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Abstract

Protein complexes are macromolecules essential to the functioning and well-being
of all living organisms. As the structure of a protein complex, in particular its
region of interaction between multiple protein subunits (i.e., chains), has a notable
influence on the biological function of the complex, computational methods that
can quickly and effectively be used to refine and assess the quality of a protein
complex’s 3D structure can directly be used within a drug discovery pipeline to
accelerate the development of new therapeutics and improve the efficacy of future
vaccines. In this work, we introduce the Equivariant Graph Refiner (EGR), a novel
E(3)-equivariant graph neural network (GNN) for multi-task structure refinement
and assessment of protein complexes. Our experiments on new, diverse protein
complex datasets, all of which we make publicly available in this work, demonstrate
the state-of-the-art effectiveness of EGR for atomistic refinement and assessment
of protein complexes and outline directions for future work in the field. In doing
so, we establish a baseline for future studies in macromolecular refinement and
structure analysis]']

1 Introduction

Protein complexes, and their structures in particular, underpin many important biological functions
in living organisms [/1]]. With an enhanced understanding of how protein chains interact to form
complexes, fundamental research in fields such as drug discovery and materials science is likely to
accelerate considerably [2]]. For example, to obtain the structure of a complex thought to interact with
a candidate compound, in a typical drug discovery pipeline one must first either analytically derive
its structure using powerful yet time and resource-intensive techniques such as X-ray crystallography
and nuclear magnetic resonance spectroscopy [3]] or instead directly predict the structure using
computational methods [4]].

The benefits offered by using purely computational approaches for structure determination are
numerous, such as significantly accelerating the quantity and speed at which one can obtain 3D
structures for downstream studies. Such tools, which for single protein chains have advanced
considerably in the last several years [5]], have been used to accelerate the analysis of protein
function at genomic scales [6] and have inspired the development of new methods designed to predict
interactions between protein chains [[7, |8] and to assess the quality of 3D protein structures [9].
However, these methods are currently less reliable for modeling protein complexes [[10].

"Inference code as well as pre-trained models are available at
https://github.com/BioinfoMachinelLearning/DeepRefine
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Figure 1: An overview of the structure refinement and assessment problem addressed by EGR.

In such cases, researchers then turn to structure refinement methods that aim to improve the quality
of initial protein structures via either statistical techniques or learning-based methods [11]]. Computa-
tional tools designed to refine and assess the structure of protein complexes, especially low-quality
structures, can simultaneously increase the available quality of such structures while offering re-
searchers enhanced insight into the variety of molecular conformations and functions into which a
complex can resolve. Nonetheless, refinement of 3D protein structures is a difficult task, with many
challenges arising from the size of the search space in which a higher-quality structure can be found
and the physical constraints that must be respected by an atomic system to form a realistic protein
structure. Consequently, existing methods for complex refinement are driven by molecular dynamics
and relaxation protocols, which rely on expert knowledge embedded in the system through the design
of such protocols. The limits of such methods have previously been explored [11] and, as such, there
is an increasing level of interest to see if learning-based methods (e.g., deep learning (DL) models)
can be used to refine complex structures.

Here, we introduce EGR, a novel E(3)-equivariant graph deep learning model for multi-task structure
refinement and quality assessment of protein complexes - Figure[T} Notably, we exploit equivariant
graph neural networks (EGNNG5s) [[12] and careful input regularization to make a direct prediction of
the refined structure for an initial protein complex as well as the per-residue quality of the refined
structure. Given that our method requires only a single forward pass to finalize its predictions,
we achieve significant speed-ups in inference time compared to traditional refinement software
solutions. Moreover, our model refines the positions of all atoms in an input protein, making it the
first of its kind in DL-based complex structure refinement.

2 Related Work

We now proceed to describe prior works relevant to DL-based structure refinement and assessment.

Biomolecular structure prediction. Until very recently, the conventional means of determining
a molecule’s 3D structure would involve costly and time-consuming physical trials performed by
experimental scientists [13]]. However, using fast computational inference, new DL methods have
now made it possible to determine the structures of proteins and other biomolecules in a matter of
minutes rather than weeks or months [[14} |15]. Such methods have promoted the widespread adoption
of structure prediction software [[16||17]] and have inspired several new works in DL-driven structure
prediction [18}[19].

Protein representation learning (for DL-based molecular modeling). Proteins can be represented
in many different forms. For example, representing proteins by their amino acid sequences has been
shown to provide powerful structural information by comparing sequences to each other [14] and
extracting rich unsupervised learning representations using self-attention Transformers [20]]. From a
geometric viewpoint, several works have aimed to encode protein structural priors directly within
neural network architectures to model proteins hierarchically [21} 22], as computationally-efficient
point clouds [23][24], or as k-nearest neighbors (k-NN) geometric graphs [25,|26] for tasks such as
protein function prediction [27]], protein model quality assessment [28]], and protein interaction region
prediction [29].



Applications of structure prediction methods. Markedly, structure prediction models have been
applied to predict the structures of all proteins in the human proteome and have aided in efforts to
better understand the mechanisms underlying disordered proteins [30]. Moreover, DL-based structure
prediction methods have accelerated the discovery of promising drug candidates for therapeutics
research [31]] and have enabled fast virtual drug screening [32]] and materials discovery [33]] at scale.

