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A continuum membrane model can predict
curvature sensing by helix insertiont

Yiben Fu,® Wade F. Zeno,® Jeanne C. Stachowiak (2 and Margaret E. Johnson (2 *?
Protein domains, such as ENTH (epsin N-terminal homology) and BAR (bin/amphiphysin/rvs), contain
amphipathic helices that drive preferential binding to curved membranes. However, predicting how the
physical parameters of these domains control this ‘curvature sensing’ behavior is challenging due to the
local membrane deformations generated by the nanoscopic helix on the surface of a large sphere.
We here use a deformable continuum model that accounts for the physical properties of the membrane
and the helix insertion to predict curvature sensing behavior, with direct validation against multiple
experimental datasets. We show that the insertion can be modeled as a local change to the membrane’s
spontaneous curvature, ¢, producing excellent agreement with the energetics extracted from
experiments on ENTH binding to vesicles and cylinders, and of ArfGAP helices to vesicles. For small
vesicles with high curvature, the insertion lowers the membrane energy by relieving strain on a
membrane that is far from its preferred curvature of zero. For larger vesicles, however, the insertion has
the inverse effect, de-stabilizing the membrane by introducing more strain. We formulate here an
empirical expression that accurately captures numerically calculated membrane energies as a function
of both basic membrane properties (bending modulus « and radius R) as well as stresses applied by the
ins

inserted helix (cp® and area Aj.s). We therefore predict how these physical parameters will alter the

energetics of helix binding to curved vesicles, which is an essential step in understanding their

rsc.li/soft-matter-journal

|. Introduction

The recruitment of cytosolic proteins to membranes is an
essential step in a variety of membrane remodeling processes,
including clathrin-mediated endocytosis' and cell division.>”?
Proteins that participate in membrane remodeling contain
membrane binding domains that use positively charged inter-
faces to specifically target negatively charged lipids such as
PI(4,5)P, on cell membranes.*® In addition to this electrostatic
interaction, these proteins exploit additional mechanisms,
including helix insertion, scaffolding, crowding, and entropy gain
by disordered proteins.”'® These mechanisms cause proteins to
bind more strongly to more highly curved membranes, driving
them to both sense and induce membrane curvature."* Amphi-
pathic a-helices are common protein domains that are frequently
found in peripheral membrane proteins like septins, epsins,
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localization dynamics during membrane remodeling processes.

endophilins, and amphiphysins. Playing key remodeling roles in
cell division and endocytosis, these proteins insert themselves
into a single leaflet of a membrane, where they can sense
curvature independently of any additional curvature sensing
mechanisms.’ The stronger binding of helix-containing domains
to membranes of high curvature can thus control their localiza-
tion dynamics, helping to regulate subsequent steps in assembly
and remodeling. Understanding how the strength of membrane
binding depends on helix insertion and membrane properties is
thus an essential component of predicting the spatial control of
protein localization and corresponding remodeling dynamics.
Several lines of experimental evidence support curvature
sensing by amphipathic helices and its direct coupling to
membrane deformations and membrane energy changes. Teth-
ered vesicle assays visualize increased binding to highly curved
membranes for domains with o-helix.”'> Without the o-helix
present, these same domains are insensitive to membrane
curvature, demonstrating the significance of the helix in curvature
sensing. The insertion or the a-helix changes the membrane local
curvature and induces curvature generation."*™** Equilibrium
observations of proteins bound to small unilamellar vesicles
(SUVs) can be converted into dissociation constants by deter-
mining the relative partitioning of proteins to smaller vesicles
(Fig. 1A). These dissociation constants can then be used to extract
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Fig. 1 Experimental curvature sensing by ENTH domains with amphipathic helices and the corresponding model design to quantify these results. (A) The
dissociation constant of the amphipathic helix-containing ENTH domain is stronger with more highly curved (smaller) vesicles. The solution
concentration of the ENTH domain is 150 nM and the PI(4,5)P, density on the vesicle is 0.125 nm~2. (B) From the Kb, we can measure the difference
in binding energy with vesicle size, using the smallest vesicle as the zero point. The positive energy changes reflect weaker binding. (C) The helix insertion
is modeled as occupying four adjacent triangles on the vesicle surface (R = 7 nm), which are assigned a nonzero spontaneous curvature, cg”, while the
rest of the surface has a spontaneous curvature of zero. (D) The insertion modifies the membrane energy, with equilibrated structures deforming to

produce local bulges that increase with larger cif. Here clf* = 0.4 nm~! and the color bar shows the distance of triangular face to the center of the

vesicle. (E) Five vesicles of different sizes in our simulations. The vesicle radii are 7 nm, 14 nm, 28 nm, 56 nm and 112 nm from left to right.

changes of energy upon binding (Fig. 1B). This data on ENTH
binding to vesicles provides a basis for our modeling comparison,
where we can then address how the key parameters of curvature,
bending modulus, tension, insertion size, and spontaneous
curvature control membrane energies following helix insertion.
As further validation for this modeling approach, we perform
similar comparisons with experimental measurements of binding
of the ArfGAP1 ALPS motifs on vesicles,'® and of ENTH binding to
cylindrical membrane tethers."”

Modeling and simulation using other approaches have illu-
minated several ways in which helix insertion alters membrane
structure and stress. Molecular dynamics simulations have
measured depth and orientation of helices in bilayers, defor-
mations of the surface and lipid structure,"®" and corres-
ponding changes to membrane stress around the insertion.>
However, these simulations are limited to relatively small
(nanometer scale) and typically flat membranes. Curved all-
atom membranes have shown that the underlying deformation
matches molecular factors, like protein shape,”* but measure-
ments of the energy changes arising from helices inserted into
membranes of varying curvature have remained intractable
using molecular dynamics. In contrast, models that use elasti-
city theory have quantified how stress profiles and energetics
in initially curved membranes will respond to helix insertion
differentially, depending on how the curvature was generated
and the depth of the insertion.”> However, the modeled
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membrane patch varies with only two variables (thickness in
one dimension, arc length in the other dimension), whereas
our modeled vesicles exist in 3D space. These elasticity calcula-
tions thus only capture variation along one axis of principal
curvature on a surface, assuming translational symmetry along
the other. They cannot directly model spherical vesicles, where
a highly localized and anisotropic insertion will impact curva-
ture along both principal axes.

Deformable continuum membrane surfaces are an attractive
model for studying membrane mechanics because they can
adopt diverse geometries in 3D space, and their shape and
energy will relax in response to perturbations. The calculations
are relatively efficient, typically taking on the order of minutes
or days depending on surface size (see Methods), vs. molecular
simulations, where protein binding energy calculations would
only be computationally tractable on the smallest of vesicles.
Continuum membranes capture how the material bending
modulus of the membrane, the membrane tension, and osmo-
tic pressure will impact energetics and membrane shape.”?
Local perturbations driven by proteins adsorbed to the surface
can be modeled via changes to the membrane’s spontaneous
curvature ¢,, with values that can vary from 0 to ~1 nm *.>*
The spontaneous curvature can vary spatially across the mem-
brane surface, driving changes in membrane shape and tension,>
thus providing an effective material parameter that captures
changes to membrane stress on the outer vs. inner bilayer leaflets.*

This journal is © The Royal Society of Chemistry 2021
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Even before protein adsorption, any asymmetries in lipid composi-
tion between the inner and outer leaflets can contribute to a
nonzero spontaneous curvature across the bilayer surface,*®
since each lipid has its own spontaneous curvature (see ref. 27).
Continuum models can capture this asymmetry, as we show
below, by specifying an initial spontaneous curvature to the
bilayer, prior to any insertion. Continuum models can be
coupled to models with attached and diffusing proteins®*~° to
capture interactions that drive membrane-mediated collective
behavior,*" or response of cell-shape to flow.”> Thus, these
models provide a flexible platform for integrating mechanical
responses with environmental changes or biochemical inter-
actions. We apply this detailed curvature model here to protein
curvature sensing, showing that changing the local spontaneous
curvature is an effective parameter for capturing a helix
insertion.

