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Abstract. Motivated by the intersection theory of moduli spaces of curves, we introduce

psi classes in matroid Chow rings and prove a number of properties that naturally generalize

properties of psi classes in Chow rings of Losev-Manin spaces. We use these properties

of matroid psi classes to give new proofs of (1) a Chow-theoretic interpretation for the

coefficients of the reduced characteristic polynomials of matroids, (2) explicit formulas for

the volume polynomials of matroids, and (3) Poincaré duality for matroid Chow rings.

1. Introduction

Psi classes are special divisors that are ubiquitous in the study of the intersection theory of

moduli spaces of curves. Psi classes arise naturally when computing products of boundary

classes in A∗(Mg,n) whose strata have excess intersection. In particular, any product of

boundary classes can be written in terms of polynomials of psi classes on other boundary

classes, and the top degrees of these polynomials are determined by the Witten–Kontsevich

theorem [Wit91, Kon92]. In genus zero, this procedure takes on an especially simple form.

Given k distinct boundary divisors D1, . . . , Dk ∈ A1(M0,n), their product is also a (possibly

empty) boundary class, and any monomial in these boundary divisors can be written as

(1.1) Dd1
1 · · ·D

dk
k = D1 · · ·Dk

k∏
i=1

(−ψ−Di
− ψ+

Di
)di−1 ∈ A∗(M0,n),

where ψ±D are certain psi classes associated to each divisorD. Moreover, if
∑
di = dim(M0,n),

then the degree of the expression in the right-hand side of (1.1) is a product of polynomials

of psi classes on smaller dimensional moduli spaces, all of which are computable. The aim

of this paper is to develop an analogue of these techniques in Chow rings of matroids.

Matroids are combinatorial structures that generalize the behavior of finite sets of vectors,

and Chow rings of matroids were introduced by Feichtner and Yuzvinsky [FY04]. In this

work, we explore an appealing parallel between Chow rings of matroids and Chow rings of

moduli spaces of curves. We introduce matroid psi classes in Chow rings of matroids and

we show that they behave analogously to the usual psi classes in the Chow rings of moduli

spaces of genus zero curves. As a first application, we then use psi classes to give simplified

proofs of a number of recent foundational results concerning matroid Chow rings.
1
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1.1. Summary of results. Given a loopless matroid M = (E,L) consisting of a finite set E

and a lattice of flats L ⊆ 2E, the Chow ring A∗(M) is a graded Z-algebra generated by matroid

divisors DF ∈ A1(M), one for each proper flat F ∈ L∗ = L \ {∅, E} (see Subsection 3.1 for

precise definitions). The primary objects of study in this paper are the following classes.

Definition A (Definition 3.2). For any F ∈ L and e ∈ E, define ψ±F ∈ A1(M) by

ψ−F =
∑
G∈L∗
e∈G

DG −
∑
G∈L∗
G⊇F

DG and ψ+
F =

∑
G∈L∗
e/∈G

DG −
∑
G∈L∗
G⊆F

DG.

The Chow classes ψ±F do not depend on the choice of e ∈ E, which is why it is suppressed

from the notation. As we will see, the definition of matroid psi classes is an immediate

generalization of an expression for psi classes in terms of boundary divisors in Losev-Manin

moduli spaces (see Lemma 2.16).

After defining matroid psi classes, we establish the following analogue of Equation (1.1).

Result B (Corollary 3.5). If F1, . . . , Fk are distinct flats of M and d1, . . . , dk are positive

integers, then

Dd1
F1
· · ·Ddk

Fk
= DF1 · · ·DFk

k∏
i=1

(−ψ−Fi
− ψ+

Fi
)di−1 ∈ A∗(M).

This result allows us to express any monomial in matroid divisors as a squarefree expression

along with a polynomial in psi classes. In the case that the product is in the top graded piece

of the matroid Chow ring, our next result allows us to compute the degrees of the terms in

Result B in terms of degrees of the special classes ψ0 = ψ+
∅ and ψ∞ = ψ−E .

Result C (Proposition 3.6). If ∅ = F0 ( F1 ( · · · ( Fk ( Fk+1 = E are flats of M and

a+
0 , a

−
1 , a

+
1 , . . . , a

−
k , a

+
k , a

−
k+1 are nonnegative integers ,then

degM

(
DF1 · · ·DFk

k∏
i=0

(ψ+
Fi

)a
+
i (ψ−Fi+1

)a
−
i+1

)
=

k∏
i=0

degM[Fi,Fi+1]

(
ψ

a+
i

0 ψ
a−i+1
∞

)
In the above formula, M[Fi, Fi+1] denotes the contraction by Fi of the restriction of M to

Fi+1. In order to use Results B and C to explicitly compute degrees of polynomials in the

generators, we use properties of psi classes to give a new proof of the following result, which

had previously been proved by Huh and Katz [HK12, Proposition 5.2].

Result D (Proposition 3.11). If M is a matroid and a, b are nonnegative integers, then

degM(ψa
0ψ

b
∞) =

µa(M) if a+ b = rk(M)− 1,

0 else,

where µa(M) is the ath unsigned coefficient of the reduced characteristic polynomial of M.
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Results B, C, and D provide an efficient algorithm for computing the degree of any mono-

mial of matroid divisors. As a direct consequence of this algorithm, we recover a recent

theorem of Eur [Eur20, Theorem 3.2] that computes the coefficients of the volume polyno-

mials of matroids.

Result E (Theorem 3.12). If ∅ = F0 ( F1 ( · · · ( Fk ( Fk+1 = E are flats of M and

d1, . . . , dk are positive integers that sum to rk(M)− 1, then

degM(Dd1
F1
· · ·Ddk

Fk
) = (−1)rk(M)−k−1

k∏
i=1

(
di − 1

d̃i − rk(Fi)

)
µd̃i−rk(Fi)(M[Fi, Fi+1]),

with

d̃j =

j∑
i=1

di.

Our developments can also be used to recover a recent theorem of Backman, Eur, and

Simpson [BES20, Theorem 5.2.4] that computes degrees of monomials in the “simplicial”

generators, which, as it turns out, are nothing more than the psi classes ψ−F .

Result F (Theorem 3.13). If F1, . . . , Fr are nonempty flats with r = rk(M)− 1, then

degM(ψ−F1
. . . ψ−Fr

) =

1 if 0 < i1 < · · · < ik ≤ r =⇒ rk(Fi1 ∪ · · · ∪ Fik) > k,

0 else.

As a final application of our developments, we provide a new proof of Poincaré duality for

A∗(M), a result that was first proved by Adiprasito, Huh, and Katz [AHK18, Theorem 6.19].

Result G (Theorem 3.15). Let M be a matroid of rank r+ 1. Then for any k ∈ 0, . . . , r, we

have an isomorphism of Z-modules:

Ak(M)→ Ar−k(M)∨

γ 7→ (µ 7→ degM(µγ)).

To prove Result G, we simply use our computational algorithm to show that the transfor-

mation is lower triangular when written in terms of a particular ordering of the Feichtner–

Yuzvinsky basis (see [FY04, Corollary 1]) for Ak(M) and its dual basis for Ar−k(M)∨, with

all diagonal entries equal to ±1.

1.2. Related work. As should be clear from the discussion above, this work is closely

related and indebted to prior contributions of several groups of mathematicians. The matroid

psi classes that we introduce in this work are built from two special psi classes: ψ0 = ψ+
∅

and ψ∞ = ψ−E . These two classes have already been studied extensively by Adiprasito, Huh,

and Katz [AHK18], where they were denoted β and α, respectively. Furthermore, as we
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mentioned above, the psi classes ψ−F played an integral role in the work of Backman, Eur,

and Simpson [BES20], where they were denoted hF . Our choice to use different notation for

these classes in this paper simply stems from our goal of highlighting the parallel between

Chow rings of matroids and Chow rings of moduli spaces of curves.

There is a related notion of “tropical psi classes” developed by Kerber and Markwig

[KM09]—these classes form the tropical analogue of the classical psi classes onM0,n. Using

the description of M0,n as a wonderful compactification of the complement of the braid

arrangement, due to DeConcini and Processi [DCP95], tropical psi classes can be interpreted

as special elements of Chow rings of braid matroids with minimal building sets. We note that

Chow rings of matroids with building sets were defined by Feichtner and Yuzvinsky [FY04]

and are more general than the matroid Chow rings studied herein, which correspond to the

special case of maximal building sets. It would be very interesting to develop a general theory

of psi classes associated to matroids with building sets that simultaneously generalizes the

matroid psi classes developed in this paper and the tropical psi classes developed by Kerber

and Markwig.

1.3. Outline of the paper. Losev-Manin moduli spaces are the setting in which Chow

rings of matroids intersect Chow rings of moduli spaces of curves. Because of this, we start

this paper with an overview of the definition and key properties of psi classes in Losev-Manin

spaces; this is the content of Section 2. We conclude Section 2 by using psi classes to recover

two known formulas for the volumes of generalized permutahedra, due to Postnikov [Pos09]

and Eur [Eur20]. The impetus for this work was the observation that, upon generalizing psi

classes to matroids, these proofs work nearly verbatim to compute volume polynomials in

the more general matroid context.

In Section 3, we introduce matroid psi classes, prove the natural generalizations of the

properties discussed in Section 2, and then we give new proofs of the results of Eur and

Backman, Eur and Simpson, generalizing the volume computations from Section 2, and we

also give a new proof of Poincaré duality. We note that Section 3 is entirely self-contained

and the matroid enthusiast may choose to skip Section 2. On the other hand, we hope

that the discussion of Losev-Manin spaces will help the reader understand the context and

motivation for the definition and development of matroid psi classes, and that this discussion

might even motivate the interested combinatorialist to learn a little more about the beautiful

subject of Chow rings of moduli spaces of curves.

