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Deep learning methods that achieved great success in predicting intrachain residue-residue contacts 
have been applied to predict interchain contacts between proteins. However, these methods 
require multiple sequence alignments (MSAs) of a pair of interacting proteins (dimers) as input, 
which are often difficult to obtain because there are not many known protein complexes available 
to generate MSAs of sufficient depth for a pair of proteins. In recognizing that multiple sequence 
alignments of a monomer that forms homomultimers contain the co-evolutionary signals of both 
intrachain and interchain residue pairs in contact, we applied DNCON2 (a deep learning-based protein 
intrachain residue-residue contact predictor) to predict both intrachain and interchain contacts for 
homomultimers using multiple sequence alignment (MSA) and other co-evolutionary features of 
a single monomer followed by discrimination of interchain and intrachain contacts according to 
the tertiary structure of the monomer. We name this tool DNCON2_Inter. Allowing true-positive 
predictions within two residue shifts, the best average precision was obtained for the Top-L/10 
predictions of 22.9% for homodimers and 17.0% for higher-order homomultimers. In some instances, 
especially where interchain contact densities are high, DNCON2_Inter predicted interchain contacts 
with 100% precision. We also developed Con_Complex, a complex structure reconstruction tool that 
uses predicted contacts to produce the structure of the complex. Using Con_Complex, we show that 
the predicted contacts can be used to accurately construct the structure of some complexes. Our 
experiment demonstrates that monomeric multiple sequence alignments can be used with deep 
learning to predict interchain contacts of homomeric proteins.

Proteins are one of the most important and heavily studied biological molecules. While most proteins form 
individual three-dimensional structures, they tend to interact with each other to gain functional properties. In 
fact, most proteins are symmetrical oligomeric complexes with two or more subunits1, and approximately two-
thirds of human enzymes are homo-oligomers2.

Since the functionality of most proteins heavily depends on oligomerization, and wet laboratory experiments 
with actual proteins are time-consuming and expensive, there is a need to develop accurate computational tools 
to make such predictions quickly. Machine learning methods have been developed to facilitate computational 
modeling of both protein tertiary structures and quaternary structures. However, recent focus has been on the 
development of computational tools for predicting intrachain (within the same chain) residue-residue contacts 
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and distances to guide tertiary structure modeling 3,4. Some of these methods have performed well in the 12th 
and 13th Critical Assessment of Techniques for Protein Structure Prediction (CASP) competitions5–14.

Unlike tertiary structure modeling, most of the tools on protein complexes are developed to classify whether 
two proteins are interacting or not, with some tools developed exclusively for docking purposes. Some popular 
docking tools include RosettaDock15,16, ZDOCK17, ClusPro18, etc. RosettaDock is based on the Monte Carlo 
method and performs minimum energy optimization-based modeling, while both ZDOCK and ClusPro are 
based on Fast Fourier transformation. ClusPro computes models with low energy scores and ZDOCK aims to 
achieve a maximum ZDOCK-score. Only a small number of tools were developed to predict interchain contacts 
leveraging interchain residue-residue co-evolutionary signals embedded in the MSA of a pair of interacting 
protein homologues (i.e., interlogs)3,4,19. Relevant to the present work, Zhou et al.4 and Zeng et al.20 predicted 
interchain contacts using a deep learning-based intrachain contact prediction tool (RaptorX-ComplexContact) 
without training the system for interchain contact prediction. Their work involved generating MSAs using homol-
ogy-based, phylogeny-based, and genome-based interlog searches, which is similar to the methods employed by 
Baker19 and Marks3. Baker19 used a pseudo-likelihood-based covariance approach to predict interprotein contacts 
in bacterial proteins. The method involved the computation of residue-residue coupling strength between all the 
interacting protein pairs in the MSA based on the GREMLIN model. The coupling strengths were then ranked 
and used to compute a score, which was used to derive the distance restraints. EVcomplex3 used evolutionary 
couplings (EC) to predict the interface contacts between prokaryotic proteins. Applying EVcouplings21 to the 
paired MSA and using the pseudo-likelihood maximization (PLM) approach, both inter-EC and intra-EC were 
obtained. The normalized raw reliability score (EVcomplex score) was calculated using the inter-EC portion. The 
interchain residue pairs were ranked according to the EVcomplex scores, and pairs with scores ≥ 0.8 were consid-
ered to be in contact with high confidence. Another approach by Baker23, in order to determine protein–protein 
interactions in Escherichia coli and Mycobacterium tuberculosis, selected strongly co-evolving interacting protein 
pairs from the paired MSA of orthologs based on high values of residue-residue mutual information. The selected 
proteins were further analyzed using direct coupling analysis (DCA) followed by GREMLIN. It was also deter-
mined that applying deep learning methods like DeepCov24 that was exclusively trained to predict intrachain 
contacts, did not improve interchain contact prediction of heterodimers when compared to their approach of 
using DCA followed by GREMLIN. It was further suggested that in order to use such deep learning approaches, 
the networks should be trained exclusively for interprotein contact prediction.