In this paper, we first describe the model design, and the
approach used to compare model results with in vitro experi-
ments measuring surface coverage on SUVs of varying curva-
ture. We then show how the spontaneous curvature of the
insertion, ¢, and the bending modulus x have dominant
effects on the membrane energy changes following insertion.
Both the size and spread of the insertion further modulate the
magnitude of the energy changes. In contrast, constraints on
the area and volume that would arise due to area compressi-
bility and osmotic pressure have minimal impact on control-
ling energetic responses to insertion. With these results we are
able to define parameter regimes that produce excellent agree-
ment with the experimental observations of curvature sensing.
We validate that the results are robust to our numerical
methods, including mesh size, integration scheme, and opti-
mization protocol. We then recapitulate curvature sensing by
helices reported in experiments on ENTH binding to
membrane tethers and ALPS motifs binding to vesicles, also
showing that the model reproduces stronger binding to mem-
branes with higher diacylglycerol content.®* Finally, through
our numerical results we derive an empirical formula that
predicts how membrane energies will change following inser-
tion as a function of variations in ¢, «, radius and insertion
area. This expression can thus be used to estimate curvature
sensing by amphipathic helices without additional computa-
tional measurements, and we show it provides an excellent
model fit to curvature sensing observed by the eAH and aAH
helices.’

lI. Model design
Continuum membrane model

The membrane is modeled using a continuum thin-film surface
captured via a triangular mesh using the subdivision limit
surface method®® (Fig. 1). Given M as the membrane surface
that is parameterized by curvilinear coordinates s; and s,, the
position s of each point on the surface in three-dimensional
space (s € R®) is given by s = s(s,s,). The energy of the
membrane is due to a bending energy (via the Helfrich
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Hamiltonian®*) and constraints on the volume V and area 4,
defined as:*

2
E = J lK[2H(s) — ¢o()]*Vads, ds, +1,LLAM
M2 2 Ay

1L (V=" "
The first bending energy term integrates over all positions s on
Os  Os
ds1 052
mean curvature, H(s), and the spontaneous curvature of the
membrane, cy(s), where « is the constant bending modulus.
H(s) is the mean of the calculated curvature summed along the
two principal axes at point s; for a sphere of radius R, it is a
constant 1/R at all points. For a cylinder, the mean curvature is
1/2R. H(s) thus changes when the membrane deforms. cy(s) is
zero for membrane bilayers (without proteins attached) when
both leaflets have the same lipid composition. The second and
third terms capture the area and volume constraints, with
respective coefficients p, and uy. A is the membrane area,
Ay is the target area of the membrane, V is the vesicle volume,
and V, is the target volume of the vesicle. The fourth term is the
regularization energy, E..;, which is added to eliminate the
in-plane shearing deformations of the triangular mesh as the
structure is optimized. This technical rather than physical
constraint (due to the numerical mesh) should go to zero in
equilibrated structures, and in Methods we describe specific
forms we tested to minimize its contribution to the total energy.

Although the insertion is localized to a few mesh points,
it drives the local region of the surface to bulge and deform to
minimize the energy after the insertion, and thus requires
integration over the 3D surface to evaluate energy changes
(Methods). To study the curvature sensing effect, we ran
simulations on vesicles with five different radii: R = 7 nm,
14 nm, 28 nm, 56 nm, 112 nm respectively, as shown in Fig. 1E.
For comparison with experimental data, we also used vesicles
with R = 10 nm, and we studied cylinders of similar radii, as
described in Methods. The curvature is defined as the inverse
of the vesicle radius, so the initial vesicles have curvature in a
range of 0.009-0.14 nm ', which covers a range of relevant
membrane curvatures in biological systems.

the surface M, where \/a = ‘ . The energy varies with

Modeling helix insertion

The spontaneous curvature of bilayers is dependent on the lipid
composition. For the vesicles studied here, we primarily assume
the leaflets are symmetric, thus having a spontaneous curvature
of zero, meaning the membrane prefers to be everywhere flat.
We test in the Results how an initial asymmetry in the bilayer
leaflets, producing a nonzero bilayer spontaneous curvature,
would impact curvature sensing. The insertion of the oblong
a-helix into a leaflet of the bilayer will induce conformational
changes of nearby lipids. We therefore model the effect of the
insertion as a local change to the spontaneous curvature of the
membrane.”* The area of this local change is chosen to mimic
the size of the a-helix domain, which for ENTH occupies about
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2 nm? ie. 1 nm in width and 2 nm in length, on the
membrane.”*> We thus select 4 triangles of the mesh to assign
a nonzero value of ¢,, which we will refer to as ¢* (Fig. 1C).
In the Results we verify that the conclusions are unchanged with
either higher mesh resolution, or with a more diffuse spreading
of the local change in ci. The rest of the membrane surface
retains the initial bilayer spontaneous curvature, usually zero.
Optimized structures thus can form a bulge around the insertion
(Fig. 1D). In this paper, we focus on the impact of one protein
binding to the membrane, effectively assuming each binding
event is local and independent of one another.

Comparison to experimental observables

The experimentally measured coverage of ENTH proteins per
vesicle of radius R is reported in ref. 12, along with the
experimental methods. We compute the corresponding Ky, via
Kp = [P]*pi/petl, where [P]°9 is the concentration of free ENTH
in solution, pf9 is the free lipid density on the surface, and
pel is the density of membrane-bound ENTH proteins.
We exploit that both the proteins and the lipid sites are in
great excess to the number of bound complexes, such that
[P]°? = [Pl (150 nM) and pf? = p{°". The lipid binding-site
density is calculated from the 7.5% mol fraction of lipids that
are PI(4,5)P,, as 0.125 nm ™2 on all vesicles. The bound protein
densities vary from 0.0038 to 0.0002 nm > This Kp is thus
dependent on radius (Fig. 1A), and the energetics of binding of
one ENTH to the membrane surface can be extracted via the
well-known relation

T (2)

Ko(R) = (1] -exp | 20,
where AG is the binding free energy and [1M] is the standard
state concentration. Specifically, AG quantifies the free energy
difference between (1) an unbound ENTH and the unperturbed
membrane surface and (2) a bound ENTH to a perturbed
membrane. For binding of ENTH domains with the helix
removed, the Kp becomes effectively independent of radius,
indicating that the enthalpic and entropic contributions due to
binding the ENTH domain (minus helix) to the membrane do
not change with membrane curvature (Fig. S1, ESI{).

