MATROID PSI CLASSES

JESHU DASTIDAR AND DUSTIN ROSS

ABSTRACT. Motivated by the intersection theory of moduli spaces of curves, we introduce
psi classes in matroid Chow rings and prove a number of properties that naturally generalize
properties of psi classes in Chow rings of Losev-Manin spaces. We use these properties
of matroid psi classes to give new proofs of (1) a Chow-theoretic interpretation for the
coefficients of the reduced characteristic polynomials of matroids, (2) explicit formulas for

the volume polynomials of matroids, and (3) Poincaré duality for matroid Chow rings.

1. INTRODUCTION

Psi classes are special divisors that are ubiquitous in the study of the intersection theory of
moduli spaces of curves. Psi classes arise naturally when computing products of boundary
classes in A*(Mg,n) whose strata have excess intersection. In particular, any product of
boundary classes can be written in terms of polynomials of psi classes on other boundary
classes, and the top degrees of these polynomials are determined by the Witten-Kontsevich
theorem [Wit91] [Kon92]. In genus zero, this procedure takes on an especially simple form.
Given k distinct boundary divisors Dy, ..., D, € Al(mo,n), their product is also a (possibly

empty) boundary class, and any monomial in these boundary divisors can be written as
k

(1.1) D& ...D# =D, ... DkH(—wgi —h)E T e A (M),
i=1

where @b% are certain psi classes associated to each divisor D. Moreover, if Y d; = dim(M,,,),
then the degree of the expression in the right-hand side of (1.1)) is a product of polynomials
of psi classes on smaller dimensional moduli spaces, all of which are computable. The aim

of this paper is to develop an analogue of these techniques in Chow rings of matroids.

Matroids are combinatorial structures that generalize the behavior of finite sets of vectors,
and Chow rings of matroids were introduced by Feichtner and Yuzvinsky [FY04]. In this
work, we explore an appealing parallel between Chow rings of matroids and Chow rings of
moduli spaces of curves. We introduce matroid psi classes in Chow rings of matroids and
we show that they behave analogously to the usual psi classes in the Chow rings of moduli
spaces of genus zero curves. As a first application, we then use psi classes to give simplified

proofs of a number of recent foundational results concerning matroid Chow rings.
1
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1.1. Summary of results. Given a loopless matroid M = (E, £) consisting of a finite set £
and a lattice of flats £ C 2%, the Chow ring A*(M) is a graded Z-algebra generated by matroid
divisors D € A'(M), one for each proper flat ' € £* = £\ {0, E} (see Subsection (3.1 for

precise definitions). The primary objects of study in this paper are the following classes.

Definition A (Definition . For any F € £ and e € E, define 5 € A'(M) by

Yp= Y Dg— Y Dg and tf=Y Dg— Y Dg.

GeL* GerL* GecL* GecL*
e€G GDF e¢G GCF

The Chow classes w% do not depend on the choice of e € F, which is why it is suppressed
from the notation. As we will see, the definition of matroid psi classes is an immediate

generalization of an expression for psi classes in terms of boundary divisors in Losev-Manin
moduli spaces (see Lemma [2.16]).

After defining matroid psi classes, we establish the following analogue of Equation (I.1J).

Result B (Corollary . If Fy, ..., Fy are distinct flats of M and dy, ..., dy are positive
integers, then
k

Dy - Dp, = Dp, -+ Dp, H(_¢Fi - 1/’;52) Le AY(M).
i=1
This result allows us to express any monomial in matroid divisors as a squarefree expression
along with a polynomial in psi classes. In the case that the product is in the top graded piece
of the matroid Chow ring, our next result allows us to compute the degrees of the terms in

Result B in terms of degrees of the special classes ¢y = wa and Yo, = V5.

Result C (Proposition B.6). If 0 = Fy € F4 € --- C Fy C Fiy1 = E are flats of M and

+ = .+ - o+ - SR
Ag, Q1 501 ..y Gy, Ay, Gy aTe nonnegative integers ,then
k k
D D +\al — a1\ aj— a4 q
=0 i=0

In the above formula, M[F}, F;,4] denotes the contraction by F; of the restriction of M to
F;+1. In order to use Results B and C to explicitly compute degrees of polynomials in the
generators, we use properties of psi classes to give a new proof of the following result, which
had previously been proved by Huh and Katz [HK12, Proposition 5.2].

Result D (Proposition [3.11)). If M is a matroid and a,b are nonnegative integers, then

*M) ifa+b=rk(M)—1,
deg(gyt,) = M ot b=
0 else,

where p®(M) is the ath unsigned coefficient of the reduced characteristic polynomial of M.
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Results B, C, and D provide an efficient algorithm for computing the degree of any mono-
mial of matroid divisors. As a direct consequence of this algorithm, we recover a recent
theorem of Eur [Eur2(), Theorem 3.2] that computes the coefficients of the volume polyno-

mials of matroids.

Result E (Theorem [3.12). If ) = Fy C Fy € -+ C Fy © Fry1 = E are flats of M and
dy,...,dy are positive integers that sum to rk(M) — 1, then
Oodi—1 N
di pdey _ (1yrk(M)—k—1 i d;—rk(Fy) o
dog(Dfy -+ D) = (- T (2 L Yt ML ),

=1
with

Our developments can also be used to recover a recent theorem of Backman, Eur, and
Simpson [BES20, Theorem 5.2.4] that computes degrees of monomials in the “simplicial”

generators, which, as it turns out, are nothing more than the psi classes 9.
Result F (Theorem [3.13). If Fi, ..., F, are nonempty flats with r = k(M) — 1, then

B B 1 if0<ig<--<ip <r=rk(F,U---UF
degy(Vp, - - Vp,) = 1 ’

0 else.

) >k,

As a final application of our developments, we provide a new proof of Poincaré duality for
A*(M), a result that was first proved by Adiprasito, Huh, and Katz [AHK18, Theorem 6.19].

Result G (Theorem |3.15). Let M be a matroid of rank r+1. Then for any k € 0,...,r, we

have an isomorphism of Z-modules:
AF(M) — A" (M)Y
v (e degu (i)

To prove Result G, we simply use our computational algorithm to show that the transfor-
mation is lower triangular when written in terms of a particular ordering of the Feichtner—
Yuzvinsky basis (see [EY04, Corollary 1]) for A¥(M) and its dual basis for A"~%(M)Y, with

all diagonal entries equal to £1.

1.2. Related work. As should be clear from the discussion above, this work is closely
related and indebted to prior contributions of several groups of mathematicians. The matroid
psi classes that we introduce in this work are built from two special psi classes: ¥y = %‘f
and 1o, = 9. These two classes have already been studied extensively by Adiprasito, Huh,
and Katz [AHKIS], where they were denoted 5 and «, respectively. Furthermore, as we
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mentioned above, the psi classes ¢z played an integral role in the work of Backman, Eur,
and Simpson [BES20], where they were denoted hp. Our choice to use different notation for
these classes in this paper simply stems from our goal of highlighting the parallel between

Chow rings of matroids and Chow rings of moduli spaces of curves.

There is a related notion of “tropical psi classes” developed by Kerber and Markwig
[KMO9]—these classes form the tropical analogue of the classical psi classes on Mo,n. Using
the description of ﬂom as a wonderful compactification of the complement of the braid
arrangement, due to DeConcini and Processi [DCP95)], tropical psi classes can be interpreted
as special elements of Chow rings of braid matroids with minimal building sets. We note that
Chow rings of matroids with building sets were defined by Feichtner and Yuzvinsky [FY04]
and are more general than the matroid Chow rings studied herein, which correspond to the
special case of maximal building sets. It would be very interesting to develop a general theory
of psi classes associated to matroids with building sets that simultaneously generalizes the
matroid psi classes developed in this paper and the tropical psi classes developed by Kerber

and Markwig.

