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Abstract 

Laser ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) imaging and 

matrix assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) are 

complementary methods that measure distributions of elements and biomolecules in tissue 

sections. Quantitative correlations of the information provided by these two imaging modalities 

requires that the datasets be registered in the same coordinate system, allowing for pixel-by-pixel 

comparisons. We describe here a computational workflow written in Python that accomplishes 

this registration, even for adjacent tissue sections, with accuracies within ± 50 µm. The value of 

this registration process is demonstrated by correlating images of tissue sections from mice 

injected with gold nanomaterial drug delivery systems. Quantitative correlations of the 

nanomaterial delivery vehicle, as detected by LA-ICP-MS imaging, with biochemical changes, as 

detected by MALDI-MSI, provide deeper insight into how nanomaterial delivery systems influence 

lipid biochemistry in tissues. Moreover, the registration process allows the more precise images 

associated with LA-ICP-MS imaging to be leveraged to achieve improved segmentation in MALDI-

MS images, resulting in the identification of lipids that are most associated with different sub-

organ regions in tissues. 

 

  



3 
 

Introduction 

Mass spectrometry imaging (MSI) comprises several techniques that allow the analysis of 

hundreds of molecules simultaneously, sometimes with spatial resolutions as low as 1 µm.1,2 

Among MSI techniques, matrix-assisted laser desorption/ionization (MALDI)3–6 and desorption 

electrospray ionization (DESI)7,8 have been extensively used for the spatially resolved analysis of 

metabolites,9,10 lipids,11,12 peptides,13,14 proteins,15,16 and exogenous analytes, like drugs.17–19 In 

comparison, laser ablation inductively-coupled plasma MS (LA-ICP-MS) imaging can provide 

quantitative distributions of a wide range of elements within a sample.20–22 Despite the near 

universal detection capabilities of MS, it is difficult to detect all compounds of interest in a given 

MSI experiment.23,24 Furthermore, the right combination of MSI modalities can provide 

complementary information, allowing optimal information to be obtained from a given sample.25–

27 Properly combining the data from different imaging modalities can allow the strengths of each 

modality to be leveraged so that more in-depth information about a sample can be obtained.28–31 

For example, MALDI-MSI provides valuable biomolecule information but can suffer significant 

pixel-to-pixel signal variability.32 On the other hand, LA-ICP-MS imaging is less subject to signal 

suppression and signal variability because samples are completely ablated, allowing it to provide 

quantitative information about metal distributions.20 However, LA-ICP-MS imaging provides no 

molecular information due to its destructive nature.21 

By appropriately leveraging the datasets from MALDI-MS and LA-ICP-MS imaging of a 

given tissue section, more precise and informative images should be accessible. The comparison 

of results from LA-ICP-MS and MALDI-MS imaging is usually done by visually overlaying the 

images generated by the techniques.33–35 However, simple image overlays hinder quantitative 

correlations because the images have different coordinate systems and orientations. More 

sophisticated multimodal registration methods allow pixel-to-pixel analysis of tissue sections by 

transforming the coordinates of one modality into the other modality, which allows statistical 

comparisons (e.g. Pearson’s correlations).24 Such approaches have been used by Caprioli and 

co-workers to register MALDI MSI images with microscopy images36 and Van Malderen et al. to 

register LA-ICP-MS and microcomputed tomography images,37 although these approaches have 

not been used for LA-ICP-MS and MALDI-MS image registration. Holzlechner et al. recently 

reported an approach to align LA-ICP-MS and MALDI-MS images38 that was based upon a 

multisensor image integration method that uses fiducial markers to arrange images in the same 

coordinate system.39 Since the approach is based on fiducial markers, the accuracy of the 

registration is limited and only linear transformations of the images are possible, making it 

unsuitable for registering images from adjacent tissue slices.36 Moreover, this alignment approach 
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is performed in the software package Epina Imagelab39, which is not open source or freely 

available.  

Here, we describe a freely available computational workflow written in Python that allows 

the registration of LA-ICP-MS and MALDI-MS images in the same coordinate system, even for 

images from adjacent tissue sections, with accuracies within ± 50 µm. We illustrate the value of 

this registration approach by quantitatively correlating the distributions of nanomaterials with their 

biochemical effects. In addition, we demonstrate that the more precise imaging data from LA-ICP-

MS imaging can be used to improve image segmentation in MALDI-MS images. 