While the binding free energy is clearly dependent on
membrane curvature (Fig. 1), we decompose it into contribu-
tions that do not all vary with curvature. We emphasize that our
calculations are not able to measure the binding free energy
(eqn (2)), because we do not account for all chemical contribu-
tions to binding energy. Instead, our calculations measure the
energy change upon binding that varies with curvature, due to
membrane mechanics. We distinguish three contributions: a
chemical potential due to electrostatic interactions between
protein and lipids (—p), the cost of protein conformational
change like the a-helix folding (&), and a mechanical energy due
to helix insertion into the bilayer (E). Without the helix, the
ENTH domain still binds the membrane, but the binding is
insensitive to curvature (Fig. S1, ESIf), hence we treat —u as
curvature independent. We will assume that the protein con-
formational change ¢ is also not dependent on the curvature
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given that the structure of the ENTH N-terminal o-helix is the
same despite the different size of vesicles. Thus, AG(R) =
—u + ¢ + AE(R) and inserting this into eqn (2), we can write

AE(R) = ks T - log [KL(R)} , 3)
Ko
where Kpo is independent of the membrane shape,

Kpo = [IM] ~exp{ lfBT

measure how these mechanical energies change relative to that
of the smallest vesicle (E.f), defining:

}. To compare with simulations, we

AAE(R) = AE(R) — AEwr = kpT - 1og[ Kp(R) } (4)

KD ( Rmin)

where R, = 10 nm (Fig. 1B). When the proteins and lipid
binding sites are in excess of the membrane bound proteins

(true here), this expression is independent of [Pl and pi°.

C\R2
AAE(R) = kgT -log N(Rmin) R , where N is the copies of
N(R)Rpin?

membrane bound proteins per vesicle of size R.

[1l. Results

IIIA. Spontaneous curvature of the insertion drives opposite
changes in energy in small vs. large vesicles

The impact of our helix insertion on the membrane energy is
controlled by its size, Aj,,, (2 nm” unless otherwise noted) and
by its spontaneous curvature, cins For ¢iM® = 0, the insertion
would not change the membrane energy at all for any vesicle

size, which we measure via
AE = Ebound - EOa (5)

where Epoung is the membrane energy with one helix bound and
E, = 8mx*® is the energy of the spherical vesicle with no
insertions and a surface spontaneous curvature cy(s) that is
everywhere zero. This unperturbed energy E, results from the
cost of bending the membrane into a sphere, when it prefers a
flat curvature (¢, across the unperturbed surface is zero), and is
independent of vesicle radius.

As we increase ¢ of the insertion from 0.01 nm™! to
0.3 nm ', we find that for smaller vesicles, the insertion lowers
the cost of bending the membrane, producing AE < 0 (Fig. 2A).
For these highly curved vesicles, the insertion thus improves
the stability of the bound system. Conversely, for larger vesicles,
we see the opposite effect. Once R > 28 nm, insertions with
increasing ¢ cause an increase in the cost of bending the
membrane (AE > 0), thus de-stabilizing these flatter surfaces.

These inverse costs and benefits of adding the insertion
result from the initial strain that the membranes are under by
being forced into curved (instead of flat) enclosed vesicles. For
the highly curved small vesicles, the local mean curvature H(s)
is high and introducing an insertion that prefers higher curva-
ture relieves strain in the membrane, even as it drives local
shape changes. With larger vesicles, the local mean curvature
H(s) decreases, and the creation of local shape changes around
the insertion eventually costs energy. The transition occurs at

-1
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Fig. 2 The addition of insertions to spherical vesicles can stabilize or de-stabilize the bending energy dependent on vesicle size and bending modulus.
(A) As ¢l increases, the insertion has a larger impact on the membrane energy, stabilizing small vesicles and de-stabilizing large ones. k = 20kgT.
(B) As the bending modulus « increases, the insertion is again more stabilizing for small vesicles, but de-stabilizing for large vesicles. cif* = 0.1 nm™1.
The plotted energy change is due solely to the membrane mechanics, and is not the same as the binding free energy defined in egn (2).

~R =28 nm, where the corresponding membrane curvature is
about 0.036 nm . The transition between the positive and
negative energy responses cannot be predicted from the vesicle
size and insertion spontaneous curvature alone, as it depends
on the relaxation of the surface around the insertion, as
described further in Section IIIJ.

IIIB. Stiffer membranes also show opposite response to
insertion in small vs. large vesicles

The response of the membrane energy to changes in bending
modulus « is also coupled with the vesicle size. For small
curved vesicles, as we stiffen the membrane against bending
(larger «) the insertion produces a greater benefit in stabilizing
the membrane (Fig. 2B), retaining a AE < 0 and dAE/dx < 0.
This result is again in agreement with the insertion relieving
the strain in the membrane, which increases in the unper-
turbed vesicle with larger x. For intermediate vesicles, the
energy change becomes less sensitive to changes in k, until
we reach R = 112 nm. Now we see the opposite trend, where the
increasing stiffness causes a larger cost to adding the insertion,
producing dAE/dx > 0. The sign of AE does not change with «,
only the magnitude, as we quantify in Section IIIJ. However, we
note that in Fig. 2B, the spontaneous curvature of the insertion
zone is fixed at ¢if* = 0.1 nm ! for each data point, which means
we effectively assume that the insertion (e.g. the insertion
depth) is not influenced by the stiffness of the membrane. In
reality, the insertion parameters of a specific a-helix type could
be coupled to the membrane stiffness. So, given a specific
helical structure, the response of the membrane energy to
varying bending modulus x could reflect simultaneous changes
in both x and c'*. A relationship between x and ci** would
depend on molecular properties of the protein-lipid interactions,
and is beyond the scope of this paper.

IIIC. Area and volume changes have minimal impact on
curvature sensing

The membrane energy is dependent on changes in volume and
surface area due to insertion (eqn (1)), although we find they
make negligible contributions relative to the bending energy.

This journal is © The Royal Society of Chemistry 2021

The volume constraint reflects an influence of osmotic pressure,
where water may pass in and out of the vesicle to change its
volume. The coefficient uy controls the penalty to changes in
volume, and we find that over a broad range of values, it has
minimal impact on the membrane energy after insertion (Fig. S2,
ESIY). Similarly, the expansion or compression of the membrane
area upon insertion is controlled by the coefficient p,, where
experiments estimate this membrane elastic modulus in the
range of 230-260 pN nm ™ '.>® Here again, over a broad range of
values of u,, we see minimal changes to the membrane energy,
indicating that global area changes upon insertion are not
significant contributors to curvature sensing (Fig. S2, ESIf). In
all of our simulations (unless otherwise noted), we thus use fixed
values of py, = 83.4 pN nm™ 2 and i, = 250 pN nm™ ". The fact that
these terms do not contribute to curvature sensing does not mean
that they do not contribute at all to the binding free energy
(eqn (2)), but only that the contribution is not sensitive to changes
in curvature.

