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Abstract—Computational biology is one of many scientific
disciplines ripe for innovation and acceleration with the advent
of high-performance computing (HPC). In recent years, the
field of machine learning has also seen significant benefits from
adopting HPC practices. In this work, we present a novel HPC
pipeline that incorporates various machine-learning approaches
for structure-based functional annotation of proteins on the scale
of whole genomes. Our pipeline makes extensive use of deep
learning and provides computational insights into best practices
for training advanced deep-learning models for high-throughput
data such as proteomics data. We showcase methodologies our
pipeline currently supports and detail future tasks for our
pipeline to envelop, including large-scale sequence comparison
using SAdLSA and prediction of protein tertiary structures using
AlphaFold2.

Index Terms—high-performance computing, computational bi-
ology, machine learning, deep learning, protein sequence align-
ment, protein structure prediction

I. INTRODUCTION

Correctly inferring a gene’s function from its sequence,
i.e., gene functional annotation, is of utmost importance to
the biological sciences. Dramatic advances in next-generation
sequencing technologies have driven exponential growth in
the number of sequenced genomes, leading to a growing
bottleneck in accurate gene annotation [10], [64]. Indeed, the
need to extract information about gene function from massive
amounts of sequence data is approaching the scale of data
generated in particle and astrophysics [62]. Computational
approaches can take advantage of this massive amount of
data and play a key role in eliminating the gene-annotation
bottleneck. An efficient and accurate predictive computational
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mapping of large genomic datasets to information about or-
ganism fitness, metabolism, and response to its environment
will help the understanding of domains of unknown function,
thus facilitating major advances in genomic sciences research.
Because the function of a protein fundamentally relies on its
three-dimensional structure, and the same protein structure
can result from different protein amino acid sequences due to
redundancy in the physical properties of different amino acids,
the inclusion of structure into functional analysis can pro-
vide essential information about protein function that purely
sequence-based methods may not detect [57].

A main challenge in tackling the growing gene-sequence
annotation bottleneck is the need to scale up sequence analysis
and other important bioinformatics tasks such as protein
structure prediction, detection of homologs, and prediction
and modeling of protein-protein interactions. The use of high
performance computing (HPC) resources could, in principle,
assist genome annotation at large-scale tremendously. How-
ever, bioinformatics and computational biology applications
have often not made use of HPC or even code acceleration
with general-purpose graphics processing units (GPUs), both
of which were adopted by other computational fields with
large computing needs, such as astrophysics. Barriers to the
use of HPC and GPUs have included the heterogeneous sizes
of biological datasets, their storage formats in many small
text files due to the community compendia that are sequence
databases, and the many different steps required for each
part of a lengthy processing and analysis pipeline, each of
which requires specialized programs often developed by third-
parties. The latter is a direct result of the difficult and messy
nature of the biological sciences: the variability in genome
structure across the taxa, the multi-scale and multi-disciplinary
scientific fields that are involved (from quantum-mechanical
considerations of catalysis to ecological-scale considerations
of population genetics), and the complexity of gene expression
and regulatory networks in living organisms.

The convergence of HPC and artificial intelligence (AI),
especially deep learning (DL), promises to open the door
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to the use of HPC resources for gene functional annotation.
Indeed, the emergence of GPU accelerators has helped to spark
the “resurrection” of neural networks in the past decade and
has led to increases in their accuracy, generalizability and
predictive power [63]. In addition, the use of DL and other AI
methods in the biosciences has recently flourished [49]. Here,
we describe our efforts to make the necessary connections
between bioinformatics, deep-learning, and HPC to develop
next-generation predictive tools for inferring gene function
from sequence, using structural information both explicitly
and implicitly. Designed to bridge the genome-annotation
technology gap, we focus on using leadership computing
resources to tackle the gene annotation problem for proteins
on the scale of full genomes. We have developed, deployed,
and tested a number of different methods to perform genome-
scale analyses, from DL-based sequence alignments, to protein
structure prediction and error analysis, to the prediction of
protein-protein interactions. Our toolbox, which is continually
developing and growing, can be used in many different types
of pipelines and workflows designed to crack the code that
translates protein sequence to protein function across thou-
sands of protein sequences in organisms’ proteomes.

II. PROGRAMS AND METHODS IN THE TOOLBOX

Our HPC toolbox consists of several deep-learning-based
modules, for protein sequence alignment, structure prediction
(including the assessment of predicted structure quality), do-
main assignment, and prediction of the interactions between
proteins. In order to take advantage of HPC resources, we have
been developing and optimizing these tools. In this section
we first describe the different methods from a theoretical
perspective, and then detail their algorithmic components.

A. SAdLSA alignment

In order to annotate the function of a new gene, a vital
step is to search computationally for its homologs that have
been experimentally studied. Since all species are related by
evolution, one can infer the functions of new gene sequences
from previously characterized ones provided that they share an
appropriate level of sequence similarity. This step of sequence
comparison, or alignment, has become a central focus of bioin-
formatics. Indeed, the classic sequence alignment algorithm
BLAST, was once nearly synonymous with bioinformatics.
Sequence alignment is not merely a direct comparison between
the characters that represent the sequences being compared,
but involves advanced statistical methods and substitution
matrices that take into consideration common substitutions
found in nature and similarities between physical properties of
different amino acids that make up the sequence alphabet, as
well as each sequence element’s neighbors. While the classic
BLAST algorithm and the improved, iterative sequence-profile
method PSI-BLAST [1] are efficient heuristic approaches
designed to rapidly search a large sequence database and
accurately return related sequences that may have only 40-
50% direct sequence similarity, they often fail to detect subtle,
yet significant, similarity for sequences in the “twilight zone”