1.4. Acknowledgements. This paper was born out of the first author’s Master’s thesis,

which was advised by both Federico Ardila and the second author. The authors would like

to warmly acknowledge Federico’s guidance and contributions to this project. Despite his
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2. Losev-Manin spaces and psi classes

In order to motivate matroid psi classes, we begin with a discussion of psi classes in the

setting of Losev-Manin spaces. Our purpose in this section is to describe the key properties

of psi classes that are useful in computations in order to motivate the properties that we

require upon generalizing psi classes to matroid Chow rings. The results in this section are

well-known, so we do not provide complete proofs, only remarking on where the proofs can

be found (or derived) in the literature. At the end of this section, we show how psi classes can

be used to compute formulas for volumes of generalized permutahedra. All of the definitions

and results in this section will be combinatorially generalized to matroid Chow rings in the

next section.

2.1. Losev-Manin spaces. Losev-Manin spaces, introduced in [LM00], parametrize collec-

tions of points on chains of projective lines. To describe these spaces, let us first establish

some terminology.

A chain of projective lines of length k is a complex variety of the form

C = C1 t · · · t Ck/ ∼

where Ci = P1 for all i = 1, . . . , k and ∼ is the relation that identifies ∞i = [0 : 1] ∈ Ci with

0i+1 = [1 : 0] ∈ Ci+1 to form a node. The projective lines C1, . . . , Ck are referred to as the

components of the chain C, and we define 0 = 01 ∈ C1 and ∞ =∞k ∈ Ck.

Given a chain of projective lines C, a configuration of n points p1, . . . , pn ∈ C is called

stable if {p1, . . . , pn} is disjoint from 0, ∞, and the nodes of C, and if each component

of C contains at least one pi. We do not require the points to be distinct. Two stable

configurations (C; p1, . . . , pn) and (C ′; p′1, . . . , p
′
n) are said to be isomorphic if there exists an

isomorphism of varieties f : C → C ′ such that f(0) = 0, f(∞) = ∞, and f(pi) = p′i for all

i = 1, . . . , n.
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Definition 2.1. For any n ≥ 1, the Losev-Manin space LMn is the set of all stable config-

urations of n points on chains of projective lines, up to isomorphism. A point in LMn is an

equivalence class [C, p1, . . . , pn] where C is a chain of projective lines and p1, . . . , pn ∈ C is a

stable configuration of n points.

The sets LMn were first constructed as smooth projective varieties by Losev and Manin

[LM00]; in fact, they proved that LMn is the toric variety associated to the (n − 1)-

dimensional permutahedron. In particular, LMn is a disjoint union of tori, one corresponding

to each face of the permutahedron. We now describe those tori explicitly.

To every flag of nonempty subsets

F = (∅ = F0 ( F1 ( · · · ( Fk ( Fk+1 = [n])

define a subset of LMn by

TF =

{
[C; p1, . . . , pn]

∣∣∣∣ C has k + 1 components C0, . . . , Ck

and pj ∈ Ci if and only if j ∈ Fi+1 \ Fi

}
.

We depict a general element of TF as follows:

· · ·

•
0

/ / /
F1 \ F0 \ | /

F2 \ F1

/|\
Fk \ Fk−1

•
∞\\

\
Fk+1 \ Fk

Notice that every element of LMn is an element of exactly one set of the form TF , so

the sets TF partition LMn. Moreover each TF is an algebraic torus. To see why, consider

a particular TF and choose one point from each set Fi+1 \ Fi. Notice that there is a unique

automorphism of C that maps the chosen point in Fi+1 \ Fi to [1, 1] ∈ Ci. After fixing this

isomorphism, the remaining points in Fi+1 \ Fi can vary throughout any point of Ci except

0i and ∞i. It follows that

TF = (C∗)|F1|−|F0|−1 × (C∗)|F2|−|F1|−1 · · · × (C∗)|Fk+1|−|Fk|−1 = (C∗)n−k−1.

The tori TF are not closed subvarieties of LMn, but we may take their closures, which leads

to the following important subvarieties.

Definition 2.2. The stratum XF ⊆ LMn associated to a flag F of subsets of [n] is the

Zariski closure of the torus TF :

XF = TF .

We say that a subvariety Z ⊆ LMn is a stratum if it is equal to XF for some flag F . For a

subset ∅ ( F ( [n], we use the shorthand

XF = X∅(F([n].
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Each stratum is, again, a disjoint union of tori. To describe these inclusions, it is useful

to introduce the notion of refinements. We say that a flag

F ′ = (∅ ( F ′1 ( · · · ( F ′` ( [n])

is a refinement of the flag

F = (∅ ( F1 ( · · · ( Fk ( [n])

and write F ′ � F if, for every i ∈ {1, . . . , k}, there exists some j ∈ {1, . . . , `} such that

Fi = F ′j . With this notion, it can be checked that

XF =
⊔
F ′�F

TF ′ .

In particular, it follows that XF1 ∩XF2 = XF3 where F3 is the maximal common refinement

of F1 and F2 (the intersection is empty if no common refinement exists).

2.2. Chow rings and volumes of generalized permutahedra. The Chow ring of LMn

is well-known and can be expressed as a quotient of the formal polynomial ring generated

by XF with F a proper subset of [n]. By general results in toric geometry [CLS11, Theo-

rem 12.5.3], we have

(2.3) A∗(LMn) =
Z
[
XF | ∅ ( F ( [n]

]
I + J

where the ideals I and J are defined by

I =
〈
XFXG | F and G are incomparable

〉
and

J =

〈∑
i∈F

XF −
∑
j∈F

XF

∣∣∣ i, j ∈ [n]

〉
.

The generators DF = [XF ] ∈ A1(LMn), are called boundary divisors. The Chow ring has a

natural grading by codimension

A∗(LMn) =
n−1⊕
k=0

Ak(LMn)

and a degree map

degLMn
: An−1(LMn)→ Z,

which is a linear isomorphism uniquely determined by the property that the degree of the

class of any point is one.

Any divisor D ∈ A1(LMn) can be written in the form

D = D(x) =
∑
∅(F([n]

xFDF ∈ A1(LMn)
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with xF ∈ Z and, in this setting, D(x) is nef if and only if the numbers xF are submodular,

meaning that, for all F1, F2 ⊆ [n], we have

(2.4) xF1 + xF2 ≥ xF1∩F2 + xF1∪F2 ,

where, by convention, we always assume x∅ = x[n] = 0. Given a nef divisor D(x), we consider

the corresponding polytope Πn(x) ⊆ Rn defined by

(2.5) t1 + · · ·+ tn = 0 and
∑
i∈F

ti ≤ xF for all ∅ ( F ( [n].

These polytopes were studied under the name of generalized permutahedra by Postnikov

[Pos09], wherein several formulas for their volumes were discovered and proved (see Theo-

rem 2.18 below).

By standard results in toric geometry ([CLS11, Theorem 13.4.3]), the volumes of general-

ized permutahedra can also be derived by computations in the Chow ring:

(2.6) Vol(Πn(x)) =
1

(n− 1)!
degLMn

(D(x)n−1).

In order to utilize (2.6), one needs to expand the product D(x)n−1, then use relations in

I and J to write the result as a linear combination of products of the form DF1 . . . DFn−1

where the indexing sets form a complete flag

∅ ( F1 ( · · · ( Fn−1 ( [n],

then use the fact that, for any complete flag, degLMn
(DF1 . . . DFn−1) = 1. This process was

carried out in the more general matroid context by Eur [Eur20], which led to a new formula

for volumes of generalized permutahedra (see Theorem 2.17 below). The heart of Eur’s

argument is figuring out how to systematically express general products of divisors in terms

of products of divisors indexed by complete flags. Phrased another way, the difficulty in

this computation is dealing with self-intersections of divisors. In the context of Losev-Manin

spaces, there is a useful tool for just this type of self-intersection: psi classes.

2.3. Psi classes on Losev-Manin spaces. To understand the utility of psi classes, it is

useful to discuss the multiplicative structure of A∗(LMn). If F and G are two distinct proper

subsets of [n], then the corresponding subvarieties XF and XG either intersect transversally,

or they don’t intersect at all. In particular, if F and G are distinct, then

DFDG =


[X∅(F(G([n]] if F ( G,

[X∅(G(F([n]] if G ( F,

0 if F and G are incomparable.
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More generally, if F1, . . . , Fk ⊆ [n] are distinct subsets, we have

DF1 · · ·DFk
=

[XF ]
if, after possibly relabeling, F1, . . . , Fk form

a flag F = (∅ ( F1 ( · · · ( Fk ( [n]),

0 if Fi and Fj are incomparable for some i, j.

For convenience, for any flag F = (∅ ( F1 ( · · · ( Fk ( [n]), we define

DF = [XF ] = DF1 . . . DFk
∈ Ak(LMn).

The main question, then, is: How do we multiply divisors when they are not all indexed by

distinct subsets? This is where psi classes are useful. In the setting of Losev-Manin spaces,

there are two basic psi classes upon which the others are built.

Definition 2.7. Let n ≥ 1. The psi class ψ0 ∈ A1(LMn) is the first Chern class of the line

bundle L0, whose fiber over a point [C, p1, . . . , pn] ∈ LMn is the cotangent line of C at 0.

The psi class ψ∞ ∈ A1(LMn) is the first Chern class of the line bundle L∞, whose fiber over

a point [C, p1, . . . , pn] ∈ LMn is the cotangent line of C at ∞.