IIID. Helix insertion energies are sensitive to local curvature,
not membrane surface area

Our results above show that the effect of the insertion on
membrane energy is sensitive to the curvature of the membrane
surface, as coupled to changing vesicle size. For a helix inser-
tion with a fixed value of i, we can thus see that as the vesicle
gets smaller and more curved, the insertion drives more stable
energies (dAE/dR > 0), with a steeper benefit occurring for
larger values of cy*® (Fig. 3A). For vesicles, both the curvature
and the total membrane surface area change with varying
vesicle radius, and on small vesicles the perturbation due to
the insertion occupies a larger fraction of the total area than for
larger vesicles. Therefore, we further tested whether curvature
sensing would be retained when the surface area is fixed, and
only the local curvature varies. We thus generated a single
enclosed red-blood-cell-shaped membrane (by decreasing the
vesicle volume®”) that exhibits variations of curvature across its
surface. Four different points with different curvatures on the
surface were selected as the insertion zone (Fig. 3B). Our
simulation results recapitulate the same curvature sensing

Soft Matter, 2021,17,10649-10663 | 10653



Paper Soft Matter
A : . . r . B 1 . : . .
l -
of . 0.5 |
-o-C}® = 0.33 nm’!
Z:_I I -o-Ci™=0.10nm™ || =0 |
o -2f 5 —G—C(i:]s =0.04nm™" 1 ; - | ]
< —o-C™ = 0.02 nm’" L=
3t 0o 0 2nm |
b= 0,013 nm™! n A
4F - - .
—e—C'O'“ =0.01 nm™ y
0 20 40 60 80 100 120 15 1 B 3 4

Radius (nm) Position

Fig. 3 Helix insertions will drive stronger binding to more highly curved membranes. (A) Curvature sensing on spherical vesicles. Inset illustrates a sphere
of R =7 nm along with the insertion area (red color). Insertions increase the stability of the membrane energy (AE < 0) more robustly with smaller radius
and correspondingly higher curvature (1/R). The magnitude of this response is larger with higher spontaneous curvature of the insertion c. x = 20kgT.
(B) Curvature sensing on an enclosed, red-blood cell shaped ‘vesicle’ with heterogeneous curvatures. Inset illustrates the side view with position 1 having
highest curvature, and 4 having lowest (negative in this case) curvature. To get this asymmetric oblate structure, we started with the spherical vesicle

R = 14 nm and set the target volume Vo = 0.65 x 4nR%/3, target area So = 4nR?. A much stronger area and volume constraints were added with uy =

8.34 x 10* pN nm~2and pa = 2.50 x 10* pN nm~%. k = 20kgT and cl** = 0.1 nm~%. The membrane curvature at the positions labeled 1, 2, 3, 4 is 0.14, 0.08,
0.06, —0.06 nm™ respectively. The membrane energy change AE is more stabilizing with higher curvature.

phenomena, where binding to the most highly curved region
produces the largest benefit in membrane energy changes, and
binding to regions of negative curvature produces a cost in
membrane energy (Fig. 3B). The curvature sensing ability is
thus robustly driven by the local curvature and resulting
deformation around the insertion, rather than the relative size
of the perturbation to the total surface area.

IIIE. Curvature sensing is retained when the insertion area is
spread out

In the above models, the spontaneous curvature of the
membrane at the site of the insertion is non-zero over an area
of 2 nm? and immediately drops back to zero in adjacent
surface elements. To test the effect of having a more continuous
drop-off in spontaneous curvature as a function of distance
from the helix, driven by a stressed distribution of lipids
around the insertion,” we expanded the region of non-zero
spontaneous curvature around the insertion (Fig. S3A, ESIT).
The value of ¢ is thus largest at the center of the insertion,
and decays with distance away. We model this decay using a
Gaussian function:

o) "0)2} , ©)

¥ (x) = cfexp {f 752

where x is the distance to the insertion zone center x,, and ¢ is
the width of the spread. A Gaussian function introduces only
one extra parameter in ¢ and concentrates most of the pertur-
bation directly around the helix. The induced stress or strain
is limited to ~1 nm scale around the insertion,?® so we choose
26 < 1.5 nm. We find that the curvature sensing effect is
robustly retained, with a larger spreading of the insertion
producing a larger change in the membrane energy (Fig. S3B,

ESIt). Using a linear instead of a Gaussian function for the
decay produces similar results (Fig. S3C and D, ESI}).

10654 | Soft Matter, 2021, 17,10649-10663

IIIF. The model recapitulates in vitro measurements of
curvature sensing on vesicles of varying size

To most directly compare the simulation results to the experi-
mental results of ENTH binding to vesicles,'* we measure the
energy change upon insertion relative to the value in the
smallest vesicle (AE..¢(R = 10 nm)), so following eqn (4),
AAE(R) = AE(R) — AEys. (7)
We see excellent agreement between the shape of the energetic
changes between both our numerical results and the experi-
ment (Fig. 4), where in fact more than one set of «—c* values
agree quantitatively with the experiment. Hence, within physi-
cally reasonable values of the membrane bending moduli, a
softer membrane reproduces the data with a larger sponta-
neous curvature (c'* = 0.4 nm ', xk = 15ksT) or a stiffer
membrane matches with a weaker spontaneous curvature
(¢ = 0.2 nm™*, k = 30kgT). We can see then that if the
spontaneous curvature is either too large or too small, then
the numerical results cannot reproduce observed bending
energy changes for reasonable value of .

So far, we have assumed the spontaneous curvature across
the bilayer surface is zero, ¢ (s) = 0, except at the insertion patch
where ¢ > 0. This will be true if both monolayers are
symmetrical and identical in lipid composition, and thus we
tested the role of a nonzero initial curvature driven by leaflet
asymmetries. The simulation results show that curvature
sensing persists and remains in close agreement with the
experimental data (Fig. 5). Here we note that calculation of
AE (eqn (5)) requires that E, also be calculated numerically, as
it can deviate from the perfect sphere value of E, = 8nk. Leaflet
asymmetries can arise during the generation of vesicles, as
specific lipids could prefer the inner leaflet over the outer
leaflet due to the opposing curvature experienced by the head
groups. For the vesicles used in the experiments, the composi-
tion is mainly DOPC (~90% of total lipids). DOPC has a

This journal is © The Royal Society of Chemistry 2021
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Fig. 5 Numerical simulations reproduce the in vitro curvature sensing on vesicles even when the bilayers initially have a nonzero spontaneous curvature.
(A and B) In both panels, the experimental data is shown in black open circles and cif* = 0.2 nm™. (A) The bilayer spontaneous curvature is initialized to
Cols) = —0.01 nm™ to reflect possible asymmetries in the inner and outer leaflet. Results are very similar to the same model with co(s) = 0 nm~! shown in
Fig. 4B. (B) With a more negative initial value, co(s) = —0.05 nm™, the experimental data agrees better with a softer (lower x) membrane given the same
value of cff*. Thus realistic values of x—ci describe the experimental data even with initial asymmetries between membrane leaflets.

! we observe enhanced curvature sensing with the same insertion

parameters (Fig. 5B).

negative spontaneous curvature about —0.05 nm~*,*®* meaning
that the spontaneous curvature of each monolayer is about
—0.05 nm ™. Because a nonzero bilayer spontaneous curvature
is only caused by asymmetries between the monolayers, no
matter their individual values, we thus tested bilayer values
starting from a maximal asymmetry: —0.05 nm ™" < ¢o(s) < 0.