1.3. Outline of the paper. Losev-Manin moduli spaces are the setting in which Chow
rings of matroids intersect Chow rings of moduli spaces of curves. Because of this, we start
this paper with an overview of the definition and key properties of psi classes in Losev-Manin
spaces; this is the content of Section [2 We conclude Section [2] by using psi classes to recover
two known formulas for the volumes of generalized permutahedra, due to Postnikov [Pos09)
and Eur [Eur20]. The impetus for this work was the observation that, upon generalizing psi
classes to matroids, these proofs work nearly verbatim to compute volume polynomials in

the more general matroid context.

In Section [3| we introduce matroid psi classes, prove the natural generalizations of the
properties discussed in Section [2, and then we give new proofs of the results of Eur and
Backman, Eur and Simpson, generalizing the volume computations from Section [2| and we
also give a new proof of Poincaré duality. We note that Section |3 is entirely self-contained
and the matroid enthusiast may choose to skip Section [2] On the other hand, we hope
that the discussion of Losev-Manin spaces will help the reader understand the context and
motivation for the definition and development of matroid psi classes, and that this discussion
might even motivate the interested combinatorialist to learn a little more about the beautiful

subject of Chow rings of moduli spaces of curves.

1.4. Acknowledgements. This paper was born out of the first author’s Master’s thesis,
which was advised by both Federico Ardila and the second author. The authors would like

to warmly acknowledge Federico’s guidance and contributions to this project. Despite his
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2. LOSEV-MANIN SPACES AND PSI CLASSES

In order to motivate matroid psi classes, we begin with a discussion of psi classes in the
setting of Losev-Manin spaces. Our purpose in this section is to describe the key properties
of psi classes that are useful in computations in order to motivate the properties that we
require upon generalizing psi classes to matroid Chow rings. The results in this section are
well-known, so we do not provide complete proofs, only remarking on where the proofs can
be found (or derived) in the literature. At the end of this section, we show how psi classes can
be used to compute formulas for volumes of generalized permutahedra. All of the definitions
and results in this section will be combinatorially generalized to matroid Chow rings in the

next section.

2.1. Losev-Manin spaces. Losev-Manin spaces, introduced in [LM00], parametrize collec-
tions of points on chains of projective lines. To describe these spaces, let us first establish

some terminology.

A chain of projective lines of length k is a complex variety of the form
C=CiU---UCy/ ~

where C; = P! for all i = 1,...,k and ~ is the relation that identifies co; = [0 : 1] € C; with
0;+1 = [1 : 0] € Ci41 to form a node. The projective lines C1, ..., Cy are referred to as the

components of the chain C, and we define 0 = 0; € (4 and oo = ooy, € C,.

Given a chain of projective lines C, a configuration of n points pq,...,p, € C is called
stable if {p1,...,p,} is disjoint from 0, oo, and the nodes of C, and if each component
of C' contains at least one p;. We do not require the points to be distinct. Two stable
configurations (C;p1,...,p,) and (C’;p},...,p,) are said to be isomorphic if there exists an
isomorphism of varieties f : C'— C” such that f(0) =0, f(co0) = oo, and f(p;) = p; for all

1=1,...,n.
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Definition 2.1. For any n > 1, the Losev-Manin space LM, is the set of all stable config-
urations of n points on chains of projective lines, up to isomorphism. A point in LM,, is an
equivalence class [C, p1, ..., p,] where C' is a chain of projective lines and py,...,p, € C'is a

stable configuration of n points.

The sets LM,, were first constructed as smooth projective varieties by Losev and Manin
[LMOQ]; in fact, they proved that LM, is the toric variety associated to the (n — 1)-
dimensional permutahedron. In particular, LM,, is a disjoint union of tori, one corresponding

to each face of the permutahedron. We now describe those tori explicitly.

To every flag of nonempty subsets
F=0=RchHn< - CFCFa=n])

define a subset of LM,, by

Tr= {[C;pl,---,pn]

C has k + 1 components Cy,...,Cy
and p; € C;if and only if j € Fiq \ Fi )’

We depict a general element of Tz as follows:

0 00

Fy\ Fo Frpi \ Py
B\ R Fi\ Fiy

Notice that every element of £LM,, is an element of exactly one set of the form Tz, so
the sets T partition £M,,. Moreover each Tr is an algebraic torus. To see why, consider
a particular T# and choose one point from each set F;,; \ F;. Notice that there is a unique
automorphism of C' that maps the chosen point in F;; \ F; to [1,1] € C;. After fixing this
isomorphism, the remaining points in F;,; \ F; can vary throughout any point of C; except
0; and oo;. It follows that

T]: _ ((C*)|F1\7|F0|71 > (C*)‘FQ|*|F1|*1 ceex (C*)\Fk+1|f\Fk|*1 _ ((C*)nfkfl.

The tori T are not closed subvarieties of LM,,, but we may take their closures, which leads

to the following important subvarieties.

Definition 2.2. The stratum Xz C LM, associated to a flag F of subsets of [n] is the

Zariski closure of the torus Tx:
Xr=Tg.

We say that a subvariety Z C LM, is a stratum if it is equal to Xz for some flag F. For a
subset ) C F' C [n], we use the shorthand

Xr = Xocrcn)-
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Each stratum is, again, a disjoint union of tori. To describe these inclusions, it is useful

to introduce the notion of refinements. We say that a flag
F=0CFc - CFCh)

is a refinement of the flag

F=0Ch < CFCnl)
and write F' < F if, for every i € {1,...,k}, there exists some j € {1,...,¢} such that
F;, = FJ’ With this notion, it can be checked that

Xr= || Tr.
FI<F

In particular, it follows that Xz N Xz, = Xz, where Fj3 is the maximal common refinement

of F; and F; (the intersection is empty if no common refinement exists).

2.2. Chow rings and volumes of generalized permutahedra. The Chow ring of LM,,
is well-known and can be expressed as a quotient of the formal polynomial ring generated
by Xp with F' a proper subset of [n]. By general results in toric geometry [CLS11, Theo-

rem 12.5.3], we have
Z|Xp |0 S F < [n]]

(2.3) A*(LM,) = T4 7

where the ideals Z and J are defined by
7= <X rXg | F and G are incomparable>

and

7o <ZX—ZX i€ )

The generators Dp = [X5| € AY(LM,,), are called boundary divisors. The Chow ring has a

natural grading by codimension

A*(LM,) = n@ AF(LM,,)

and a degree map
degzr, : A" H(LM,) — Z,
which is a linear isomorphism uniquely determined by the property that the degree of the
class of any point is one.
Any divisor D € A'(LM,,) can be written in the form
D =D(z) = Z rpDp € AY(LM,,)

0 FCn]
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with xp € Z and, in this setting, D(z) is nef if and only if the numbers x are submodular,

meaning that, for all £y, Fy C [n], we have
(2.4) Tp +2Tp, 2 Tpnp T TRUR,

where, by convention, we always assume xy = x,) = 0. Given a nef divisor D(x), we consider

the corresponding polytope II,(z) C R™ defined by
(2.5) t1+--+t, =0 and Zting forall 0 C F C [n].
i€l
These polytopes were studied under the name of generalized permutahedra by Postnikov

[Pos09], wherein several formulas for their volumes were discovered and proved (see Theo-

rem below).

By standard results in toric geometry ([CLS11, Theorem 13.4.3]), the volumes of general-

ized permutahedra can also be derived by computations in the Chow ring:

1 n—1
=1 degzxg, (D(x)" ).
In order to utilize (2.6]), one needs to expand the product D(x)"!, then use relations in

7 and J to write the result as a linear combination of products of the form Dp ... Dp, |

(2.6) Vol(IL,,(x)) =

where the indexing sets form a complete flag

DS F G CFa &[N,

=

then use the fact that, for any complete flag, degzz; (Dr, ... Dp,_,) = 1. This process was
carried out in the more general matroid context by Eur [Eur20], which led to a new formula
for volumes of generalized permutahedra (see Theorem below). The heart of Eur’s
argument is figuring out how to systematically express general products of divisors in terms
of products of divisors indexed by complete flags. Phrased another way, the difficulty in
this computation is dealing with self-intersections of divisors. In the context of Losev-Manin

spaces, there is a useful tool for just this type of self-intersection: psi classes.