A more combinatorial characterization of psi classes, which will be our starting point for

the matroid generalization, appears in Lemma 2.16 below. To understand why the psi classes

are useful for computing self-intersections, we require a bit of additional notation. For a finite

set F , let LMF denote the Losev-Manin space with marked points indexed by F . Of course,

LM[n] = LMn. If |F | > 2, then for each i ∈ F , there is a forgetful map

fi : LMF → LMF\{i}.

For each point [C; (pj)j∈F ] ∈ LMF , the function fi forgets the marked point pi and then, if

the component that contained pi no longer has any marked points, it contracts that entire

component to a single point. The second step is necessary in order to insure that the image

of f is a stable configuration.

More generally, if ∅ ( G ⊆ F , then there is a forgetful map

rG : LMF → LMG.

To define this map, label the points F \G = {i1, . . . , ik} and define

rG = fi1 ◦ · · · ◦ fik .

In other words, rG forgets the points that are not in G. We use the letter r for “remember”

because the map rG remembers the points in the index set G. It follows from the definition

that the order of the composition in the definition of rG is irrelevant, and if ∅ ( G1 ⊆ G2 ⊆ F ,

then

(2.8) rG1 = rG1 ◦ rG2 .
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Using the forgetful maps, we obtain a more general set of psi classes.

Definition 2.9. For n ≥ 1 and ∅ ⊆ F ⊆ [n], define classes ψ−F , ψ
+
F ∈ A1(LMn) by

ψ−F = r∗F (ψ∞) and ψ+
F = r∗F c(ψ0),

where r∗F is the pullback of rF : LMn → LMF and F c = [n] \ F .

Notice that ψ0 = ψ+
∅ and ψ∞ = ψ−[n]. The reason we introduce psi classes is because they

naturally arise when self-intersecting divisors in the following way.

Lemma 2.10. If F is a proper subset of [n], then

D2
F = DF (−ψ−F − ψ

+
F ) ∈ A2(LMn).

Proof sketch. This follows from the observation (see, for example, [HKK+03, Lemma 25.2.2])

that the normal bundle of XF in LMn is

g∗F (r∗F (L∨∞)⊗ r∗F c(L∨0 )),

where gF : XF → LMn is the inclusion. �

In particular, Lemma 2.10 allows us to compute any product of boundary divisors in terms

of psi classes. We have the following immediate corollary.

Corollary 2.11. If F1, . . . , Fk ⊆ [n] are distinct proper subsets and d1, . . . , dk are positive

integers, then

Dd1
F1
· · ·Ddk

Fk
=


DF

k∏
i=1

(−ψ−Fi
− ψ+

Fi
)di−1

if, after possibly relabeling, F1, . . . , Fk form a

flag F = (∅ ( F1 ( · · · ( Fk ( [n]),

0 if Fi and Fj are incomparable for some i, j.

In order to utilize psi classes in the volume computation of Equation 2.6, it remains to

understand how to compute the degree of expressions of the form in Corollary 2.11. The

next result reduces these computations to computing degrees of monomials in ψ0 and ψ∞.

Lemma 2.12. If F = (∅ = F0 ( F1 ( · · · ( Fk ( Fk+1 = [n]) is a flag of subsets and

a+
0 , a

−
1 , a

+
1 , . . . , a

−
k , a

+
k , a

−
k+1 are nonnegative integers, then

degLMn

(
DF

k∏
i=0

(ψ+
Fi

)a
+
i (ψ−Fi+1

)a
−
i+1

)
=

k∏
i=0

degLMFi+1\Fi

(
ψ

a+
i

0 ψ
a−i+1
∞
)
.

Pictorially, we think of the psi classes ψ±Fi
as being associated to the left and right side of

the node indexed by Fi:
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· · ·

•
0

/ / /
F1 \ F0 \ | /

F2 \ F1

/|\
Fk \ Fk−1

•
∞\\

\
Fk+1 \ Fk

ψ+
F0

ψ−F1 ψ+
F1

ψ−Fk

ψ+
Fk

ψ−Fk+1

The products in Lemma 2.12 are over all of the components of the curves, which should help

explain the indices in the products.

Proof sketch of Lemma 2.12. Let gF : XF → LMn be the inclusion. By the projection

formula,

(2.13) degLMn

(
DF

k∏
i=0

(ψ+
Fi

)a
+
i (ψ−Fi+1

)a
−
i+1

)
= degXF

(
g∗F

( k∏
i=0

(ψ+
Fi

)a
+
i (ψ−Fi+1

)a
−
i+1

))
Notice that

XF =
k∏

i=0

LMFi+1\Fi
.

If pi : XF → LMFi+1\Fi
is the projection onto the ith component of this product, then

g∗F(ψ+
Fi

) = p∗i (ψ0) and g∗F(ψ−Fi+i
) = p∗i (ψ∞).

Thus, the degree in the right-hand side of (2.13) can be computed as a product of degrees

on each factor:

degXF

(
g∗F

( k∏
i=0

(ψ+
Fi

)a
+
i (ψ−Fi+1

)a
−
i+1

))
= degXF

( k∏
i=0

p∗i

(
ψ

a+
i−1

0 ψ
a−i∞

))

=
k∏

i=0

degLMFi+1\Fi

(
ψ

a+
i

0 ψ
a−i+1
∞

)
. �

Lastly, we simply need to know how to compute degrees of monomials in ψ0 and ψ∞. The

next result accomplishes that.

Lemma 2.14. If n > 1 and a and b are nonnegative integers, then

degLMn
(ψa

0ψ
b
∞) =

(
n− 1

a, b

)
,

where, for any nonnegative integers k, `,m,(
m

k, `

)
=


(
m
k

)
=
(
m
`

)
= m!

k!`!
if k + ` = m,

0 else.
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Proof sketch. To our knowledge, this exact result is not stated in the literature anywhere.

However, it is well known and follows, using the results of [AG08], from the same arguments

used to compute degrees of monomials of psi classes onM0,n (see [HKK+03, Section 25.2]).

In the specific setting of LMn, this result is given as Exercise 52 in [Cav16]. �

The combination of the previous three results tell us everything we need to know about

effectively computing degrees of products of boundary divisors, such as those that appear in

the right-hand side of (2.6). We illustrate such a computation in the next example.

Example 2.15. Let n = 7 and consider the sets

F1 = {1, 2}, F2 = {1, 2, 3, 4, 5}, and F3 = {1, 2, 3, 4, 5, 6}.

Let us compute degLM7
(D3

F1
D2

F2
DF3). By Corollary 2.11, we have

D3
F1
D2

F2
DF3 = DF1DF2DF3(−ψ−F1

− ψ+
F1

)2(−ψ−F2
− ψ+

F2
).

Expanding the polynomial, we obtain

−DF1DF2DF3

(
(ψ−F1

)2ψ−F2
+ 2ψ−F1

ψ+
F1
ψ−F2

+ (ψ+
F1

)2ψ−F2
+ (ψ−F1

)2ψ+
F2

+ 2ψ−F1
ψ+
F1
ψ+
F2

+ (ψ+
F1

)2ψ+
F2

)
.

Using Lemmas 2.12 and 2.14, we see that the degree of the first monomial is zero, because

the first term in the product of binomials is(
2− 0− 1

0, 2

)
=

(
1

0, 2

)
= 0.

By a similar argument, the degree is zero on all of the monomials except for the second one.

The degree of the second monomial is

deg
(
−DF1DF2DF32ψ−F1

ψ+
F1
ψ−F2

)
= −2

(
2− 0− 1

0, 1

)(
5− 2− 1

1, 1

)(
6− 5− 1

0, 0

)(
7− 6− 1

0, 0

)
= −2(1)(2)(1)(1) = −4.

Thus, we conclude that degLM7
(D3

F1
D2

F2
DF3) = −4.

Since our ultimate goal is to generalize psi classes to the combinatorial setting of matroids,

we present one final result, which characterizes the psi classes as linear combinations of

boundary divisors.

Lemma 2.16. For any subset F ⊆ [n] and any i ∈ [n],

ψ−F =
∑
∅(G([n]

i∈G

DG −
∑
∅(G([n]
G⊇F

DG and ψ+
F =

∑
∅(G([n]

i/∈G

DG −
∑
∅(G([n]
G⊆F

DG.

In particular, taking F = ∅ and F = [n], respectively, we obtain

ψ0 =
∑
∅(G([n]

i/∈G

DG and ψ∞ =
∑
∅(G([n]

i∈G

DG.
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Proof sketch. The formulas for ψ0 and ψ∞ follow from repeated application of the comparison

lemma:

f ∗i (ψ0) = ψ0 +D{i} and f ∗i (ψ∞) = ψ∞ +D{i}c ,

and the fact that ψ0 = ψ∞ = 0 ∈ A∗(LM{i}). See [AG08, Theorem 5.8] or [Cav16, Lemma

10] for a discussion of the comparison lemma in the setting of Losev-Manin spaces. The

formulas for ψ±F then follow from their definition in terms of forgetful maps along with the

observation that

r∗F (DG) =
∑
∅(G′([n]

G⊆G′⊆G∪Fc

DG′ . �

We now illustrate the utility of psi classes by showing how the results reviewed above lead

to new proofs of two previously-known formulas for volumes of generalized permutahedra.

2.4. Psi classes and Eur’s volume formula. Eur recently proved the following formula

for volumes of generalized permutahedra.

Theorem 2.17 ([Eur20] Proposition 4.2). If {xF ∈ Z | ∅ ( F ( [n]} is submodular, then

Vol(Πn(x)) =
1

(n− 1)!

∑
F1,...,Fk
d1,...,dk

(−1)n−k−1

(
n− 1

d1, . . . , dk

) k∏
i=1

(
di − 1

d̃i − |Fi|

)(
|Fi+1| − |Fi| − 1

d̃i − |Fi|

)
xdiFi

where the sum is over flags of subsets ∅ ( F1 ( · · · ( Fk ( Fk+1 = [n] and positive integers

d1, . . . , dk such that d1 + · · ·+ dk = n− 1, and the numbers d̃j are defined by

d̃j =

j∑
i=1

di.