IIIG. The model recapitulates in vitro measurements of
curvature sensing of distinct amphipathic helices, ALPS1
and ALPS2

Overall, for small deviations from zero, the influence is negli-
gible (compare Fig. 4B and 5A), while for the larger deviations

This journal is © The Royal Society of Chemistry 2021

Our above results focused on the epsin N-terminal (ENTH)
amphipathic helix, which is ~2 nm? in area. The ArfGAP1

Soft Matter, 2021,17,10649-10663 | 10655



Paper Soft Matter
A B
30 30 I
100.0 40.0
_ 800 8 2008
= 25 F B 25 b ¢
; 600 £ 2 =l |3A0§—‘-T
< S ok =
20 400 3 20 1.0 8
20 Sl B
15 0.0 15 0.0
0.1 02 03 04 05 06 07 01 02 03 04 05 06 07
Cms (ﬂm_l) Cins (nm-l)
C 0 D 0
30 ; M 30
‘ 1120 5.0
= S
p 25 8.0 ew C 25 4.0 @g
£ 60 £ £ 0%
P ) S <
20 5.0 ME 20 2.0 °
2.0 1.0
15 0.0 15 0.0
01 02 03 04 05 06 07 01 02 03 04 05 06 07
Cions (™) Cy (nm™)

Fig. 6 Numerical simulations can reproduce the in vitro curvature sensing of the two ArfGAP1 ALPS helices. In all panels, the color bars indicate the
increased binding observed on highly curved vesicles (R = 34 nm in A-C and R = 42 nm in B-D) relative to a reference vesicle of R = 90 nm. (A and B)
Simulation results for the ALPS1 motif, with Ains = 6 nm?. The experimentally measured values are Keq(34)/Keq(90) = 46.75, Koq(42)/Keqg(90) = 11,5136
Thus the red dashed circles represent the possible k—cl5'® pairs that reproduce this experimental data, with the red star indicating a conserved « values
across all 4 panels. (C and D) Simulation results for the ALPS2 motif, with Ains = 3.5 nm2. The experimentally measured values are Keq(34)/Keq(90) = 5.33,

Keq(42)/Keo(90) = 2.25.331 Thus the red dashed circles represent the possible k—c§® pairs that reproduce this experimental data, with the pink star

indicating a conserved «k values across all 4 panels.

protein contains two slightly longer amphipathic helices, termed
ALPS1 and ALPS2, that can also insert into membranes.’* Both
these helices have been shown experimentally to exhibit curvature
sensing, with ALPS1 being a stronger sensor of curvature.'® Based
on structural data,® we therefore set the ALPS1 insertion area to
6 nm?, and the ALPS2 insertion area to 3.5 nm? Our continuum
model was again able to reproduce the experimentally measured
curvature sensing for both these helices with realistic pairs
of bending modulus x and insertion spontaneous curvature
¢S (Fig. 6). Specifically, both helices were experimentally studied
on vesicles of radii 90, 42, and 34 nm, with the same composition
in each.'® We therefore expect similar values of x to describe
sensing for both helices, and indeed for x = 24kgT, we found very
good agreement for both helices using ¢ = 0.5 nm ' for ALPS1,
and ¢ = 0.4 nm™! for ALPS2. Fig. 6 highlights other pairs of
Kk—ci® with good agreement to the experiments.

IIIH. The model recapitulates in vitro measurements of
curvature sensing by ENTH on cylinders of varying size

Curvature sensing of the ENTH domain was also experimentally
observed on cylindrical membrane tethers of varying size by
Capraro et al.'’ In Fig. 7, we show that our model produces
good agreement with the experimental results. The optimal
parameters for the model used the same A;,s = 2 nm” as the
ENTH on the vesicles, with x = 20k T and ¢ = 0.45 nm ™. This
insertion spontaneous curvature is somewhat larger but still
relatively similar to the value for ENTH used on the vesicles,

10656 | Soft Matter, 2021,17,10649-10663

where we found excellent agreement when « = 20kgT and cins =
0.3 nm™* (Fig. 4). One reason for a difference in c® for the same
protein on cylinders vs. vesicles could be the different lipid compo-
sitions used in the two experiments. In addition, due to the change
in geometry, specific proteins have been shown to sense curvature
more strongly in vesicles over cylinders (although ENTH was not
studied).®® Our model does not assume that sensing need be
identical in cylinders and vesicles of the same mean curvature. This
is evident because the shape of the membrane deforms following
insertion, and the exact shape and energetic cost of the deformation
can be sensitive to the unperturbed surface topology. In Section IIIJ
below we quantify how the shape deformation, on its own, impacts
energetics as a function of vesicle size.

We note that to compare our measurements directly to the
quantitative experiments (see Methods for all cylinder simula-
tion details), the experimental results showed that the ratio of
protein (I,) and lipid (1) fluorescence intensities on the tether,
I, = I/, is linear with the square root of tension on the tether,
or equivalently, with the inverse of the tether radius R."” This
normalized intensity ratio, L/I°, where I2 is the fluorescence
intensity ratio of a reference cylinder, is the same as a normal-
ized binding constant Keq/Kgq, when, similar to the vesicle
experiments, the abundance of unbound protein and of lipid
binding sites are in excess and thus effectively constant across
R. Using eqn (4), we quantify Keq/Keq = exp(—AAE/ksT) where
AAE = AE(R) — AE,, as defined in eqn (7). Thus, by measuring
the membrane energy change caused by inserting an amphipathic

This journal is © The Royal Society of Chemistry 2021
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Fig. 7 Numerical simulations reproduce the in vitro curvature sensing results observed on cylindrical membrane tethers. (A) Modeled cylinder showing
the local bulge that occurs following one insertion on the cylinder membrane. Here R = 10 nm, k = 20kgT, and ¢ = 0.3 nm~%. The color bar shows the
distance of each triangular face to the axis of the cylinder. All modeled cylinders have a length of 55.4 nm with both ends constrained by periodic
boundary conditions, with this image zooming in on a length of L = 30 nm to highlight the bulge. (B) The experimental data measured increased binding
on tethers as tension increased and their radii decreased (1/R increased), as plotted in Fig. 2E of ref.17 and ke = 13.33kgT according to their system

set-up. Our numerical simulations were carried out with x = 20kgT, c{'® = 0.45 nm ™, and Ains = 2 NM?. K&y = Keg(R = 500 nm). In Fig. S4 (ESI+), we plot the

same data in (B) vs. R, to show the similar representation as our earlier figures.

helix on cylinders of decreasing radii down to R = 10 nm, our
model recapitulates the experimentally observed curvature sensing
(Fig. 7), with a similar dependence on R of ENTH on the spherical
vesicles (Fig. S4, ESIT). We note that our model results are not as
linear as the experimental data, and this could be due to our
assumption that L/I? = Keq/Kgq. Although the solution proteins are
in clear excess of the bound proteins, the lipid sites are not strictly
in excess. While unbound lipid binding sites could remain con-
stant due to exchange between the tether membrane and the
reservoir, this is difficult to verify, and a correction term would
account for changes in unbound lipid populations with increasing
Keq- We do not attempt this here because the absolute values of K.q
are not known (ie. our model does not report on enthalpic
contributions to binding strength).

IIII. The model captures increased binding on membranes with
lipid composition of increasingly negative spontaneous curvature

Lastly, we consider a set of experiments that showed how binding
affinities for amphipathic helices could also vary across vesicles
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that have a fixed size but changing membrane composition."*”*?