2.3. Psi classes on Losev-Manin spaces. To understand the utility of psi classes, it is
useful to discuss the multiplicative structure of A*(LM,,). If F and G are two distinct proper
subsets of [n], then the corresponding subvarieties Xz and X¢ either intersect transversally,

or they don’t intersect at all. In particular, if F' and G are distinct, then

[(Xocrcacm] if F C G,
DrDe = { Xococrem] i GG F,

0 if F" and G are incomparable.
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More generally, if F,. .., Fy C [n] are distinct subsets, we have

X if, after possibly relabeling, Fi,..., F} form
Dp - Dp=4{  aflagF=0CFH G ¢ FEn),
0 if F; and Fj are incomparable for some ¢, j.

For convenience, for any flag F = (0 C F; C --- C Fi, C [n]), we define
Dr = [X]:] = DF1 .. DFk S Ak(EMn)

The main question, then, is: How do we multiply divisors when they are not all indexed by
distinct subsets? This is where psi classes are useful. In the setting of Losev-Manin spaces,

there are two basic psi classes upon which the others are built.

Definition 2.7. Let n > 1. The psi class 1y € A'(LM,,) is the first Chern class of the line
bundle L, whose fiber over a point [C, pi,...,p,] € LM, is the cotangent line of C' at 0.
The psi class ¢, € AY(LM,,) is the first Chern class of the line bundle L., whose fiber over
a point [C, py,...,ps] € LM, is the cotangent line of C' at oo.

A more combinatorial characterization of psi classes, which will be our starting point for
the matroid generalization, appears in Lemma[2.16] below. To understand why the psi classes
are useful for computing self-intersections, we require a bit of additional notation. For a finite
set I, let LM denote the Losev-Manin space with marked points indexed by F. Of course,
WM = LM,,. If |F| > 2, then for each i € F, there is a forgetful map

fi . EMF — EMF\{z‘}-

For each point [C; (p;) er| € LM, the function f; forgets the marked point p; and then, if
the component that contained p; no longer has any marked points, it contracts that entire
component to a single point. The second step is necessary in order to insure that the image

of f is a stable configuration.

More generally, if ) C G C F, then there is a forgetful map
rg: LMp — LMg.
To define this map, label the points F'\ G = {iy,..., i} and define
ra=fu oo fy.

In other words, r¢ forgets the points that are not in G. We use the letter r for “remember”
because the map rg remembers the points in the index set G. It follows from the definition
that the order of the composition in the definition of rg is irrelevant, and if 0 C G; C G C F,
then

(28) gy, =Tg, °TqG,-
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Using the forgetful maps, we obtain a more general set of psi classes.

Definition 2.9. For n > 1 and §) C F C [n], define classes ¢, ¢} € AY(LM,,) by
Up =1p(s) and  Yp = rpe(Yo),

where 7% is the pullback of rg : LM,, — LMy and F¢ = [n] \ F.

Notice that vy = wg and 1o, = w[;]. The reason we introduce psi classes is because they

naturally arise when self-intersecting divisors in the following way.

Lemma 2.10. If F is a proper subset of [n], then
Di = Dp(=tp — vF) € A(LM,).

Proof sketch. This follows from the observation (see, for example, [HKKT03, Lemma 25.2.2])
that the normal bundle of Xz in £LM,, is

i (rp (L) @ rpe (L)),

where gr : X — LM,, is the inclusion. O

In particular, Lemma [2.10| allows us to compute any product of boundary divisors in terms

of psi classes. We have the following immediate corollary.

Corollary 2.11. If Fy,..., F, C [n] are distinct proper subsets and di, ..., dy are positive
integers, then

Dy H(_wi oy if, after possibly relabeling, FY, ..., F} form a

0 if F; and F}; are incomparable for some 1, j.

In order to utilize psi classes in the volume computation of Equation [2.6, it remains to
understand how to compute the degree of expressions of the form in Corollary The

next result reduces these computations to computing degrees of monomials in ¢y and ..

Lemma 2.12. If F = (0 = Fy, C Iy € -+ C F}, € Fy1 = [n]) is a flag of subsets and

+ - o+ -+ - SN
Ag, Q1,01 .., Gy, Ay, Gy GTE NONNEGAtIvE 1ntegers, then

k k
at/ — Nao at ar
degmn <D]: H(’[b}l) i (¢Fi+1) erl) = H dengi+1\Fi (¢0 oo+1) .
=0 =0

Pictorially, we think of the psi classes wﬁ, as being associated to the left and right side of
the node indexed by F;:
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n 77/}}_%-5-1
v, P L
NPl
Fii1 \ Fi
Fi\ Fr—y

The products in Lemma are over all of the components of the curves, which should help

explain the indices in the products.

Proof sketch of Lemma|2.13. Let gr : Xz — LM, be the inclusion. By the projection

formula,

k k
213) ez, (D [J08)" (g, )0 ) = dea, (o5 TT08) w7, 1))
=0

=0 %

Notice that

k
Xr=[[LMp,\r.

=0

If pi: Xz — LM, \F, is the projection onto the ith component of this product, then

97(Wg) = pi(ho) and  gx(¥p..) = D (Yeo)-

Thus, the degree in the right-hand side of (2.13)) can be computed as a product of degrees

on each factor:

k k L
dou, (a5 TT08)" 0,050 ) ) = e, (Tt (vi00))
1=0

1=0
k L
A a.
—[Taeszm, .. (v5 ). O
H gEMFH»l\Fi wo o
=0

Lastly, we simply need to know how to compute degrees of monomials in 1y and ¥,. The

next result accomplishes that.
Lemma 2.14. Ifn > 1 and a and b are nonnegative integers, then
n—1
dego (V&) ) =
gzx, (V6¥so) ( ab )a
where, for any nonnegative integers k, €, m,

()= {D ==t viremn

k.t 0 else.
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Proof sketch. To our knowledge, this exact result is not stated in the literature anywhere.
However, it is well known and follows, using the results of [AGO0S§], from the same arguments
used to compute degrees of monomials of psi classes on M, (see [HKKT03, Section 25.2]).

In the specific setting of LM,,, this result is given as Exercise 52 in [Cav16]. U

The combination of the previous three results tell us everything we need to know about
effectively computing degrees of products of boundary divisors, such as those that appear in

the right-hand side of (2.6). We illustrate such a computation in the next example.

Example 2.15. Let n = 7 and consider the sets
F={12}, F,={1,2,3,4,5}, and F3=1{1,2,3,4,56}.
Let us compute degzzy, (D3, D}, D). By Corollary [2.11] we have
Dy, D§, Dr, = D, Dp, D, (=, — ¥5,)* (=5, — V4,)-
Expanding the polynomial, we obtain

~Di D, Dy (8720, + 205Ut ¥, + (W5)20r, + (R )20, + W vh v, + (65)™E,).
Using Lemmas and [2.14] we see that the degree of the first monomial is zero, because

the first term in the product of binomials is

2-0-1\ (/1Y) 0
0,2 - \0,2) 7
By a similar argument, the degree is zero on all of the monomials except for the second one.

The degree of the second monomial is

_ _ 2-0—-1\/5—-2—-1\/6—-0—-1\/T—-6-1

— (1)) (1)(1) = —4
Thus, we conclude that degzzy (D3, D, Dp,) = —4.

Since our ultimate goal is to generalize psi classes to the combinatorial setting of matroids,
we present one final result, which characterizes the psi classes as linear combinations of

boundary divisors.

Lemma 2.16. For any subset F' C [n] and any i € [n],

Y De- Y pe i wi= Y P Y Do
‘BCGC[n] @CGC[n] OCGC[n] ‘BCGC[n]
€G i¢G GC
In particular, taking F =0 and F = [n], respectively, we obtain

Z DG and Qﬂooz Z Dg.