Deep learning for protein-protein docking. Recent advancements in geometric deep learning have
supported the development of new DL-based models for rigid body protein-protein docking [34], as
well as docking in a single-shot setting [35]]. In addition, previous DL models for single-chain protein
structure prediction have been repurposed to predict protein complex structures [36]] and refine the
geometry of side-chain atoms [37].

Deep learning for protein structure refinement. DL models have also been used to guide the
refinement of residue positions within tertiary protein structures [38]] or predict refined residue
positions using indirect target values such as inter-residue distances [39, |40]. Unfortunately, such
methods, following refinement, require all-atom restoration procedures as a post-processing step to
recover the positions of backbone and side-chain atoms. Promisingly, [41]] have begun exploring the
use of DL models for all-atom refinement of protein tertiary structures, however, this method has
demonstrated success solely for tertiary structures due to its high computational memory complexity.

Deep learning for protein structure quality assessment. As DL-driven structure prediction meth-
ods have matured, new methods for quality assessment (QA) of protein structures have also been
developed to facilitate automatic ranking of protein structures. In particular, 2D convolutional neural
networks (CNNGs) [42], 3D CNNss [43[], and GNNSs [44] |45, |9] have recently been adopted for structure
ranking.

Incorporating symmetries in GNNs. Embuing neural networks with inductive priors has a long-
standing history in the field [46, 47} 48]|. Priors of particular importance for 3D structure modeling
include rotation [49] and translation [50]] equivariance. Such priors form the basis of 3D Euclidean
transformations that can now directly be found within neural network layers [51,|52, |12} |53} 54] to
increase networks’ data efficiency and generalization capabilities [55] [56]]. Our work follows that
of [12] to incorporate E(3)-equivariance in our message passing neural network for 3D structure
refinement and quality assessment. However, we go beyond this method by adding skip connections
shown to improve gradient flow after position updates, regularizing node input features according
to geometric priors for 3D molecules, and employing loss functions for refinement and quality
assessment in a semi-supervised manner, respectively.

Contributions.
Our work builds upon prior works by making the following contributions:

* We provide the first example of applying deep learning to the task of all-atom refinement of
protein complex structures.

* We provide the first example of applying equivariant graph message passing to the multi-task
setting of refining and assessing protein complex structures concurrently.

* We introduce the new semi-supervised EGR model, showcasing its effective use in improv-
ing the structure of interface regions between protein chains and estimating its confidence in
such improvements.

3 EGR Model

We now turn to describe the EGR model, which is shown in Figure[I]and detailed in Figure[2] The
EGR model receives as its input a single 3D protein complex graph representing an initial decoy
structure for a given protein target. As such, all chains in the complex are modeled within the same
homogeneous input graph structure. As described in Appendix [B] we differentiate pairs of atoms
belonging to different chains using a one-hot encoded edge feature to initialize the EGR model with
knowledge of the complex’s separate chains. In doing so, we allow for structural flexibility of each
protein chain in our work, without assuming any rigid conformations within a complex. Notably,
our model does this while being trained using only geometric information obtained from each input
protein, as it does not make use of any coevolutionary or hand-crafted features for the task at hand.
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Figure 2: EGR model architecture.

K-NN graph representation. The input protein complex graphs for our model are constructed
using a spatial k-NN algorithm, where a graph G = (V, £) treats the protein’s atoms as its nodes
and denotes each atom’s initial features as F € R?X" (e.g., atom type) and its positions in R? as
X € R3*™, The nodes in G are connected to their 20 closest node neighbors in R, yielding a total of
n x 20 edges within G. In Appendix [B] we describe the node features F in further detail.

E(3)-equivariant transformations. In this work, we argue that E(3)-equivariance offers a suitable
inductive prior for modeling 3D protein structures. We make this point based primarily on the
computational efficiency of E(3)-equivariant networks today. As such, for data efficiency and
generalization capabilities, we then turn to designing a neural network capable of capturing within
its hidden layers E(3)-transformations of any input protein, especially since for this task we are
left to train on a relatively small number of input examples. Towards this end, we propose the
Equivariant Graph Refiner (EGR) model, which combines insights from Equivariant Graph Neural
Networks [12]], EquiDock [35]], and EquiBind [19]. The EGR model learns to transform node
features and node positions in R? to perform graph message passing across each input complex graph.
Implicitly, this means our model is exchanging information between protein chains in a complex.
More formally, EGR(X, F) = Z € R**" H € R?*", where H represents node embeddings and Z
represents transformed node coordinates. We note that, in practical terms, EGR layers can be stacked
sequentially in an E(3)-equivariant manner, such that 3D translations or rotations of an input graph
will be reflected in the output of any EGR layer. Namely, for an arbitrary translation vector b € R?
and orthogonal matrix U € SO(3), EGR(UX + b, F) = UZ + b, H. Subsequently, our definition of
a single EGR layer is:
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where « and 3, respectively, represent scalar coordinates-wise and node representations-wise skip
connection strengths; A (7) denotes the graph neighbors of node 7; a; are optional SE(3)-invariant
attention coefficients [35] derived from H; C is a normalization constant that we set to C = 1; and the
remaining ¢ functions are represented as shallow neural networks, with (® producing a single scalar
and all others a d-dimensional vector. Our rationale for normalizing relative positional displacements
(.e., xz(.l) — x(.l)) by their norm, in a similar manner as [57], is to keep the updated coordinates of
each EGR layer from exploding in value when aggregating updates from each successive layer. The
term C is also included here to ensure that Equation [2]is still differentiable and to stabilize the EGR
model’s training when using C = 1. We note that in our studies here, we compute a; from H using a
variant of the Linear Attention Transformer architecture 5859, |60], as described in Appendix E



3.1 Refining initial coordinates

As mentioned previously, each EGR layer predicts transformed coordinates Z. The output of our
model’s last EGR layer, Z”, then serves as our estimate of the input complex’s refined coordinates,
X' (e, X' =1Z5).