In fact, Eur generalized and proved this formula in a more general matroid setting, which

we will discuss in the next section. For now, let us give a short proof of Theorem 2.17 using

psi classes.

Proof. Applying (2.6), we have

Vol(Πn(x)) =
1

(n− 1)!
deg

( ∑
∅(F([n]

xFDF

)n−1


=
1

(n− 1)!

∑
F1,...,Fk
d1,...,dk

(
n− 1

d1, . . . , dk

)
deg(Dd1

F1
. . . Ddk

Fk
)xd1

F1
. . . xdkFk

,

where the sum is over k-tuples of distinct proper subsets ∅ ( F1, . . . , Fk ( [n] and positive

integers d1, . . . , dk that sum to n− 1. Since DF1 · · ·DFk
= 0 when the indexing sets cannot

be rearranged into a flag, we can restrict the sum to be over all flags of subsets of the form
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F = (∅ ( F1 ( · · · ( Fk ( Fk+1 = [n]). For such a flag, we may apply Corollary 2.11 to

obtain

deg(Dd1
F1
. . . Ddk

Fk
) = deg

(
DF

k∏
i=1

(−ψ−Fi
− ψ+

Fi
)di−1

)
= deg

(
DF(−1)n−k−1

∑
a−i ,a+

i

k∏
i=1

(
di − 1

a−i , a
+
i

)
(ψ−Fi

)a
−
i (ψ+

Fi
)a

+
i

)

= (−1)n−k−1
∑
a−i ,a+

i

k∏
i=1

(
di − 1

a−i , a
+
i

)
deg

(
DF

k∏
i=1

(ψ−Fi
)a
−
i (ψ+

Fi
)a

+
i

)
.

If we now use Lemmas 2.12 and 2.14 to compute the degree, we obtain

deg(Dd1
F1
. . . Ddk

Fk
) = (−1)n−k−1

∑
a−i ,a+

i

k∏
i=1

(
di − 1

a−i , a
+
i

) k∏
i=0

(
|Fi+1| − |Fi| − 1.

a+
i , a

−
i+1

)
,

where a+
0 = a−k+1 = 0. In order for the two sets of binomials to be nonzero, there are two

systems of equations that a−i and a+
i must satisfy:

a−i + a+
i = di − 1 for all i = 1, . . . , k

and

a+
i + a−i+1 = |Fi+1| − |Fi| − 1 for all i = 0, . . . , k.

Along with the conditions a+
0 = a−k+1 = 0, there is a unique solution given by

a+
i = d̃i − |Fi| for all i = 1, . . . , k.

It follows that

deg(Dd1
F1
. . . Ddk

Fk
) = (−1)n−k−1

k∏
i=1

(
di − 1

d̃i − |Fi|

) k∏
i=0

(
|Fi+1| − |Fi| − 1.

d̃i − |Fi|

)
Eur’s formula then follows by noticing that the i = 0 term in the second product is one. �

2.5. Psi classes and Postnikov’s volume formula. A different formula for the volumes

of generalized permutahedra had previous been proved by Postnikov [Pos09]. In order to set

up Postnikov’s formula, we require a little more notation.

For any nonempty subset F ⊆ [n], define a corresponding simplex

∆F = Conv{ei : i ∈ F} ⊆ Rn.

If yF is a nonnegative real number for every nonempty subset F ⊆ [n], then Postnikov

observed ([Pos09, Proposition 6.2]) that the polytope

Π∆
n (y) =

∑
∅(F⊆[n]

yF∆F ,
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where the sum denotes Minkowski summation, consists of all points (t1, . . . , tn) ∈ Rn such

that:

t1 + · · ·+ tn = z[n] and
∑
i∈F

ti ≥ zF for all ∅ ( F ( [n].

where zF and yF are related by the invertible linear transformation

zF =
∑
G⊆F

yG.

Under the transformation (t1, . . . , tn) 7→ (z[n] − t1,−t2, . . . ,−tn), notice that Π∆
n (y) is iden-

tified with Πn(x) (introduced in Equation (2.5)), where for any proper subset ∅ ( F ( [n],

the variables xF and yF are related by

xF =


−zF = −

∑
G⊆F

yG if 1 /∈ F,

z[n] − zF =
∑
G⊆[n]

yG −
∑
G⊆F

yG if 1 ∈ F.

In addition, it can be checked that, when yF ≥ 0 for all nonempty subsets F , the correspond-

ing numbers xF are submodular, in the sense of (2.4), meaning that the intersection-theoretic

formula (2.6) is valid.

Postnikov proved the following formula for the volume of Π∆
n (y), which, by polynomiality

of volumes, determines the volume for all generalized permutahedra (this last statement is

carefully worked out by Ardila, Benedetti, and Doker [ABD10]).

Theorem 2.18 ([Pos09] Corollary 9.4). If yG ≥ 0 for all nonempty subsets G ⊆ [n], then

Vol(Π∆
n (y)) =

1

(n− 1)!

∑
G1,...,Gn−1

yG1 · · · yGn−1 ,

where the sum is over collections of nonempty subsets G1, . . . , Gn−1 ⊆ [n] such that, for any

0 < i1 < · · · < ik < n, we have

|Gi1 ∪ · · · ∪Gik | > k.

Proof. Let us prove this formula using psi classes. By Equation (2.6), we have

Vol(Π∆
n (y)) =

1

(n− 1)!
deg

( ∑
∅(F([n]

xFDF

)n−1
 .
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Applying the change of variables above, notice that∑
∅(F([n]

xFDF = −
∑
∅(F([n]

1/∈F

(∑
G⊆F

yG

)
DF +

∑
∅(F([n]

1∈F

( ∑
G⊆[n]

yG −
∑
G⊆F

yG

)
DF

=
∑
∅(G⊆[n]

yG

(
−
∑
F⊇G
1/∈F

DF +
∑
F⊆[n]
1∈F

DF −
∑
F⊇G
1∈F

DF

)
=

∑
∅(G⊆[n]

yG

( ∑
F⊆[n]
1∈F

DF −
∑
F⊇G

DF

)
=

∑
∅(G⊆[n]

yGψ
−
G,

where the last equality follows from Lemma 2.16. Thus, Postnikov’s formula can be reinter-

preted as an intersection-theoretic property of psi classes. In particular, Postnikov’s formula

is equivalent to the statement that

(2.19) deg(ψ−G1
. . . ψ−Gn−1

) =

1 if 0 < i1 < · · · < ik < n =⇒ |Gi1 ∪ · · · ∪Gik | > k,

0 else.

To prove (2.19), we start by proving the second case. Suppose that there exists some

0 < i1 < · · · < ik < n such that

G = Gi1 ∪ · · · ∪Gik

has at most k elements. By virtue of Equation (2.8), notice that

ψ−Gi1
. . . ψ−Gik

= r∗Gi1
(ψ∞) · · · r∗Gik

(ψ∞)

= r∗G(r∗Gi1
(ψ∞) · · · r∗Gik

(ψ∞)).

Notice that the argument of r∗G in the final expression is an element of Ak(LMG), which is

zero because dim(LMG) = |G| − 1, which we have assume to be strictly less than k.

Next, to prove the first case of (2.19), suppose that 0 < i1 < · · · < ik < n implies

|Gi1 ∪ · · · ∪Gik | > k. Applying Lemma 2.16, notice that

ψ−G1
· · ·ψ−Gn−1

=
(
ψ∞ −

∑
F⊇Gi1

DF

)
· · ·
(
ψ∞ −

∑
F⊇Gin−1

DF

)

=
n−1∑
k=0

ψn−1−k
∞ (−1)k

∑
0<i1<···<ik<n

Fj⊇Gij

DF1 · · ·DFk
.

We claim that the only nonzero term in the sum is the one indexed by k = 0. To verify

this, notice that multiplying DF1 · · ·DFk
will either be zero or a multiple of DF for some flag

F . In the latter case, notice that the largest set in the flag F must be F = F1 ∪ · · · ∪ Fk,
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which contains Gi1 ∪ · · · ∪Gik . This implies that F has more than k elements, showing that

n− |F | − 1 < n− k − 1. It then follows that

deg(ψn−k−1
∞ DF1 . . . DFk

) = 0

because, using Lemmas 2.12, it contains a factor of

degLM[n]\F

(
ψa

0ψ
n−k−1
∞

)
= 0.

Thus, the only nonzero term in the sum is the one indexed by k = 0, in which case we

compute

deg(ψn−1
∞ ) = 1. �

3. Matroid psi classes

We now describe a generalization of psi classes from Losev-Manin spaces to the matroid

setting. We then use matroid psi classes to give new proofs of formulas for volume polyno-

mials of matroids, and we use them to give a constructive proof of Poincaré duality.

3.1. Matroid basics. Before discussing matroid psi classes, we begin by introducing the

relevant matroid background and terminology.

3.1.1. Definitions. A matroid M = (E,L) consists of a finite set E, called the ground set, and

a collection of subsets L = LM ⊆ 2E, called flats, which satisfy the following two conditions:

(1) if F1, F2 are flats, then F1 ∩ F2 is a flat, and

(2) if F is a flat, then every element of E \ F is contained in exactly one flat that is

minimal among the flats that strictly contain F .

Given a matroid M = (E,L), the set L is partially ordered by set inclusion. Furthermore,

given any subset S ⊆ E, it follows from Property (1) that there is a minimal flat containing

S, called the closure of S and denoted cl(S) ∈ L. Defining the join (∨) of two flats to be

the closure of their union and the meet (∧) of two flats to be their intersection, it follows

from the definitions that the flats L form a lattice, called the lattice of flats of M.