 

Materials and Methods 

Nanomaterial Synthesis 

Nanoparticle (NP) synthesis was performed using the Brust-Schiffrin reaction,40 followed 

by functionalization of the AuNP core with surface ligands, as described in previous work.41–44 

Similarly, NP-stabilized capsules (NPSC) were synthesized by mixing arginine-coated NPs with 

linoleic acid, followed by its functionalization with siRNA that causes knockdown of tumor necrosis 

factor α (TNFα), as described in detail in previous reports.45–47 The methods used to synthesize 

and characterize these nanomaterials are described in the supporting information (SI), along with 

the results from these characterization measurements. 

 

Animal Experiments and Tissue Sectioning 

Balb/c mice were tail-vein injected with the NPs or NPSCs and euthanized after 48 h. Mice 

were sacrificed by carbon dioxide inhalation and cervical dislocation. All animal experiments were 

approved by the University of Massachusetts Amherst Institutional Animal Care and Use 

Committee (IACUC), which is guided by the U.S. Animal Welfare Act and U.S. Public Health 

Service Policy. Tissues were flash frozen and kept at -80 °C until sectioned for imaging. Frozen 

tissues were sectioned using a LEICA CMM1850 cryostat. Adjacent tissue sections of 12 µm 

thickness were thaw-mounted on indium tin oxide (ITO)-coated glass for MALDI-MSI and glass 

slides for LA-ICP-MS imaging experiments.  

 

MALDI-MSI 

MALDI-MSI experiments were performed using 2,5-dihydroxybenzoic acid (2,5-DHB) as 

a matrix. Two different methods for matrix deposition were used: spraying and sublimation. 

Spraying was performed using a Bruker ImagePrep device to spray a 25 mg/mL matrix solution 

in 1:1 methanol:water on the sectioned tissue. Sublimation was performed on a home-built 
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sublimation apparatus similar to the setup described by Chaurand and co-workers.48 For liver 

tissue sections, 200 mg of matrix were deposited at 140 °C at 7 mTorr for 9 minutes. For spleen 

tissue sections, 170 mg of matrix were deposited at 140 °C at 7 mTorr for 8 minutes. Data 

acquisition was performed on a Bruker UltrafleXetreme MALDI TOF/TOF at 50 μm resolution over 

a m/z range of 200 to 2000. MS/MS experiments to confirm analyte identities were performed in 

a collision-induced dissociation (CID) LIFT cell. 

 

LA-ICP-MS imaging 

LA-ICP-MS images of 197Au, 57Fe, and 66Zn were acquired on a CETAC LSX-213 G2 laser 

ablation system coupled with a Perkin Elmer NexION 300x ICP-MS instrument. The following 

laser parameters were used: 50 μm spot size, 20 μm/s scan rate, 3.65 J laser energy, 10 Hz laser 

frequency, and a 10 s shutter delay. The helium carrier gas from the laser ablation system was 

set to 0.6 L/min. Other ICP-MS experimental parameters were similar to those used in previous 

reports on the LA-ICP-MS analysis of nanomaterials in tissue sections.49–51  

 

Image preprocessing  

MALDI-MS images were normalized and exported as imzML files using FlexImaging 

(Bruker, Daltonics). The imzML files were imported to Python using the pyimzML parser, 

developed previously.52 Peak picking was performed using SCiLS Lab 2015b, and the list of 

selected ions and mass tolerances were imported to Python as a text file. Images of the selected 

ions were rendered with the pyimzML parser. LA-ICP-MS images were reconstructed, analyzed, 

and segmented using a custom Python script RecSegImage-LA, which was described recently 

and is freely available at GitHub (https://github.com/Vachet-Lab/RecSegImage-LA).53 Hotspot 

removal was performed on MALDI-MS and LA-ICP-MS images by selecting the intensities in the 

>0.99 quantile and replacing them with the 0.99 quantile value.54 In some cases, t-stochastic non-

linear embedding (t-SNE) dimensionality reduction module from the scikit-learn Python library55 

was applied to selected ion images in MALDI-MSI data to obtain a single image representation of 

the dataset. 