of sequence identity [52]. Here, only about 20 to 35% of
aligned residues are identical, and more than 95% of sequence
pairs within this zone are from structurally dissimilar proteins;
however, many highly similar protein structures which are also
evolutionarily related may have such a low sequence identity.
Their performance becomes much worse in the “midnight
zone” at < 20% pairwise sequence identity [43], [52]. To
address this issue, sequence comparison methods based on
Hidden Markov Models have been proposed, e.g., the widely
adopted HMMER [15] and HHsearch approaches [60]. These
are routinely used to classify protein families such as Pfam
[18], or search for potential structural homologs within the
Protein Data Bank (PDB) [30]. Although these methods are
more sensitive, the difficulty of identifying sequence and
structural similarity in the twilight zone remains. In a typical
bacterial proteome, we estimate that about 20 to 30% of
protein sequences have an unknown or a low-confidence
family classification. Even for those sequences with a reliable
protein family assignment, this does not necessarily mean
that they are functionally or structurally characterized; such
knowledge for most of these protein families is not provided
in existing databases such as Pfam [18] or UniProt [10].
SAdLSA was developed to address the “twilight zone” issue.
It is a DL-based approach for protein sequence alignment that
incorporates structural information [25]. It is trained to learn
the structural relationship encoded by two protein sequences
subjected to comparison. As such, it can sense the structural
fold of input sequences and obtain more sensitive alignment
not possible with classic sequence alignment approach [26].
SAdLSA uses a deep residual convolutional neural network
trained on hundreds of thousands of structural alignments
computed using three-dimensional alignment tools applied to
experimental protein structures [25]. This allows the program
to detect remote relationships useful for genome annotation or
functional predictions. The advantage of SAdLSA was demon-
strated in benchmark tests against HMM-based HHsearch [60].
For challenging cases, SAdLSA is ∼150% more accurate at
generating pairwise alignments and ∼50% more accurate at
identifying the proteins with the best alignments in a sequence
library [25].

A flowchart of SAdLSA is presented in Figure 1. The two
input sequences are first compared against a large sequence
library, such as a UniProt reference library [10] using a
fast sequence alignment tool such as HHblits [50], yielding
multiple sequence alignments (MSAs). The MSAs are then
employed to generate two position-specific sequence profiles,
or embeddings, each of dimension Nk × 20, where Nk is the
length of the kth sequence (k = 1, 2), and the 20 columns
represent the 20 different amino acids at each residue position.
Note that these two MSAs contains close homologs to the
input sequences, and remote homologs are typically absent in
these alignments. The outer product of these two 1D sequence
features yields a 2D matrix of features, where at position
(i, j) of the matrix the elements are a concatenation of the 20
columns formed from the i-th residue of sequence 1 and the
j-th residue of sequence 2. Subsequently, these 2D features

47

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on June 13,2022 at 18:51:05 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1. Overview of SAdLSA, a deep-learning algorithm for protein sequence alignment. The symbol ⊗ denotes outer concatenation of two embedding
vectors

are fed into a fully convolutional neural network consisting
of residual convolutional blocks [28]. The main objective
of this neural network model is to predict residue-residue
distances between the two input sequences that recapitulates
their optimal structural alignment, using observed structural
alignments as the training ground truth. The training distance
labels are created from structural alignments by APoc [22],
which takes advantage of a global alignment provided by
TM-align [75]. The inter-sequence, inter-residue distogram is
then converted into a scoring table for subsequent dynamic
programming, which generates an alignment for the two input
sequences. For practical applications, such as comparing an
input sequence against a library of sequences, SAdLSA is
designed to run efficiently in a multiple node, multiple GPU
mode, using pre-processed sequence embeddings.

SAdLSA’s deep-learning neural network is composed of
multiple residual blocks, either conventional [28] or dilated
[72] in slightly different design variants. The residual block
design is a key to train a deep neural network model. Within
a residual block, each convolutional layer is composed of
about 64 filters with a kernel size of 3×3 in dilated residual
blocks or 5×5 in regular residual blocks. After the residual
blocks, the last 2D convolutional layer outputs 22 channels,
representing 21 distance bins (1 to 20 at 1 Å each, and >20
Å) and channel 0 which is reserved for ignored pairs (e.g.,
gap residues missing in a structure, or large distances >30
Å). Finally, a softmax layer calculates the probability scores
for each distance bin. For this study, we used the consensus
(mean) scores from two ensembles of DL models. The first
set of DL models (RN14) consists of six models with 14
residual blocks and 64 5×5 kernels in each convolutional layer.
The second set consists of three from the first set, and three
dilated models (DRN34) with 34 residual blocks (alternating
1,2,8,16,32 dilate rates) and 50 to 75 3×3 kernels. The regular
RN14 and dilated DRN34 models have 2.9 and 2.4 million
parameters, respectively. Empirically, we found that the mix-
ture of these two types of models delivers better performance
than a single uniform set of DL models. The outputs from
the DL model are the probabilities of distance bins forming
inter-protein residue-residue distance matrices. To build an
alignment using dynamic programming (DP), we convert this
probability matrix into a mean distance matrix D, whose
element di,j =

∑n
k=1 p

k
ijbk − c where i, j are target/template

sequence positions, pkij is the probability for bin k at position
(i, j), bk are distance labels. D is subsequently adapted as the

scoring matrix to obtain the optimal alignment using a Smith-
Waterman-like DP algorithm [59]. The distance matrix D is
also used to calculate an estimated TM-score [73] for ranking
the significance of an alignment. The constant c is set at 1
such that a perfect alignment gives an estimated TM-score of
1. In practical applications, one typically needs to run a large
number of sequence comparisons. Since these comparisons
are independent, one can easily distribute these calculations
into different GPUs if they are available. For this purpose,
we employed the multiprocess Python module to implement a
queue that distributes multiple sequence alignment runs across
multiple GPUs. This enables efficient runs for applications.