0CGC[n] #CGC[n]
i¢G i€G
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Proof sketch. The formulas for 1)y and 1, follow from repeated application of the comparison
lemma:

I (o) =10+ Dy and [} () = Yoo + Dyiye,
and the fact that 1y = oo = 0 € A*(LM;). See [AGO8, Theorem 5.8] or [Cav16, Lemma
10] for a discussion of the comparison lemma in the setting of Losev-Manin spaces. The
formulas for wlf then follow from their definition in terms of forgetful maps along with the

observation that
T;(DG) = Z DG/. [

0CG/C[n]

GCG/CGUF¢

We now illustrate the utility of psi classes by showing how the results reviewed above lead

to new proofs of two previously-known formulas for volumes of generalized permutahedra.

2.4. Psi classes and Eur’s volume formula. Eur recently proved the following formula

for volumes of generalized permutahedra.

Theorem 2.17 ([Eur20] Proposition 4.2). If {xp € Z |0 C F C [n]} is submodular, then

k

] -1 di — 1\ (|Fima| = [ B3] = 1\ 4

Vol(IL, (2)) = ——— —1)r i ] g

ol(I1,,(z)) (= 1) F;:Fk( ) (db o ,dk> g <di - ]Fl|) < d; — |Fj| T,
15 rdp,

where the sum is over flags of subsets ) C Fy C -+ C Fy € Fjy1 = [n] and positive integers
di,...,dg such that dy 4+ --- + d, = n — 1, and the numbers Jj are defined by

d; = i d;.
=1

In fact, Eur generalized and proved this formula in a more general matroid setting, which
we will discuss in the next section. For now, let us give a short proof of Theorem [2.17| using

psi classes.

Proof. Applying (2.6)), we have

Vol(Hn(:c)):ﬁdeg ( > xFDF>n_1

0CFCn]

_ 1 n—1 d i\ ,.d d
= T > (dbm’dl)deg(DFll...DF';)xFl...g;F';,

dqyeenrdy,
where the sum is over k-tuples of distinct proper subsets ) C Fi, ..., Fix C [n] and positive
integers dy, ..., dj that sum to n — 1. Since Dp, --- Dy, = 0 when the indexing sets cannot

be rearranged into a flag, we can restrict the sum to be over all flags of subsets of the form
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=0 < F € CF, C Fr1 = [n]). For such a flag, we may apply Corollary to

obtain

k
deg(D%l1 o D%’;) = deg (DJ-: H(_%;Z_ _ ¢;gi)d1;—1>

:deg( ”’“121_[(”1) )ai(w;;i)a?)

a*aJrz 1

~ e (2

a*a+l 1

)deg (D]-'H UR)" (VF) +)

If we now use Lemmas [2.12) and [2.14] to compute the degree, we obtain

k
- d; — |Fia| = |Fi] = 1.
des(o o) = o S (S (),

a7 af =1 @i /) Dy +1

Z ? Z

where aj = a;; = 0. In order for the two sets of binomials to be nonzero, there are two

systems of equations that a; and a] must satisfy:
a; +af =d;—1 foralli=1,... k
and
af +a;, =|Fn|—|Fl—1 foralli=0,...,k.
Along with the conditions af = a, 41 = 0, there is a unique solution given by
=d;—|F,| foralli=1,... k.
It follows that

k k

L d; — 1 |Fipa| — |Fi| — 1.
deg(D% ... D%) = (—1)»*! i II i F.
eg( o) Fk) (1) H (di — |F1‘) Pl ( d; — |Fy

i=1

Eur’s formula then follows by noticing that the ¢ = 0 term in the second product is one. [

2.5. Psi classes and Postnikov’s volume formula. A different formula for the volumes
of generalized permutahedra had previous been proved by Postnikov [Pos09]. In order to set

up Postnikov’s formula, we require a little more notation.
For any nonempty subset F' C [n], define a corresponding simplex
Ap = Conv{e; : i € F} CR".

If yr is a nonnegative real number for every nonempty subset F' C [n], then Postnikov
observed ([Pos09, Proposition 6.2]) that the polytope

Hﬁ(y): Z yrAF,

0CFCln]
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where the sum denotes Minkowski summation, consists of all points (¢y,...,t,) € R™ such
that:

ti4 - +t,=2zp and ZtiZZF forall 0 CF C[n].
i€F

where zp and yg are related by the invertible linear transformation

2 Z?JG‘

GCF

Under the transformation (¢1,...,¢,) — (2p) — t1, —t2, ..., —t,), notice that II5(y) is iden-
tified with II,(z) (introduced in Equation (2.5)), where for any proper subset ) C F C [n],

the variables xr and yr are related by

_ZF:_Z:UG iflgéF?

o GCF
2p) — 2F = Z Yo — Zy(; if 1 € F.
GCln) GCF

In addition, it can be checked that, when yr > 0 for all nonempty subsets F', the correspond-
ing numbers x are submodular, in the sense of , meaning that the intersection-theoretic
formula is valid.

Postnikov proved the following formula for the volume of II4(y), which, by polynomiality

of volumes, determines the volume for all generalized permutahedra (this last statement is
carefully worked out by Ardila, Benedetti, and Doker [ABD10]).

Theorem 2.18 ([Pos09] Corollary 9.4). If yg > 0 for all nonempty subsets G C [n], then

1
VOI(HS(Z/)) = (n _ 1)' Z Ya, - YGn-1s
G1,...,Gn-1

where the sum is over collections of nonempty subsets Gy, ...,G,_1 C [n] such that, for any

0<i1 <+ <1 <n, we have

Proof. Let us prove this formula using psi classes. By Equation (2.6)), we have

Vol(Hﬁ(y)):ﬁdeg < > xFDp)n_l
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Applying the change of variables above, notice that

Z rpDp = — Z <ZyG>DF+ Z (Z?JG—Z )D

0CFCn) Q)Cll;C GCF (ZJCFC] GCln] GCF

= > we( =X Dr+ 3 D3 D)

0CGCln| F2G FCln] F2G

1¢F 1eF l1eF

= > w( X pe- Y r)

0CGC[n] FC[n] FOG

1eF
Z yGwGa
0CGCln]

where the last equality follows from Lemma [2.16 Thus, Postnikov’s formula can be reinter-
preted as an intersection-theoretic property of psi classes. In particular, Postnikov’s formula
is equivalent to the statement that

1 if0<ip<--<ip<n=|G,U---UG,| >k,

(2.19) deg(zﬁé1 .. 'wénq) =
0 else.

To prove (2.19), we start by proving the second case. Suppose that there exists some
0 <1y < -+ <1 <n such that

has at most k elements. By virtue of Equation (2.8)), notice that

UG, e, = o (o) 15, (1)

k

= i, (o) -1, ().

Notice that the argument of r in the final expression is an element of A*(LMg), which is

zero because dim(LM) = |G| — 1, which we have assume to be strictly less than k.

Next, to prove the first case of (2.19), suppose that 0 < i3 < .-+ < i, < n implies
|G, U---UG,, | > k. Applying Lemma notice that

wél”’¢5m4::<wwf_ 2: [%)"‘<¢a>— 2: ‘DF)

F2Gy, F2G;

‘n—1

n—1
=Y v ). DroDr.
k=0

0<iy < <ip<n
Fj2G;
We claim that the only nonzero term in the sum is the one indexed by k = 0. To verify
this, notice that multiplying Dp, - - - Dp, will either be zero or a multiple of D for some flag
F. In the latter case, notice that the largest set in the flag F must be F' = F} U --- U F},
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which contains G;, U---UG;,. This implies that F' has more than k elements, showing that
n—|F|—1<n—k—1. It then follows that

deg(@bgo_k_lDFl N DFk) =0
because, using Lemmas [2.12] it contains a factor of

degm[n]\p (¢8¢go_k_l) =0.

Thus, the only nonzero term in the sum is the one indexed by k£ = 0, in which case we

compute
deg(v!) = 1. O

3. MATROID PSI CLASSES

We now describe a generalization of psi classes from Losev-Manin spaces to the matroid
setting. We then use matroid psi classes to give new proofs of formulas for volume polyno-

mials of matroids, and we use them to give a constructive proof of Poincaré duality.