 

Image registration and validation 

Image registration was performed using the SimpleElastix56 Python extension of the 

Elastix C++ library.57 The MALDI-MSI image (t-SNE or heme channel) was set as the fixed image, 

while the LA-ICP-MS image (Fe channel) was set as the moving image. Registration was 

performed using the default affine parameter map followed by the default non-linear parameter 
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map in SimpleElastix with certain modifications as follows: 4,000 iterations for the affine 

parameter map, 8,000 iterations for the non-linear parameter map and 50 final grid spacing in 

physical units. Validation of the registration was performed using Dice similarity coefficient 

calculations (DSC), as described by Klein and co-workers (equation 1), where X and Y represent 

the binary label images. Selected regions, such as veins in the liver and white pulp spleen regions 

in the spleen, were manually selected in Fiji,58 and imported to Python to calculate the DSC value. 

Landmark distance analysis after registration was calculated by selecting corresponding points in 

the two images, followed by image overlay and calculation of their distances in Fiji. 

𝐷𝑆𝐶 𝑋,𝑌  
2|𝑋 ∩ 𝑌|
|𝑋| |𝑌|

 equation 1 

 

Statistical analysis of the registered images  

Correlation coefficients between ionic signals in MALDI-MSI and LA-ICP-MS imaging data 

were calculated using the implementation of Pearson correlations in the Scipy library59 on the 

vectorized, background subtracted MALDI-MS and LA-ICP-MS images.   

 

 

Results 

Registration of LA-ICP-MS and MALDI-MS images 

Image registration involves transforming two or more images containing different data 

features into the same coordinate system. Once the images are registered, the combined 

information from the different imaging modalities allows deeper statistical and quantitative 

analyses of the images. In the process of image registration, one of the images is set as the fixed 

image, and the other one is the moving image (e.g., Figure S1). The moving image is transformed 

to maximize its similarity to the fixed image, resulting in an image that has the same coordinates 

and pixel number as the fixed image. In this work, LA-ICP-MS and MALDI-MS images were 

registered using SimpleElastix registration algorithms56 in a custom Python workflow. Access to 

the scripts, examples and documentation can be found at GitHub: https://github.com/Vachet-

Lab/MS-Registration. 

Our approach to registration of LA-ICP-MS and MALDI-MS images relies on the use of 

internal signal features to drive the optimization process, as it seeks to maximize the mutual 

information present in both images. Ideally, these signal features should reflect the morphologic 

structure of the image (e.g., distinct sub-organ regions in a tissue) to ensure the best registration 

possible. Proper choice of the signal channels enables successful registration of LA-ICP-MS and 
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MALDI-MS images when different MALDI matrix deposition approaches are used or even when 

adjacent tissue sections are imaged. For LA-ICP-MS, we find that the Fe signal channel (i.e., 

57Fe) is an effective feature to use as it indicates blood-rich regions that often define different 

regions in a tissue. For MALDI-MS images, we initially used the heme signal (m/z 616), as 

analogous indicator of blood flow. Figures 1a and b illustrate the LA-ICP-MS (red) and MALDI-

MS (blue) images of liver and spleen tissue sections before and after registration. The MALDI-

MS image was used as the fixed image, and the LA-ICP-MS image was used as the moving 

image. Visual inspection of these images shows that the registration process successfully aligns 

the tissue boundaries and other internal structure features. For example, in Figure 1a, a large 

piece of connective tissue (CT) that is devoid of heme signal in the MALDI image aligns well with 

the same low Fe signal in the LA-ICP-MS image. Similarly, the red pulp (RP) and white pulp (WP) 

regions of the spleen are very well aligned after registration (Figure 1b).  

Registration of LA-ICP-MS and MALDI-MS images can also be accomplished when the 

matrix in MALDI-MS is deposited via sublimation. After matrix sublimation, we find that the heme 

signal is less reliably abundant, so we used a dimensionality reduction strategy, which leverages 

the many more signal channels that are present in MALDI-MSI datasets, to generate the signal 

features for the registration process. Dimensionality reduction was accomplished using a t-

distributed stochastic neighbor embedding (t-SNE) approach that has been used successfully on 

MALDI-MSI data.60–62 Using liver tissue sections as an example, t-SNE can be used effectively to 

combine nearly 40 different ions measured in MALDI-MS images (Figure S2). When the t-SNE 

generated features from MALDI-MS images are used together with the Fe signal from LA-ICP-

