effect, we ran

simulations on vesicles with five different radii: R = 7 nm,

14 nm, 28 nm, 56 nm, 112 nm respectively, as shown in Fig. 1E.

For comparison with experimental data, we also used vesicles

with R = 10 nm, and we studied cylinders of similar radii, as

described in Methods. The curvature is defined as the inverse

of the vesicle radius, so the initial vesicles have curvature in a

range of 0.009–0.14 nm�1, which covers a range of relevant

membrane curvatures in biological systems.

Modeling helix insertion

The spontaneous curvature of bilayers is dependent on the lipid

composition. For the vesicles studied here, we primarily assume

the leaflets are symmetric, thus having a spontaneous curvature

of zero, meaning the membrane prefers to be everywhere flat.

We test in the Results how an initial asymmetry in the bilayer

leaflets, producing a nonzero bilayer spontaneous curvature,

would impact curvature sensing. The insertion of the oblong

a-helix into a leaflet of the bilayer will induce conformational

changes of nearby lipids. We therefore model the effect of the

insertion as a local change to the spontaneous curvature of the

membrane.24 The area of this local change is chosen to mimic

the size of the a-helix domain, which for ENTH occupies about
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2 nm2, i.e. 1 nm in width and 2 nm in length, on the

membrane.7,35 We thus select 4 triangles of the mesh to assign

a nonzero value of c0, which we will refer to as cins0 (Fig. 1C).

In the Results we verify that the conclusions are unchanged with

either higher mesh resolution, or with a more diffuse spreading

of the local change in cins0 . The rest of the membrane surface

retains the initial bilayer spontaneous curvature, usually zero.

Optimized structures thus can form a bulge around the insertion

(Fig. 1D). In this paper, we focus on the impact of one protein

binding to the membrane, effectively assuming each binding

event is local and independent of one another.

Comparison to experimental observables

The experimentally measured coverage of ENTH proteins per

vesicle of radius R is reported in ref. 12, along with the

experimental methods. We compute the corresponding KD via

KD = [P]eqreql /reqel , where [P]eq is the concentration of free ENTH

in solution, reql is the free lipid density on the surface, and

reqel is the density of membrane-bound ENTH proteins.

We exploit that both the proteins and the lipid sites are in

great excess to the number of bound complexes, such that

[P]eq = [P]tot (150 nM) and reql = rtotl . The lipid binding-site

density is calculated from the 7.5% mol fraction of lipids that

are PI(4,5)P2, as 0.125 nm�2 on all vesicles. The bound protein

densities vary from 0.0038 to 0.0002 nm�2. This KD is thus

dependent on radius (Fig. 1A), and the energetics of binding of

one ENTH to the membrane surface can be extracted via the

well-known relation

KD Rð Þ ¼ 1M½ � � exp DG Rð Þ
kBT

� �

; (2)

where DG is the binding free energy and [1M] is the standard

state concentration. Specifically, DG quantifies the free energy

difference between (1) an unbound ENTH and the unperturbed

membrane surface and (2) a bound ENTH to a perturbed

membrane. For binding of ENTH domains with the helix

removed, the KD becomes effectively independent of radius,

indicating that the enthalpic and entropic contributions due to

binding the ENTH domain (minus helix) to the membrane do

not change with membrane curvature (Fig. S1, ESI†).

While the binding free energy is clearly dependent on

membrane curvature (Fig. 1), we decompose it into contribu-

tions that do not all vary with curvature. We emphasize that our

calculations are not able to measure the binding free energy

(eqn (2)), because we do not account for all chemical contribu-

tions to binding energy. Instead, our calculations measure the

energy change upon binding that varies with curvature, due to

membrane mechanics. We distinguish three contributions: a

chemical potential due to electrostatic interactions between

protein and lipids (�m), the cost of protein conformational

change like the a-helix folding (e), and a mechanical energy due

to helix insertion into the bilayer (E). Without the helix, the

ENTH domain still binds the membrane, but the binding is

insensitive to curvature (Fig. S1, ESI†), hence we treat �m as

curvature independent. We will assume that the protein con-

formational change e is also not dependent on the curvature

given that the structure of the ENTH N-terminal a-helix is the

same despite the different size of vesicles. Thus, DG(R) =

�m + e + DE(R) and inserting this into eqn (2), we can write

DEðRÞ ¼ kBT � log KDðRÞ
KD0

� �

; (3)

where KD0 is independent of the membrane shape,

KD0 ¼ 1M½ � � exp �mþ e

kBT

� �

. To compare with simulations, we

measure how these mechanical energies change relative to that

of the smallest vesicle (Eref), defining:

DDE Rð Þ ¼ DE Rð Þ � DEref ¼ kBT � log KDðRÞ
KDðRminÞ

� �

; (4)

where Rmin = 10 nm (Fig. 1B). When the proteins and lipid

binding sites are in excess of the membrane bound proteins

(true here), this expression is independent of [P]tot and rtotl .

DDE Rð Þ ¼ kBT � log NðRminÞR2

NðRÞRmin
2

� �

, where N is the copies of

membrane bound proteins per vesicle of size R.

III. Results
IIIA. Spontaneous curvature of the insertion drives opposite

changes in energy in small vs. large vesicles

The impact of our helix insertion on the membrane energy is

controlled by its size, Ains, (2 nm2 unless otherwise noted) and

by its spontaneous curvature, cins0 . For cins0 = 0, the insertion

would not change the membrane energy at all for any vesicle

size, which we measure via

DE = Ebound � E0, (5)

where Ebound is the membrane energy with one helix bound and

E0 = 8pk34 is the energy of the spherical vesicle with no

insertions and a surface spontaneous curvature c0(s) that is

everywhere zero. This unperturbed energy E0 results from the

cost of bending the membrane into a sphere, when it prefers a

flat curvature (c0 across the unperturbed surface is zero), and is

independent of vesicle radius.

As we increase cins0 of the insertion from 0.01 nm�1 to

0.3 nm�1, we find that for smaller vesicles, the insertion lowers

the cost of bending the membrane, producing DEo 0 (Fig. 2A).