3.1. Matroid basics. Before discussing matroid psi classes, we begin by introducing the

relevant matroid background and terminology.

3.1.1. Definitions. A matroid M = (E, L) consists of a finite set E, called the ground set, and

a collection of subsets £ = Ly C 2F, called flats, which satisfy the following two conditions:

(1) if Fy, Fy are flats, then Fy N Fy is a flat, and
(2) if F'is a flat, then every element of F \ F' is contained in exactly one flat that is

minimal among the flats that strictly contain F'.

Given a matroid M = (E, £), the set L is partially ordered by set inclusion. Furthermore,
given any subset S C F. it follows from Property (1) that there is a minimal flat containing
S, called the closure of S and denoted cl(S) € L. Defining the join (V) of two flats to be
the closure of their union and the meet (A) of two flats to be their intersection, it follows
from the definitions that the flats £ form a lattice, called the lattice of flats of M.

A subset I C F is called independent if, for any Iy C I, C I, we have cl(I;) € cl(l3). The
rank of a subset S C FE, denoted rk(S), is the size of its largest independent subset. The
rank of M is defined as the rank of F. An alternative characterization of the rank of flats is

given by lengths of flags. In particular, the number of nonempty flats in a flag
F=0ChCRSC - CH)

is called the length of the flag, denote ¢(F), and it can be checked from the above definitions
that every maximal flag of flats contained in a flat I has length equal to rk(F).
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There are several important types of elements in a matroid M = (E, L£). A loop of M is
an element e € E such that rk({e}) = 0, and a coloop of M is an element e € E such that
{e}¢ € L. Two elements e, f € E are said to be parallel if rk({e}) = rk({f}) = rk({e, [}).
A matroid without loops is called loopless and a matroid without loops or parallel elements
is called simple. In other words, a loopless matroid is one for which the empty set is a flat,

and a simple matroid is one for which, in addition, each rank-one flat is a singleton.

3.1.2. Matroid constructions. Given a matroid M = (E, L) and a subset S C E, there are
several important ways to construct related matroids. The restriction of M to S, denoted

M|s, is the matroid on ground set S with flats
Lug ={FNS|FeLlwm}
The contraction of M by S, denoted M/S is the matroid on ground set E \ S with flats
Lyvys ={F\S|Fe&Lyand SC F}.
Lastly, the deletion of M by S, denoted M \ S, is the restriction of M to E'\ S:
MA\ S = Mp\s.

If F,G € Ly, then we introduce the notation M[F,G] = (M|g)/F. By definition, M[F, G]
is the matroid of rank rk(G) — rk(F") on the ground set G \ F' with flats

ﬁm[F’G]:{H\F’HE£M, FQHQG}

Notice that the flats of M[F, G] are in natural inclusion-preserving bijection with the flats of
M that are weakly contained between F' and G, which comprise the closed interval [F, G].
We use the shorthand L[F,G] for the flats of M[F, G] and we denote the proper flats by
L(F,G).

Given a matroid M = (E, L), the simplificiation of M, denoted M, is the matroid obtained
by choosing a distinguished element from each rank-one flat and deleting all other elements
of E. The simplification is unique up to relabeling the elements of the ground set, so we do
not stress the choice of distinguished elements. Notice that the lattice of flats of M and M

are naturally isomorphic.

3.1.3. Characteristic polynomials. Given a matroid M = (E, L), the characteristic polyno-
mial of M is defined by

XM()\) _ Z (_1)|S|)\rk(E)—rk(S)'

SCE
From this definition, it is an excellent exercise to check the following three properties.

(x1) If M has a loop, then xm(A) = 0.
(x2) If e is a coloop of M, then xm(A) = (A = 1)xm\(e} (A).
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(x3) If e is neither a loop nor a coloop, then

Xm(A) = xmyger(A) = xmyger(A)

Property (x3) is called the deletion-contraction property, and it generalizes the property
of the same name for chromatic polynomials of graphs. Notice that Properties (x1)-(x3)
determine xm(A) recursively on the size of the ground set. In addition, it follows from (x1)

and (x3) that xm(A) = xm(A) for any loopless matroid M.
It also follows from Properties (x1)—(x3) that, for any nonempty matroid M, the charac-

teristic polynomial ym(A) is divisible by A — 1. The reduced characteristic polynomial of a

nonempty matroid M is define by

_ xm(A)
Xm(A) = N_ 1

Naturally, the reduced characteristic polynomial also satisfies Properties (x1)—(x3).

3.1.4. Chow rings. Let M = (E, L) be a loopless matroid and denote the collection of proper
flats of M by £* = L\ {0}, E}. The matroid Chow ring is defined by

Z\Xp | FeLl*
A*(M) = Xr | ] ,
i+J
where
I= <X nXpg, | F1 and F; are incomparable>
and

j—<ZXF—ZXF‘e,f€E>.

eck fer
We denote the generators of the matroid Chow ring by Dp = [Xr] € A'(M). Notice that
the Chow ring only depends on the lattice of flats, which implies that A*(M) = A*(M).

Matroid Chow rings were first defined by Feichtner and Yuzvinsky [F'Y04] (in the more
general setting of atomic lattices). The presentation given by Feichtner and Yuzvinsky
slightly differs from the one give above in that it includes an additional generator Dy € A'(M)

and an additional relation

where e is any element of £. An important result of Feichtner and Yuzvinsky is the derivation

of an integral basis for A*(M), which we recall here.

Theorem 3.1. [EY04, Corollary 1] If M is a loopless matroid, then a Z-basis of A*(M) is
giwen by all monomials of the form
D}{_}l . D%‘;

with)=FyC Fy C -+ C F, CFE and d; <1k(F;) —rk(F;_q) foralli=1,...,¢.
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Suppose that rk(M) = r + 1. It follows from Theorem (3.1 that A¥(M) = 0 for any k > r,
and that A"(M) is one-dimensional, generated by D7,. In particular, we can define a linear
isomorphism

deg: A"(M) — Z

by setting deg ((—DE)”) = 1. The class —Dg played a central role in the work of Adiprasito,
Huh, and Katz, where it was denoted as «. In particular, Proposition 5.8 of [AHK18] implies
that

Dp -+

v D, = (=Dg)"
for any complete flag ) C F; C --- C F, € E. In other words, given any class v € A"(M),

we can compute deg(vy) as follows.

(1) Use the relations in Z and J to find a linear combination
v=Y ar(y)Dr
f

where the sum is over complete flags F = (0 C Fy; € --- C F,. C F), the coefficients

ar(vy) are integers, and Dy = Dp, -+ Dp. .
(2) Compute

deg(y) =Y ar(7).
F

The aforementioned result of Adiprasito, Huh, and Katz implies that the sum of the coeffi-

cients in (2) is independent of the choice of linear combination in (1).

Finally, in closing this section, we note that for the specific matroid M = ([n], 2¥), the
matroid Chow ring specializes to the Chow ring of Losev-Manin space A*(LM,,) and the
matroid degree map is identified with the algebro-geometric degree map. This observation

motivates extending tools from A*(LM,,) to Chow rings of arbitrary matroids.

3.2. Matroid psi classes. Throughout this subsection, we let M = (E, £) denote a loopless
matroid of rank r + 1. We begin by using the characterization of Lemma to introduce

a generalization of psi classes to the matroid setting.

Definition 3.2. For any F € £ and e € E, define classes ¢ € A'(M) by

vp=) Do- ) Do and ¢ji=) Dc— ) De.

GeL* GeL* GeL* GeL*
eeG GDOF edG GCF

In the special case that F' = () or F' = E, define

Yo=14f =Y Do and ¢=1v5= > Dq.

GeLl* GeLl*
e¢G eeG
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Notice that ¥, = —Dp, which, as we mentioned above, was also denoted as « in [AHKIS],
and we mention that 1y also appeared in [AHKIS|, where it was denoted 5. We already
commented above on why the class 1, is independent of the choice of e € F, and this also
implies that ¢, is independent of this choice for any flat F. It is a short exercise to verify
that ¢} is also independent of the choice of e € E.