A subset I ⊆ E is called independent if, for any I1 ( I2 ⊆ I, we have cl(I1) ( cl(I2). The

rank of a subset S ⊆ E, denoted rk(S), is the size of its largest independent subset. The

rank of M is defined as the rank of E. An alternative characterization of the rank of flats is

given by lengths of flags. In particular, the number of nonempty flats in a flag

F = (∅ ( F1 ( F2 ( · · · ( F`)

is called the length of the flag, denote `(F), and it can be checked from the above definitions

that every maximal flag of flats contained in a flat F has length equal to rk(F ).
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There are several important types of elements in a matroid M = (E,L). A loop of M is

an element e ∈ E such that rk({e}) = 0, and a coloop of M is an element e ∈ E such that

{e}c ∈ L. Two elements e, f ∈ E are said to be parallel if rk({e}) = rk({f}) = rk({e, f}).
A matroid without loops is called loopless and a matroid without loops or parallel elements

is called simple. In other words, a loopless matroid is one for which the empty set is a flat,

and a simple matroid is one for which, in addition, each rank-one flat is a singleton.

3.1.2. Matroid constructions. Given a matroid M = (E,L) and a subset S ⊆ E, there are

several important ways to construct related matroids. The restriction of M to S, denoted

M|S, is the matroid on ground set S with flats

LM|S = {F ∩ S | F ∈ LM}.

The contraction of M by S, denoted M/S is the matroid on ground set E \ S with flats

LM/S = {F \ S | F ∈ LM and S ⊆ F}.

Lastly, the deletion of M by S, denoted M \ S, is the restriction of M to E \ S:

M \ S = M|E\S.

If F,G ∈ LM, then we introduce the notation M[F,G] = (M|G)/F . By definition, M[F,G]

is the matroid of rank rk(G)− rk(F ) on the ground set G \ F with flats

LM[F,G] = {H \ F | H ∈ LM, F ⊆ H ⊆ G}.

Notice that the flats of M[F,G] are in natural inclusion-preserving bijection with the flats of

M that are weakly contained between F and G, which comprise the closed interval [F,G].

We use the shorthand L[F,G] for the flats of M[F,G] and we denote the proper flats by

L(F,G).

Given a matroid M = (E,L), the simplificiation of M, denoted M, is the matroid obtained

by choosing a distinguished element from each rank-one flat and deleting all other elements

of E. The simplification is unique up to relabeling the elements of the ground set, so we do

not stress the choice of distinguished elements. Notice that the lattice of flats of M and M

are naturally isomorphic.

3.1.3. Characteristic polynomials. Given a matroid M = (E,L), the characteristic polyno-

mial of M is defined by

χM(λ) =
∑
S⊆E

(−1)|S|λrk(E)−rk(S).

From this definition, it is an excellent exercise to check the following three properties.

(χ1) If M has a loop, then χM(λ) = 0.

(χ2) If e is a coloop of M, then χM(λ) = (λ− 1)χM\{e}(λ).
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(χ3) If e is neither a loop nor a coloop, then

χM(λ) = χM\{e}(λ)− χM/{e}(λ)

Property (χ3) is called the deletion-contraction property, and it generalizes the property

of the same name for chromatic polynomials of graphs. Notice that Properties (χ1)–(χ3)

determine χM(λ) recursively on the size of the ground set. In addition, it follows from (χ1)

and (χ3) that χM(λ) = χM(λ) for any loopless matroid M.

It also follows from Properties (χ1)–(χ3) that, for any nonempty matroid M, the charac-

teristic polynomial χM(λ) is divisible by λ − 1. The reduced characteristic polynomial of a

nonempty matroid M is define by

χM(λ) =
χM(λ)

λ− 1
.

Naturally, the reduced characteristic polynomial also satisfies Properties (χ1)–(χ3).

3.1.4. Chow rings. Let M = (E,L) be a loopless matroid and denote the collection of proper

flats of M by L∗ = L \ {∅, E}. The matroid Chow ring is defined by

A∗(M) =
Z
[
XF | F ∈ L∗

]
I + J

,

where

I =
〈
XF1XF2 | F1 and F2 are incomparable

〉
and

J =

〈∑
e∈F

XF −
∑
f∈F

XF

∣∣∣ e, f ∈ E〉.
We denote the generators of the matroid Chow ring by DF = [XF ] ∈ A1(M). Notice that

the Chow ring only depends on the lattice of flats, which implies that A∗(M) = A∗(M).

Matroid Chow rings were first defined by Feichtner and Yuzvinsky [FY04] (in the more

general setting of atomic lattices). The presentation given by Feichtner and Yuzvinsky

slightly differs from the one give above in that it includes an additional generatorDE ∈ A1(M)

and an additional relation

DE = −
∑
e∈F
F∈L∗

DF ,

where e is any element of E. An important result of Feichtner and Yuzvinsky is the derivation

of an integral basis for A∗(M), which we recall here.

Theorem 3.1. [FY04, Corollary 1] If M is a loopless matroid, then a Z-basis of A∗(M) is

given by all monomials of the form

Dd1
F1
· · ·Dd`

F`

with ∅ = F0 ( F1 ( · · · ( Fk ⊆ E and di < rk(Fi)− rk(Fi−1) for all i = 1, . . . , `.
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Suppose that rk(M) = r + 1. It follows from Theorem 3.1 that Ak(M) = 0 for any k > r,

and that Ar(M) is one-dimensional, generated by Dr
E. In particular, we can define a linear

isomorphism

deg : Ar(M)→ Z

by setting deg
(
(−DE)r

)
= 1. The class −DE played a central role in the work of Adiprasito,

Huh, and Katz, where it was denoted as α. In particular, Proposition 5.8 of [AHK18] implies

that

DF1 · · ·DFr = (−DE)r

for any complete flag ∅ ( F1 ( · · · ( Fr ( E. In other words, given any class γ ∈ Ar(M),

we can compute deg(γ) as follows.

(1) Use the relations in I and J to find a linear combination

γ =
∑
F

aF(γ)DF

where the sum is over complete flags F = (∅ ( F1 ( · · · ( Fr ( E), the coefficients

aF(γ) are integers, and DF = DF1 · · ·DFr .

(2) Compute

deg(γ) =
∑
F

aF(γ).

The aforementioned result of Adiprasito, Huh, and Katz implies that the sum of the coeffi-

cients in (2) is independent of the choice of linear combination in (1).

Finally, in closing this section, we note that for the specific matroid M = ([n], 2E), the

matroid Chow ring specializes to the Chow ring of Losev-Manin space A∗(LMn) and the

matroid degree map is identified with the algebro-geometric degree map. This observation

motivates extending tools from A∗(LMn) to Chow rings of arbitrary matroids.

3.2. Matroid psi classes. Throughout this subsection, we let M = (E,L) denote a loopless

matroid of rank r + 1. We begin by using the characterization of Lemma 2.16 to introduce

a generalization of psi classes to the matroid setting.

Definition 3.2. For any F ∈ L and e ∈ E, define classes ψ±F ∈ A1(M) by

ψ−F =
∑
G∈L∗
e∈G

DG −
∑
G∈L∗
G⊇F

DG and ψ+
F =

∑
G∈L∗
e/∈G

DG −
∑
G∈L∗
G⊆F

DG.

In the special case that F = ∅ or F = E, define

ψ0 = ψ+
∅ =

∑
G∈L∗
e/∈G

DG and ψ∞ = ψ−E =
∑
G∈L∗
e∈G

DG.
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Notice that ψ∞ = −DE, which, as we mentioned above, was also denoted as α in [AHK18],

and we mention that ψ0 also appeared in [AHK18], where it was denoted β. We already

commented above on why the class ψ∞ is independent of the choice of e ∈ E, and this also

implies that ψ−F is independent of this choice for any flat F . It is a short exercise to verify

that ψ+
F is also independent of the choice of e ∈ E.

Equipped with a general definition of matroid psi classes, we now aim to generalize the ba-

sic results from the setting of Losev-Manin spaces. We start with the following generalization

of Lemma 2.10.

Proposition 3.3. For any F ∈ L∗, we have

D2
F = DF (−ψ−F − ψ

+
F ) ∈ A2(M).

Proof. Choose e ∈ E and write

DF = DF +
∑
e∈G

DG −
∑
e∈G

DG

= DF +
∑
G

DG −
∑
e/∈G

DG −
∑
e∈G

DG.(3.4)

When we multiply the first two terms of (3.4) by DF and use the fact that DFDG = 0 when

F and G are incomparable (by definition of I), we have

DF

(
DF +

∑
G

DG

)
= DF

(∑
G⊇F

DG +
∑
G⊆F

DG

)
.

Including the final two terms of (3.4), we conclude that

D2
F = DF

(
−
(∑

e∈G

DG −
∑
G⊇F

DG

)
−
(∑

e/∈G

DG −
∑
G⊆F

DG

))
= DF (−ψ−F − ψ

+
F ). �

Repeatedly applying Proposition 3.3 results in the following corollary.

Corollary 3.5. If F1, . . . , Fk ∈ L∗ are distinct proper flats and d1, . . . , dk are positive inte-

gers, then

Dd1
F1
· · ·Ddk

Fk
=


DF

k∏
i=1

(−ψ−Fi
− ψ+

Fi
)di−1

if, after possibly relabeling, F1, . . . , Fk form a

flag F = (∅ ( F1 ( · · · ( Fk ( E),

0 if Fi and Fj are incomparable for some i, j.