For these highly curved vesicles, the insertion thus improves

the stability of the bound system. Conversely, for larger vesicles,

we see the opposite effect. Once R 4 28 nm, insertions with

increasing cins0 cause an increase in the cost of bending the

membrane (DE 4 0), thus de-stabilizing these flatter surfaces.

These inverse costs and benefits of adding the insertion

result from the initial strain that the membranes are under by

being forced into curved (instead of flat) enclosed vesicles. For

the highly curved small vesicles, the local mean curvature H(s)

is high and introducing an insertion that prefers higher curva-

ture relieves strain in the membrane, even as it drives local

shape changes. With larger vesicles, the local mean curvature

H(s) decreases, and the creation of local shape changes around

the insertion eventually costs energy. The transition occurs at
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BR = 28 nm, where the corresponding membrane curvature is

about 0.036 nm�1. The transition between the positive and

negative energy responses cannot be predicted from the vesicle

size and insertion spontaneous curvature alone, as it depends

on the relaxation of the surface around the insertion, as

described further in Section IIIJ.

IIIB. Stiffer membranes also show opposite response to

insertion in small vs. large vesicles

The response of the membrane energy to changes in bending

modulus k is also coupled with the vesicle size. For small

curved vesicles, as we stiffen the membrane against bending

(larger k) the insertion produces a greater benefit in stabilizing

the membrane (Fig. 2B), retaining a DE o 0 and dDE/dk o 0.

This result is again in agreement with the insertion relieving

the strain in the membrane, which increases in the unper-

turbed vesicle with larger k. For intermediate vesicles, the

energy change becomes less sensitive to changes in k, until

we reach R = 112 nm. Now we see the opposite trend, where the

increasing stiffness causes a larger cost to adding the insertion,

producing dDE/dk 4 0. The sign of DE does not change with k,

only the magnitude, as we quantify in Section IIIJ. However, we

note that in Fig. 2B, the spontaneous curvature of the insertion

zone is fixed at cins0 = 0.1 nm�1 for each data point, which means

we effectively assume that the insertion (e.g. the insertion

depth) is not influenced by the stiffness of the membrane. In

reality, the insertion parameters of a specific a-helix type could

be coupled to the membrane stiffness. So, given a specific

helical structure, the response of the membrane energy to

varying bending modulus k could reflect simultaneous changes

in both k and cins0 . A relationship between k and cins0 would

depend on molecular properties of the protein–lipid interactions,

and is beyond the scope of this paper.

IIIC. Area and volume changes have minimal impact on

curvature sensing

The membrane energy is dependent on changes in volume and

surface area due to insertion (eqn (1)), although we find they

make negligible contributions relative to the bending energy.

The volume constraint reflects an influence of osmotic pressure,

where water may pass in and out of the vesicle to change its

volume. The coefficient mV controls the penalty to changes in

volume, and we find that over a broad range of values, it has

minimal impact on the membrane energy after insertion (Fig. S2,

ESI†). Similarly, the expansion or compression of the membrane

area upon insertion is controlled by the coefficient mA, where

experiments estimate this membrane elastic modulus in the

range of 230–260 pN nm�1.36 Here again, over a broad range of

values of mA, we see minimal changes to the membrane energy,

indicating that global area changes upon insertion are not

significant contributors to curvature sensing (Fig. S2, ESI†). In

all of our simulations (unless otherwise noted), we thus use fixed

values of mV = 83.4 pN nm�2 and mA = 250 pN nm�1. The fact that

these terms do not contribute to curvature sensing does not mean

that they do not contribute at all to the binding free energy

(eqn (2)), but only that the contribution is not sensitive to changes

in curvature.

IIID. Helix insertion energies are sensitive to local curvature,

not membrane surface area

Our results above show that the effect of the insertion on

membrane energy is sensitive to the curvature of the membrane

surface, as coupled to changing vesicle size. For a helix inser-

tion with a fixed value of cins0 , we can thus see that as the vesicle

gets smaller and more curved, the insertion drives more stable

energies (dDE/dR 4 0), with a steeper benefit occurring for

larger values of cins0 (Fig. 3A). For vesicles, both the curvature

and the total membrane surface area change with varying

vesicle radius, and on small vesicles the perturbation due to

the insertion occupies a larger fraction of the total area than for

larger vesicles. Therefore, we further tested whether curvature

sensing would be retained when the surface area is fixed, and

only the local curvature varies. We thus generated a single

enclosed red-blood-cell-shaped membrane (by decreasing the

vesicle volume37) that exhibits variations of curvature across its

surface. Four different points with different curvatures on the

surface were selected as the insertion zone (Fig. 3B). Our

simulation results recapitulate the same curvature sensing

Fig. 2 The addition of insertions to spherical vesicles can stabilize or de-stabilize the bending energy dependent on vesicle size and bending modulus.

(A) As cins0 increases, the insertion has a larger impact on the membrane energy, stabilizing small vesicles and de-stabilizing large ones. k = 20kBT.

(B) As the bending modulus k increases, the insertion is again more stabilizing for small vesicles, but de-stabilizing for large vesicles. cins0 = 0.1 nm�1.

The plotted energy change is due solely to the membrane mechanics, and is not the same as the binding free energy defined in eqn (2).

Soft Matter Paper



10654 |  Soft Matter, 2021, 17, 10649–10663 This journal is © The Royal Society of Chemistry 2021

phenomena, where binding to the most highly curved region

produces the largest benefit in membrane energy changes, and

binding to regions of negative curvature produces a cost in

membrane energy (Fig. 3B). The curvature sensing ability is

thus robustly driven by the local curvature and resulting

deformation around the insertion, rather than the relative size

of the perturbation to the total surface area.

IIIE. Curvature sensing is retained when the insertion area is

spread out

In the above models, the spontaneous curvature of the

membrane at the site of the insertion is non-zero over an area

of 2 nm2, and immediately drops back to zero in adjacent

surface elements. To test the effect of having a more continuous

drop-off in spontaneous curvature as a function of distance

from the helix, driven by a stressed distribution of lipids

around the insertion,20 we expanded the region of non-zero

spontaneous curvature around the insertion (Fig. S3A, ESI†).