Equipped with a general definition of matroid psi classes, we now aim to generalize the ba-
sic results from the setting of Losev-Manin spaces. We start with the following generalization

of Lemma 2.10
Proposition 3.3. For any F' € L*, we have

Diy = Dp(—vf — Uf) € A(M).
Proof. Choose e € E and write

Dp=Drp+Y» Do—)» Dg

ecG eeG
(3.4) —DF+ZDG—ZDG—ZDG
e¢G eeG

When we multiply the first two terms of (3.4)) by Dp and use the fact that DpDg = 0 when
F and G are incomparable (by definition of Z), we have

DF(DF+ZG:DG) :DF<ZDG+ ZDG>.

GDF GCF

Including the final two terms of (3.4)), we conclude that

D%:DF( <ZDG_ZDG>_<ZDG_ZDG>)— (—Yp —¥p). O

GDF GCF

Repeatedly applying Proposition results in the following corollary.

Corollary 3.5. If F,..., F, € L* are distinct proper flats and dy, ..., dy are positive inte-

gers, then

if, after possibly relabeling, FY, ..., F} form a

h
D o= o di—1
FH( v~ ¥n) fagF=0CF G- CFCE),

0 if Fy and F; are incomparable for some t, j.

dy di
D& .. D =

Now that we know how to multiply arbitrary products of generators in A*(M), it remains to
compute the degree of the resulting expression. The first step is the next result—generalizing

Lemma which reduces the computation to degrees of monomials in ¢y and 1.
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Proposition 3.6. If F = (0 = F, C F1 € -+ C Fy C Fyy1 = E) is a flag of flats and

ag,ay,ay, ..., a,a), a5, are nonnegative integers, then
af i
degy, (DfH ¢F ‘ ¢F1+1 ”1) HdegMF Fiy1] (1/’0 ooH)-
Proof. For each ¢+ = 0,...,k, define an algebra homomorphism from the polynomial ring

Z[Xe | G € L(F;, Fi41)] to the matroid Chow ring of M as follows:

©; - Z[XG | G e 'C(an-FH—l)] — A*(M)

XG —> DGUF,-~

Unfortunately, the ideal [J is not in the kernel of ;, so ¢; does not descend to a homomor-

phism from the Chow ring A*(M[F;, Fi11]). Let us modify ¢; by multiplying by Dg:

i L Xe | G e F(F;, Fiyp)] = AY(M)
v = Drpi(y).

Notice that @; is linear, but not multiplicative. We claim that the linear map @; descends
to the Chow ring A*(M[F}, Fi11]). To prove this, it suffices to check that the generators of
both Z and J are contained in the kernel of ;.

First, notice that if ) C G1,Gs C F;41 \ F; are incomparable, then G; U F; and Gy U F; are
also incomparable. This implies that @;(Xg, X¢,) = 0 for incomparable Gy, Gy € L(F}, Fiy1),
proving that ¢; descends to the quotient by Z. Secondly, if e, f € F; ;1 \ F;, then

@( > Xe—- ) XG>:D}'< > Dy- ) DH>

GeL(F;,Fitq) GEL(F;,Fiy1) Fj CHCF1+1 FiGHGF; 1
ecG feq@ €H feHd
( SN Dy- YD ) ~0.
Hecl* HeL*
ecH feH

The second equality above uses the following observations.

(1) The only flats H € L£* that survive multiplication by Dz are those that are compa-
rable with both F; and Fj;.

(2) If e € H or f € H, then the only way that H is comparable with F; is if H 2 F;.

(3) If H D F;1q, then e, f € H, so the terms cancel in the difference in the final formula.

Thus, @; descends to the quotient by Z + 7, and by a slight abuse of notation, we use the
same notation to represent the induced linear map: @; : A*(M[F}, Fi11]) — A*(M).
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Using multi-linearity, we combine the linear maps §; to obtain a linear map

YF: ®A*(M[E~, Fin]) = A*(M)

k

%@ @y = Dr [ [ eiln)
i=0

Notice that, for any e € F; ;1 \ Fj, we have

@(wo):@( > DG>:D}' > Dy

GEL(F;,Fiy1) FiCHGF; 41
e¢G e¢H
_ _ +
= D#(Y_Du— Y Du) = Dsvj,.

Similarly, it can be checked that @;(1) = Dz, . It then follows from the definition of
OF that

k ~ k ) )
A Qi v = e [Jwh)™ (W),
1=0 1=0

a a; . .
Notice that, to compute degyp, g, (@DOZ Oé“), we can use the relations in Z and J to

.-
a; a, . . .
find an express 1,’ Yo" as a linear combination of the form

(3.7) B gl = Do
' 0 o0 AF@) L7
complete flags _F(i)
in M[F;,F; 4 1]

and then compute
degm(r, 1] % ) Zafm

Making one choice of expression (3.7)) for each i =0, ... ,k;, we can apply ¢ to obtain

K . K
90F<® ngwﬁéﬂ = 90f<® > af@)D;(i))
i=0

=0 F()

(3.8) = D]: E aAr©) * - CL]:(k)D]:(l)UFO tee D]:(k)qu7
FO)  Fk)

where, for any flag F®) = (Fl(’) C---C F ) of flats in M[F}, F 1], we define
FOUE=FPUF ¢ - FPUFR),

which is a flag of flats in M. Since each F® is a complete flag of flats in M[F}, F, ], it follows
that the sets in

J-“UU FOUE)
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form a complete flag of flats in M. Therefore, the products of generators in (3.8)) are indexed

by complete flags in M, and we conclude that

k
+ _ a’
degy, (D; TTwh) (vr,.) Z“) = ) azoazw

=0 FO), . F&)

k
S

1=0 F(i)
k L
— a; o dit1
- H degM[Fi,Fi+1}(77Z)0 0 ) |:|
=0

It now remains to compute degrees of monomials in ¢y and 1. The key result in this
regard—which is listed as Proposition below—relates these degree computations to
the coefficients of reduced characteristic polynomials. This result was previously proved by
Adiprasito, Huh, and Katz [AHKIS8| Proposition 9.5], but we find it instructive to give an
alternative proof, motivated by the proof of Lemma [2.14] which uses properties of psi classes.
We begin by introducing an analogue of the pullbacks of the forgetful maps.

Proposition 3.9. If S C E is any subset, then there is a well-defined homomorphism
ps : A*(Ml|g) — A*(M) defined on generators by
pS(DG) = Z DG"

G'eL*
GCG/'CGuUSse

In addition, if S1 C Sy are nonempty flats, then ps, = ps, © ps,-

Notice that the sum in the definition of pg is over all flats of M that are obtained from
G C S by adding elements of S¢. In particular, the set GG is determined by any of the G’ via
G = G'N S. In the special case of M = ([n], 2"}, we have pg = r%.

Proof of Proposition [3.10, Define the homomorphism
ps - Z[XG | G e £?\</”S] — A*(M)

XG — Z D(;/.

G'eL*
GCG/'CGuse

To show that pg descends to a homomorphism from the Chow ring, we must verify that 7
and J are contained in the kernel of pg. First, suppose that GGy and G5 are incomparable
flats of M|g. Then there exists e, f € S such that e € G; \ G2 and f € G5 \ G;. Notice that
every term in the sum defining ps(Xg,) is indexed by a set that contains e but not f and
every term in the sum defining pg(Xg,) is indexed by a set that contains f but not e. It
follows that

ps(Xa, Xa,) = ps(Xa,)ps(Xa,) =0 € A*(M),
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showing that pg descends to the quotient by Z. Next, to show that pg descends to the
quotient by 7, suppose that e, f € S. Then

B(T¥-YX)= Y pe- Y e

eeG feGq eeGCG'CGUS*e fEGCG'CGUS*e
= E DG/ — E DG/
ecG/! feag’
G'ps G'2S
= E Dgr — E De = 0.
eeG’ feGq

The second equality above is implied by the following observations.