MS, registration of the two images can be achieved. Our approach successfully registers the two 

images (Figure 1c), as indicated by the excellent overlap of the tissue boundaries and veins (V) 

in the images. It should be noted that the registered images shown in Figure 1 are from adjacent 

tissue sections. Using adjacent tissue slices allows MALDI-MS and LA-ICP-MS imaging 

conditions to be separately optimized. Registering adjacent tissue sections is only possible using 

non-linear registration approaches (Figure S3) to correct for local deformations in the tissues that 

can arise from placement of adjacent tissue slices.  
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Figure 1. Sequential slices of liver and spleen tissues from mice analyzed by LA-ICP-MS (red) and MALDI-
MS (blue) using different MALDI-MS matrix deposition strategies and compared before and after 
registration. (a) Liver: The MALDI-MS tissue sample was prepared using a matrix sprayer. Low heme and 
Fe signals are present in the connective tissue (CT), while higher heme and Fe signals are present in the 
parenchyma (P). (b) Spleen: The MALDI-MS tissue sample was prepared using a matrix sprayer. High Fe 
and heme signals are present in the red pulp (RP), while low signals are found in the white pulp (WP). (c) 
Liver: The MALDI-MS tissue sample was prepared using a sublimation chamber. High Fe and t-SNE signals 
are present in the vein (V). 
 

Registration evaluation 

The effectiveness of our registration approach was evaluated by two methods: Dice 

similarity coefficient (DSC) calculations and landmark validation. DSC values were calculated 

using the approach described by Rohlfin63 (equation 1). For calculating the DSC values, regions 

of interest (ROI) were first chosen in both the LA-ICP-MS and MALDI-MS images (Figure 2). The 

chosen ROIs depended on the tissue type. For the liver, we used blood vessels, and for the 

spleen, we used the white pulp. Figure 2 shows the DSC analysis for the chosen ROIs. White 

pixels in the overlay represent pixels that overlap in LA-ICP-MS and MALDI-MS images. The DSC 

value for the liver images increases from 0.42 after simple translation of the images to 0.85 after 

full registration of the images, and in the spleen tissue the increase is from 0.64 to 0.77. Perfect 

overlap of the images would correspond to DSC values of 1.0. Because these images are from 

adjacent tissue slices, DSC values below 1.0 are expected, as there are slight differences in the 
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ROIs due to biological variations and imperfect placement of the tissue sections. The 

improvement in DSC values after registration is comparable to what was achieved using 

analogous approaches when MALDI-MS and immunostained images of liver and spleen sections 

were registered.64 To further test the ability of our registration methods, we also tested tissues 

sections that were not immediately adjacent but were two sections apart. In one example, the 

DSC value increased from 0.34 to 0.69 after registration (Figure S4), indicating there is 

reasonable similarity between non-adjacent tissue sections. 

Landmark validation36 was also used to assess registration effectiveness. In the landmark 

approach, several morphologically distinct points are chosen in both LA-ICP-MS and MALDI-MS 

images, and the distance between these points is calculated and averaged to provide an effective 

registration accuracy (Figure S5). For the images shown in Figure 2, average registration 

accuracies of 40 ± 30 µm and 70 ± 20 µm are obtained for the liver and spleen, respectively. 

Since the images were acquired at 50 µm resolution, the landmark distances show that most of 

the pixels are either perfectly correlated or are one pixel off. Given that the diameters of veins in 

the liver vary between 300 and 600 µm, and the diameters of white pulp areas are typically 

between 300 and 900 µm, these registration accuracies allow us to make confident conclusions 

about the veins and white pulp sub-organ regions.   

 

 

Figure 2. Registration validation using DSC calculations for liver and spleen tissue sections after 
registration of the MALDI-MS and LA-ICP-MS images from figures 1b and c. (a) Overlay of blood vessel 
masks and resulting DSC values before and after registration. (b) Overlay of white pulp masks and resulting 
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DSC values before and after registration. Green = LA-ICP-MS only pixels, Magenta = MALDI-MS only 
pixels, White = overlaid pixels. Segmentation of the veins and white pulp was performed manually using 
the Fe image in LA-ICP-MS and the t-SNE image in MALDI-MS to generate computational masks for each 
of the two images.  
 