The value of cins0 is thus largest at the center of the insertion,

and decays with distance away. We model this decay using a

Gaussian function:

cins0 ðxÞ ¼ cins0 exp �ðx� x0Þ2
2s2

� �

; (6)

where x is the distance to the insertion zone center x0, and s is

the width of the spread. A Gaussian function introduces only

one extra parameter in s and concentrates most of the pertur-

bation directly around the helix. The induced stress or strain

is limited to B1 nm scale around the insertion,20 so we choose

2s r 1.5 nm. We find that the curvature sensing effect is

robustly retained, with a larger spreading of the insertion

producing a larger change in the membrane energy (Fig. S3B,

ESI†). Using a linear instead of a Gaussian function for the

decay produces similar results (Fig. S3C and D, ESI†).

IIIF. The model recapitulates in vitro measurements of

curvature sensing on vesicles of varying size

To most directly compare the simulation results to the experi-

mental results of ENTH binding to vesicles,12 we measure the

energy change upon insertion relative to the value in the

smallest vesicle (DEref(R = 10 nm)), so following eqn (4),

DDE(R) = DE(R) � DEref. (7)

We see excellent agreement between the shape of the energetic

changes between both our numerical results and the experi-

ment (Fig. 4), where in fact more than one set of k–cins0 values

agree quantitatively with the experiment. Hence, within physi-

cally reasonable values of the membrane bending moduli, a

softer membrane reproduces the data with a larger sponta-

neous curvature (cins0 = 0.4 nm�1, k = 15kBT) or a stiffer

membrane matches with a weaker spontaneous curvature

(cins0 = 0.2 nm�1, k = 30kBT). We can see then that if the

spontaneous curvature is either too large or too small, then

the numerical results cannot reproduce observed bending

energy changes for reasonable value of k.

So far, we have assumed the spontaneous curvature across

the bilayer surface is zero, c0(s) = 0, except at the insertion patch

where cins0 4 0. This will be true if both monolayers are

symmetrical and identical in lipid composition, and thus we

tested the role of a nonzero initial curvature driven by leaflet

asymmetries. The simulation results show that curvature

sensing persists and remains in close agreement with the

experimental data (Fig. 5). Here we note that calculation of

DE (eqn (5)) requires that E0 also be calculated numerically, as

it can deviate from the perfect sphere value of E0 = 8pk. Leaflet

asymmetries can arise during the generation of vesicles, as

specific lipids could prefer the inner leaflet over the outer

leaflet due to the opposing curvature experienced by the head

groups. For the vesicles used in the experiments, the composi-

tion is mainly DOPC (B90% of total lipids). DOPC has a

Fig. 3 Helix insertions will drive stronger binding to more highly curved membranes. (A) Curvature sensing on spherical vesicles. Inset illustrates a sphere

of R = 7 nm along with the insertion area (red color). Insertions increase the stability of the membrane energy (DEo 0) more robustly with smaller radius

and correspondingly higher curvature (1/R). The magnitude of this response is larger with higher spontaneous curvature of the insertion cins0 . k = 20kBT.

(B) Curvature sensing on an enclosed, red-blood cell shaped ‘vesicle’ with heterogeneous curvatures. Inset illustrates the side view with position 1 having

highest curvature, and 4 having lowest (negative in this case) curvature. To get this asymmetric oblate structure, we started with the spherical vesicle

R = 14 nm and set the target volume V0 = 0.65 � 4pR3/3, target area S0 = 4pR2. A much stronger area and volume constraints were added with mV =

8.34 � 104 pN nm�2 and mA = 2.50 � 104 pN nm�1. k = 20kBT and cins0 = 0.1 nm�1. The membrane curvature at the positions labeled 1, 2, 3, 4 is 0.14, 0.08,

0.06, �0.06 nm�1 respectively. The membrane energy change DE is more stabilizing with higher curvature.
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negative spontaneous curvature about �0.05 nm�1,38 meaning

that the spontaneous curvature of each monolayer is about

�0.05 nm�1. Because a nonzero bilayer spontaneous curvature

is only caused by asymmetries between the monolayers, no

matter their individual values, we thus tested bilayer values

starting from a maximal asymmetry: �0.05 nm�1
r c0(s) r 0.

Overall, for small deviations from zero, the influence is negli-

gible (compare Fig. 4B and 5A), while for the larger deviations

we observe enhanced curvature sensing with the same insertion

parameters (Fig. 5B).

IIIG. The model recapitulates in vitro measurements of

curvature sensing of distinct amphipathic helices, ALPS1

and ALPS2

Our above results focused on the epsin N-terminal (ENTH)

amphipathic helix, which is B2 nm2 in area. The ArfGAP1

Fig. 4 Numerical simulations reproduce in vitro curvature sensing results of ENTH for realistic bending moduli and spontaneous curvature values. In all

panels, the experimental data on binding to vesicles of varying radii is shown in black open circles,12 same as in Fig. 1B (note the y-axis range varies with

each panel). (A) For a lower spontaneous curvature (cins0 = 0.1 nm�1), the curvature sensing is too weak to reproduce the experiment. (B–D) For values of

cins0 = 0.2–0.4 nm�1, we see excellent agreement with the experimental energetics, where the agreement is dependent on pairing of cins0 and k.

Fig. 5 Numerical simulations reproduce the in vitro curvature sensing on vesicles even when the bilayers initially have a nonzero spontaneous curvature.

(A and B) In both panels, the experimental data is shown in black open circles and cins0 = 0.2 nm�1. (A) The bilayer spontaneous curvature is initialized to

c0(s) = �0.01 nm�1 to reflect possible asymmetries in the inner and outer leaflet. Results are very similar to the same model with c0(s) = 0 nm�1 shown in

Fig. 4B. (B) With a more negative initial value, c0(s) = �0.05 nm�1, the experimental data agrees better with a softer (lower k) membrane given the same

value of cins0 . Thus realistic values of k–cins0 describe the experimental data even with initial asymmetries between membrane leaflets.