Refinement loss. To guide the EGR model towards a refined molecular conformation, we use the
Huber loss [61]] between the EGR model’s refined coordinates X’ and the ground truth coordinates
X*. Formally, the EGR model’s loss for refinement (i.e., PSR loss) is:
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where x/ are the model’s predicted coordinates for node ¢, x; are the ground truth coordinates
for node ¢, and P is the set of indices of atoms for which ground truth coordinates exist in the
corresponding native structure. Additionally, we let § = 1.0 in the context of this study. In the context
of refinement, outlier coordinate predictions may occur at any stage during model training, so we
must take care to ensure our network’s gradients do not explode or saturate inadvertently. As such,
we chose this refinement loss function to make it less sensitive to outliers than a mean squared error
(MSE) criterion and for it to be smoother near zero compared to a mean absolute error criterion.

Positional reconstruction. Immediately before training, we inject random Gaussian noise into the
initial state of our node positions. This corresponds to a small corruption of the location of each atom
in an input protein. This methodology follows closely after the Noisy Nodes methodology from [62]]
and, as such, may facilitate better learning over the manifold of ground truth structures. We study the
behavior of the EGR model with and without positional corruption in Section [A]

3.2 Assessing structure quality

Following refinement of initial node coordinates, the EGR model also predicts new embeddings for
each node, H. Intuitively, we consider H to be the model’s knowledge of its predicted molecular
structure as defined by X’. As such, using H, we train an additional head of the network to predict
an estimate of the structural accuracy of X’.

Quality assessment loss. We formulate assessment of a predicted structure’s quality as a node
regression task. Under this framework, we employ an MSE loss to train the second head of the
network to predict the carbon-alpha (Ccv) atom local Distance Difference Test (LDDT-Cc) value [63]]
of each residue in the complex graph. Formally, the EGR model’s loss for quality assessment (i.e.,
QA loss) is:

1 *
Loa= EZHQQ—%HQ, (6)
€l

where @} is the model’s predicted LDDT-Ca for node i, g} is the ground truth LDDT-Ca for node 4,
and C is the set of Ca atom indices in the input graph. As demonstrated by [14], models trained to
predict such a quantity can produce reasonable accuracy estimates for predicted structures, taking
one step towards making the EGR model more interpretable for its users.

3.3 Learning paradigm

As mentioned previously, not all atoms in an input decoy structure have a corresponding position
in the ground truth structure. Moreover, since during training we can only calculate the ground
truth LDDT labels for the input graph’s Ca atoms, the EGR model jointly learns to predict refined
structures and LDDT-Ca scores in a semi-supervised end-to-end manner.



4 Experiments

4.1 Data

For the task of complex structure refinement and assessment, we introduce new Protein Structure Re-
finement (PSR) datasets comprised of 46,174 homomeric and heteromeric protein complex structural
decoys, corresponding to 3,498 unique protein targets. The proteins comprising these datasets (i.e.,
PSR-Dockground, PSR-DeepHomo, and PSR-EVCoupling) are originally derived from the Dock-
ground [64], DeepHomo [65]], and EVCoupling [66] datasets, respectively. The Dockground dataset
provides decoy structures of various structural error ranges for each protein target, so we directly
include its 1-6 A decoys and their ground truth structures in our PSR dataset. As the DeepHomo
and EVCoupling datasets only provide ground truth structures for each of their protein targets, to
generate each target’s decoy structures for refinement, we subsequently use AlphaFold-Multimer
[36] to predict and select the best decoy structure for each of these datasets’ protein targets. Using
TM-score [67]], we then uniquely superimpose all ground truth target structures corresponding to
each decoy structure to ensure the coordinate systems of both decoy and target structures are aligned
before model training. To support the reproducibility of our work, we make our PSR datasets publicly
available along with standardized training, validation, and testing splits of the input proteins.

Motivation for introducing new datasets. To the best of our knowledge, our work is the first to
introduce cross-validation datasets curated for structural refinement of protein complexes, datasets
that we have intentionally designed to be amenable to machine learning methods. In constructing
these datasets, we sought to make use of existing protein data sources to maximize their size and
structural scope. Notably, since the average structural quality of AlphaFold-Multimer for DeepHomo
and EVCoupling proteins is reasonably high, we included proteins from the Dockground dataset to
diversify the overall quality of structures in our PSR dataset.