(1) We are assuming that ) C G C S. Since G = G' N S, this condition is equivalent to
0 CG'NSCS. Since G'N S is nonempty (it always contains e in the first sum and
f in the second), this is equivalent to G’ 2 S.

(2) Since G = G'N S and e € S, it follows that

eeG<=ece(G'NS)«=ced.

The third equality above is implied by the fact that every set G’ O S appears in both sums in
the final expression, so these terms cancel. This completes the proof that pgs descends to the
quotient by [J. Thus, ¢g descends to the quotient by Z+ 7 and induces the homomorphism

whose existence is asserted in the proposition.

To finish the proof of the proposition, it remains to check that ps, = pg, o ps,. Notice that

ps,ops,(De)= Y. Der= Y Dar=ps(Dc),

GCG/CGUSS GCG"CGUSY
G'CGCGIus§

where the second equality uses that G’ is uniquely determined from G” via G’ = G"NS;. O

The next result describes how 1y and 1, transform under the homomorphisms pg de-
scribed in Proposition [3.10, The second statement of the result gives an alternative charac-
terization of zﬁ that generalizing Definition .

Proposition 3.10. For any subset S C E, we have

ps(o) =to— > Do and  ps(tes) = oo — Y Do

GCse GDS

In particular, if F' € L* 1s a proper flat, then

Vi = pr(the) and = pre(to).
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Proof. For 1y, we compute

ps(tho) = ps < > DG)

e¢G

- Z DG’

e¢GCG/'CGUSEe

Arguing as in the proof of the previous proposition, the index in the last sum can be replaced
with e ¢ G' and G’ € S¢, proving that
PS(¢0) = Z DG’ — Z DG/.
e¢G’ G'cse

The argument for pg(1)) is similar. O

We now come to the generalization of Lemma to the matroid setting. As mentioned
above, this result was previously proved by Huh and Katz [HK12l Proposition 5.2], though
our formulation is more closely aligned with the presentation of Adiprasito, Huh, and Katz
[AHK18, Proposition 9.5]. Our proof relies on the recursive nature of the characteristic
polynomial, and we note that this proof technique, using the deletion-contraction recursion,
also appears in a different, more general form in recent work of Berget, Fur, Spink, and
Tseng [BEST21, Theorem A].

Proposition 3.11. [AHKIS| Proposition 9.5] For nonnegative integers a,b, we have

pt M) ifa+b=r,

else,

degM(¢g¢go> =

where p®(M) is the a-th unsigned coefficient of the reduced characteristic polynomial of M:

r

TN = 3 (1) e (M)N .

a=0

Before proving Proposition[3.11], we briefly justify that it does, indeed, generalize Lemmal[2.14]
Suppose that M = ([n],2[") so that A*(M) = A*(LM,,). Then, for any subset S C [n], we
have rk(S) = |9/, and it follows that

n

m(A) = Y (=1 = Y "k (Z) AR = (A= 1)

SCln] k=0
Therefore,
() = A =1

and we conclude that p*(M) = (";1), as expected.
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Proof of Proposition [3.11. We prove the proposition by induction on |E|. If |E| = 1, then
Xm(A) =1 and p°(M) = 1, so the base case follows from the fact that A*(M) = A°(M) =Z

and deg(yvs,) =

We now turn to the induction step. Since A*(M) = A*(M), it suffices to assume throughout
the induction step that M is simple. First suppose that e € E is not a coloop. This implies
that {e}¢ is not contained in any proper flats of M, and it then follows from Proposition m
that

PM\{e} (¢oo) = ¢w
In particular, using that rk(M\ {e}) = rk(M) = r 41 and that the degree map is determined
by deg(¥’ ) =1, this implies that

deg(pmfe} (7)) = deg(y) for any v € A*(M\ {e}).

Using our assumption that M is simple, we have that {e} € L, and it then follows from

Proposition that
p{ey (Yo) = tho — Dyey-
Therefore, if a + b = r, then
degy o) (VG¥L,) = degy (Yo — Dyey)*v2)
= degy (vgul) + (—1)° degM(Df{le}lpb )
= deg (Y§1l) — degy /ey (VG 9%),

where the second equality follows from noting that we can write ¢y = Ze¢ » Dp, in which
case it follows ¢yDyy = 0, and the third equality follows from Proposition [3.6f In the
case where a = 0, the second term in the final expression is equal to zero. The induction

hypothesis then implies that

degy(V51l) = p*(M\ {e}) + u*~"(M/{e}) = p*(M),

where the final equality is an application of Property (x3) for Xy (A).

Next, suppose that e € E is a coloop. Since e is a coloop and M is simple, both {e} and
{e}¢ are flats of M. It follows from Proposition that

pie} (Vo) = Yo — Diey  and  pwn e} (Voo) = Yoo — Dieye.

For any positive integer a, we have

¥g = (pmgey (o) + Diey)"

= pm\(er (¥6) + Z ( )D{e} (= D)™

= pm\ie3 (¥5) — (—D{e}) :
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where the second equality uses the fact that ¢Dy; = 0 and the third equality uses that
D et ( )( 1)a=% = (=1)*"L. Similarly,

Wl = pwniey (1) — (—Dieye)’.

Thus, if a + b = r, we compute that

Vi1 = oy (U6¥50) — Pmier (¥6) (= Dieye)” — (= Diey)” pwn(ey (¥3) + (= Dyey)* (= Dyeye)”
= —p\(e} (U6) (= Dieye)” — (= Diey) “puav ey (V3
= D5 ¥y + Dy ¥ae
where the second equality follows from observing that rk(M \ {e}) = 7 and Dy Dieye = 0,
and the third equality follows from the facts that Dy, 99 = Dyejetpoe = 0 and Corollary .

As before, terms with negative exponents are equal to zero. Computing degrees via Propo-
sition [3.6], we then see that

degm (V5v5,) = degu oy (V615 ") + degp ey (V6 0%,).

Since e is a coloop, it follows that M\ {e} = M/{e}, because every flat not containing e

remains a flat when you add e to it. Therefore, applying the induction hypothesis, we have

degy(¥gvl,) = p*(M\ {e}) + p* " (M\ {e}) = u*(M),

where the final equality is an application of Property (x2) for xj(A). This completes the
induction step, and finishes the proof. 0

3.3. Volume polynomials. In this subsection, we illustrate the utility of psi classes by
using them to reprove the main result in [Eur20] and one of the main results in [BES20],
both of which give an explicit formula for the volume polynomials of matroids. Given our
parallel developments, the arguments in this setting are essentially verbatim generalizations
of the arguments made in the setting of generalized permutahedra and Losev-Manin spaces.

Let M = (E, L) be a loopless matroid of rank r + 1. The volume polynomial of A*(M) is

the function

Voly : A{(M) — Z
D +— degy (D).

Given a spanning set of generators B = (By, ..., By,) for A'(M), the volume polynomial can

be written explicitly as a homogeneous polynomial of degree 7:

Volu g(21, ..., Tm) = degy ((ZxB))Ele,...,xm.
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In fact, given that A*(M) satisfies Poincaré duality (discussed in the next subsection), it
follows from Lemma 13.4.7 in [CLS11] that the volume polynomial associated to any gen-
erating set determines a presentation for the Chow ring A*(M). Thus, it follows that the

matroid Chow ring is determined from computations of the form
degy(Bi™ - Byr),

where dy + -+ 4+ d,,, = r. The main result in [Eur20] is the computation of these degrees
for the set of generators (Dp | F' € L£*), and one of the main results in [BES20] is the
computations of these degrees for the set of generators (¢ | 0 # F € L£). We note that
the authors of [BES20] stated their result in terms of classes that they denoted hp, but it
follows from the definitions that hp = 1. We now recover both of these computations using

properties of psi classes.

The main result in [Eur20], which implies Theorem [2.17 is the following.