The works above focused on determining the heteromeric interprotein contacts and require MSAs of homolo-
gous interlogs as input. However, obtaining MSAs of interlogs of sufficient depth is difficult because there are 
fewer known protein complexes than known monomers. However, the situation is different for homo-oligomers 
because their units are the same monomer. Therefore, both intrachain and interchain residue-residue co-evolu-
tionary signals exist within the same MSA of the monomer. That is, both the co-evolution signal between residues 
i and j within a monomer and that between residue i in the monomer and residue j in its identical partner are 
mixed in the MSA of the monomer. This phenomenon has been recognized before but has not been leveraged 
to predict interchain contacts in homo-oligomers25.

The objective of this study focuses on predicting the interprotein contact of homomeric proteins (chains hav-
ing similar amino acid sequences) using MSAs of the monomer unit in homo-oligomers. Similar to Zeng et al.20 
and Zhou et al.4, our approach can be applied to prokaryotic and eukaryotic proteins wherever sufficiently deep 
MSAs are available. Unlike the above approach to generate MSAs, ours directly extracts co-evolutionary features 
of homomeric proteins from homology-based MSAs constructed without any special genome or phylogeny-based 
methods. We then directly apply DNCON25, a deep learning method trained to predict intrachain contacts, to 
these features to predict both intrachain and interchain contacts, which we distinguish according to the tertiary 
structures of monomers (See Supplementary Section Figure S1 for the DNCON2 deep learning architecture, 
and Table S1 for the list of features used by DNCON2). This paper focuses on proving this concept, while 
future work will focus on developing an exclusive deep-learning-based interprotein contact predictor. Since 
this development is based on DNCON2, we name our method DNCON2_Inter. Interestingly, DeepHomo22 , 
applying a deep residual network to features derived from monomeric MSA, was recently developed to predict 
homodimeric interprotein (interchain) contacts of C2 symmetry type proteins, further demonstrating that this 
direction is promising.

Interchain protein contact predictions are not only useful to identify protein–protein interactions but also in 
the construction of complex structures. Some docking tools use interchain contacts as additional restraints to 
compute better quaternary structures. Since more accurate interprotein contacts lead to better quality quater-
nary structures, this research will pave the way to improve de novo interprotein contact prediction and complex 
structure construction methods.

Methods
Dataset preparation.  The list of homo-oligomers was obtained from the 3DComplex dataset26. We 
selected our protein dataset after the Protein Data Bank (PDB) files underwent a cascade of filtration steps. We 
discarded the proteins that had interactions with nucleic acids and cleaned PDB files according to the process 
described in Fig. 1.

Since PDB files tend to contain more information than necessary, we cleaned them using MULTICOM 
Toolbox14,27, as shown in Fig. 1. DSSP28 is applied to generate secondary structure and solvent accessibility 
information for each PDB file. If DSSP can be generated for a protein, the entire PDB file is split into individual 
files corresponding to the chains present, keeping only the ATOM (x, y, and z coordinate) portion. The residue 
numbers are then reindexed to ensure every residue number begins with a ’1’ and continues without any breaks. If 
the FASTA sequence similarity between chains is less than 95%, we discard the protein. The individual chain-wise 
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files are further processed to remove the mismatched residue information, and residue numbers were reindexed, 
if necessary, for homogenizing the residue similarity between chains.

Proteins with more than 30% sequence identity were removed using the "mmseqs"29. We also excluded the 
proteins which did not have any interchain contact (distance between interchain residues was > 6.0 Å). Sev-
eral proteins that failed with FreeContact30, PSICOV31, and PSI-BLAST32 in the feature generation process of 
DNCON2 were also excluded. Finally, we obtained a dataset of 8681 homodimeric proteins and 6764 higher-
order homo-oligomeric (hereafter, "homomultimeric") proteins for prediction and analysis. The homodimeric 
and homomultimeric datasets did not overlap and were treated separately.