Soft Matter Paper



10656 |  Soft Matter, 2021, 17, 10649–10663 This journal is © The Royal Society of Chemistry 2021

protein contains two slightly longer amphipathic helices, termed

ALPS1 and ALPS2, that can also insert into membranes.11 Both

these helices have been shown experimentally to exhibit curvature

sensing, with ALPS1 being a stronger sensor of curvature.16 Based

on structural data,16 we therefore set the ALPS1 insertion area to

6 nm2, and the ALPS2 insertion area to 3.5 nm2. Our continuum

model was again able to reproduce the experimentally measured

curvature sensing for both these helices with realistic pairs

of bending modulus k and insertion spontaneous curvature

cins0 (Fig. 6). Specifically, both helices were experimentally studied

on vesicles of radii 90, 42, and 34 nm, with the same composition

in each.16 We therefore expect similar values of k to describe

sensing for both helices, and indeed for k = 24kBT, we found very

good agreement for both helices using cins0 = 0.5 nm�1 for ALPS1,

and cins0 = 0.4 nm�1 for ALPS2. Fig. 6 highlights other pairs of

k–cins0 with good agreement to the experiments.

IIIH. The model recapitulates in vitro measurements of

curvature sensing by ENTH on cylinders of varying size

Curvature sensing of the ENTH domain was also experimentally

observed on cylindrical membrane tethers of varying size by

Capraro et al.17 In Fig. 7, we show that our model produces

good agreement with the experimental results. The optimal

parameters for the model used the same Ains = 2 nm2 as the

ENTH on the vesicles, with k = 20kBT and cins0 = 0.45 nm�1. This

insertion spontaneous curvature is somewhat larger but still

relatively similar to the value for ENTH used on the vesicles,

where we found excellent agreement when k = 20kBT and cins0 =

0.3 nm�1 (Fig. 4). One reason for a difference in cins0 for the same

protein on cylinders vs. vesicles could be the different lipid compo-

sitions used in the two experiments. In addition, due to the change

in geometry, specific proteins have been shown to sense curvature

more strongly in vesicles over cylinders (although ENTH was not

studied).39 Our model does not assume that sensing need be

identical in cylinders and vesicles of the same mean curvature. This

is evident because the shape of the membrane deforms following

insertion, and the exact shape and energetic cost of the deformation

can be sensitive to the unperturbed surface topology. In Section IIIJ

below we quantify how the shape deformation, on its own, impacts

energetics as a function of vesicle size.

We note that to compare our measurements directly to the

quantitative experiments (see Methods for all cylinder simula-

tion details), the experimental results showed that the ratio of

protein (Ip) and lipid (Il) fluorescence intensities on the tether,

Ir = Ip/Il, is linear with the square root of tension on the tether,

or equivalently, with the inverse of the tether radius R.17 This

normalized intensity ratio, Ir/I
0
r , where I0r is the fluorescence

intensity ratio of a reference cylinder, is the same as a normal-

ized binding constant Keq/K
0
eq, when, similar to the vesicle

experiments, the abundance of unbound protein and of lipid

binding sites are in excess and thus effectively constant across

R. Using eqn (4), we quantify Keq/K
0
eq = exp(�DDE/kBT) where

DDE = DE(R) � DEref, as defined in eqn (7). Thus, by measuring

the membrane energy change caused by inserting an amphipathic

Fig. 6 Numerical simulations can reproduce the in vitro curvature sensing of the two ArfGAP1 ALPS helices. In all panels, the color bars indicate the

increased binding observed on highly curved vesicles (R = 34 nm in A–C and R = 42 nm in B–D) relative to a reference vesicle of R = 90 nm. (A and B)

Simulation results for the ALPS1 motif, with Ains = 6 nm2. The experimentally measured values are Keq(34)/Keq(90) = 46.75, Keq(42)/Keq(90) = 11.51.13,16

Thus the red dashed circles represent the possible k–cins0 pairs that reproduce this experimental data, with the red star indicating a conserved k values

across all 4 panels. (C and D) Simulation results for the ALPS2 motif, with Ains = 3.5 nm2. The experimentally measured values are Keq(34)/Keq(90) = 5.33,

Keq(42)/Keq(90) = 2.25.13,16 Thus the red dashed circles represent the possible k–cins0 pairs that reproduce this experimental data, with the pink star

indicating a conserved k values across all 4 panels.
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helix on cylinders of decreasing radii down to R = 10 nm, our

model recapitulates the experimentally observed curvature sensing

(Fig. 7), with a similar dependence on R of ENTH on the spherical

vesicles (Fig. S4, ESI†). We note that our model results are not as

linear as the experimental data, and this could be due to our

assumption that Ir/I
0
r = Keq/K

0
eq. Although the solution proteins are

in clear excess of the bound proteins, the lipid sites are not strictly

in excess. While unbound lipid binding sites could remain con-

stant due to exchange between the tether membrane and the

reservoir, this is difficult to verify, and a correction term would

account for changes in unbound lipid populations with increasing

Keq. We do not attempt this here because the absolute values of Keq
are not known (i.e. our model does not report on enthalpic

contributions to binding strength).

IIII. The model captures increased binding on membranes with

lipid composition of increasingly negative spontaneous curvature

Lastly, we consider a set of experiments that showed how binding

affinities for amphipathic helices could also vary across vesicles

that have a fixed size but changing membrane composition.13,33

We make two new assumptions for these model calculations, and

emphasize that this renders this specific comparison less robust

than previous results. Nevertheless, our model achieves good

agreement with experiment (Fig. 8), and thus we consider the

results at least qualitatively promising. The first key assumption is

that the changing lipid composition does not affect the enthalpic

or entropic contributions of the binding interaction. Instead, by

keeping the percentages of negatively charged lipids constant,

but increasing the fraction of the wedge-shaped diacylglycerol

(DAG) lipid, both monolayers of the bilayer exhibit an increa-

singly negative spontaneous curvature, c0(s). This could there-

fore alter the membrane bending energy following insertion,

and thus the binding affinity. Experiments showed that a

truncated ArfGAP1 containing its ALPS1 helix has a higher

affinity to vesicles with more DAG (see Fig. 7B in ref. 13).