B. Protein structure prediction

Another important method in translating protein sequence
to function is the analysis of its three-dimensional structure.
Experimentally, protein structures are obtained via x-ray crys-
tallography, nuclear magnetic resonance (NMR) techniques,
and cryo-Electron Microscopy (cryo-EM), which are very time
consuming and costly. As an example, only about 17% of
the human proteome has an experimentally determined three-
dimensional structure [36]. Protein structure prediction via
computational approaches can facilitate the structural charac-
terization of protein sequences [74]. One critical challenge in
structure prediction is to correctly model long-range, many-
body effects from scratch, that are traditionally best dealt
with by template-based methods [58]. Over the past several
years, exciting breakthroughs have been made to include these
long-range residue-residue interactions in predictions using
deep residual convolutional neural networks [68]. Significant
success has been demonstrated in protein structure prediction
by taking advantage of deep-learning based contact predic-
tions, as demonstrated in the Critical Assessment of protein
Structure Prediction (CASP) contests; CASP is a blind bian-
nual protein structure prediction competition. In CASP13, all
four top-ranked groups in the most challenging, free-modeling
category used residue-residue contacts or distance matrices
predicted via deep-learning [23], [34], [54]. Very recently,
Google DeepMind’s AlphaFold2 achieved impressive accuracy
in CASP14 [36]. For 38 free-modeling domain targets, it
achieved a mean GDT-score ∼0.85. When applied to the
human proteome, it yielded a coverage of 58% by amino acids
(over the total length of all sequences), in comparison to the
17% by experiments [65].
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It is important to point out that a protein’s structure by
itself does not immediately yield functional annotation. Further
computational steps such as structural comparisons [32], [75],
structure analysis such as ligand-binding pocket analysis [22]
or protein-protein interface analysis [24], molecular docking
and simulation [40], [67], and prediction of interactions and
interaction interfaces of the protein on a three-dimensional
level, can be performed to further elucidate relationships and
refine predictions. Ultimately, it will be important to match
predictions to validating experiments, which, with the help of
high-throughput techniques, are also providing larger datasets.

1) Computational quality assessment and estimation of
model accuracy for predicted structures using deep learning:
Estimation of model accuracy (EMA) or Quality Assessment
(QA) plays a core role not only in protein structure prediction,
but also for confident use of the predicted tertiary structure
in subsequent steps of the functional annotation pipelines.
Quality assessment of predicted protein structure models plays
a key role in improving the quality of the final prediction:
if accurate information about the similarity or discrepancy
between the predicted models and the native structure along all
residues can be acquired, it is possible to considerably reduce
the search space for further refinement algorithms and improve
the overall model quality [31]. Another challenge for EMA is
to identify the most confident structural models out of a set of
predicted structures [9]; this becomes even more important for
genome-scale applications where thousands of predicted struc-
tures may be generated. We developed two different methods:
a deep learning-based graph method (GEN) [5] that estimates
both per-residue accuracy and correct coordinates which can
be used to select the predicted models that potentially give the
highest quality structure, using a set of geometric features, and
a vision transformer-based EMA model (VTM) which uses
only the single raw protein residue pairwise distance map as
the input for predicting a decoy’s quality score.

For the QA using the GEN method, we used datasets
from CASP8-14 [9], [38] with targets in CASP13 as the
validation set and CASP14 as the test set. Models are first
filtered by removing those with incomplete or inconsistent
residues compared to the corresponding reference structure.
As a result, there are 477, 82, and 70 targets used for training,
validation, and final testing, respectively, and of all 109318
structure models from the corresponding targets, 12118 and
10435 were held out for validation and testing, respectively.
For a given protein structure model presented as a file in
Protein Data Bank (PDB) format, the following 3 types of
output are generated: per-residue local distance difference
test (LDDT) scores, distributions of error of per-residue-pair
carbon alpha error using native PDBs as reference structure,
and finally, the updated alpha-carbon coordinates for the input
model. The input features consist of protein sequences, pair-
wise orientation information, coordinates of the alpha carbon
atoms in the models. We included model representations from
DeepAccNet [31] as atom-level information and DeepDist [27]
as co-evolution information. After processing all features, we
represent them as L× c or L×L× c data structures (where L

is the sequence length) for input to the deep learning model.
For EMA using the VTM, we were inspired by the outstand-

ing performance of transformer-based in computer vision (CV)
tasks, and we developed a vision transformer-based single
EMA model. Since 2017, the self-attention mechanism has
become popular [4], [48]. In recent years, researchers tried
to apply self-attention or transformer architecture to CV. The
Vision Transformer (ViT) [13] was the first method to utilize
the transformer model in CV tasks. Recently, increasing num-
bers of efforts [12], [70] combined the CNN and transformer
for reducing the computational requirements and for getting
better performance. Protein inter-chain distance information
is a key source of information for predicting protein’s three-
dimensional structure and many methods which output inter-
chain distance information can contribute data to the EMA
[7], [9]. We applied the attention mechanism to predict protein
residue-residue contact [6]. In a recent study, the DISTEMA
method [8] used only the single raw distance map as the
input for predicting a decoy structure’s quality score. Building
on our this work, we inserted self-attention modules into
the CNN to catch the global attention information by using
the depth-wise separable convolution layer to generate the
query key value matrices for self-attention. Comparing to
the original transformer architecture, CNN with self-attention
could reduce the model’s parameters. However, training a
vision-transformer model demands significant computational
power. To train the model, we used CASP8-13 as our training
dataset, and we generated a difference map [8] for each decoy
as the input feature.