We make two new assumptions for these model calculations, and
emphasize that this renders this specific comparison less robust
than previous results. Nevertheless, our model achieves good
agreement with experiment (Fig. 8), and thus we consider the
results at least qualitatively promising. The first key assumption is
that the changing lipid composition does not affect the enthalpic
or entropic contributions of the binding interaction. Instead, by
keeping the percentages of negatively charged lipids constant,
but increasing the fraction of the wedge-shaped diacylglycerol
(DAG) lipid, both monolayers of the bilayer exhibit an increa-
singly negative spontaneous curvature, cy(s). This could there-
fore alter the membrane bending energy following insertion,
and thus the binding affinity. Experiments showed that a
truncated ArfGAP1 containing its ALPS1 helix has a higher
affinity to vesicles with more DAG (see Fig. 7B in ref. 13).
A second key assumption of our model is that we here use
the continuum surface to represent only a monolayer of the mem-
brane (the outer-leaflet of the vesicle), with the assumption that
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Fig. 8 Numerical simulations show stronger binding to membranes with a composition that has a more negative spontaneous curvature, similar to

in vitro results The experimental data is shown in blue dots****

in both plots, our numerical results in red circles. (A) With softer monolayer «, a larger c§* =

0.1 nm~! agrees best. (B) With stiffer monolayer «, a smaller cf* = 0.01 nm™! is needed. Simulations were run on a vesicle with R = 28 nm, consistent with
the experiments. Keq/Kgq is the normalized equilibrium constant that can be calculated from eqgn (4) given AAE = AE — AEq, and AEg is the energy change
due to insertion on the reference membrane defined to have initial spontaneous curvature co(s) = —0.06 nm™* across the vesicle surface.
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energetic coupling to the inner-leaflet is neglectable. It will be
important to test and quantify this assumption in future work
with a multi-leaflet continuum model (see Discussion), but here
we simply show the results based on these assumptions. There-
fore, our model has only one layer, with x = 9-10kgT (the value for
a monolayer), and we again measure AE due to one insertion as
the initial spontaneous curvature of the membrane is made more
negative. Similar to the experiment, we also find stronger binding
to membranes with more DAG (a more negative c,(s)), using ¢y =
0.1 nm " and k = 9k,T, or ¢ = 0.01 nm " and x = 10k,T (Fig. 8).
We use one insertion with 4, = 4 nm?, which was found to be
optimal from numerical calculations performed using elasticity
theory."?

IIIJ. Predictive model for membrane energy changes
following insertion captures effect of membrane shape
changes

To combine all of our numerical results into a simpler mathe-
matical framework, we derived a phenomenological expression
to predict how the membrane energy changes would vary with
cg‘s, K, vesicle radius R, and insertion area A;,s. This expression
clarifies how the observed energy change results not only from
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Soft Matter

the local change in spontaneous curvature at the insertion
(which can be calculated analytically), but the membrane shape
changes that occur following membrane relaxation around the
insertion. The results apply for initial bilayer spontaneous
curvature of ¢y(s) = 0, or symmetric bilayers.
We write the total observed membrane energy change
calculated from numerical simulation as
AE(R,cI ic,Ains) = AEq + 0, (8)
where AE, is the change in bending energy due solely to
changes in spontaneous curvature at the insertion, without
any shape change to the surface. Therefore, ¢ captures energy
changes due to deformation of the membrane shape to relieve
induced strain in the surface. We calculate AE, analytically
using eqn (1). The only change in energy across the surface
occurs at the site of the insertion. Before the insertion, the

Ain: 2 : .
membrane bending energy of the area A;,s is r 5 - <E) , with

the spontaneous curvature of the membrane being zero. After
the amphipathic helix inserts into this area A;,s, the bending
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Fig. 9 Empirical formula predicts dependence of membrane energy change on physical parameters due to the insertion and subsequent membrane
shape changes. (A) The dashed lines show AEq, which is defined analytically in eqn (9) as the change in bending energy due solely to changes in
spontaneous curvature at the insertion, without membrane shape relaxation. This simple estimate significantly overestimates the energy changes
observed at equilibrium from our simulations (AE), which are shown in the blue and pink data points. These data points are the same as the matching
color/symbol in part (C). (B) From our numerical simulations that produce AE, we can extract the energy change ¢ that arises only due to membrane
shape relaxation using 6 = AE — AEp, where AEg is defined analytically in eqn (9). (C) The total energy change AE is found from our numerical simulations
(data points), as also shown in previous figures. AE arises due to both changes to the spontaneous curvature at the insertion, and subsequent membrane
shape relaxation. Our empirical model derived in egn (11) (solid curves) provides excellent agreement with the simulated results. (D) Application of eqn (11)
to quantify experimental data of helix-containing eAH and aAH.° Based on this published study, we set Ajs = 4 nm? for eAH and Ains = 4.75 nm? for aAH.
AAE = AE(R) — AE(Ro), where AE(R) is calculated by eqgn (11) and Rp = 24.3 nm.
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effective spontaneous curvature on this binding area Ajps.
We thus have:

ins KAms 2 in 2 KAins 2 2
AEy(R, ¢, k, Ains) = 3 (E*Cos) — (ﬁ)

_ K Ains (s _ 4c})ns
2\ R

as the membrane energy change from one insertion before the
relaxation of the stress or strain (Fig. 9A).

We use our numerical results to derive an expression for 9.
Our results show ¢ is always a negative value (Fig. 9B), which
means the relaxation process always causes the membrane
energy to decrease, whereas AE, is positive when ci® > 4/R.
From our analysis, we find that ¢ varies with all four para-
meters, 6 = 6(R,CB“S,K,AmS). The simulation results show § oc k
and that § is a linear function of R~ (Fig. S5, ESIT), which is the
same dependence that AE, has (eqn (9)). For the insertion
parameters, however, we find that ¢ has distinct scaling with

©)

¢ and Ajp. Specifically, we find that 6 / c})‘“l's is independent of
¢S, and 6/Ains">° is independent of Aj, (see Fig. S5, ESI+ for
details on parameter estimation). By fitting our numerical data,
we thus recover a final practical expression for how ¢ depends
on all four variables:

o . 3 1
R ) = A () o)

w \2r T R
This expression contains 4 fit parameters: the exponents 1.5
and 1.25, the 3/2 prefactor for R*, and finally R, = 10 nm is a fit
parameter necessary to capture the apparent plateauing of ¢ at
negative values when R — 0.

By combining eqn (8)-(10), we have the final analytical
expression of the membrane energy change due to one helix
insertion as:

AE(R7 Cé)nsv K, Ains) = i (Ci)nS2 - 4Cé)ns>

2 R
(11a)
_ . ins!? 1.25 i L
ke A (2R + R0>’
or
in in cins 2 i 173 1

AE(R7 € %K, Ains) = ’CAinsC() ) |:% - E Y/ CbnsAixls4 <ﬁ + FO)j| .

(11b)

Eqn (11) provides excellent agreement with the numerical data
as shown in Fig. 9C, recovering the proper limits that as the size
or spontaneous curvature of the insertion goes to zero, there is
no change in the membrane energy, as expected. This model
further predicts when the helix insertion will cause stabili-
zation (AE < 0) or de-stabilization (AE > 0) to the membrane
energy, dependent on ¢ins R and now also Aj,s. The sign is thus
independent of k, as seen in Fig. 2B. This expression shows that
the membrane energy changes for vesicles is most sensitive to
changes in ¢, which is coupled to the vesicle radius most
strongly via the membrane shape changes, as seen in the last

This journal is © The Royal Society of Chemistry 2021
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term of eqn (11a) (c})nsl's/R). The trend is similar for the

insertion size, where it couples more strongly to the vesicle
radius in the membrane shape changes (4ins'**/R). The magni-
tude of the energy change following relaxation is comparable to
the energy change due to the insertion (Fig. S5E, ESIt), mean-
ing that the contribution of the membrane shape changes in
response to helix insertion cannot be ignored when quantifying
the strength of helix localization to membranes.