A second key assumption of our model is that we here use

the continuum surface to represent only a monolayer of the mem-

brane (the outer-leaflet of the vesicle), with the assumption that

Fig. 7 Numerical simulations reproduce the in vitro curvature sensing results observed on cylindrical membrane tethers. (A) Modeled cylinder showing

the local bulge that occurs following one insertion on the cylinder membrane. Here R = 10 nm, k = 20kBT, and cins0 = 0.3 nm�1. The color bar shows the

distance of each triangular face to the axis of the cylinder. All modeled cylinders have a length of 55.4 nm with both ends constrained by periodic

boundary conditions, with this image zooming in on a length of L = 30 nm to highlight the bulge. (B) The experimental data measured increased binding

on tethers as tension increased and their radii decreased (1/R increased), as plotted in Fig. 2E of ref.17 and keff = 13.33kBT according to their system

set-up. Our numerical simulations were carried out with k = 20kBT, c
ins
0 = 0.45 nm�1, and Ains = 2 nm2. K0eq = Keq(R = 500 nm). In Fig. S4 (ESI†), we plot the

same data in (B) vs. R, to show the similar representation as our earlier figures.

Fig. 8 Numerical simulations show stronger binding to membranes with a composition that has a more negative spontaneous curvature, similar to

in vitro results The experimental data is shown in blue dots13,33 in both plots, our numerical results in red circles. (A) With softer monolayer k, a larger cins0 =

0.1 nm�1 agrees best. (B) With stiffer monolayer k, a smaller cins0 = 0.01 nm�1 is needed. Simulations were run on a vesicle with R = 28 nm, consistent with

the experiments. Keq/K
0
eq is the normalized equilibrium constant that can be calculated from eqn (4) given DDE = DE� DE0, and DE0 is the energy change

due to insertion on the reference membrane defined to have initial spontaneous curvature c0(s) = �0.06 nm�1 across the vesicle surface.

Soft Matter Paper



10658 |  Soft Matter, 2021, 17, 10649–10663 This journal is © The Royal Society of Chemistry 2021

energetic coupling to the inner-leaflet is neglectable. It will be

important to test and quantify this assumption in future work

with a multi-leaflet continuum model (see Discussion), but here

we simply show the results based on these assumptions. There-

fore, our model has only one layer, with k = 9–10kBT (the value for

a monolayer), and we again measure DE due to one insertion as

the initial spontaneous curvature of the membrane is made more

negative. Similar to the experiment, we also find stronger binding

to membranes with more DAG (a more negative c0(s)), using cins0 =

0.1 nm�1 and k = 9kBT, or c
ins
0 = 0.01 nm�1 and k = 10kBT (Fig. 8).

We use one insertion with Ains = 4 nm2, which was found to be

optimal from numerical calculations performed using elasticity

theory.13

IIIJ. Predictive model for membrane energy changes

following insertion captures effect of membrane shape

changes

To combine all of our numerical results into a simpler mathe-

matical framework, we derived a phenomenological expression

to predict how the membrane energy changes would vary with

cins0 , k, vesicle radius R, and insertion area Ains. This expression

clarifies how the observed energy change results not only from

the local change in spontaneous curvature at the insertion

(which can be calculated analytically), but the membrane shape

changes that occur following membrane relaxation around the

insertion. The results apply for initial bilayer spontaneous

curvature of c0(s) = 0, or symmetric bilayers.

We write the total observed membrane energy change

calculated from numerical simulation as

DE(R,cins0 ,k,Ains) = DE0 + d, (8)

where DE0 is the change in bending energy due solely to

changes in spontaneous curvature at the insertion, without

any shape change to the surface. Therefore, d captures energy

changes due to deformation of the membrane shape to relieve

induced strain in the surface. We calculate DE0 analytically

using eqn (1). The only change in energy across the surface

occurs at the site of the insertion. Before the insertion, the

membrane bending energy of the area Ains is
kAins

2

2

R

� �2

, with

the spontaneous curvature of the membrane being zero. After

the amphipathic helix inserts into this area Ains, the bending

energy on this area is
kAins

2

2

R
� cins0

� �2

with cins0 being the

Fig. 9 Empirical formula predicts dependence of membrane energy change on physical parameters due to the insertion and subsequent membrane

shape changes. (A) The dashed lines show DE0, which is defined analytically in eqn (9) as the change in bending energy due solely to changes in

spontaneous curvature at the insertion, without membrane shape relaxation. This simple estimate significantly overestimates the energy changes

observed at equilibrium from our simulations (DE), which are shown in the blue and pink data points. These data points are the same as the matching

color/symbol in part (C). (B) From our numerical simulations that produce DE, we can extract the energy change d that arises only due to membrane

shape relaxation using d = DE � DE0, where DE0 is defined analytically in eqn (9). (C) The total energy change DE is found from our numerical simulations

(data points), as also shown in previous figures. DE arises due to both changes to the spontaneous curvature at the insertion, and subsequent membrane

shape relaxation. Our empirical model derived in eqn (11) (solid curves) provides excellent agreement with the simulated results. (D) Application of eqn (11)

to quantify experimental data of helix-containing eAH and aAH.9 Based on this published study, we set Ains = 4 nm2 for eAH and Ains = 4.75 nm2 for aAH.

DDE = DE(R) � DE(R0), where DE(R) is calculated by eqn (11) and R0 = 24.3 nm.
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effective spontaneous curvature on this binding area Ains.

We thus have:

DE0ðR; cins0 ; k;AinsÞ ¼
kAins

2

2

R
� cins0

� �2

�kAins

2

2

R

� �2

¼ kAins

2
cins

2

0 � 4cins0

R

� �

(9)

as the membrane energy change from one insertion before the

relaxation of the stress or strain (Fig. 9A).