Overlap Reduction. Our constituent PSR datasets are initially combined using random population-
proportionate sampling according to a protein’s type and dataset of origin (i.e., Dockground-
Heteromer, DeepHomo-Homomer, and EVCoupling-Heteromer). Using MMseqs2 [68], these
proportionate splits are then filtered such that no split contains a protein chain with more than
30% sequence similarity to any chain in another split, across all datasets employed in this study. This
filtering technique, among others, was chosen to satisfy multiple practical criteria for tasks in this
domain: assurance that models (1) cross-validated on such splits do not overfit w.r.t. homology [|69]
or structural similarity [70] between proteins and (2) will be trained on a sufficient number of input
proteins to enable generalization to unseen data.

Test Datasets. The first test dataset we use to evaluate models performing best on our PSR dataset’s
validation split is comprised of complexes originally held out from our PSR dataset. As such, this
PSR test dataset is comprised of Dockground, DeepHomo, and EVCoupling proteins that have
previously been filtered according to 30% sequence similarity. Following the work of [36], we then
adopt the heteromeric Benchmark 2 dataset for blind evaluation of our model’s generalization for
the task of refinement. Additionally, to score our model’s ability to estimate the quality of a protein
complex, we curated a new M4S dataset for complex quality assessment. This dataset consists of
randomly-sampled heteromeric protein complexes available in the Protein Data Bank (PDB), where
each of the 11 selected complexes was first subjected to 30% sequence identity filtering w.r.t. all of our
other cross-validation dataset splits, yielding 1,160 decoys across 11 targets for QA benchmarking.

4.2 Evaluation Setup

Baselines. Modeller [71] is a classical refinement program for 3D protein structures, with support for
modeling protein complexes in particular. We also include a version of EGR trained for only Ca
atom refinement and assessment (i.e., EGR-Cq) to evaluate Modeller’s ability to reconstruct all-atom
structures from the output Cav atom coordinates of EGR-Ca. GalaxyRefineComplex [72] is another
popular refinement protocol, one specifically designed for refining structural interfaces between
chains in a protein complex. Similarly, we also include GNNRefine [40], which uses GNN-based
distance predictions to drive tertiary structural refinement with PyRosetta [73]]. We note that we are
only able to include GalaxyRefineComplex and GNNRefine’s results on our smaller Benchmark 2
test dataset, as their extraordinarily high refinement runtimes (e.g., 1,200 seconds per decoy with
16 CPU threads) prevent us from evaluating their performance in a reasonable amount of time on
our full PSR test dataset consisting of over 5,000 complexes. For our remaining all-atom baselines,



we selected two recent geometric deep learning methods with which to compare the EGR model’s
performance for all-atom refinement and QA. These methods include SE(3)-Transformers (SETs) [52]
and Steerable Equivariant Graph Neural Networks (SEGNNs) [53]], both of which have previously
been evaluated for their ability to model 3D molecular systems. We evaluate these models using
default hyperparameters specified by the authors of each method. Regarding QA, besides including
all geometric deep learning methods trained to predict per-residue LDDT-Ca scores as baselines, we
also compare EGR-AllAtom and EGR-Ca to GNN_DOVE [74], a state-of-the-art (SOTA) graph
deep learning method for all-atom protein complex structure QA.

EGR Models. In addition to our original EGR model (i.e., EGR-AllAtom), we include three separate
versions of the EGR model where we individually remove node or edge-specific features from our
input graphs during training and test time. These versions are the EGR model without positional
corruption (i.e., EGR-AllAtom-NPC), the model without atom-wise protein surface proximities
(i.e., EGR-AllAtom-NSP), and the model without edge-wise relative geometric features (i.e., EGR-
AllAtom-NRGF). Such versions are listed in Appendix [A]to serve as ablation studies on the EGR
model, to understand the relative importance of individual input features in our datasets.

Evaluation Metrics. For the task of refinement, for all relevant metrics we report the change in
the metric’s value (i.e., the A metric) when comparing a model’s refined structure and the original
decoy structure. To evaluate the structural quality of a protein complex, we use the DockQ score
[75]], interface root mean squared deviation (iIRMSD), ligand RMSD (LRMSD), fraction of decoy
DockQ scores improved (FI-DockQ), and average percentage of decoy DockQ score improvement
(API-DockQ). Here, iRMSD is the mean squared error (MSE) between the atoms of the predicted
and ground truth inter-chain interaction regions, and LRMSD is the MSE between the atoms of the
predicted and ground truth ligand chains, respectively. Additionally, F},,; is the fraction of native
contacts found in a decoy structure. Formally, DockQ score can be calculated using Equations|7|and
letting d; = 8.5 and dy = 1.5:
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To evaluate a model’s ranking ability, we use two common metrics, its Top-/N hit rate and ranking
loss [[76}5]]. A model’s hit rate is defined as the fraction of protein target complexes where the model
ranked at least one acceptable or higher quality decoy within its predicted list of Top-N decoys. A
hit rate is represented by three numbers separated by the character /. The three numbers, in order,
represent how many decoys with acceptable or higher quality, medium or higher quality, and high
quality were among the Top-V ranked decoys. In this work, we employ the Top-10 hit rate measure.
Similarly, a per-target ranking loss is defined as the difference between the DockQ score of a target’s
native structure and the decoy for which the model predicted the highest structural quality. As such, a
low ranking loss reflects a model’s ability to successfully rank decoys for downstream tasks.