Prediction and evaluation of interchain contacts.  Since dimeric proteins contain two chains, the 
underlying process is relatively simple. Hence, in this study, we only describe predicting the homomultimeric 
proteins’ interchain contacts, which implicitly covers the dimers. As described in Fig. 2, the cleaned chain-wise 
split PDBs and FASTA sequences were given input to our prediction and evaluation system. The coordinates of 
chain ’A’ (the first chain) were used to compute the intrachain contacts. An intrachain contact between two resi-
dues i and j is said to exist if the Euclidean distance between the respective Cβ (Cα for glycine) atoms of residues 
i and j is less than or equal to 8.0 Å5,14. If the Cβ was unavailable, we chose Cα instead. We also defined interchain 
contact between chains in a protein if the Euclidean distance between the heavy atoms of the residues in the 
respective chains is less than or equal to 6.0 Å3,4,19. We obtained a pairwise contact list between the first chain 
(chain A) and the other chains. For example, if a protein contains four chains A, B, C, and D, we pair them as AB, 
AC, and AD and determine the interchain contacts. We select the pair with the highest number of contacts from 
this distribution and base the rest of our analysis on this.

To predict the interchain contacts, the FASTA sequence of the first chain (i.e., chain A) was fed into our pre-
dictor program- DNCON2- which outputs the predicted intrachain contact map. This predicted contact map 
was processed to filter out the short-range contacts (contacts whose sequence separation is less than 6). The 
interchain contacts are obtained as follows:

(1)	 We removed the matching true intrachain contacts from the prediction. Our assumption states that the 
remaining contacts in the prediction contact map should correspond to some sort of interchain contact.

(2)	 We then computed the precision using the contact map obtained from (1) and the true interchain contacts 
using InterConEva- an extension of ConEva33 tool for interchain contact evaluation. It should be noted 
that DNCON2 outputs the upper triangle of the prediction matrix since the intrachain contact map is sym-
metric. However, in interchain prediction, the entire contact matrix needs to be considered since contact 
between residues i and j of two different chains can be different from contact between residue j and i. This is 
because, although most homodimeric interactions are symmetric, it is possible to have asymmetric interac-
tions of homodimers within higher order homo-oligomeric complexes. If the final predicted contact map 
had a contact (x, y) [i.e. between residues x and y], we checked for existence of contact at both positions (x, 
y) and (y, x) in the true interchain contact map and considered them to be two separate contacts.

Figure 1.   Diagram describing how the input PDB file was pre-processed using the MULTICOM TOOLBOX to 
clean up the PDB files. If no DSSP is available, the PDB was removed from our list. The individual chains in the 
multimer PDB were separated into individual files containing the ATOM (x, y, and z coordinates) segments only 
while discarding all other information. Only chain pairs whose FASTA sequences match 95% or more were kept, 
and any mismatched residues were removed to ensure homogeneity between chains.
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We experimented further by applying relaxations (two sets of less strict criteria) to the above parts (1) and 
(2). We termed them as "relax removal" and "relaxation," respectively. During relax removal, we removed the 
true intrachain contacts from the predicted contact map as follows:

(1)	 If position (i,j) is a true intrachain contact, and the relax parameter is n (where, n = 0, 1, and 2), then let 
X = [i − n, i + n] and Y = [j − n, j + n]

(2)	 Remove all contacts (Xp,Yq) from the predicted contact map where Xp = {i − n, i − n + 1, …, i + n} and Yq = {j 
− n, j − n + 1, …, j + n}. This removes (sets to zero) a square matrix of dimension n x n centered at (i,j) from 
the predicted intrachain contact map.

Relaxation follows a similar approach. If a prediction is found for the position (i,j), we look for contacts within 
the square matrix of dimension n x n centered at (i,j) in the true interchain contact map. If any nonzero value is 
found within the n x n square region centered at (i,j) of the true interchain contacts, it is counted as a successfully 
predicted contact. The value of n is ranged from 0 to 2 since we perform relaxation within two residue shifts.