Statistical correlations between chemical information in both images 

Once the images are registered, we can then compare how the signals in one image 

modality correlate with the signals in the other modality, which allows us to understand better the 

underlying biochemistry of the tissues. Using Pearson’s correlations, which are one of the more 

accurate methods for quantifying the degree of co-localization in two images,54 we can compare 

the extent to which metal distributions that are detected in LA-ICP-MS images correlate to specific 

biomolecule distributions that are detected in MALDI-MS images (Figure S6). As examples, we 

correlate Fe signals in LA-ICP-MS images of the liver and spleen with a range of lipids that are 

observed in MALDI-MS images of these same organs (Figure 3a and 3c). For the spleen, we find 

that the signal levels for two classes of lipids, including ceramides (Cer) and some 

phosphatidylethanolamines (PE), correlate with the Fe signals as these lipids are expected to be 

present in the red pulp.65 Since high Fe signals in LA-ICP-MS indicate the location of red pulp 

regions in the spleen, the lipids that positively correlate with the Fe are predominantly located in 

the red pulp. In contrast, the lipids that anticorrelate with the Fe, including 

lysophosphatidylcholines (LPC), phosphatidylcholines (PC), sphingomyelins (SM),65 and 

carnitines (Car), are predominantly located in the white pulp, which has low Fe levels. In effect, 

we have identified several lipids that can act as biomarkers of the red and white pulp regions of 

the spleen.     

The value of these correlations is even more evident when we image tissue sections from 

mice injected with gold nanomaterial delivery agents such as NPSCs that deliver TNFα-specific 

siRNA (Figure S7). These NPSCs have shown the ability to knockdown the production of TNFα 

in cell culture and in animals,45–47 and this knockdown causes changes in the levels of various 

lipids.66 LA-ICP-MS imaging is capable of indicating the distributions of the Au from the 

nanomaterials, while MALDI-MS images can indicate how biomolecules change in response to 

knockdown of TNFα. We correlated the Fe and Au signals with the lipids for control and NPSC-

treated mice in both liver and spleen tissue sections (Figure 3), which are the organs that have 

the highest concentrations of Au. Several of the lipids exhibit a significant change in their Pearson 

correlation values in spleens taken from NPSC-treated mice as compared to control mice (Figure 

3a). For example, glucoceramide (Glc) d18:1/16:1(17Z) has a low correlation coefficient with Fe 

(i.e., 0.03) in the control tissue, which indicates the signal is located equally in the Fe-rich red pulp 

region and the Fe-poor white pulp region. After NPSC treatment, the Glc d18:1/16:1(17Z) 
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correlation with Fe increases to 0.32, indicating greater levels of this lipid in the red pulp. Because 

the Au signal also highly correlates with this lipid (Figure 3b) and the Fe and Au signals have a 

high positive correlation value of 0.69 (see Figure S8), we conclude that the presence of the 

NPSC promotes changes in the Glc d18:1/16:1(17Z) levels. Glucosylceramides are known 

markers of inflammation,67 so it is possible that the presence of the NPSCs causes localized 

inflammation in the red pulp where they accumulate. PC (34:1) exhibits a similar behavior with its 

Pearson’s value changing from -0.09 in the control to 0.14 in the NPSC-treated tissue. This lipid 

also positively correlates with Au, suggesting an NPSC-induced effect to the level of this lipid as 

well.

 

Figure 3. Pearson’s correlation coefficients obtained after registering LA-ICP-MS and MALDI-MS images 
of spleen tissue sections from control and NPSC treated mice (MS images are found in Figure S9). (a) 
Correlation coefficients for Fe and select lipids that are measured from control and NPSC-treated mice. (b) 
Correlation coefficients for Au and select lipids that are measured from NPSC-treated mice. LPC = 
lysophosphatidylcholines; PC = phosphatidylcholines; PE = phosphatidylethanolamines; SM = 
sphingomyelins; CAR = carnitines; Cer = ceramides; Glc = glucosylceramides. 
 

In contrast, many more lipids show the opposite trend, becoming more negatively 

correlated with Fe and Au. For example, CAR (16:0) and SM (d18:1/17:0) have correlation values 

that change from 0.07 and -0.14 to -0.17 and -0.32, respectively. These anti-correlated values 

suggest that the presence of the NPSCs is generating changes to the levels of these lipids in 

places where the Fe and Au concentrations are low. That means that these lipid changes are 

occurring primarily in the white pulp where Fe concentrations are low and where Au accumulation 
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is minimal (Figure S8). TNFα knockdown therapies, like these NPSCs, typically target 

macrophages and lymphocytes, which are highly abundant in the white pulp of the spleen,68 likely 

explaining why so many lipid changes occur in the white pulp. CAR (16:0), SM (d18:1/17:0), and 

several of the PC lipids are signaling lipids known to undergo changes in concentrations upon 

TNFα suppression,66 and the ability to correlate MALDI-MS and LA-ICP-MS images helps identify 

the specific sub-organ regions in which these changes are happening.    