Now that we know how to multiply arbitrary products of generators in A∗(M), it remains to

compute the degree of the resulting expression. The first step is the next result—generalizing

Lemma 2.12—which reduces the computation to degrees of monomials in ψ0 and ψ∞.
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Proposition 3.6. If F = (∅ = F0 ( F1 ( · · · ( Fk ( Fk+1 = E) is a flag of flats and

a+
0 , a

−
1 , a

+
1 , . . . , a

−
k , a

+
k , a

−
k+1 are nonnegative integers, then

degM

(
DF

k∏
i=0

(ψ+
Fi

)a
+
i (ψ−Fi+1

)a
−
i+1

)
=

k∏
i=0

degM[Fi,Fi+1]

(
ψ

a+
i

0 ψ
a−i+1
∞

)
.

Proof. For each i = 0, . . . , k, define an algebra homomorphism from the polynomial ring

Z[XG | G ∈ L(Fi, Fi+1)] to the matroid Chow ring of M as follows:

ϕi : Z[XG | G ∈ L(Fi, Fi+1)]→ A∗(M)

XG 7→ DG∪Fi
.

Unfortunately, the ideal J is not in the kernel of ϕi, so ϕi does not descend to a homomor-

phism from the Chow ring A∗(M[Fi, Fi+1]). Let us modify ϕi by multiplying by DF :

ϕ̂i : Z[XG | G ∈ F(Fi, Fi+1)]→ A∗(M)

γ 7→ DFϕi(γ).

Notice that ϕ̂i is linear, but not multiplicative. We claim that the linear map ϕ̂i descends

to the Chow ring A∗(M[Fi, Fi+1]). To prove this, it suffices to check that the generators of

both I and J are contained in the kernel of ϕ̂i.

First, notice that if ∅ ( G1, G2 ( Fi+1 \Fi are incomparable, then G1∪Fi and G2∪Fi are

also incomparable. This implies that ϕ̂i(XG1XG2) = 0 for incomparable G1, G2 ∈ L(Fi, Fi+1),

proving that ϕ̂i descends to the quotient by I. Secondly, if e, f ∈ Fi+1 \ Fi, then

ϕ̂i

( ∑
G∈L(Fi,Fi+1)

e∈G

XG −
∑

G∈L(Fi,Fi+1)

f∈G

XG

)
= DF

( ∑
Fi(H(Fi+1

e∈H

DH −
∑

Fi(H(Fi+1
f∈H

DH

)
= DF

( ∑
H∈L∗
e∈H

DH −
∑
H∈L∗
f∈H

DH

)
= 0.

The second equality above uses the following observations.

(1) The only flats H ∈ L∗ that survive multiplication by DF are those that are compa-

rable with both Fi and Fi+1.

(2) If e ∈ H or f ∈ H, then the only way that H is comparable with Fi is if H ) Fi.

(3) If H ⊇ Fi+1, then e, f ∈ H, so the terms cancel in the difference in the final formula.

Thus, ϕ̂i descends to the quotient by I + J , and by a slight abuse of notation, we use the

same notation to represent the induced linear map: ϕ̂i : A∗(M[Fi, Fi+1])→ A∗(M).
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Using multi-linearity, we combine the linear maps ϕ̂i to obtain a linear map

ϕF :
k⊗

i=0

A∗(M[Fi, Fi+1])→ A∗(M)

γ0 ⊗ · · · ⊗ γk 7→ DF

k∏
i=0

ϕi(γi)

Notice that, for any e ∈ Fi+1 \ Fi, we have

ϕ̂i(ψ0) = ϕ̂i

( ∑
G∈L(Fi,Fi+1)

e/∈G

DG

)
= DF

∑
Fi(H(Fi+1

e/∈H

DH

= DF

(∑
e/∈H

DH −
∑
H⊆Fi

DH

)
= DFψ

+
Fi
.

Similarly, it can be checked that ϕ̂i(ψ∞) = DFψ
−
Fi+1

. It then follows from the definition of

ϕF that

ϕF

( k⊗
i=0

ψ
a+
i

0 ψ
a−i+1
∞

)
= DF

k∏
i=0

(ψ+
Fi

)a
+
i (ψ−Fi+1

)a
−
i+1 .

Notice that, to compute degM[Fi,Fi+1]

(
ψ

a+
i

0 ψ
a−i+1
∞
)
, we can use the relations in I and J to

find an express ψ
a+
i

0 ψ
a−i+1
∞ as a linear combination of the form

(3.7) ψ
a+
i

0 ψ
a−i+1
∞ =

∑
complete flags F(i)

in M[Fi,Fi+1]

aF(i)DF(i) ,

and then compute

degM[Fi,Fi+1](ψ
a+
i

0 ψ
a−i+1
∞ ) =

∑
F(i)

aF(i) .

Making one choice of expression (3.7) for each i = 0, . . . , k, we can apply ϕF to obtain

ϕF

( k⊗
i=0

ψ
a+
i

0 ψ
a−i+1
∞

)
= ϕF

( k⊗
i=0

∑
F(i)

aF(i)DF(i)

)
= DF

∑
F(0),...,F(k)

aF(0) · · · aF(k)DF(1)∪F0
· · ·DF(k)∪Fk

,(3.8)

where, for any flag F (i) = (F
(i)
1 ( · · · ( F

(i)
ki

) of flats in M[Fi, Fi+1], we define

F (i) ∪ Fi = (F
(i)
1 ∪ Fi ( · · · ( F

(i)
ki
∪ Fi),

which is a flag of flats in M. Since each F (i) is a complete flag of flats in M[Fi, Fi+1], it follows

that the sets in

F ∪
k⋃

i=0

(F (i) ∪ Fi)
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form a complete flag of flats in M. Therefore, the products of generators in (3.8) are indexed

by complete flags in M, and we conclude that

degM

(
DF

k∏
i=0

(ψ+
Fi

)a
+
i (ψ−Fi+1

)a
−
i+1

)
=

∑
F(0),...,F(k)

aF(0) · · · aF(k)

=
k∏

i=0

∑
F(i)

aF(i)

=
k∏

i=0

degM[Fi,Fi+1](ψ
a+
i

0 ψ
a−i+1
∞ ). �

It now remains to compute degrees of monomials in ψ0 and ψ∞. The key result in this

regard—which is listed as Proposition 3.11 below—relates these degree computations to

the coefficients of reduced characteristic polynomials. This result was previously proved by

Adiprasito, Huh, and Katz [AHK18, Proposition 9.5], but we find it instructive to give an

alternative proof, motivated by the proof of Lemma 2.14, which uses properties of psi classes.

We begin by introducing an analogue of the pullbacks of the forgetful maps.

Proposition 3.9. If S ⊆ E is any subset, then there is a well-defined homomorphism

ρS : A∗(M|S)→ A∗(M) defined on generators by

ρS(DG) =
∑
G′∈L∗

G⊆G′⊆G∪Sc

DG′ .

In addition, if S1 ⊆ S2 are nonempty flats, then ρS1 = ρS1 ◦ ρS2.

Notice that the sum in the definition of ρS is over all flats of M that are obtained from

G ( S by adding elements of Sc. In particular, the set G is determined by any of the G′ via

G = G′ ∩ S. In the special case of M = ([n], 2[n]),we have ρS = r∗S.

Proof of Proposition 3.10. Define the homomorphism

ρS : Z[XG | G ∈ L∗M|S ]→ A∗(M)

XG 7→
∑
G′∈L∗

G⊆G′⊆G∪Sc

DG′ .

To show that ρS descends to a homomorphism from the Chow ring, we must verify that I
and J are contained in the kernel of ρS. First, suppose that G1 and G2 are incomparable

flats of M|S. Then there exists e, f ∈ S such that e ∈ G1 \G2 and f ∈ G2 \G1. Notice that

every term in the sum defining ρS(XG1) is indexed by a set that contains e but not f and

every term in the sum defining ρS(XG2) is indexed by a set that contains f but not e. It

follows that

ρS(XG1XG2) = ρS(XG1)ρS(XG2) = 0 ∈ A∗(M),
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showing that ρS descends to the quotient by I. Next, to show that ρS descends to the

quotient by J , suppose that e, f ∈ S. Then

ρS

(∑
e∈G

XG −
∑
f∈G

XG

)
=

∑
e∈G⊆G′⊆G∪Sc

DG′ −
∑

f∈G⊆G′⊆G∪Sc

DG′

=
∑
e∈G′
G′ 6⊇S

DG′ −
∑
f∈G′
G′ 6⊇S

DG′

=
∑
e∈G′

DG′ −
∑
f∈G′

DG′ = 0.

The second equality above is implied by the following observations.

(1) We are assuming that ∅ ( G ( S. Since G = G′ ∩ S, this condition is equivalent to

∅ ( G′ ∩ S ( S. Since G′ ∩ S is nonempty (it always contains e in the first sum and

f in the second), this is equivalent to G′ 6⊇ S.

(2) Since G = G′ ∩ S and e ∈ S, it follows that

e ∈ G⇐⇒ e ∈ (G′ ∩ S)⇐⇒ e ∈ G′.

The third equality above is implied by the fact that every set G′ ⊇ S appears in both sums in

the final expression, so these terms cancel. This completes the proof that ρS descends to the

quotient by J . Thus, ϕS descends to the quotient by I+J and induces the homomorphism

whose existence is asserted in the proposition.

To finish the proof of the proposition, it remains to check that ρS1 = ρS1 ◦ρS2 . Notice that

ρS1 ◦ ρS2(DG) =
∑

G⊆G′⊆G∪Sc
2

G′⊆G′′⊆G′∪Sc
1

DG′′ =
∑

G⊆G′′⊆G∪Sc
1

DG′′ = ρS1(DG),

where the second equality uses that G′ is uniquely determined from G′′ via G′ = G′′∩S1. �

The next result describes how ψ0 and ψ∞ transform under the homomorphisms ρS de-

scribed in Proposition 3.10. The second statement of the result gives an alternative charac-

terization of ψ±F that generalizing Definition 2.9.