We use our numerical results to derive an expression for d.

Our results show d is always a negative value (Fig. 9B), which

means the relaxation process always causes the membrane

energy to decrease, whereas DE0 is positive when cins0 4 4/R.

From our analysis, we find that d varies with all four para-

meters, d = d(R,cins0 ,k,Ains). The simulation results show d p k

and that d is a linear function of R�1 (Fig. S5, ESI†), which is the

same dependence that DE0 has (eqn (9)). For the insertion

parameters, however, we find that d has distinct scaling with

cins0 and Ains. Specifically, we find that d
.

cins
1:5

0 is independent of

cins0 , and d/Ains
1.25 is independent of Ains (see Fig. S5, ESI† for

details on parameter estimation). By fitting our numerical data,

we thus recover a final practical expression for how d depends

on all four variables:

dðR; cins0 ; k;AinsÞ ¼ �kcins
1:5

0 A1:25
ins

3

2R
þ 1

R0

� �

: (10)

This expression contains 4 fit parameters: the exponents 1.5

and 1.25, the 3/2 prefactor for R�1, and finally R0 = 10 nm is a fit

parameter necessary to capture the apparent plateauing of d at

negative values when R - N.

By combining eqn (8)–(10), we have the final analytical

expression of the membrane energy change due to one helix

insertion as:

DEðR; cins0 ; k;AinsÞ ¼
kAins

2
cins

2

0 � 4cins0

R

� �

� kcins
1:5

0 A1:25
ins

3

2R
þ 1

R0

� �

;

(11a)

or

DEðR; cins0 ; k;AinsÞ ¼ kAinsc
ins
0

cins0

2
� 2

R
�

ffiffiffiffiffiffiffi

cins0

q

Ains

1
4

3

2R
þ 1

R0

� �� �

:

(11b)

Eqn (11) provides excellent agreement with the numerical data

as shown in Fig. 9C, recovering the proper limits that as the size

or spontaneous curvature of the insertion goes to zero, there is

no change in the membrane energy, as expected. This model

further predicts when the helix insertion will cause stabili-

zation (DE o 0) or de-stabilization (DE 4 0) to the membrane

energy, dependent on cins0 , R, and now also Ains. The sign is thus

independent of k, as seen in Fig. 2B. This expression shows that

the membrane energy changes for vesicles is most sensitive to

changes in cins0 , which is coupled to the vesicle radius most

strongly via the membrane shape changes, as seen in the last

term of eqn (11a) cins
1:5

0

.

R
� 	

. The trend is similar for the

insertion size, where it couples more strongly to the vesicle

radius in the membrane shape changes (Ains
1.25/R). The magni-

tude of the energy change following relaxation is comparable to

the energy change due to the insertion (Fig. S5E, ESI†), mean-

ing that the contribution of the membrane shape changes in

response to helix insertion cannot be ignored when quantifying

the strength of helix localization to membranes.

As an example application of this formula, we used eqn (11)

to fit experimental data of curvature sensing of two helices, eAH

and aAH, on liposomes of varying radii (from Fig. 2E in ref. 9).

Similar to all previous calculations, we re-plot the reported

DG(R) values9 by subtracting off DG(R0), to directly compare

with the analytically predicted DE(R) � DE(R0), with R0 =

24.3 nm, the smallest vesicle in their experiments. The best

fit of the data to eqn (11) is in excellent agreement, and is in the

expected parameter ranges, with k = 19kBT and cins0 = 0.08 and

0.13 nm�1 for aAH and eAH (Fig. 9D).

IV. Discussion

Curvature sensing by amphipathic helices emerges from their

localized disruption of, primarily, the leaflet of the bilayer

where they embed. The energy change that results from this

localized perturbation is up to a few kBT, based on experimental

measurements. We show here that curvature sensing by amphi-

pathic helices and the corresponding energy changes can be

accurately captured by deformable continuum membrane

models, despite lacking an explicit double leaflet structure.

Instead, the spontaneous curvature of an insertion area, which

is a material property reflective of stresses induced on only one

leaflet, can effectively couple inserted helices to the membrane

bending energy. Our numerical results predict stronger binding

of helices to membranes of higher curvature. The form of the

curvature-dependent binding energy (not the complete binding

free energy which is not accessible with this model) is in

excellent quantitative agreement to experiments. Furthermore,

using literature standard values for k (15–20kBT),
40 and pre-

dicted values for cins0 (0.1–0.5 nm�1),22 the experimental obser-

vations are directly within the range of reasonable parameters.

The energy change that accompanies helix insertion is due to

the bending energy, and we decompose this energy change into

two parts: the cost of the helix insertion (change in cins0 ) and the

energy of the shape change following insertion. Both compo-

nents make comparable contributions to the overall change in

bending energy. We develop an empirical formula that can then

predict these energy changes, which quite accurately captures

dependence on the bending modulus, sphere radius, helix

insertion size, and insertion spontaneous curvature. We can

therefore predict when helix insertion acts to relieve stress in

the membrane (highly curved vesicles) or introduce new strain

(low curved vesicles). We verify that the observed energy

changes are due to sensing of the local curvature around the

insertion, as the result is retained in non-spherical surfaces of

constant surface area, and as the helix insertion is spread.
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We assume the binding of each amphipathic helix is inde-

pendent of each other. This applies for the low concentrations

used in the experiments here, where the density of ENTH on

the vesicle membrane surface never surpassed 0.0038 nm�2

(o5% surface coverage-Fig. S6, ESI†) and no clustering of

proteins was observed.12 For the experiments with ALPS

motifs16 and ENTH on cylinders,17 we estimate similarly low

surface coverage of at most 4% and 12%, respectively (see

Methods). However, at higher densities, the local shape

changes could alter the binding energetics of subsequent

proteins, leading to mechanically induced feedback. The shape

and energetics of the deformation can vary as protein pairs

move closer together,41 and mechanical feedback can alter

rates of binding to membranes.42 The spatial distribution or

interactions between proteins on the membrane can also vary

due to localized changes to bending energy and membrane

shape.31 At coverage above 20%, additional curvature induction

mechanisms such as crowding,7 would enhance shape changes

beyond helix insertion alone. The modeling approach used

here is capable of quantifying even small changes in energy

that could emerge due to cooperative effects. In future work

we will address how feedback and cooperativity can drive

enhanced or depressed recruitment to surfaces of varying

curvature.