As an example application of this formula, we used eqn (11)
to fit experimental data of curvature sensing of two helices, eAH
and aAH, on liposomes of varying radii (from Fig. 2E in ref. 9).
Similar to all previous calculations, we re-plot the reported
AG(R) values® by subtracting off AG(R,), to directly compare
with the analytically predicted AE(R) — AE(R,), with R, =
24.3 nm, the smallest vesicle in their experiments. The best
fit of the data to eqn (11) is in excellent agreement, and is in the
expected parameter ranges, with x = 19k5T and ¢ = 0.08 and
0.13 nm ™" for aAH and eAH (Fig. 9D).

IV. Discussion

Curvature sensing by amphipathic helices emerges from their
localized disruption of, primarily, the leaflet of the bilayer
where they embed. The energy change that results from this
localized perturbation is up to a few kpT, based on experimental
measurements. We show here that curvature sensing by amphi-
pathic helices and the corresponding energy changes can be
accurately captured by deformable continuum membrane
models, despite lacking an explicit double leaflet structure.
Instead, the spontaneous curvature of an insertion area, which
is a material property reflective of stresses induced on only one
leaflet, can effectively couple inserted helices to the membrane
bending energy. Our numerical results predict stronger binding
of helices to membranes of higher curvature. The form of the
curvature-dependent binding energy (not the complete binding
free energy which is not accessible with this model) is in
excellent quantitative agreement to experiments. Furthermore,
using literature standard values for x (15-20kgT),** and pre-
dicted values for ¢ (0.1-0.5 nm~'),?* the experimental obser-
vations are directly within the range of reasonable parameters.
The energy change that accompanies helix insertion is due to
the bending energy, and we decompose this energy change into
two parts: the cost of the helix insertion (change in ¢i'*) and the
energy of the shape change following insertion. Both compo-
nents make comparable contributions to the overall change in
bending energy. We develop an empirical formula that can then
predict these energy changes, which quite accurately captures
dependence on the bending modulus, sphere radius, helix
insertion size, and insertion spontaneous curvature. We can
therefore predict when helix insertion acts to relieve stress in
the membrane (highly curved vesicles) or introduce new strain
(low curved vesicles). We verify that the observed energy
changes are due to sensing of the local curvature around the
insertion, as the result is retained in non-spherical surfaces of
constant surface area, and as the helix insertion is spread.
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We assume the binding of each amphipathic helix is inde-
pendent of each other. This applies for the low concentrations
used in the experiments here, where the density of ENTH on
the vesicle membrane surface never surpassed 0.0038 nm >
(<5% surface coverage-Fig. S6, ESIf) and no clustering of
proteins was observed.'> For the experiments with ALPS
motifs'® and ENTH on cylinders,"”” we estimate similarly low
surface coverage of at most 4% and 12%, respectively (see
Methods). However, at higher densities, the local shape
changes could alter the binding energetics of subsequent
proteins, leading to mechanically induced feedback. The shape
and energetics of the deformation can vary as protein pairs
move closer together,”’ and mechanical feedback can alter
rates of binding to membranes.**> The spatial distribution or
interactions between proteins on the membrane can also vary
due to localized changes to bending energy and membrane
shape.?" At coverage above 20%, additional curvature induction
mechanisms such as crowding,” would enhance shape changes
beyond helix insertion alone. The modeling approach used
here is capable of quantifying even small changes in energy
that could emerge due to cooperative effects. In future work
we will address how feedback and cooperativity can drive
enhanced or depressed recruitment to surfaces of varying
curvature.

A limitation of the thin-film surface model is that it does not
explicitly capture the thickness of the bilayer or any explicit
asymmetry between inner and outer leaflets. The model thus
cannot quantify how the stress profile in the membrane
varies' from the embedded leaflet, where the helix causes
stretching, relative to the presumably more compressed oppo-
site leaflet. Initial asymmetries between leaflets prior to inser-
tion also influences the initial bilayer spontaneous curvature,
although we showed here that curvature sensing persists even
when ¢y(s) # 0, causing minimal changes to bending energies
as it approaches zero (Fig. S7, ESIT). However, explicitly captur-
ing each monolayer leaflet would be important for more
accurately testing how changes to lipid composition®* would
impact bending energies (see Section IIII), including more
directly accounting for lipid-packing defects that influence
monolayer spontaneous curvature."” Where finer-grained detail
is required, applications of material-elastic theory"® to membrane
patches thus have an advantage in this regard, although they
have significantly less flexibility in studying topological variations
of surfaces that exist in three-dimensions. Our approach here
benefits from previous material-elastic studies that have pre-
dicted ranges of c® from helix shape and mechanical
strain.?®*? Furthermore, membrane thickness has been shown
to be an important variable for interactions between fully trans-
membrane proteins that span both leaflets.**** Studying the role
of membrane thickness in continuum models can be achieved
through coupling of two layers together, and hybrid methods that
combine continuum membranes with atomistic proteins capture
realistic deformations around transmembrane proteins.*"*?
Coupling the two layers would introduce an energy term due
to thickness changes (typically modeled harmonically), and
could also include energetics of lipid tilt. Similar to the area
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and volume constraints, we anticipate that these terms will be
relatively small compared with the bending energy cost, and
thus would not significantly shift our energetic measurements
for curvature sensing by a single helix. Here, we found that
capturing explicit membrane thickness was not necessary to
reproduce experiment, as the spontaneous curvature accurately
quantified helix-induced membrane strain on vesicles and
cylinders.

Overall, the modeling approach used here offers an accu-
rate, experimentally verified platform to study membrane
shape changes and bending energies arising from adsorbed
proteins, despite relatively few free parameters. To quantify
curvature sensing by amphipathic helices, we found it to be
efficient across multiple changes to material properties of the
membrane and the insertion, even over ~ kg7 or smaller energy
changes. The direct comparison between quantitative experi-
ments and modeling provides a mechanism to determine
coarse material parameters of proteins, where here we found that
inserted helices have a spontaneous curvature of 0.1-0.4 nm %,
using realistic membrane bending moduli. Modeling membranes
at the mesoscale has proved critical for studying key steps in
processes from clathrin-mediated endocytosis,* to fluctuations in
red-blood cell membranes,*> where molecular approaches are
simply intractable. By further coupling mesoscale membranes to
dynamical protein systems using, for example, reaction-diffusion
methods,*® the time-evolution of surface shape driven by multiple
interacting proteins could also be captured in addition to
energetics. Our code is therefore provided open-source under
a Gnu Public Licence (GPL) at github.com/mjohn218/NERDSS/
continuum_membrane. Given the breadth of membrane bend-
ing processes that occur in the cell,”” this mesoscale approach
can be usefully applied and extended to quantifying key
mechanisms of protein-driven membrane remodeling.

V. Methods

VA Set-up of vesicles

An enclosed spherical triangular mesh is set up by the Loop’s
subdivision scheme at the radius of interest.”® The limited
surface area is calculated as the vesicle area S, and the volume
enclosed by the vesicle area is calculated as the vesicle volume
V.