We also selected one best-case result and reconstructed the complex structure using our recently developed 
tool Con_Complex, which can reconstruct the quaternary structure of multimers by leveraging the simulated 
annealing protocol of CNS (Crystallography and NMR System)34,35. It uses the monomer PDB file and the 
predicted inter-protein contacts to reconstruct the homomultimeric complex structure. We compare inter-
chain contact maps using InterConEva, visualize quaternary structures using Chimera36, and calculate TMscore 
using TM-Align37. Additionally, we randomly selected 40 homodimer proteins, half of which had zero Top-5 
and Top-10 precisions from our experiment, and compared our results to the predictions made by RaptorX-
ComplexContact and DeepHomo webserver.

Results and discussions
The precision of interchain contact prediction.  The results from Fig. 3 (Supplementary Section Fig-
ure  S2 is a line graph of Fig.  3) show that as we perform relax removal and relaxation, the interchain con-
tact prediction  precision increases. We obtain a maximum average interchain precision of 22.9% and 17.0% 
for homodimers and homomultimers, respectively, for the Top-L/10 group with relax removal = 2 and relaxa-
tion = 2. When compared with the precision results obtained from random predictions (Supplementary Section 
Tables S3 and S4), for the Top-L/10 with relax removal = 2 and relaxation = 2, our prediction is 4.1 times greater 
for homodimers and 3.5 times better for homomultimers. For all groups, increasing relaxation tends to bring 
about slight increases in precision values. This increase is due to the consideration of true-positive hits over a 
flexible boundary that enables the system to discover more contacts within a fixed vicinity. However, from Top-
L/5 and beyond, precision drops drastically for all the graphs since we are dividing by a bigger number.

Figure 2.   Workflow diagram describing how the pre-processed input PDB and FASTA sequence was used to 
derive true intrachain contacts, true interchain contacts, predicted interchain contacts, and finally, obtain the 
evaluation and visualization of the prediction.
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In further analysis, we compare precision against contact density. Contact density is the total number of native 
contacts per length of the protein4. We discuss the contact density and precision of the Top-2L predictions of 
homodimers without any relax removal. Figure 4 shows that precision increases with increasing contact density 
for the Top-2L group. We observe that performing relaxation from 0 to 1 increases the precision for contact 
densities of all ranges. For the DNCON2_Inter predictions (Fig. 4a), precision almost doubles when contact 
densities are less than 3.50, while, for contact densities beyond 3.50, the precision increases slightly. Performing 
relaxation from 1 to 2 increases precision but lesser than what is observed when relaxing from 0 to 1. Relaxation 
from 1 to 2 affects precision values less for contact densities ≥ 3.50. For the case of random predictions (Fig. 4b), 
similar to the case of DNCON2_Inter, the trend in precision increases until it reaches a contact density of 3.75. 
In the entire graph, unlike the case for DNCON2_Inter prediction where 100% precision is observed (relaxation 
2; contact density 4.25 to 4.75), random prediction achieves the maximum average precision of 77.8% when 
relaxation is 2 and contact density is between 3.50 and 3.75. For contact densities beyond 3.75, the precisions 
for random prediction decreases, while DNCON2_Inter predicts contacts with high precisions for proteins with 
high contact densities. Increasing the relaxation value has a greater impact of increasing precision for random 
predictions. For DNCON2_Inter, proteins with high contact density get predicted better than proteins with low 
contact density. It should be noted that most proteins have very sparse interchain contacts and thus have low 
contact densities. Also, the number of proteins with high contact densities is significantly less (See Supplemen-
tary Section Table S2), so these proteins play little role in the overall precision. (Detailed explanation of how 
relax removal and relaxation effects the precision is described in Supplementary Sect. 10.0. Also, the variation 
of precision at different contact density thresholds for top predictions for both DNCON2_Inter and random 
predictions is shown in the heatmaps in Supplementary Sect. 11.0 Figure S8).

Figure 3.   The precision heatmap of interchain contact predictions for the (a) homodimers and (b) 
homomultimers for the Top-k predictions where k = 5, 10, L/10, L/5, L/2, L, and 2L. For all categories, as we 
do more relax removal and relaxation, precision values increase within the respective Top-k categories. Relax 
removal = 2 and relaxation = 2 shows the best precision of 22.9% for homodimers and 17.0% for homomultimers 
within the Top-L/10 predictions.
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Case study of one of the best predictions.  We investigate the results of one of the best predictions PDB 
code: 1A64. Details are available in the Supplementary Sect. 7.0 (Tables S9 and Figures S3 and S4, respectively).