A limitation of the thin-film surface model is that it does not

explicitly capture the thickness of the bilayer or any explicit

asymmetry between inner and outer leaflets. The model thus

cannot quantify how the stress profile in the membrane

varies13 from the embedded leaflet, where the helix causes

stretching, relative to the presumably more compressed oppo-

site leaflet. Initial asymmetries between leaflets prior to inser-

tion also influences the initial bilayer spontaneous curvature,

although we showed here that curvature sensing persists even

when c0(s) a 0, causing minimal changes to bending energies

as it approaches zero (Fig. S7, ESI†). However, explicitly captur-

ing each monolayer leaflet would be important for more

accurately testing how changes to lipid composition33 would

impact bending energies (see Section IIII), including more

directly accounting for lipid-packing defects that influence

monolayer spontaneous curvature.11 Where finer-grained detail

is required, applications of material-elastic theory13 to membrane

patches thus have an advantage in this regard, although they

have significantly less flexibility in studying topological variations

of surfaces that exist in three-dimensions. Our approach here

benefits from previous material-elastic studies that have pre-

dicted ranges of cins0 from helix shape and mechanical

strain.20,22 Furthermore, membrane thickness has been shown

to be an important variable for interactions between fully trans-

membrane proteins that span both leaflets.20,22 Studying the role

of membrane thickness in continuum models can be achieved

through coupling of two layers together, and hybrid methods that

combine continuum membranes with atomistic proteins capture

realistic deformations around transmembrane proteins.31,43

Coupling the two layers would introduce an energy term due

to thickness changes (typically modeled harmonically), and

could also include energetics of lipid tilt. Similar to the area

and volume constraints, we anticipate that these terms will be

relatively small compared with the bending energy cost, and

thus would not significantly shift our energetic measurements

for curvature sensing by a single helix. Here, we found that

capturing explicit membrane thickness was not necessary to

reproduce experiment, as the spontaneous curvature accurately

quantified helix-induced membrane strain on vesicles and

cylinders.

Overall, the modeling approach used here offers an accu-

rate, experimentally verified platform to study membrane

shape changes and bending energies arising from adsorbed

proteins, despite relatively few free parameters. To quantify

curvature sensing by amphipathic helices, we found it to be

efficient across multiple changes to material properties of the

membrane and the insertion, even overBkBT or smaller energy

changes. The direct comparison between quantitative experi-

ments and modeling provides a mechanism to determine

coarse material parameters of proteins, where here we found that

inserted helices have a spontaneous curvature of 0.1–0.4 nm�1,

using realistic membrane bending moduli. Modeling membranes

at the mesoscale has proved critical for studying key steps in

processes from clathrin-mediated endocytosis,44 to fluctuations in

red-blood cell membranes,45 where molecular approaches are

simply intractable. By further coupling mesoscale membranes to

dynamical protein systems using, for example, reaction-diffusion

methods,46 the time-evolution of surface shape driven by multiple

interacting proteins could also be captured in addition to

energetics. Our code is therefore provided open-source under

a Gnu Public Licence (GPL) at github.com/mjohn218/NERDSS/

continuum_membrane. Given the breadth of membrane bend-

ing processes that occur in the cell,47 this mesoscale approach

can be usefully applied and extended to quantifying key

mechanisms of protein-driven membrane remodeling.

V. Methods
VA Set-up of vesicles

An enclosed spherical triangular mesh is set up by the Loop’s

subdivision scheme at the radius of interest.48 The limited

surface area is calculated as the vesicle area S, and the volume

enclosed by the vesicle area is calculated as the vesicle volume

V.

VB Energy minimization

The equilibrium state of the vesicle is produced by minimizing

the total energy using nonlinear conjugate gradient methods

(NCG).49 The force on each vertex is expressed as the derivative

of the total energy to the vertex position

~fi ¼ �@E

@~xi
; (12)

where
-

xi and
-

fi are the position and nodal force on vertex i

respectively, and the detailed expression can be found in.23,37

The total energy includes terms due to the regularization and

area constraint on the insertion described below. As criteria for

stopping the minimization (finding the optimum), we use a
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mean nodal force is smaller than 10�2 pN and that the energy

curve slope is (Ei+500 � Ei)/500 o 10�3 (Ei is the total energy in

simulation step i), as shown in Fig. S8 (ESI†).

The calculation time depends on the vesicle size. The larger

vesicle has more triangular faces and vertices, requiring more

time to finish the energy minimization. For the small vesicle

(R = 10 nm), each minimization takes 5–30 minutes on 48 cores,

with the code written in c++ using OpenMP threading. Mini-

mization takes longer with larger values of cins0 . For the large

vesicle (R = 120 nm), the same calculation takes about 2–4 days.

VC Insertion area constraint

We constrain the area of the insertion zone, as the nonzero

cins0 makes the triangular mesh nonuniform around the inser-

tion, and we do not want the mesh deformation to change the

area of the insertion (which is typically fixed at 2 nm2 for ENTH

insertion). Therefore, we tried two methods which produce very

similar results, and neither of which measurably impacts the

total energy of the system, which is dominated by the bending

energy (Fig. S9, ESI†). Using an edge length energy we have:

Einsertion ¼
X

i

1

2
K li � l0

 �2

; (13a)

where li is the edge length of the insertion zone, l0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

2=
ffiffiffi

3
pq

nm is the targeted length for the insertion zone, and K is the

spring coefficient. The sum of eqn (13a) covers all the edges of

the insertion zone. Alternatively, the insertion area can be

constrained via a local area constraint:

Einsertion ¼
X

4

i¼1

1

2
mA

Ai � A0ð Þ2
A0

; (13b)

where Ai is the area of one triangle in the insertion zone, A0 =

0.5 nm2 is the target area of the insertion zone triangle (the

total area of the insertion zone is 2 nm2, and the insertion zone

has four triangles so each triangle should have area 0.5 nm2),

and mA is the membrane area elasticity modulus as in eqn (1).