Implementation Details. We train all our models using the AdamW optimizer [77]] and per-
form early stopping with a patience of 50 epochs based on the average full-complex RMSD
of a model’s predictions on our PSR dataset’s validation split. All hyperparameters and pro-
tein graph features employed are described in Appendix Bl Source code to perform fast struc-
tural refinement and quality assessment using our provided model weights can be found at
https://github.com/BioinfoMachineLearning/DeepRefine.

4.3 Results

Blind Refinement. In Table |1} we see that the all-atom EGR model surpasses the refinement
performance of all other baseline methods except on the low initial quality structures from Dock-
ground. We observe that methods outperforming EGR on the Dockground targets also appear to
underperform EGR on targets from datasets of higher initial structural quality, suggesting these
methods are overfitting to low-quality structures in the PSR training dataset. EGR-AllAtom, however,
appears to generalize better to all test datasets compared to any other method (accounting for the
fact that GNNRefine may have seen overly-similar proteins during training), with a computational
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Table 1: Performance of different refinement methods on each test dataset.

AMetric DockQ 1 iRMSD | LRMSD | FI-DockQ 1 API-DockQ 1
PSR-Dockground (4,799)
Modeller +0.0002 -0.6331 -1.0027 63.03% 0.32%

EGR-Ca-Modeller

+0.0053 £ 0.0011

-1.2285 £ 0.0330

-3.5226 £ 0.3125

79.30% =+ 0.93%

0.89% =+ 0.15%

SET-AllAtom

+0.0132 £ 0.0040

-0.8808 £ 0.1158

-1.6478 £ 0.1047

84.90% £ 1.13%

1.69% =+ 0.35%

SEGNN-AllAtom

+0.0144 + 0.0024

-2.4562 +£ 0.0499

-6.6603 £ 0.6702

94.46% =+ 0.60%

1.89% £ 0.29%

EGR-AllAtom

+0.0097 + 0.0002

-0.6274 £ 0.0669

-2.5561 £ 0.1584

83.66% + 0.49%

1.59% + 0.11%

PSR-DeepHomo (376)

Modeller

-0.2465

+1.5912

+5.3457

8.24%

0.53%

EGR-Ca-Modeller

-0.2796 £ 0.0055

+2.2075 £ 0.0839

+6.1711 £ 0.1842

8.16% £ 0.76%

1.17% =+ 0.18%

SET-AllAtom

-0.0034 £ 0.0003

+0.0275 £ 0.0050

+0.0273 + 0.0104

27.39% =+ 4.36%

0.20% =+ 0.08%

SEGNN-AllAtom

-0.0468 £ 0.0091

+0.2950 + 0.0741

+0.3593 + 0.1722

16.31% =+ 3.54%

0.87% + 0.20%

EGR-AllAtom

-0.0006 + 0.0018

+0.0121 + 0.0054

+0.0013 + 0.0028

45.12% =+ 6.99%

0.41% =+ 0.03%

PSR-EVCoupling (195)

Modeller

-0.1738

+1.1467

+4.9877

7.18%

0.74%

EGR-Ca-Modeller

-0.2150 £ 0.0073

+1.9651 £ 0.0647

+5.8477 + 0.7759

9.91% + 1.74%

1.49% + 0.37%

SET-AllAtom

-0.0016 £ 0.0002

+0.0149 + 0.0007

+0.0108 + 0.0040

27.86% =+ 5.24%

0.31% + 0.11%

SEGNN-AllAtom

-0.0250 £ 0.0069

+0.1646 £ 0.0633

+0.2400 + 0.1044

18.29% =+ 3.41%

0.89% =+ 0.18%

EGR-AllAtom +0.0010 + 0.0010  +0.0026 £ 0.0031 -0.0059 £ 0.0017 43.93% =+ 5.00% 0.48% =+ 0.03%
Benchmark 2 (17)

Modeller -0.1855 +0.7939 +3.0277 5.88% 0.60%

GalaxyRefineComplex -0.0074 +0.0778 -0.0246 22.22% 2.12%

GNNRefine +0.0025 +0.0226 +0.0602 47.06% 1.26%

EGR-Ca-Modeller -0.2644 £ 0.0437 +2.118 £ 0.7832 +5.9196 + 1.8589 15.69% =+ 2.77% 1.28% =+ 0.84%

SET-AllAtom

-0.0078 £ 0.0015

+0.0729 £+ 0.0186

+0.0469 + 0.0114

29.63% =+ 2.62%

0.33% £ 0.14%

SEGNN-AllAtom

-0.0328 £ 0.0062

+0.0807 £ 0.0790

+0.0781 + 0.1371

31.37% £ 5.54%

1.24% £ 0.59%

EGR-AllAtom

-0.0010 + 0.0028

-0.0002 £ 0.003

-0.0121 £ 0.0021

43.14% =+ 10.00%

0.59% =+ 0.08%

complexity (e.g., average of 5 seconds) orders of magnitude lower than that of methods such as
GalaxyRefineComplex and GNNRefine (e.g., average of 1,200 and 600 seconds, respectively).