VB Energy minimization

The equilibrium state of the vesicle is produced by minimizing
the total energy using nonlinear conjugate gradient methods
(NCG).*® The force on each vertex is expressed as the derivative
of the total energy to the vertex position

OE

f; - 7%7

(12)

where X; and fl are the position and nodal force on vertex i
respectively, and the detailed expression can be found in.**?”
The total energy includes terms due to the regularization and
area constraint on the insertion described below. As criteria for
stopping the minimization (finding the optimum), we use a
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mean nodal force is smaller than 10> pN and that the energy
curve slope is (E;i500 — E})/500 < 107> (E; is the total energy in
simulation step i), as shown in Fig. S8 (ESI{).

The calculation time depends on the vesicle size. The larger
vesicle has more triangular faces and vertices, requiring more
time to finish the energy minimization. For the small vesicle
(R =10 nm), each minimization takes 5-30 minutes on 48 cores,
with the code written in ct++ using OpenMP threading. Mini-
mization takes longer with larger values of ci'*. For the large
vesicle (R = 120 nm), the same calculation takes about 2-4 days.

VC Insertion area constraint

We constrain the area of the insertion zone, as the nonzero
¢’ makes the triangular mesh nonuniform around the inser-
tion, and we do not want the mesh deformation to change the
area of the insertion (which is typically fixed at 2 nm? for ENTH
insertion). Therefore, we tried two methods which produce very
similar results, and neither of which measurably impacts the
total energy of the system, which is dominated by the bending
energy (Fig. S9, ESIT). Using an edge length energy we have:

1
Einsertion = ZEK(L - 10)27

(13a)

2/V3

nm is the targeted length for the insertion zone, and K is the
spring coefficient. The sum of eqn (13a) covers all the edges of
the insertion zone. Alternatively, the insertion area can be
constrained via a local area constraint:

4 2
1 (4;— Ao)
Einertion = 3 sHA~————
insertion — 2'uA AO

where [; is the edge length of the insertion zone, /* =

(13b)

where 4; is the area of one triangle in the insertion zone, 4, =
0.5 nm?” is the target area of the insertion zone triangle (the
total area of the insertion zone is 2 nm?, and the insertion zone
has four triangles so each triangle should have area 0.5 nm?),
and u, is the membrane area elasticity modulus as in eqn (1).
To use eqn (13b) for the insertion area constraint, we need to
separate out the insertion area from the global area constraint
in eqn (1).

VD Evaluation of surface integrals

The numerical solution of the integral over the surface in
this theoretical model (eqn (1)) is calculated by second order
Gauss-quadrature. We validate that the second order of Gauss-
quadrature is sufficient to produce converged energy estimates,
and the higher-order and more expensive quadrature schemes
are not necessary (Fig. S10, ESIf). We also validate that the
fineness of the triangular mesh doesn’t influence the energy
calculation (Fig. S11, ESI}), verifying that the resolution
used here is sufficient to accurately measure energy changes
following insertion.

VE Regularization energy

To eliminate the in-plane shearing deformations of the triangular
mesh, we add a regularization energy.’” The regularization energy
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has two forms depending on whether the triangular element is
too biased from the equilateral shape. The function to describe
the shape of triangular element i is defined by

3

Z I/ —1)

(14)

where [; ; is the edge length and /; = y/44,/+/3 is the target edge

length with 4; being the triangular element area. A large #; means
the triangle is more deformed, and here in our simulations we
use 7)o = 0.2 as the criteria determining whether the triangle shape
is too deformed. If n; > n,, the regularization energy for this
triangular element i is

(15a)

3 1 o
= sz(l,-ﬁ,- —1;)
Jj=1

where £ is the coefficient of this spring-type energy. If 1; < 7, the
regularization energy for this triangular element i is

3

P =30~

>2, (15b)

where [7 ; is the edge length we choose to use which is called the
reference structure. Then the total regularization energy is the
sum of all the N triangular elements of the mesh.

N
Ereg = E Eregti-
i=1

The regularization energy controls sizes of mesh elements which
improves numerical integration over the surface, and thus is a
technical constraint on the numerical method rather than
physical constraint on the membrane energy, so it should
converge to 0 when the system reaches the equilibrium state.
The reference structure (value of [{;) needs to be updated as the
simulation evolves, and we update it when the energy optimiza-
tion slows. This update method ensures that eqn (16) will
converge to 0 and that the regularization works effectively on
remeshing the triangular mesh.?” Note that eqn (15) is not a
continuous function, so it may cause a problem to find an
efficient step size during the NCG energy minimization, but
practically this problem can be solved by restarting the simula-
tion or by shutting down eqn (15a) for several simulation steps.

(16)

VF Set-up and simulation of cylinder membrane

To set up the triangular mesh of a cylinder membrane with the
radius R, we first set up a circle of R on the plane z = 0 with the
circle center being (0, 0, 0); next we select n vertices uniformly
distributed on this circle, and thus the edge length between two
nearest vertices is [ = 2R-sin(n/n); then we repeatedly move these
n vertices along z axis by Az = 4++/3//2 and rotate along z axis by
+n/n rad. Through this process, we can get a perfect smooth
triangular mesh with all the triangles being equilateral and
identical in size, Fig. S12A (ESIf).

The mechanical description of the cylinder membrane is the
same as the vesicle above, with the same regularization scheme
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and energy minimization method, except that the volume
constraint is excluded. For the mesh boundary conditions,*®
the two ends of the cylinder membrane are constrained by
periodic boundary conditions (PBC), which we found provided
more stable energetics even for small cylinders (R = 10 nm) at
all cylinder lengths, compared with fixed boundary conditions.
Periodic boundaries are also a more accurate physical repre-
sentation of the experimental tether which is about 6 pm
in length, because they are not pinned to a nanoscopic size
(L = 55 nm). PBC is enforced by introducing ghost vertices and
ghost faces, as illustrated in Fig. S12B (ESIT). The ghost vertices
and ghost faces are necessary to calculate the nodal force on
each of the boundary vertices. The update of the ghost vertex
position relies on the boundary vertices of the cylinder. Note
the integral of the membrane area and energy doesn’t include
the ghost faces. The protein binding on the cylinder membrane
generates a local bulge (Fig. 7A), similar to the binding to
vesicles (Fig. 1D), and we verified that the length of the cylinder
doesn’t affect the energetics of the membrane, Fig. S12C (ESIT).

VG Experimental surface densities

We estimated the surface coverage of amphipathic helices
on membranes for the ALPS experiments'® and ENTH on
cylinders'” to ensure they were below 20%, consistent with
the ENTH vesicle experiments.'” These estimates are therefore
only used to confirm this threshold is not passed, as additional
membrane bending mechanisms can then play a role, and they
are not used for any energetic calculations. For the tether
experiments, the final lipid concentration is 2.5-4 pM, of which
1% are PI(4,5)P,, and the total ENTH concentration is
0.2-0.5 pM."7 Assuming 1:1 binding of ENTH to PI(4,5)P,
and a Kp, of ~0.5-1 uM, the fraction of bound PI(4,5)P, varies
from ~20-50%, which produces a surface density of ~0.004-
0.01 proteins per nm?, or a maximal surface coverage of ~12%.
For the ALPS experiments, the final lipid concentration is
750 uM, and the total protein concentration is 0.75 uM."® With
maximally 80% of proteins bound to the surface,'® the bound
protein to lipid ratio is 0.0008, and for the R = 34 nm vesicle
(lipid area is ~0.7 nm?), the protein density on the surface is
~0.001 proteins per nm®. Assuming a larger footprint for ALPS,
surface coverage is still <4%.
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