2) Reconstructing protein structures from CryoEM density
maps using deep learning: Near-atomic resolution images of
large macromolecules and macromolecular assemblies can be
obtained using cryogenic electron microscopy (cryo-EM) [11].
However, inferring the structures of proteins from the cryo-EM
density map data is still a challenging task. Deep learning
recently emerged a useful technique to tackle the problem
[39], [56]. We used a deep learning architecture to predict the
alpha carbon and backbone atoms of the protein structures.
The images generated by cryoEM are stored in a 3D-grid
structure in a file. Each voxel (pixel in 3D) represents the
probability of the presence of atoms based on the scattering
electrons detected by the cryoEM technique. Based on this
data and metadata about the protein density map, we create
labeled data and train our model to predict the voxel of alpha
carbon and backbone atoms in the density map. The predicted
result is used to determine the final 3D protein structure.

C. Boundary prediction for protein structure domains

Protein domains are regions of a single protein chain
that can fold into a stable tertiary structure and/or have
some distinct function [16], [33]. Domains can be functional
building blocks, and may be recombined over the course
of molecular evolution in different arrangements to create
proteins with different functions. The study and prediction of
protein domains is therefore important for understanding the
function of proteins [16], [33], [35]. Annotation of the domains
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of proteins is an important effort, both for the classification
of proteins with known structures in order to find common
patterns in structure-function relationships [57] and for use
sequence-based analysis that can infer structural domains to
perform domain annotation [51]. In addition, protein domains
can be a useful feature to assist protein structure prediction
[16], [19]. However, considering the large amount of sequence
data, it is practically impossible for human experts to manually
annotate protein domains. To mitigate this intensive process,
computational methods are necessary to facilitate the auto-
matic prediction of protein domain boundaries. Here we used
a DL model for domain boundary prediction from protein
distance maps [71]. The output is the probability of a residue
being in the domain boundary.

D. Protein-protein interactions

Proteins are frequently found in complexes called oligomers
which can be functionally obligatory and which may involve
multiple copies of the same protein, or several different
proteins. A dimer is a complex of two proteins; a homodimer
contains two copies of the same protein, and a heterodimer
contains two different proteins. Prediction of protein-protein
interactions (PPIs) is an important part of efforts to under-
stand protein function [76]. Here, we focus on predicting the
location where two proteins will interface, or protein interface
prediction (PIP), which is an important computational effort
[69], relevant to drug discovery and to protein design and
engineering [44], [47].

1) Prediction of protein-protein interaction using structure:
For our toolkit, we adapted two state-of-the-art (SOTA) graph
neural network architectures for PIP [42], Neighborhood Av-
erage (NeiA) and Neighborhood Weighted Average (NeiWA),
from Liu et al. [41]. The input for our method is the tertiary
structures of two protein chains that form a dimer. We rep-
resent each chain’s tertiary structure as a 3D graph, defining
the nodes of each graph as a chain’s alpha-carbon atoms and
its edges between nodes as their 20-nearest neighbors in Eu-
clidean space. The output of our network is a two-dimensional
(2D) binary-valued tensor of shape M × N for each pair of
chains, where M and N are the numbers of alpha-carbon
atoms in the first and second chain, respectively. To prevent
these models from overfitting, we added dropout layers and a
cosine annealing optimizer to their training procedure. Inspired
by the high-order pairwise interaction (HOPI) module in Liu et
al. [41], we then constructed a multi-layer convolutional neural
network module for dense prediction of inter-chain interacting
residue pairs, using the ResNet architecture [28] as a baseline
for its design. The flow of input data in our models is such
that, once the NeiA or NeiWA layers have finished updating
their initial input node and edge features for both graphs using
shared weights in their graph convolutions, the updated node
representations from both graphs are then interleaved to form
a 3D tensor. This 3D tensor then serves as input to our deep
residual convolution module for dense prediction of inter-chain
residue-residue interactions, after which the model is scored
using a class-weighted binary cross-entropy loss function to

see how well it was able to distinguish interacting residue
pairs from those not in interaction.

2) Prediction of dimerization from sequence: Accurately
predicted inter-chain contacts are important for PIP and PPI
prediction [46]. If the Euclidean distance between the heavy
atoms of two residues in different chains of a protein complex
is ≤ 6 Å, we say that the two residues are in inter-chain
contact [46]. If we consider a multimeric (oligomeric) complex
to be composed of individual dimers, predicting the inter-
chain contacts of all the possible dimers can allow us to
reassemble the structure of the entire oligomer. Here, we train
a deep neural network using co-evolution features that are
derived from multiple sequence alignments or MSA, focusing
on homodimers. For this case, since both the monomers are
the same, the MSA of the monomer may contain both the
co-evolutionary information of intra-chain as well as inter-
chain interactions [46], [66]. Our input consists of the protein
sequence of the monomer which is then used to generate
MSA, from which, a co-evolutionary, secondary structural, etc.
feature matrix is derived as the input for training our deep
neural network. The model outputs a 2D contact map of size
L × L, where L is the sequence length. This contact map
contains probabilities of residues being in inter-chain contact
with each other.

III. DEPLOYMENT ON HPC SYSTEMS

Here we describe development and deployment of our meth-
ods on HPC systems, including the Summit supercomputer
at the Oak Ridge Leadership Computing Facility (OLCF).
Scaling to large portions of the supercomputer is the key to
genome-scale inference, and scaling to multiple GPUs is im-
portant for training efficiency. The latter is accomplished both
with data-parallel and model-parallel methods, as described in
the following sections. Large-scale inference is performed by
parallelizing over the databases for each sequence alignment
with SAdLSA [25], and over proteins in a genome for structure
prediction.