Blind Quality Assessment. Table 2] summarizes a few key findings regarding models’ QA per-
formance. The first is that both EGR-AllAtom and EGR-Ca-Modeller outperform GNN_DOVE,
the state-of-the-art QA predictor for protein complexes, on a large collection of decoy structures.
Interestingly, we also find that modeling protein complexes at the granularity of Ca: atoms leads to
EGR-Ca-Modeller achieving new SOTA results. This suggests interesting avenues for future re-
search into molecular modeling for structural QA. Nonetheless, within a single model, EGR-AllIAtom
can outperform all other methods for QA while simultaneously achieving SOTA performance for
refinement, demonstrating the complementarity of the two tasks in the context of all-atom modeling.

Visualizations. We display in Figure[3]a successful example of a PSR test protein other refinement
methods (e.g., Modeller) cannot refine but that EGR nonetheless can refine atomistically.

Limitations. Although EGR has driven significant progress in protein complex structure refinement
and assessment, the model is currently only able to improve the structure of inter-chain interfaces
marginally on average due partly to its relatively small training dataset size and partly to limited
computing resources available for generating sufficiently large datasets. As such, we conjecture that
new large datasets comprised of medium and high-quality complex decoys are required for refinement
methods to better generalize their predictions to higher-quality structures. We leave an exploration of
such ideas for future work.



Table 2: Hit rate performance of different QA methods on the M4S test dataset.

ID EGR-Ca-Modeller SET-AllAtom SEGNN-AllAtom EGR-AllAtom GNN_DOVE Top-10 Best
7AOH 10/10/6 9/8/6 91919 9/9/9 9/9/0 10/10/10
7DTF 0/0/0 2/0/0 0/0/0 0/0/0 0/0/0 5/0/0
TAMV 10/10/8 10/10/5 10/10/9 10/10/5 10/10/6 10/10/10
70EL 10/10/0 10/10/0 10/9/0 10/9/0 10/10/0 10/10/0
7028 10/10/0 10/10/0 10/10/0 10/10/0 10/10/0 10/10/0
TMRW 6/5/0 0/0/0 0/0/0 0/0/0 0/0/0 10/10/0
7D3Y 0/0/0 0/0/0 0/0/0 1/0/0 0/0/0 10/0/0
TNKZ 10/10/9 10/9/9 10/10/3 10/9/9 10/9/9 10/10/10
TLXT 10/10/0 4/3/0 6/5/0 8/7/0 1/0/0 10/10/0
7KBR 10/10/10 10/10/10 10/10/10 10/10/9 10/10/9 10/10/10
7027 10/5/0 10/7/0 10/6/0 10/4/0 10/4/0 10/10/0
Summary 9/9/4 9/8/4 8/8/4 9/8/4 8/7/3 11/9/4

Table 3: Ranking loss of different QA methods on the M4S test dataset.

ID EGR-Ca-Modeller SET-AllAtom SEGNN-AllAtom EGR-AllAtom GNN_DOVE
7AOH 0.0610 0.9280 0.9280 0.0350 0.9280
TD7F 0.4700 0.4700 0.4710 0.4590 0.0030
TAMV 0.1730 0.3420 0.0130 0.3420 0.3420
7OEL 0.2100 0.2100 0.3790 0.2100 0.2100
7028 0.2330 0.0240 0.2740 0.2440 0.2440
TMRW 0.6000 0.5550 0.6030 0.5550 0.5980
7D3Y 0.3240 0.2950 0.1740 0.2950 0.2950
TNKZ 0.0220 0.1100 0.1830 0.4590 0.4590
TLXT 0.0500 0.2950 0.2950 0.3890 0.2950
7KBR 0.1700 0.1520 0.0520 0.1520 0.0680
7027 0.3340 0.3340 0.3650 0.3180 0.3340

Summary 0.2406 £ 0.1801 0.3377 £ 0.2486 0.3397 £ 0.2613 0.3144 £+ 0.1506  0.3432 £+ 0.2538

Original Decoy Modeller-Refined Decoy EGR-Refined Decoy

D

RMSD =8.715 RMSD =10.131 RMSD = 8.636

Figure 3: A cherry-picked example of a test protein complex (PDB ID: 6GS2) successfully refined by
EGR. Note in all the above subfigures the ground truth structure is highlighted in the color SLATE.



5 Conclusion

We presented EGR which introduces an E(3)-equivariant method for refining and assessing the
quality of 3D protein complex structures. Our experiments validate the effectiveness of EGR for
structural refinement and assessment using a diverse, open-source collection of protein complexes and
establish a baseline for future studies in geometric deep learning for protein structure refinement and
analysis. Used with care and with feedback from domain experts, we believe EGR could encourage
the use of DL models in responsible drug discovery and development.
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Table 4: Ablation studies on the EGR model using each test dataset.