Although DNCON2 predicted intrachain contacts for this target with relatively low precision, all the inter-
chain contacts were correctly predicted (Table S9 Supplementary Section), which is also confirmed visually by 
the bulk overlapping of the green and red dots, as seen in Fig. 5a and Figure S3 (Supplementary Section). As we 
perform relax removal (A to B to C), the mispredicted green contacts in the contact maps become sparse due to 
removing the false-positive (assumed to be intrachain) contacts. The green dots that overlap with the red dots 

Figure 4.   Bar plot depicting the prediction of Top 2L interchain contact predictions changes as contact density 
varies with no relaxation removal. (a) shows the results for DNCON2_Inter predicted contacts and (b) shows 
the results obtained for random prediction. We can see that high contact density leads to high precision. 
Relaxation has little effect on precision when contact densities are beyond 3.50 for the DNCON2_Inter 
prediction.
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Figure 5.   Rows A., B., and C. correspond to relax removal values 0, 1, and 2, respectively. Columns (a) show the 
contact maps, (b) shows the complex structure comparison, and (c) shows the quality of the complex structures 
for relevant relax removals A., B., and C. The contact map comparisons are between true intrachain (blue), 
predicted interchain (green), and true interchain (red) contacts for 1A64. The green dots that overlap with 
the red dots are correct interchain contact predictions. These contacts were used to reconstruct the complex 
structure using Con_Complex. (b) shows the comparison between true homodimer structure and the structure 
derived from Con_Complex. (Golden: original chain A; Cyan: reconstructed chain A; red: original chain B; 
green: reconstructed chain B) The TM-score and RMSDs were obtained using TM-Align and shown in column 
(c).
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are correct interchain contact predictions. Using these contact maps, we use Con_Complex to create quaternary 
structures and visualize them using Chimera36 (Fig. 5b and Supplementary Section Figure S4). Finally, we evalu-
ate the resulting structures’ accuracy using TMAlign37. In Fig. 5c, our results indicate a very close resemblance 
to the actual structures with almost perfect TM-scores for the relax removed contacts since intrachain contacts 
are almost eliminated, leaving behind only true-positive interchain contacts. (Results for another case study on 
the protein 1IHR can be found in Supplementary Sect. 8.0).

Comparison between DNCON2_Inter, DeepHomo, and RaptorX‑ComplexContact.  In our 
final analysis, we randomly selected 40 homodimer targets, half of which had zero Top-5 and Top-10 preci-
sions from our interchain contact prediction mechanism. We submitted these targets for interchain contact 
prediction to the RaptorX-ComplexContact webserver and the DeepHomo webserver. For the case of Complex-
Contact, we apply the exact mechanism of removing true intrachain contacts from the predictions in order to 
perform a fair comparison with our method. The results from Supplementary Section Table S5 show the details 
that DNCON2_Inter is approximately 2.7 times better in predicting the Top-L/10 contacts when both relax 
removal and relaxation are 2. ComplexContact also outputs the intrachain contact map. From this, we similarly 
removed the true intrachain contacts and re-evaluated the results (details in Supplementary Section Table S6). 
When comparing the predictions made by the intrachain portion of ComplexContact (ComplexContact_Intra), 
ComplexContact_Intra performs better than the output of the interchain portion and shows the best results 
when relax removal is 1 and relaxation is 2. But when compared to DNCON2_Inter, DNCON2_Inter is almost 
1.6 times better than ComplexContact_Intra when comparing the Top-L/10 contacts at relax removal = 1 and 
relaxation = 2.

As DeepHomo directly predicts homodimeric interchain contacts of C2 symmetry, we also compared the per-
formance of DNCON2_Inter with DeepHomo without any relax removal (Summplementary Section Table S7), 
and DeepHomo outperformed DNCON2_Inter by 1.4 times for the Top-L/10 contacts when relaxation is 2. But, 
since relax removal of true intrachain contacts is a novelty of DNCON2_Inter, we also compared the results of 
DeepHomo with the results obtained by DNCON2_Inter at relax removal of 2 units, and the results are avail-
able in Supplementary Section Table S8. This increased the precisions of DNCON2_Inter by almost 10% for 
the Top-L/10 predicted contacts, and DeepHomo still outperformed DNCON2_Inter by about 1.2 times. The 
better performance achieved by DeepHomo is due to its use of a deep learning network trained exclusively to 
predict interchain contacts in homodimers from MSAs of monomers, which is expected to be more accurate than 
DNCON2_Inter that leverages an existing deep network that predicts both intra-chain and inter-chain contacts.