A. Systems used

The Summit supercomputer is a 200 petaFLOP IBM AC922
system consisting of 4608 nodes each with six NVIDIA Volta
V100 GPUs and two POWER9 CPU sockets providing 42
usable cores per node. The Andes cluster at the OLCF is
used for preprocessing and data analysis, and is a 704-compute
node commodity-type Linux cluster with AMD EPYC 7302
16-core processors. The ORNL Raptor workstations contain
two POWER9 CPU sockets and a single NVIDIA Volta V100
GPU. The initial deployment and testing of genome-scale
structure prediction with AlphaFold was carried out using
computational resources supported by the Partnership for an
Advanced Computing Environment (PACE) at the Georgia
Institute of Technology: CPU nodes used were dual Intel
Xeon Gold 6226 CPUs each with 12 cores, and 40 NVIDIA
RTX6000 GPUs were used for model predictions.
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Fig. 2. Scheme for SAdLSA deployment at scale on Summit

Fig. 3. Performance of SAdLSA on large sets of proteins and scaling across
Summit. A: Runtime, in seconds, against the Pfam database for each sequence
using one node. B: Runtime, in seconds, against the Pfam database for
each sequence using one thousand nodes. Parallelization was over the Pfam
database for each sequence input for inference calculation.

B. Deploying SAdLSA on a genomic scale on the OLCF
Summit supercomputer

Despite the exciting development of deep-learning based
computational tools for annotating protein sequences, it is
not straightforward to apply them at the genome-scale, e.g.,
hundreds to thousands of sequences from an organism. The
largest data load in the SAdLSA workflow for microbial
organisms is usually the database against which each sequence
in a proteome is compared, as these can contain tens of
thousands of sequences, while a microbial genome typically
contains less than five thousand. Here we focus on a microbial
genome for our SAdLSA deployment, namely the Desulfovib-
rio vulagris, strain Hildenborough, bacteria, a model sulfur-
reducing organism [29] which is important to the Department
of Energy’s Office of Biological and Environmental Research.
For initial deployment we focus on the 559 proteins labeled as
“hypothetical” in the March 2020 GenBank annotated genome
file found on the National Center for Biotechnology Infor-
mation of the Desulfovibrio vulgaris Hildenborough reference

genome.

Fig. 4. Performance of SAdLSA on the PDB70 database on Summit. Top:
Weak scaling– total time in minutes for a given number of sequences to be
aligned to the PDB70 using 12 sequences, 96 nodes, and 120 sequences, 1000
nodes. The set of 12 was chosen to have a similar length distribution ad the
set of 120. Bottom: Runtime, in seconds, against the PDB70 database for each
sequence in the 120 sequence set used in Figure 3 above, using one thousand
nodes. Parallelization was over the PDB70 database for each sequence input
for inference calculation.

Figure 2 illustrates the pipeline for deployment of SAdLSA
with parallelization over the alignment database and illustrat-
ing the portions that make use of the GPUs and the non-
volatile memory (NVM) on Summit’s compute nodes and the
NVM Express (NVME) specification. Each protein sequence
is aligned using many nodes, each working on a portion of
the database, which is usually tens of thousands of sequences,
but may be as large as millions to billions. The proteins in
the genome are worked on by SAdLSA in a serial manner.
SAdLSA performs DL inference on the GPUs, and a final
Smith-Waterman (SW) dynamic programming procedure on
the CPU. While each portion of the database is worked on
in a completely parallel manner, the initial task-list creation,
the final reduction, and the SW procedure is performed in
serial. Aligning the entire set of 559 hypothetical proteins to
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the Pfam database, which contains 19,179 entries (sequence
profiles from hidden Markov models) representing protein
families, takes less than 15 minutes using 1000 Summit nodes.
Performance tests are shown in Figure 3 using a reduced set
of 120 sequences so that jobs using lower node counts can
finish within queue limits. Time for an alignment to Pfam
varies nearly linearly with query sequence length, and time
to solution is reduced by ∼1000× when scaling to 1000
nodes from 1 node. Average time per sequence alignment
to Pfam using 1000 nodes is 1.3 seconds, averaged over the
120 sequences. Aligning these 120 sequences to the PDB70,
which contains 88,284 entries takes on average 16 seconds
per sequence using 1000 nodes. Figure 4 displays the weak
scaling of the PDB70 from 96 nodes to 1000 nodes using 12
and 120 sequences, and the times per sequence inference over
the set. The set of 12 was chosen to have similar sequence
length variance as the the set of 120.

C. Deploying AlphaFold for genome-scale structure predic-
tion

On July 15, 2021, DeepMind released a fully open-source
version of their AlphaFold (version 2) program which had
performed exceptionally well at the CASP14 competition [36].
The accuracy of this method’s predictions is due in part to
the size of the neural network as well as innovations in
the approach and network architecture. The use of GPUs
to both train and perform inference is important for its
high performance, and essential for genome-scale applications.
Deployment of AlphaFold at scale to predict the structure
of an organism’s full genome is a natural desire, and has
been pioneered by AlphaFold together with the European
Bioinformatics Institute (EMBL-EBI) for 21 organisms, in-
cluding human and pathogenic microbes [65]. The computing
power of the Summit supercomputer is an excellent resource
for this type of efforts, and our aim is to supplement the
AlphaFold/EMBL-EBI database with organisms of interest
to the Department of Energy, and to produce full-genome
structural predictions for organisms central to our research.
Challenges to deploying AlphaFold on Summit include the
Power9 CPU architecture that prevents the use of package
managers to download pre-compiled binaries, combined with
the use of build systems non-standard in the HPC setting.
Here we describe our current progress in testing and deploying
AlphaFold on our compute resources and preparation for full-
scale deployments on Summit. AlphaFold provides a Docker1

recipe for building all of its dependencies and packaging,
but that recipe is not directly usable on Summit or on other
systems which do not support Docker.