To use eqn (13b) for the insertion area constraint, we need to

separate out the insertion area from the global area constraint

in eqn (1).

VD Evaluation of surface integrals

The numerical solution of the integral over the surface in

this theoretical model (eqn (1)) is calculated by second order

Gauss-quadrature. We validate that the second order of Gauss-

quadrature is sufficient to produce converged energy estimates,

and the higher-order and more expensive quadrature schemes

are not necessary (Fig. S10, ESI†). We also validate that the

fineness of the triangular mesh doesn’t influence the energy

calculation (Fig. S11, ESI†), verifying that the resolution

used here is sufficient to accurately measure energy changes

following insertion.

VE Regularization energy

To eliminate the in-plane shearing deformations of the triangular

mesh, we add a regularization energy.37 The regularization energy

has two forms depending on whether the triangular element is

too biased from the equilateral shape. The function to describe

the shape of triangular element i is defined by

Zi ¼
X

3

j¼1

li; j=�li � 1

 �2

; (14)

where li, j is the edge length and �li ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4Ai=
ffiffiffi

3
pq

is the target edge

length with Ai being the triangular element area. A large Zi means

the triangle is more deformed, and here in our simulations we

use Z0 = 0.2 as the criteria determining whether the triangle shape

is too deformed. If Zi 4 Z0, the regularization energy for this

triangular element i is

Ereg;i ¼
X

3

j¼1

1

2
k li; j � �li

 �2

; (15a)

where k is the coefficient of this spring-type energy. If Zi r Z0, the

regularization energy for this triangular element i is

Ereg;i ¼
X

3

j¼1

1

2
k li; j � l0i; j

� 	2

; (15b)

where l0i, j is the edge length we choose to use which is called the

reference structure. Then the total regularization energy is the

sum of all the N triangular elements of the mesh.

Ereg ¼
X

N

i¼1

Ereg;i: (16)

The regularization energy controls sizes of mesh elements which

improves numerical integration over the surface, and thus is a

technical constraint on the numerical method rather than

physical constraint on the membrane energy, so it should

converge to 0 when the system reaches the equilibrium state.

The reference structure (value of l0i,j) needs to be updated as the

simulation evolves, and we update it when the energy optimiza-

tion slows. This update method ensures that eqn (16) will

converge to 0 and that the regularization works effectively on

remeshing the triangular mesh.37 Note that eqn (15) is not a

continuous function, so it may cause a problem to find an

efficient step size during the NCG energy minimization, but

practically this problem can be solved by restarting the simula-

tion or by shutting down eqn (15a) for several simulation steps.

VF Set-up and simulation of cylinder membrane

To set up the triangular mesh of a cylinder membrane with the

radius R, we first set up a circle of R on the plane z = 0 with the

circle center being (0, 0, 0); next we select n vertices uniformly

distributed on this circle, and thus the edge length between two

nearest vertices is l = 2R�sin(p/n); then we repeatedly move these

n vertices along z axis by Dz ¼ þ
ffiffiffi

3
p

l=2 and rotate along z axis by

+p/n rad. Through this process, we can get a perfect smooth

triangular mesh with all the triangles being equilateral and

identical in size, Fig. S12A (ESI†).

The mechanical description of the cylinder membrane is the

same as the vesicle above, with the same regularization scheme
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and energy minimization method, except that the volume

constraint is excluded. For the mesh boundary conditions,48

the two ends of the cylinder membrane are constrained by

periodic boundary conditions (PBC), which we found provided

more stable energetics even for small cylinders (R = 10 nm) at

all cylinder lengths, compared with fixed boundary conditions.

Periodic boundaries are also a more accurate physical repre-

sentation of the experimental tether which is about 6 mm

in length, because they are not pinned to a nanoscopic size

(L = 55 nm). PBC is enforced by introducing ghost vertices and

ghost faces, as illustrated in Fig. S12B (ESI†). The ghost vertices

and ghost faces are necessary to calculate the nodal force on

each of the boundary vertices. The update of the ghost vertex

position relies on the boundary vertices of the cylinder. Note

the integral of the membrane area and energy doesn’t include

the ghost faces. The protein binding on the cylinder membrane

generates a local bulge (Fig. 7A), similar to the binding to

vesicles (Fig. 1D), and we verified that the length of the cylinder

doesn’t affect the energetics of the membrane, Fig. S12C (ESI†).

VG Experimental surface densities

We estimated the surface coverage of amphipathic helices

on membranes for the ALPS experiments16 and ENTH on

cylinders17 to ensure they were below 20%, consistent with

the ENTH vesicle experiments.12 These estimates are therefore

only used to confirm this threshold is not passed, as additional

membrane bending mechanisms can then play a role, and they

are not used for any energetic calculations. For the tether

experiments, the final lipid concentration is 2.5–4 mM, of which

1% are PI(4,5)P2, and the total ENTH concentration is

0.2–0.5 mM.17 Assuming 1 : 1 binding of ENTH to PI(4,5)P2
and a KD of B0.5–1 mM, the fraction of bound PI(4,5)P2 varies

from B20–50%, which produces a surface density of B0.004–

0.01 proteins per nm2, or a maximal surface coverage ofB12%.

For the ALPS experiments, the final lipid concentration is

750 mM, and the total protein concentration is 0.75 mM.16 With

maximally 80% of proteins bound to the surface,16 the bound

protein to lipid ratio is 0.0008, and for the R = 34 nm vesicle

(lipid area is B0.7 nm2), the protein density on the surface is

B0.001 proteins per nm2. Assuming a larger footprint for ALPS,

surface coverage is still o4%.
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