Table 1 shows a comparison of the best results obtained by ComplexContact, ComplexContact_Intra, Deep-
Homo, and DNCON2_Inter on the randomly selected homodimers at relaxation of 2. It is evident from Table 1 
that, for the selected homodimers, DeepHomo outperforms all other methods. DNCON2_Inter outperforms 
ComplexContact by almost three times for the Top-10 selected contacts. Since ComplexContact bases its MSA on 
genome-based and phylogeny-based interlogs, it is more suited for heteromeric contact prediction. In addition to 
DeepHomo’s advantage of training one deep network to exclusively to predict interchain contacts of homodimers, 
it should also be noted that ten of the selected homodimers occurred in the training data of DeepHomo, which 
could also result in its performance being significantly better than the other methods. And it is worth noting 
that one limitation of this study is the small number of proteins used to compare the different methods and 
study the complex structure construction. The use of a larger dataset in the future may yield better comparisons.

Conclusion, limitation, and future work
This study demonstrates that DNCON2, a deep learning-based intrachain contact predictor, can successfully be 
used to predict interchain residue-residue contacts for homodimeric and homomultimeric protein complexes 
from the multiple sequence alignment of a monomer. Although the precision of the predictor is not high on 
average due to it being trained mainly for intrachain contact prediction, the prediction accuracy is still much 
higher than a random predictor. In some cases, our approach predicted more interchain contacts than intrachain 
contacts with very high precision. The results provide good evidence that deep learning tools can be used to 
train for such a task using co-evolutionary features obtained directly from homology-based MSA of a monomer. 
Unlike the previous works of Hopf et al.3, Ovchinnikov et al.19, Zhou et al.4, and Zeng et al.20, which requires 

Table 1.   Comparison between the best precisions (%) of interchain contacts predicted by ComplexContact, 
ComplexContact_Intra, DeepHomo, and DNCON2_Inter on 40 randomly sampled proteins from the 
homodimer dataset. Half of the samples had zero Top-5 and Top-10 precisions as predicted by DNCON2_
Inter. For the ComplexContact and ComplexContact_Intra, the evaluation is done after removing the true 
contacts from the predicted contacts at relax removals 0, 1, and 2. The best precisions for all methods are 
obtained for relaxation = 2.

Best precision (%)

Method Relax removal Relaxation Top-5 Top-10 Top-L/10

ComplexContact—true intra 2 2 18.00 20.00 21.61

ComplexContact_Intra—true intra 1 2 31.50 31.50 35.55

DeepHomo N/A 2 68.29 67.32 68.02

DNCON2_Inter 2 2 54.15 58.05 57.45
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hard-to-obtain MSAs of interlogs as input, our approach can be readily applied to any homodimer and homomul-
timer. Moreover, the quality of the interchain contacts directly influences complex structure construction. Also, 
as shown for the cases studied (1A64 and 1IHR), removing false-positive contacts through relax removal can 
significantly increase the TM-score of the constructed 3D structures of the complexes. Our results conclude that 
relax removal = 2 and relaxation = 2 give us the best precision, especially for Top-L/10 contacts.

Since contact densities of most complexes are ≤ 1.00, determining how many good contacts are required to 
produce a good structure of the complex and how false positive contacts play a role remains a challenge and is 
of future interest. In general, because there are generally fewer interchain contacts than intrachain contacts in 
homodimers, it is likely that the number of interchain contact predictions required to build quaternary structures 
of homodimers is smaller than the number of intrachain contact predictions required to build tertiary structures. 
From our study on limited cases, we can suggest that since the highest precision is obtained for the Top-L/10 
predicted contacts, we can start with using the Top-L/10 contacts to build the models of complexes. The number 
can be adjusted according to specific interactions between two chains. For high-quality modeling of complexes 
with high contact densities, more contacts may be needed. It is, thus, a future scope for us to explore.

As DNCON2 has been trained for intrachain contact prediction, it has not reached the best performance at 
predicting interchain contacts. Thus, our results encourage us to develop more advanced complex deep learn-
ing architectures specific to predicting interchain contacts of homodimers and homomultimers in the future 
as shown in DeepHomo. Moreover, large datasets should be used to train and benchmark prediction methods.

Data availability
DNCON2_Inter is available to be downloaded from github using the following link: https://​github.​com/​jianl​
in-​cheng/​DNCON2_​Inter.
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