1) Prediction of the structures of all uncharacterized pro-
teins in the Desulfovibrio vulagris Hildenborough Proteome:
As an initial test of genome-scale protein structure prediction
with AlphaFold, we predicted the structures of the hypo-
thetical proteins presented in Section III-B which were also
subjected to alignment with SAdLSA. Due to the need to

1https://www.docker.com/

build from source on Summit for the Power9 architecture, and
incompatibility of the Google Bazel build system with HPC
toolchains (described in Section III-C2 below), we first tested
this initial deployment method using the PACE computational
resources at the Georgia Institute of Technology to validate
our re-orchestrated pipeline and to obtain estimates of the
computational cost of these types of deployments: the program
in its released form could not be deployed on academic clusters
that do not support Docker containers, and thus the AlphaFold
workflow was extracted from the Docker recipe and deployed
with Python scripts. Furthermore, for deployment on Summit,
reconfiguration of the pipeline is also needed so that CPU-
based feature generation steps could be calculated on resources
other than Summit in order not to waste expensive GPU node
hours. We included all steps in the AlphaFold Docker-based
workflow and utilized the reduced BFD dataset which was
provided by DeepMind (to reduce the size of the databases
from 2.2 TB to 410 GB without reduction in accuracy).
Results from tests on the CASP13 and CASP14 protein targets
indicated that our reconstructed pipeline was consistent with
its expected performance. For the 559 hypothetical proteins,
we used 30 of the Intel Xeon Gold CPU nodes for deriving
input features, and 40 of the NVIDIA RTX6000 GPUs for
model predictions on PACE. The total walltime for predicting
structures of this full set was about 4.7 hours for feature
generation, 8 hours for the DL inference, and about 1.5 hours
for the structure relaxation portion, for a total of about 14
hours for the 559 proteins. For Eukaryotic organisms, the
total number of proteins in a genome is usually around 30-
40 thousand, which would require about 3 months using an
academic system such as PACE for a single proteome (not
including queue time), illustrating the need for large leadership
resources for genome-scale structure prediction campaigns.

2) Towards deploying AlphaFold at genomic scale on the
Summit supercomputer: The primary challenge in preparing
AlphaFold for Summit was the preparation of software depen-
dencies, within AlphaFold, to run on Summit’s Power9 archi-
tecture. The AlphaFold Docker recipe depends on prebuilt x86
binaries for JAX, Tensorflow, and some of their dependencies.
The core dependency that needed to be enabled on Power9 was
JAX2, a high performance machine learning tool that uses the
XLA (Accelerated Linear Algebra) compiler3. By using XLA,
which is a domain-specific compiler for linear algebra, JAX
is able to just-in-time compile NumPy code on accelerators.
Most of our time in preparing AlphaFold for Summit was
spent on getting JAX built and functioning for Power9 with
NVIDIA GPUs. We initially tried to build JAX outside of a
container, directly on Summit, in an attempt to deploy the
pipeline in a similar way as on the PACE resources. However,
we quickly ran into issues as the required build system for
JAX, Google’s Bazel4, does not operate well in an HPC
environment. Ultimately, we were unable to pass a compiler

2https://opensource.google/projects/jax
3https://www.tensorflow.org/xla
4https://bazel.build/
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from a non-standard location (i.e. outside of /usr/bin) to
all the build steps within Bazel. In HPC, it is common to
use compilers outside the standard location, but this was not
operable with Bazel. This is where gaining access to a Power9
system in which we could build containers became essential.

In the end, we used a Raptor external POWER9 system with
compilers in the standard /usr/bin locations, and built a
Singularity5 container that could run on Summit. This Raptor
workstation had support for Podman [21] as the container build
mechanism. We altered the AlphaFold Dockerfile to build JAX
and other components from source, and to remove feature
generation steps which did not require GPUs and thus could
be pre-computed on our Andes cluster. Podman enabled us to
build a container image from our altered AlphaFold Docker
recipe, that builds JAX and other components from source.
The resulting image built with Podman was around 38 GB,
since Podman builds images in layers, but the final image
was 9.8 GB after converting to Singularity’s format which
strips the unneeded layer information. From there, we were
able to successfully transfer and run the resulting AlphaFold
container image on Summit with Singularity. Summit does not
yet support container builds, but it does provide a functioning
container runtime with Singularity. Tests against the CASP
benchmarks indicated that our deployment was providing
correct results, and that this container was ready to be used
at scale across Summit nodes at genome-scale– work that is
currently in progress.

D. Training QA and EMA models for structure assessment on
Summit

For the GEN method, training we used 8 nodes of Summit
and the PyTorch [45] as distributed deep learning training
framework with the Horovod backend [55]. The batch size
is set to 1 for each GPU, which is equivalent to an effective
batch size of 48. We used SGD as optimizer with learning rate
1e-6, momentum 0.9 and decay 5e-5. For predicted LDDT
scores and coordinates, we used mean square error (MSE)
as the loss function. For distributions of error of pairwise
alpha-carbon distance, we used categorical cross-entropy as
the loss function. We compared our results trained using
different coordinate-superposing methods (TMAlign [75] or
Kabsch least-squares superposition [37]) and different labels
for coordinate loss (using real-value distances or coordinates
directly) and DeepAccNet [31]. Future work can explore how
to make use of more nodes of Summit to achieve even higher
accuracy for prediction. For the VTM, we tested training the
model on the Summit computer with a batch size of 1 per GPU
core, and using all 6 GPUs on a node. In data parallel mode,
each batch approximately requires 40 minutes of wall time.
The model usually converges around 100 epochs. Compared
to training with only one V100 GPU, using multiple GPUs in
data-parallel mode speeds up training by a factor of 4. Future
work will scale this parallel training to larger datasets which
can make use of multiple nodes on Summit.