Theorem 3.12. [Eur20, Theorem 3.2] If F = (0 € Fy € ... Fx, € E) is a flag of flats in M

and dy, ..., dy are positive integers that sum to r. Then

k
d; — 1 7 rk(F
doga(D% - D) — (~1)- 1H( ))w KENMIE, Fiy)),

=1

with

k
l)‘li1 e ng = Dr H(_’@DIE - ¢E)di_1

a; o =1 v

d;—1 k
= Dr(-1)* > T] (di + 1) (W) ()

af=01=1 @i l Z

d;—1 k k

+

o D G ) (ERIE

af=0i=1 @i =0

where, by convention, we define af = diy1 — a 1 — 1 =0. By Proposition |3.11, the degree

of each summand in this class is zero unless

ai +diq — — 1 =1k(Fiy1) —1k(F;) —
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These conditions have a unique solution with
af = d; — 1k(F}).

Thus, computing the degrees by Proposition |3.11] we have
k

d; —1

d d 'r k d;—rk(F,

degy (D% --- D) = H(d _k(F )HM M[E;, Fiy1)).

Theorem follows by noting that x°(M) = 1 for any matroid M, so the i = 0 term of the
second product is 1. O

One of the main results of [BES20], which implies Theorem is the following.
Theorem 3.13. [BES20, Theorem 5.2.4] If F,. .., F,. are nonempty flats of M, then

_ _ 1 Zf0<21<<Zk§T:>rk<E1UUE)>k7
degy (U, -5 = *
0 else.

Proof. To prove this result using properties of psi classes, first assume that there exists some
0 < <--- <1, <rsuch that rk(F;, U---UF;,) < k. Denote S = F;, U---UF,,. By

Proposition [3.10, we compute that

Vg, VR, = PEy (Vso) - pry (Vo) = ps(pr, (Vo) -+ Py (V).
The input of pg is a class in A*(M|g), which is zero because
rk(M|s) = 1k(S) < k.

Thus,
degy (v, - 15,) = deg(0) = 0.

Next, suppose that 0 < iy < --- <, < rimplies that rk(F}, U---UF},) > k. By definition,

Ui = (b= D Do) (v ZDG)

GDOF GDF:

=> WM =1 Y Dg, - Dg,.
k=0

0<ig <+ <ig <r
Gj2F;;

We claim that the only nonzero term in the sum is the one indexed by £ = 0. To see why,

notice that multiplying D¢, --- D¢, will either be zero if G; and G; are incomparable for

k
some ¢ and 7 or it will be a multiple of Dg for some flag G. In the latter case, the largest
flat in the flag G must be G = G; U - - - U Gy, which contains F;, U --- U Fj, . This implies

that rk(G) > k. It follows that

degM(¢;kDGl : DGk) =0,
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because, when expanded using Proposition the exponent of ¢, appearing in the final
term of the product is r — k > rk(F) — rk(G) = rk(M[G, E]). Thus, the only nonzero term

in the sum is

degy (V%) = 1" (M) = 1. U

3.4. Poincaré duality. In this final section, we describe one more application of our de-
velopments of psi classes, which is a new proof of the Poincaré duality property for matroid

Chow rings. Our proof utilizes the following computational result.

Lemma 3.14. If F= 0 C F, C --- C Fy C E) is a flag of flats in M and we have integers
di,...,d; >0 and dg > 0 that sum to r, then

k
(1) degM(Dj?1 : --D%ZD%E) =0 ifdp+ Zdi > r —rk(F,,_1) for some m € {1,... k}

and

(2) de,g.);|\,|(Djf,11 e D?,’Z) = (=1)"*ifdp + Z d; = r —rk(F,,—1) forallm € {1,... k}.

Proof. By Corollary [3.5] we have

Ea

di dr NdE dE d;i—1
D% - DD = Dr(—huo)
=1
di—1 k
_ r k+1 Z+1_1_a:r
B Z ( )D}—H wF z+l i
+ —p =1

where aj =0, Fy4q1 = E, and a,,; = ds. Computing the degree using Proposition [3.6, we

see that the degree is nonzero only if
af +diy1 —1—af, =rk(Fiy1) —1k(F;) —1 forall i=0,...,k.

The unique solution of this system is given by

a

= —1k(F, dE—Zd forall m=1,.... k.

1=m+1

Property (1) follows from the observation that a;, > 0 for all m = 1,... k. Notice that the
condition in Property (2) implies that o = 0 for all m = 1,... k, and Property (2) then
follows from Proposition and the fact that

degM[Fi,Fi+1] (¢rk(Fi+1)—rk(Fi)—1) =1 0

o0

We now use the Feichtner—Yuzvinsky basis for A*(M) to prove Poincaré duality.
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Theorem 3.15. For any k €0,...,r, the map
o« AF(M) = AT F(M)Y
v (> degy ()

s an isomorphism of Z-modules.

Proof. Recall that the Feichtner—Yuzvinsky basis for A¥(M) comprises all monomials of the
form

B = DdFll e dei
where ) = Fo C F1 € --- C F, C F and 0 < d; < rk(F;) —rk(F;_;) for all i = 1,..., ¢ with
Zle d; = k. Throughout this proof, we always assume that F; = E while allowing for the
possibility that d, = 0. For each such basis element B, define a corresponding basis element
B € A™*(M) by

B=D} .- D,
where

T—rk(Fg,1> —dl if i = /.

Let BY € A"%(M)Y denote the dual of B. We can write ¢, as a square matrix whose rows
are indexed by the basis elements B and whose columns are indexed by the corresponding
basis elements BY. The (By, §2V ) entry of this matrix is degy, (Blgg), which can be computed
explicitly by the results of Subsection [3.2] To prove the statement in the theorem, we show

that this matrix is invertible over Z.

First, notice that the element B was constructed so that

¢
Z(di +d;) =1 —1k(F,_y) forall me{l,... ¢}
so Lemma [3.14(2) implies that degy(BB) = (—1)"~“*!. This implies that the diagonal
entries of the matrix are all +1. To finish the proof, it suffices to prove that the matrix is

triangular with respect to some choice of ordering on the bases.

For each basis element B = Df}l e D% as above, define a multidegree by
8(B) = (dg, tk(Fy_1), dp—1,vk(Fy_s), ..., 1k(F1),d1,0,0,...).

The multidegree defines a lexicographic partial ordering on the basis, and we let < be any
total ordering of the basis that refines the lexicographic partial ordering induced by 4. In
other words, we insist that B < B’ only if §(B) is less than or equal to §(B’) in the
lexicographic partial ordering. We claim that ¢y is lower triangular with respect to this

order. To prove this, suppose that B < B’; we must prove that degM(BE’) = 0.
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First, consider the case where §(B) = §(B’). It follows that ¢ = ¢, and rk(F;) = rk(F})
and d; = d} for all i = 1,..., /. Since B and B’ are not the same monomial, it must be the
case that Fj is incomparable to F! for some i. Since B has a factor of F; and B’ has a factor
of F!, it follows that BB’ = 0, so degy(BB') = 0.

Next, consider the case where §(B) # 6(B’). We first suppose that the first entry where
they differ is rk(F,,) < rk(F,). This implies that d; = d; and rk(F;) = rk(F!) for all i > m.
Since B has a nontrivial factor of F; and B’ has a nontrivial factor of F!, and these are flats
of the same rank for ¢ > m, the only way that BB’ # 01is if F; = F] for all i > m. Assuming

that this is the case, we can write
BB = F{'F{* - Fm U ES,

where the tail of the product consists of powers of flats of lower rank. Notice that

¢ l
Y ei= > (di+d)
i=m+1 i=m+1
Z A
= Y (di+dy)
i=m-+1
=r —rk(F),)
>r—rk(F)),

from which Lemma M(l) implies that degM(BE') = 0.

Lastly, suppose that the first entry where §(B) and §(B') differ is d,, < d’,. This implies
that d; = d} for all i > m and rk(F}) = rk(F!) for all i > m. As in the previous case, we can

write
BB' = FoFoT  FomFe. ..

where F is equal to the flat in {F,,,_1, F},_;} with highest rank. We then compute

4 ¢
Z e =Y (di+d))

from which Lemma M( 1) implies that degy,(B B ) = 0, completing the proof. O
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