Proposition 3.10. For any subset S ⊆ E, we have

ρS(ψ0) = ψ0 −
∑
G⊆Sc

DG and ρS(ψ∞) = ψ∞ −
∑
G⊇S

DG.

In particular, if F ∈ L∗ is a proper flat, then

ψ−F = ρF (ψ∞) and ψ+
F = ρF c(ψ0).



26 J. DASTIDAR AND D. ROSS

Proof. For ψ0, we compute

ρS(ψ0) = ρS

(∑
e/∈G

DG

)
=

∑
e/∈G⊆G′⊆G∪Sc

DG′

Arguing as in the proof of the previous proposition, the index in the last sum can be replaced

with e /∈ G′ and G′ 6⊆ Sc, proving that

ρS(ψ0) =
∑
e/∈G′

DG′ −
∑

G′⊆Sc

DG′ .

The argument for ρS(ψ∞) is similar. �

We now come to the generalization of Lemma 2.14 to the matroid setting. As mentioned

above, this result was previously proved by Huh and Katz [HK12, Proposition 5.2], though

our formulation is more closely aligned with the presentation of Adiprasito, Huh, and Katz

[AHK18, Proposition 9.5]. Our proof relies on the recursive nature of the characteristic

polynomial, and we note that this proof technique, using the deletion-contraction recursion,

also appears in a different, more general form in recent work of Berget, Eur, Spink, and

Tseng [BEST21, Theorem A].

Proposition 3.11. [AHK18, Proposition 9.5] For nonnegative integers a, b, we have

degM(ψa
0ψ

b
∞) =

µa(M) if a+ b = r,

0 else,

where µa(M) is the a-th unsigned coefficient of the reduced characteristic polynomial of M:

χM(λ) =
r∑

a=0

(−1)aµa(M)λr−a.

Before proving Proposition 3.11, we briefly justify that it does, indeed, generalize Lemma 2.14.

Suppose that M = ([n], 2[n]) so that A∗(M) = A∗(LMn). Then, for any subset S ⊆ [n], we

have rk(S) = |S|, and it follows that

χM(λ) =
∑
S⊆[n]

(−1)|S|λn−|S| =
n∑

k=0

(−1)k
(
n

k

)
λn−k = (λ− 1)n.

Therefore,

χM(λ) = (λ− 1)n−1

and we conclude that µa(M) =
(
n−1
a

)
, as expected.
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Proof of Proposition 3.11. We prove the proposition by induction on |E|. If |E| = 1, then

χM(λ) = 1 and µ0(M) = 1, so the base case follows from the fact that A∗(M) = A0(M) = Z
and deg(ψ0

0ψ
0
∞) = 1.

We now turn to the induction step. Since A∗(M) = A∗(M), it suffices to assume throughout

the induction step that M is simple. First suppose that e ∈ E is not a coloop. This implies

that {e}c is not contained in any proper flats of M, and it then follows from Proposition 3.10

that

ρM\{e}(ψ∞) = ψ∞.

In particular, using that rk(M\{e}) = rk(M) = r+ 1 and that the degree map is determined

by deg(ψr
∞) = 1, this implies that

deg(ρM\{e}(γ)) = deg(γ) for any γ ∈ A∗(M \ {e}).

Using our assumption that M is simple, we have that {e} ∈ L, and it then follows from

Proposition 3.10 that

ρM\{e}(ψ0) = ψ0 −D{e}.

Therefore, if a+ b = r, then

degM\{e}(ψ
a
0ψ

b
∞) = degM

(
(ψ0 −D{e})aψb

∞
)

= degM(ψa
0ψ

b
∞) + (−1)a degM(Da

{e}ψ
b
∞)

= degM(ψa
0ψ

b
∞)− degM/{e}(ψ

a−1
0 ψb

∞),

where the second equality follows from noting that we can write ψ0 =
∑

e/∈F DF , in which

case it follows ψ0D{e} = 0, and the third equality follows from Proposition 3.6. In the

case where a = 0, the second term in the final expression is equal to zero. The induction

hypothesis then implies that

degM(ψa
0ψ

b
∞) = µa(M \ {e}) + µa−1(M/{e}) = µa(M),

where the final equality is an application of Property (χ3) for χM(λ).

Next, suppose that e ∈ E is a coloop. Since e is a coloop and M is simple, both {e} and

{e}c are flats of M. It follows from Proposition 3.10 that

ρM\{e}(ψ0) = ψ0 −D{e} and ρM\{e}(ψ∞) = ψ∞ −D{e}c .

For any positive integer a, we have

ψa
0 = (ρM\{e}(ψ0) +D{e})

a

= ρM\{e}(ψ
a
0) +

a∑
k=1

(
a

k

)
Dk
{e}(−D{e})a−k

= ρM\{e}(ψ
a
0)− (−D{e})a,
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where the second equality uses the fact that ψ0D{e} = 0 and the third equality uses that∑a
k=1

(
a
k

)
(−1)a−k = (−1)a−1. Similarly,

ψb
∞ = ρM\{e}(ψ

b
0)− (−D{e}c)b.

Thus, if a+ b = r, we compute that

ψa
0ψ

b
∞ = ρM\{e}(ψ

a
0ψ

b
∞)− ρM\{e}(ψa

0)(−D{e}c)b − (−D{e})aρM\{e}(ψb
∞) + (−D{e})a(−D{e}c)b

= −ρM\{e}(ψa
0)(−D{e}c)b − (−D{e})aρM\{e}(ψb

∞)

= D{e}cψ
a
0ψ

b−1
{e}c +D{e}ψ

a−1
{e} ψ

b
∞

where the second equality follows from observing that rk(M \ {e}) = r and D{e}D{e}c = 0,

and the third equality follows from the facts that D{e}ψ0 = D{e}cψ∞ = 0 and Corollary 3.5.

As before, terms with negative exponents are equal to zero. Computing degrees via Propo-

sition 3.6, we then see that

degM(ψa
0ψ

b
∞) = degM\{e}(ψ

a
0ψ

b−1
∞ ) + degM/{e}(ψ

a−1
0 ψb

∞).

Since e is a coloop, it follows that M \ {e} = M/{e}, because every flat not containing e

remains a flat when you add e to it. Therefore, applying the induction hypothesis, we have

degM(ψa
0ψ

b
∞) = µa(M \ {e}) + µa−1(M \ {e}) = µa(M),

where the final equality is an application of Property (χ2) for χM(λ). This completes the

induction step, and finishes the proof. �

3.3. Volume polynomials. In this subsection, we illustrate the utility of psi classes by

using them to reprove the main result in [Eur20] and one of the main results in [BES20],

both of which give an explicit formula for the volume polynomials of matroids. Given our

parallel developments, the arguments in this setting are essentially verbatim generalizations

of the arguments made in the setting of generalized permutahedra and Losev-Manin spaces.

Let M = (E,L) be a loopless matroid of rank r + 1. The volume polynomial of A∗(M) is

the function

VolM : A1(M)→ Z

D 7→ degM(Dr).

Given a spanning set of generators B = (B1, . . . , Bm) for A1(M), the volume polynomial can

be written explicitly as a homogeneous polynomial of degree r:

VolM,B(x1, . . . , xm) = degM

(( m∑
i=1

xiBi

)r)
∈ Z[x1, . . . , xm].
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In fact, given that A∗(M) satisfies Poincaré duality (discussed in the next subsection), it

follows from Lemma 13.4.7 in [CLS11] that the volume polynomial associated to any gen-

erating set determines a presentation for the Chow ring A∗(M). Thus, it follows that the

matroid Chow ring is determined from computations of the form

degM(Bdm
1 · · ·Bdm

m ),

where d1 + · · · + dm = r. The main result in [Eur20] is the computation of these degrees

for the set of generators (DF | F ∈ L∗), and one of the main results in [BES20] is the

computations of these degrees for the set of generators (ψ−F | ∅ 6= F ∈ L). We note that

the authors of [BES20] stated their result in terms of classes that they denoted hF , but it

follows from the definitions that hF = ψ−F . We now recover both of these computations using

properties of psi classes.

The main result in [Eur20], which implies Theorem 2.17, is the following.

Theorem 3.12. [Eur20, Theorem 3.2] If F = (∅ ( F1 ( . . . Fk ( E) is a flag of flats in M

and d1, . . . , dk are positive integers that sum to r. Then

degM(Dd1
F1
· · ·Ddk

Fk
) = (−1)r−1

k∏
i=1

(
di − 1

d̃i − rk(Fi)

)
µd̃i−rk(Fi)(M[Fi, Fi+1]),

with

d̃j =

j∑
i=1

di.

Proof. To prove this using psi classes, start by applying Corollary 3.5:

Dd1
1 · · ·D

dk
k = DF

k∏
i=1

(−ψ−Fi
− ψ+

Fi
)di−1

= DF(−1)r−k
∑
a−i ,a+

i

k∏
i=1

(
di − 1

a−i , a
+
i

)
(ψ−Fi

)a
−
i (ψ+

Fi
)a

+
i

= DF(−1)r−k
di−1∑
a+
i =0

k∏
i=1

(
di − 1

a+
i

)
(ψ−Fi

)di−a
+
i −1(ψ+

Fi
)a

+
i

= DF(−1)r−k
di−1∑
a+
i =0

k∏
i=1

(
di − 1

a+
i

) k∏
i=0

(ψ+
Fi

)a
+
i (ψ−Fi+1

)di+1−a+
i+1−1,

where, by convention, we define a+
0 = dk+1 − a+

k+1 − 1 = 0. By Proposition 3.11, the degree

of each summand in this class is zero unless

a+
i + di+1 − a+

i+1 − 1 = rk(Fi+1)− rk(Fi)− 1.
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These conditions have a unique solution with

a+
i = d̃i − rk(Fi).