5https://sylabs.io/singularity/

E. Deep learning training on Summit for cryoEM reconstruc-
tion

To train our model, we utilized distributed data parallel
(DDP) and distributed data parallel sharded (DDP-sharded)
techniques on multiple GPUs. We used the multi-GPU training
capabilities in PyTorch Lightning [17], by specifying the
accelerator training flag ddp for DDP and using the DDP-
sharded plugin with the ddp_sharded flag. DDP in PyTorch
works by initiating a process and replicating the model into
each GPU, splitting the batch data across GPUs, training
individual models on these data splits, and then resolving the
multiple models into a single version after a set of steps by
synchronizing the gradients and buffers through communica-
tion between GPUs6. This allows us to increase our batch
size by the number of GPUs available, effective batch size =
original batch size × number of GPUs available. We tested this
method with our application on 6 GPUs of a Summit node,
which means each GPU processed a single protein density map
in parallel with the others. The model trains the forward and
backward pass, and gradients are synced across the GPUs.
Finally, the gradients are averaged and all the optimizers in
each individual GPU updates its weights. Alternately, to lower
the memory overhead per GPU, the sharded technique shards
the optimizer and gradients across the GPUs. The integration
of sharded training is provided by FairScale [2], which is built
to be PyTorch-compatible. Using sharded training, we are able
to train the model faster with efficient memory utilization on
the high memory V100 GPUs (32 GB) on Summit. In a small
test example, using the DDP-sharded training increased the
model training speed by 6% in comparison to the DDP enabled
training, where the model’s trainable parameters, number of
epochs, and batch size were kept constant. Using 10 cores on
Summit’s CPUs, we initialize 10 data-loader workers, which
helps to speed up the training process as well. The input to the
model is a 3D cryoEM density map and the output is also the
3D map with only alpha carbon or backbone atoms present on
the 3D grid. After the preprocessing steps of normalizing the
high intensity and low intensity data, resampling the grid to
1 Å, and generating the labels, we train our model. We then
track the training of the model in real time with the cloud sync
feature of Weights & Biases [3].

F. Protein domain boundary prediction using model paral-
lelization on Summit

As more complex models are developed in order to solve
problems with higher precision and more generalization to
real-world data, models may be too large to fit on the memory
of one GPU. Model parallelization is a technique used to
alleviate such complications. A model is split into several parts
by layer, and each of those parts is distributed into several
GPUs. For example, if a model contains m layers, and there
are n GPUs available, each GPU will have m/n layers of
the model in a parallel, or ensemble, approach. We developed
a model parallelization strategy, using the six GPUs on a

6https://pytorch.org/tutorials/intermediate/ddp tutorial.html
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Fig. 5. Scheme of the model parallelization method on a Summit node for
domain boundary prediction

Summit node for protein domain boundary prediction using
an ensemble of neural network models. Each model in the
ensemble produces an output; these are then all concatenated
together to produce the final domain boundary prediction.
The model ensembles are distributed on five GPUs. On the
sixth GPU, the concatenated output from the five GPUs is
processed through a linear neural network layer, producing
the final output and prediction of the domain boundary. The
model layout and the GPU allocation is shown in Figure 5.
The training is done with a batch size of 4 and cross-entropy
loss is used as the loss function. Each model uses 12.665
GB out of the available 16.130 GB of GPU memory, and
the linear layer uses 1.453 GB, illustrating the need for a
parallelization technique for proper deployment. In this same
manner, the model can be parallelized across nodes as well,
and more complex execution schemes can be developed to
enable efficient use of all GPUs.

G. Creating protein interface prediction datasets

Success in PIP, as in most machine learning efforts, rests
in large part on the quality and quantity of training data.
Towards this end, using OLCF resources, we developed a
curated dataset named DIPS-Plus [42], large enough and
with enough features to develop computational models that
can reliably predict the residues that will form the interface
between two given proteins. In addition, accompanying DIPS-
Plus, we provide a set of benchmarks in Table I describing the
contribution DIPS-Plus makes to existing SOTA methods for
PIP (i.e., NeiA and NeiWA). We observe that we can increase
the latest SOTA performance for PIP by training NeiA and
NeiWA on DIPS-Plus and testing them on a standardized test
dataset for PIP methods, DB5-Plus [42].

We trained both NeiA and NeiWA for 10 epochs on our
standardized 80%-20% cross-validation split of DIPS-Plus’
complexes to observe both models’ behavior on DB5-Plus’s
test complexes thereafter. We ran each of our experiments ten
times, with each experiment using a random seed and between
one and four GNN layers of NeiA or NeiWA, respectively. The
results for each experiment’s entry in Table I were derived

by computing the sample mean and standard deviation (in
parentheses) of the ten runs’ median area under the receiver
operating characteristic curve (MedAUROC) scores for the ex-
periment. For the experiments, we used the following architec-
ture and hyperparameters: (1) 1-4 NeiA/NeiWA GNN layers;
(2) 3 residual CNN blocks, each employing a 2D convolution
module, ReLU activation function, another 2D convolution
module, followed by adding the block input’s identity map
back to the output of the block; (3) an intermediate channel
dimensionality of 212 for each residual CNN block; (4) a
learning rate of 1e-5; (5) a batch size of 32; (6) a weight
decay of 1e-7; and (7) a dropout (forget) probability of 0.3.
DIPS-Plus’ curation required the use of 16 data processing
nodes on Andes running in parallel for multiple sequence
alignment (MSA) generation using HH-suite3 [61]. Moreover,
running several grid search experiments over DIPS-Plus for
deep learning benchmarks in a short time span is only possible
with the use of large GPU nodes such as those available on
Summit. For our benchmark experiments, we trained a total
of 80 separate deep learning models, each using a GPU on
Summit. We used Python 3.8, PyTorch 1.7.1, and PyTorch
Lightning 1.3.8 to run our deep learning benchmarks. PyTorch
Lightning was used to facilitate model checkpointing, metric
reporting, and, in some earlier experiments, data parallelism
across six GPUs.