Minjie Wang et al. “Deep Graph Library: A Graph-Centric, Highly-Performant Package for

AMetric

DockQ 1

iRMSD |

LRMSD |

FI-DockQ 1

API-DockQ 1

PSR-Dockground (4,799)

EGR-AllAtom-NPC

+0.0083 £ 0.0006

-0.6549 £ 0.1589

-2.5129 £ 0.1584

82.95% + 1.98%

1.46% =+ 0.09%
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1.07% 4 0.18%

EGR-AllAtom

+0.0010 =+ 0.0010

+0.0026 £ 0.0031

-0.0059 £ 0.0017

43.93% =+ 5.00%

0.48% =+ 0.03%

Benchmark 2 (17)

EGR-AllAtom-NPC

-0.0006 £ 0.0014

-0.0038 £ 0.0008

-0.0127 £ 0.0067

41.18% + 12.71%

0.26% =+ 0.20%

EGR-AllAtom-NSP

-0.0007 £ 0.0030

-0.0049 + 0.0016

-0.0185 £ 0.0020

41.18% + 12.71%

0.51% 4 0.18%

EGR-AllAtom-NRGF

-0.0070 £ 0.0054

+0.0010 =+ 0.0027

-0.0126 £ 0.0004

27.45% =+ 7.34%

0.22% =+ 0.14%

EGR-AllAtom

-0.0010 £ 0.0028

-0.0002 £ 0.003

-0.0121 £ 0.0021

43.14% =+ 10.00%

0.59% =+ 0.08%
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Table 5: Performance of different refinement methods, including ablation studies, on all test datasets.

AMetric Fraction of Native Contacts T  Fraction of Non-Native Contacts |
PSR-Dockground (4,799)
Modeller +0.0003 +0.0009

EGR-Ca-Modeller

+0.0112 £ 0.0034

+0.0029 £ 0.0007

SET-AllAtom

+0.0392 £+ 0.0126

+0.0109 £ 0.0008

SEGNN-AllAtom

+0.0322 £ 0.0072

+0.0094 £ 0.0006

EGR-AllAtom-NPC

+0.0284 + 0.0024

+0.0116 4 0.0001

EGR-AllAtom-NSP

+0.0153 4+ 0.0110

+0.0085 £ 0.0026

EGR-AllAtom-NRGF

+0.0128 4+ 0.0110

+0.0098 £ 0.0018

EGR-AllAtom

+0.0324 + 0.0027

+0.0122 4 0.0011

PSR-DeepHomo (376)

Modeller -0.1844 +0.2445

EGR-Ca-Modeller -0.1630 £ 0.0106 +0.3441 £ 0.0072
SET-AllAtom +0.0014 £ 0.0013 +0.0144 £ 0.0043
SEGNN-AllAtom -0.0152 £ 0.0064 +0.1032 £ 0.0349
EGR-AllAtom-NPC -0.0009 =+ 0.0063 +0.0029 =+ 0.0069
EGR-AllAtom-NSP +0.0049 =+ 0.0065 +0.0143 £+ 0.0126
EGR-AllAtom-NRGF -0.0942 £ 0.0672 +0.2930 £ 0.0665

EGR-AllAtom

+0.0046 + 0.0029

+0.0157 £ 0.0016

PSR-EVCoupling (195)

Modeller -0.1334 +0.1971

EGR-Ca-Modeller -0.1343 £ 0.0131 +0.3100 £ 0.0082
SET-AllAtom +0.0020 £ 0.0014 +0.0110 £ 0.0064
SEGNN-AllAtom -0.0005 £ 0.0030 +0.0873 4+ 0.0315
EGR-AllAtom-NPC 0.0003 £ 0.0045 +0.0009 + 0.0049
EGR-AllAtom-NSP +0.0047 £ 0.0049 +0.0105 £ 0.0086
EGR-AllAtom-NRGF -0.0482 £ 0.0475 +0.2064 £ 0.0555

EGR-AllAtom

+0.0065 + 0.0015

+0.0113 4 0.0022

Benchmark 2 (17)

Modeller -0.1645 +0.2232
GalaxyRefineComplex -0.0001 +0.0601
GNNRefine +0.0087 +0.0707

EGR-Ca-Modeller

-0.1794 £ 0.0405

+0.3915 £ 0.0432

SET-AllAtom

+0.0072 £ 0.0033

+0.0212 £ 0.0034

SEGNN-AllAtom

-0.0275 £ 0.0080

+0.0781 £ 0.0058

EGR-AllAtom-NPC

-0.0004 £ 0.0067

0.0000 £ 0.0057

EGR-AllAtom-NSP

+0.0005 + 0.0088

+0.0053 4 0.0086

EGR-AllAtom-NRGF

-0.0157 £ 0.0142

-0.0075 £ 0.0099

EGR-AllAtom

+0.0014 =+ 0.006

+0.0110 £ 0.0037

In Table[d] we investigate the effect of removing individual components or input features from the
EGR model. We then compare these results to the baseline EGR model to assess these components’
relative importance on generalization and model accuracy. Similarly, in addition to iRMSD, LRMSD,
FI-DockQ, and API-DockQ, we can also inspect the fraction of native and non-native inter-chain
contacts present in a structural decoy for a protein target. Such measures can yield insights into how
the interface between two or more chains in a complex was formed and whether or not the interface
is near-native. We show the results of these measures in Table 3l

15



B Implementation Details

Expanded discussion of attention mechanism. As mentioned in Section[3] within each EGR layer,
we compute a; from H using a variant of the Linear Attention Transformer architecture [58 59 60].
In particular, we compute not only global attention scores for each atom pair, but we also calculate
local, atom-wise attention scores using windows of size 128 x 128. To perform global attention, the
most computationally-expensive of these operations, in linear time, a key insight from [59] is that

D(Q K,V) =

V-EQKV) = % (KTV) ©)

where the commutativity of scalar multiplication with matrix multiplication and the associativity of
matrix multiplication give us

1
n
1 (10)

with D representing standard attention that is quadratic w.r.t. the input sequence length; E denoting
linear attention that is linear w.r.t. the input sequence length; Q, K, and V, respectively, being query,
key, and value linear projections of H; and n representing a normalization constant. As such, our
global attention calculations remain computationally feasible for large input protein complexes. Our
local attention calculations, then, follow closely after those of [[78]].