Thus, computing the degrees by Proposition 3.11, we have

degM(Dd1
F1
· · ·Ddk

Fk
) = (−1)r−k

k∏
i=1

(
di − 1

d̃i − rk(Fi)

) k∏
i=0

µd̃i−rk(Fi)(M[Fi, Fi+1]).

Theorem 3.12 follows by noting that µ0(M) = 1 for any matroid M, so the i = 0 term of the

second product is 1. �

One of the main results of [BES20], which implies Theorem 2.18, is the following.

Theorem 3.13. [BES20, Theorem 5.2.4] If F1, . . . , Fr are nonempty flats of M, then

degM(ψ−F1
. . . ψ−Fr

) =

1 if 0 < i1 < · · · < ik ≤ r =⇒ rk(Fi1 ∪ · · · ∪ Fik) > k,

0 else.

Proof. To prove this result using properties of psi classes, first assume that there exists some

0 < i1 < · · · < ik ≤ r such that rk(Fi1 ∪ · · · ∪ Fik) ≤ k. Denote S = Fi1 ∪ · · · ∪ Fik . By

Proposition 3.10, we compute that

ψ−Fi1
· · ·ψ−Fik

= ρFi1
(ψ∞) · · · ρFik

(ψ∞) = ρS
(
ρFi1

(ψ∞) · · · ρFik
(ψ∞)

)
.

The input of ρS is a class in Ak(M|S), which is zero because

rk(M |S) = rk(S) ≤ k.

Thus,

degM(ψ−F1
. . . ψ−Fr

) = deg(0) = 0.

Next, suppose that 0 < i1 < · · · < ik ≤ r implies that rk(Fi1∪· · ·∪Fik) > k. By definition,

ψ−F1
. . . ψ−Fr

=
(
ψ∞ −

∑
G⊇F1

DG

)
· · ·
(
ψ∞ −

∑
G⊇Fr

DG

)
=

r∑
k=0

ψr−k
∞ (−1)k

∑
0<i1<···<ik≤r

Gj⊇Fij

DG1 · · ·DGk
.

We claim that the only nonzero term in the sum is the one indexed by k = 0. To see why,

notice that multiplying DG1 · · ·DGk
will either be zero if Gi and Gj are incomparable for

some i and j or it will be a multiple of DG for some flag G. In the latter case, the largest

flat in the flag G must be G = G1 ∪ · · · ∪ Gk, which contains Fi1 ∪ · · · ∪ Fik . This implies

that rk(G) > k. It follows that

degM(ψr−k
∞ DG1 · · ·DGk

) = 0,
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because, when expanded using Proposition 3.6, the exponent of ψ∞ appearing in the final

term of the product is r − k ≥ rk(E) − rk(G) = rk(M[G,E]). Thus, the only nonzero term

in the sum is

degM(ψr
∞) = µ0(M) = 1. �

3.4. Poincaré duality. In this final section, we describe one more application of our de-

velopments of psi classes, which is a new proof of the Poincaré duality property for matroid

Chow rings. Our proof utilizes the following computational result.

Lemma 3.14. If F = (∅ ( F1 ( · · · ( Fk ( E) is a flag of flats in M and we have integers

d1, . . . , dk > 0 and dE ≥ 0 that sum to r, then

(1) degM(Dd1
F1
· · ·Ddk

Fk
DdE

E ) = 0 if dE +
k∑

i=m

di > r − rk(Fm−1) for some m ∈ {1, . . . , k}

and

(2) degM(Dd1
F1
· · ·Ddk

Fk
) = (−1)r−k+1 if dE +

k∑
i=m

di = r− rk(Fm−1) for all m ∈ {1, . . . , k}.

Proof. By Corollary 3.5, we have

Dd1
F1
· · ·Ddk

Fk
DdE

E = DF(−ψ∞)dE
k∏

i=1

(−ψ−Fi
− ψ+

Fi
)di−1

= (−1)r−k+1

di−1∑
a+
i =0

k∏
i=1

(
di − 1

a+
i

)
DF

k∏
i=0

(ψ+
Fi

)a
+
i (ψ−Fi+1

)di+1−1−a+
i+1

where a+
0 = 0, Fk+1 = E, and a−k+1 = d∞. Computing the degree using Proposition 3.6, we

see that the degree is nonzero only if

a+
i + di+1 − 1− a+

i+1 = rk(Fi+1)− rk(Fi)− 1 for all i = 0, . . . , k.

The unique solution of this system is given by

a+
m = r − rk(Fm)− dE −

∑̀
i=m+1

di for all m = 1, . . . , k.

Property (1) follows from the observation that a+
m ≥ 0 for all m = 1, . . . , k. Notice that the

condition in Property (2) implies that a+
m = 0 for all m = 1, . . . , k, and Property (2) then

follows from Proposition 3.6 and the fact that

degM[Fi,Fi+1]

(
ψrk(Fi+1)−rk(Fi)−1
∞

)
= 1. �

We now use the Feichtner–Yuzvinsky basis for A∗(M) to prove Poincaré duality.
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Theorem 3.15. For any k ∈ 0, . . . , r, the map

ϕk : Ak(M)→ Ar−k(M)∨

γ 7→ (µ 7→ degM(µγ))

is an isomorphism of Z-modules.

Proof. Recall that the Feichtner–Yuzvinsky basis for Ak(M) comprises all monomials of the

form

B = Dd1
F1
· · ·Dd`

F`

where ∅ = F0 ( F1 ( · · · ( F` ⊆ E and 0 < di < rk(Fi) − rk(Fi−1) for all i = 1, . . . , ` with∑`
i=1 di = k. Throughout this proof, we always assume that F` = E while allowing for the

possibility that d` = 0. For each such basis element B, define a corresponding basis element

B̂ ∈ Ar−k(M) by

B̂ = Dd̂1
F1
· · ·Dd̂`

F`
,

where

d̂i =

rk(Fi)− rk(Fi−1)− di if i < `,

r − rk(F`−1)− di if i = `.

Let B̂∨ ∈ Ar−k(M)∨ denote the dual of B̂. We can write ϕk as a square matrix whose rows

are indexed by the basis elements B and whose columns are indexed by the corresponding

basis elements B̂∨. The (B1, B̂
∨
2 ) entry of this matrix is degM(B1B̂2), which can be computed

explicitly by the results of Subsection 3.2. To prove the statement in the theorem, we show

that this matrix is invertible over Z.

First, notice that the element B̂ was constructed so that∑̀
i=m

(di + d̂i) = r − rk(Fm−1) for all m ∈ {1, . . . , `},

so Lemma 3.14(2) implies that degM(BB̂) = (−1)r−`+1. This implies that the diagonal

entries of the matrix are all ±1. To finish the proof, it suffices to prove that the matrix is

triangular with respect to some choice of ordering on the bases.

For each basis element B = Dd1
F1
· · ·Dd`

F`
as above, define a multidegree by

δ(B) = (d̂`, rk(F`−1), d̂`−1, rk(F`−2), . . . , rk(F1), d̂1, 0, 0, . . . ).

The multidegree defines a lexicographic partial ordering on the basis, and we let ≺ be any

total ordering of the basis that refines the lexicographic partial ordering induced by δ. In

other words, we insist that B ≺ B′ only if δ(B) is less than or equal to δ(B′) in the

lexicographic partial ordering. We claim that ϕk is lower triangular with respect to this

order. To prove this, suppose that B ≺ B′; we must prove that degM(BB̂′) = 0.
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First, consider the case where δ(B) = δ(B′). It follows that ` = `′, and rk(Fi) = rk(F ′i )

and di = d′i for all i = 1, . . . , `. Since B and B′ are not the same monomial, it must be the

case that Fi is incomparable to F ′i for some i. Since B has a factor of Fi and B̂′ has a factor

of F ′i , it follows that BB̂′ = 0, so degM(BB̂′) = 0.

Next, consider the case where δ(B) 6= δ(B′). We first suppose that the first entry where

they differ is rk(Fm) < rk(F ′m). This implies that d̂i = d̂′i and rk(Fi) = rk(F ′i ) for all i > m.

Since B has a nontrivial factor of Fi and B̂′ has a nontrivial factor of F ′i , and these are flats

of the same rank for i > m, the only way that BB̂′ 6= 0 is if Fi = F ′i for all i > m. Assuming

that this is the case, we can write

BB̂′ = F e`
` F

e`−1

`−1 · · ·F
em+1

m+1 F
e
m′ · · ·

where the tail of the product consists of powers of flats of lower rank. Notice that

∑̀
i=m+1

ei =
∑̀

i=m+1

(di + d̂′i)

=
∑̀

i=m+1

(di + d̂i)

= r − rk(Fm)

> r − rk(F ′m),

from which Lemma 3.14(1) implies that degM(BB̂′) = 0.

Lastly, suppose that the first entry where δ(B) and δ(B′) differ is d̂m < d̂′m. This implies

that d̂i = d̂′i for all i > m and rk(Fi) = rk(F ′i ) for all i ≥ m. As in the previous case, we can

write

BB̂′ = F e`
` F

e`−1
`−1 · · ·F

em
m F e · · · ,

where F is equal to the flat in {Fm−1, F
′
m−1} with highest rank. We then compute

∑̀
i=m

ei =
∑̀
i=m

(di + d̂′i)

>
∑̀
i=m

(di + d̂i)

= r − rk(Fm−1)

≥ r − rk(F )

from which Lemma 3.14(1) implies that degM(BB̂′) = 0, completing the proof. �
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