H. Training models for prediction of homodimer interactions
on Summit

We developed a data-parallel method to train DL models
on Summit to find protein homodimer interactions. This model
was trained utilizing a node with high memory V100 GPUs (32
GB). Because of the large number of trainable parameters, one
high memory GPU could fit only a batch size of 2. To increase
training speed, we used distributed deep learning based on
PyTorch using the Horovod [55]. The effective batch size using
the distributed approach becomes 12. The feature size of 600 ×
600 × 592 is memory intensive. To help reduce latency, the 42
CPU cores and 2TB RAM on Summit’s high-memory nodes
were also used by the data loader to load the data into the
memory, enabling overlap of data transfer and compute and
reducing total time to solution. This substantially sped up the
training process, with each training epoch taking on average
1 hour and 40 minutes versus approximately 9 hours using
only one GPU and no data loader optimizations. The size of
the training data for this project was 5,975 protein monomers,
and the whole training process was executed with only 300
node hours which is approximately 5.5 times faster than with
only 1 GPU and no optimizations for data loading.

IV. EXAMPLE PIPELINE FOR GENOME-SCALE FUNCTIONAL
ANNOTATION

There are numerous ways to use the methods and tools in
our HPC toolbox for genome annotation studies. Currently
we are developing a pipeline that uses a consensus between
several methods to arrive at a prediction of protein function.
The functions of known proteins found by SAdLSA alignment
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TABLE I
DIPS-PLUS’ EFFECT ON THE MEDAUROC OF SOTA ALGORITHMS FOR PROTEIN INTERFACE PREDICTION.1

# GNN Layers
Method 1 2 3 4
NGF [14] 0.865 (0.007) 0.871 (0.013) 0.873 (0.017) 0.869 (0.017)
DTNN [53] 0.867 (0.007) 0.880 (0.007) 0.882 (0.008) 0.873 (0.012)
Node and Edge Average [20] 0.876 (0.005) 0.898 (0.005) 0.895 (0.006) 0.889 (0.007)
NeiA+HOPI [41] 0.902 (0.012) 0.919 (0.015) 0.921 (0.009) 0.915 (0.009)
NeiWA+HOPI [41] 0.908 (0.019) 0.930 (0.016) 0.924 (0.011) 0.914 (0.013)
NeiA+HOPI+DIPS-Plus [42] 0.9426 (0.001) 0.9438 (0.001) 0.9432 (0.005) 0.9426 (0.007)
NeiWA+HOPI+DIPS-Plus [42] 0.9065 (0.029) 0.9342 (0.01) 0.9335 (0.006) 0.9384 (0.004)
1MedAUROC: median area under the receiver operating characteristic curve. SOTA: state-of-the-art.

to crystallographic and sequence-based protein databases such
as Pfam, and by three-dimensional geometric alignment be-
tween predicted structures, ranked by QA and EMA methods,
and those found on non-redundant structural databases are
compared for similarities. Regions of the sequences with the
highest numbers of conserved residues are tabulated. Predicted
structures are stored in databases for in-depth analysis and
for structure-based modeling and simulation. Protein interface
prediction is currently being incorporated into the pipeline,
as are various analyses of the predicted structures, for which
protein domain boundary prediction will be important. In the
future, cryoEM density refinement in addition to structure
and PPI prediction modules can discover information about
large complexes. Figure 6 shows possible pipelines that can
be deployed for genome-scale functional annotation using our
structure-based HPC toolbox. Currently we are focused on

Fig. 6. Simplified scheme for annotation pipeline with consensus using our
toolbox.
genome-scale prediction for several microbial organisms, and
plant species. Our hope is that through a combination of
genome-scale computational efforts and experimental meth-
ods, we can not only characterize and annotate the functions of
unknown proteins in the proteomes of these organisms, which
can help to engineer new strains that can be more resilient,
or in the development of new energy solutions, but also
to discover new information about proteins whose function
has been partially characterized, through the collection of
predicted functions, structures, and complex modeling.

V. CONCLUSIONS AND FUTURE WORK

We have presented our new HPC toolbox for protein func-
tional annotation using structure-based deep-learning methods.
We have shown both the deployment of inference at large-
scale using the SAdLSA DL-based alignment method, and

the development of distributed training methods that utilized
multiple GPUs and Summit nodes, and will next be scaled up
further accommodate even larger training datasets. We also
report the re-organization and deployment of the AlphaFold
structure prediction program both on Summit using Singularity
containers and with a prototype small genome-scale test case
on the PACE resources. Our toolbox, which contains multiple
methods useful for structure-based functional annotation, will
be used in pipelines to generate such annotations for large
sets of proteins with unknown function or low-confidence
annotations, or even to assist in validation of proteins of known
function and the prediction of their structural properties to
provide more detailed information about catalytic mechanisms
and metabolic pathways that these proteins may be involved
in. In future work, we hope to build on top of our toolbox to
support new emerging tasks in bioinformatics, including large-
scale prediction of protein tertiary and quaternary structures,
and the development of new pipelines using the various
tools to provide high-confidence hypotheses for informing and
guiding bench-top experiments.
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