Featurization. In each all-atom protein complex graph, we include as a node feature an atom’s type
using a 38-dimensional one-hot encoding vector for each atom. Then, to add a new node feature
representing the normalized proximity of an atom to the surface of the protein chain to which it
belongs, using MSMS [[79] we take the complement of each atom’s chain-wise buriedness to derive
atomic surface proximities for surface contact modeling [35]]. Notably, for the EGR-Ca-Modeller
model, its input graphs are comprised of Ca atoms as nodes rather than all available atoms. In
such Ca atom graphs, we also include node features describing each residue’s dihedral angles [26].
Lastly, we note that in our experiments with the SEGNN, for this model we included an additional
type-1 (i.e., vector-valued) node feature describing the coordinates-wise displacement between a
given node’s position and the mean atomic coordinates of the protein complex. All node features we
selected for all-atom and Co-atom graphs are shown in Tables[6|and [7] respectively.

For our graphs’ edge features, we start by adding a binary feature indicating whether or not a pair of
connected atoms belong to the same chain. We then add an edge-wise sinusoidal positional encoding
of the difference between the source and destination node’s indices in the input graph [8]. As another
edge feature, we include a binary value indicating whether or not a pair of atoms are connected
by a covalent bond. Our final type-0 edge feature describes the relative geometric features such as
distance, direction, and orientation between the local coordinate systems representing the residues
corresponding to an atom pair, following [80, [14]. Lastly, in our SEGNN experiments, we also
included an additional type-1 edge feature describing the relative coordinates-wise displacement
between a connected pair of atoms. All edge features we selected for all-atom and Ca-atom graphs
are shown in Tables [6|and[7] respectively.
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Table 6: Summary of EGR’s node and edge features for all-atom graphs. Here, N and E denote the
number of nodes and edges in G, respectively.

Feature Type Shape
Node Features  One-hot encoding of atom type Categorical N x 38
Chain-local surface proximity Numeric N x1
Edge Features Permutation-invariant chain encoding  Categorical FE x 1
Sinusoidal edge positional encoding ~ Numeric Ex1
Relative geometric features Numeric E x12
Covalent bond encoding Categorical FE x 1
Total Node features N % 39
Edge features E x 15

Table 7: Summary of EGR’s node and edge features for Ca-atom graphs. Here, /V and E denote the
number of nodes and edges in G, respectively.

Feature Type Shape
Node Features  One-hot encoding of residue type Categorical N x 21
Chain-local surface proximity Numeric N x1
Dihedral angle descriptors Numeric N x6
Edge Features Permutation-invariant chain encoding Categorical FE x 1
Sinusoidal edge positional encoding Numeric Ex1
Relative geometric features Numeric E x12
Total Node features N x 28
Edge features Ex14

Hardware Used. The Oak Ridge Leadership Facility (OLCF) at the Oak Ridge National Laboratory
(ORNL) is an open science computing facility that supports HPC research. The OLCF houses the
Summit compute cluster. Summit, launched in 2018, delivers 8§ times the computational performance
of Titan’s 18,688 nodes, using only 4,608 nodes. Like Titan, Summit has a hybrid architecture,
and each node contains multiple IBM POWERY9 CPUs and NVIDIA Volta GPUs all connected
with NVIDIA’s high-speed NVLink. Each node has over half a terabyte of coherent memory (high
bandwidth memory + DDR4) addressable by all CPUs and GPUs plus 800GB of non-volatile RAM
that can be used as a burst buffer or as extended memory. To provide a high rate of I/O throughput,
the nodes are connected in a non-blocking fat-tree using a dual-rail Mellanox EDR InfiniBand
interconnect. We used the Summit compute cluster to train all our models.

Software Used. We used Python 3.8 [81], PyTorch 1.10.0 [82], PyTorch Lightning 1.5.10
[83[], PyTorch Geometric 2.0.4 [84], and DGL 0.8 [85] to run our deep learning experi-
ments. PyTorch Lightning was used to facilitate model checkpointing, metrics reporting,
and distributed data parallelism across 144 Tesla V100 GPUs. A more in-depth descrip-
tion of the software environment used to run inference with our models can be found at
https://github.com/BioinfoMachineLearning/DeepRefine.

Further hyperparameters. We use a learning rate of 10~ for all EGR models. The learning rate is
kept constant throughout each model’s training. Models with the lowest RMSD on our validation
data split are then tested on all our sequence-filtered test splits.
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Table 8: Hyperparameter search space for all EGR models through which we searched to obtain
strong performance on the PSR validation split. The final parameters for the standard EGR model
are in bold.

Hyperparameter Search Space

PSR Loss Weight 1.0 (Based on Loss on Validation Split)
QA Loss Weight 0.05, 0.005

Number of Layers 4,7

Hidden Dimension 64, 128
Non-Linearities LeakyReLU, PRelLU, SiLU
Learning Rate 0.0001, 0.001

Weight Decay Rate 108,104
Normalization LayerNorm, GroupNorm, Identity
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