 

LA-ICP-MS assisted segmentation of MALDI-MS images 

The analysis of tissue regions upon MSI often involves the division of the image into 

segments so that the detected molecular features can be associated with different cell types and 

regions of the analyzed tissue. A commonly used methods for such image segmentation is k-

means clustering, which is a statistical method that divides the image into segments that possess 

similar spectral characteristics, while being agnostic to the spatial structure of the data.69 In 

MALDI-MS imaging, several approaches have been used to further improve segmentation, such 

as the implementation of more sophisticated spatially aware methods70,71 and spatially-shrunken 

centroids.72 Although segmentation algorithms for MALDI-MS imaging analysis are well 

developed, they highly depend on data quality, making the segmentation process challenging for 

noisy datasets.72 LA-ICP-MS imaging usually produces less noisy images than MALDI-MSI 

primarily because the tissue section is completely ablated during the imaging process. 

Consequently, we sought to leverage this higher precision in LA-ICP-MS imaging to improve 

segmentation in MALDI-MS images. To do this, we first segment the LA-ICP-MS image and then 

apply the resulting segmentation masks to the registered MALDI-MS images to improve the 

segmentation of the MALDI-MS data.  

As an example of LA-ICP-MS-assisted segmentation of MALDI-MS images, imaging data 

from mouse spleen tissues were acquired by both techniques (Figures 4a and b). First, we 

segmented the MALDI-MS images using two methods available in SCiLS lab: (i) k-means on the 

normalized dataset with a cluster number of 4 (Figure 4c) and (ii) bisecting k-means (Figure 4d). 

Both segmentation approaches differentiate the red and white pulp regions of the spleen, but 

neither method identifies a segment associated with the marginal zone, which is the ~100 µm-

sized region where initial immune responses occur in this organ.73 In contrast, segmentation of 

the Fe image from LA-ICP-MS imaging using RecSegImage-LA53 does classify the marginal zone 

of the spleen as a separate segment in the image in addition to the red and white pulp regions 

(Figure 4e). The three segmented areas from the LA-ICP-MS image can then be used as 

computational masks to classify the lipid signals from the MALDI-MS images that are most 
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associated with each of the three different regions of the spleen (Figure 4f, g, and h). This lipid 

classification is accomplished by separately averaging the lipid ion signals from the pixels 

associated with each of the three separate regions. Statistical t-tests were then used to identify 

lipids that had significant differences between regions in the spleen (Table 1). From these 

analyses, several lipids have significant differences in ion signals in the red pulp, white pulp, and 

marginal zone regions of the spleen. As examples, Figure 5 shows the MALDI-MS images of PE 

(p-40:5), which localizes well in the red pulp, PC (p-40:5), which localizes in the white pulp, and 

SM (d18:1/20:0), which is somewhat enriched in the marginal zone.  

 

Figure 4. LA-ICP-MS assisted segmentation of MALDI-MS images. (a) LA-ICP-MS Fe image. (b) MALDI 
heme b image. (c) MALDI segmentation in SCiLS using k-means with a cluster number of 4. (d) MALDI 
segmentation in SciLS using bisecting k-means. (e) LA-ICP-MS segmentation using RecSegImage-LA,53 
and MALDI heme b images overlaid with the (f) red pulp (RP) mask, (g) marginal zone (MZ) mask, and (h) 
white pulp (WP) mask. 
  
 

 

Figure 5. Correlation of Au vs lipids located on: (a) Red Pulp PE (p-40:5), (b) white pulp PC (p-40:5) and 
(c) marginal zone SM (d18:1/20:0). 
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Table 1. Normalized average signal intensities and standard deviations (SD) in each of the segmented 
regions (red pulp, white pulp, and marginal zone) of LA-ICP-MS and MALDI-MS ion signals, and 
determinations of unique localizations of each measured compound. 
 

Ion identity 

Red Pulp White Pulp Marginal Zone t test probabilities (P)a 

Average SD Average SD Average SD 
RP vs 

WP 

RP vs 

MZ 

WP vs 

MZ 

Au 60.5 19.1 19.2 6.5 34.3 12.3 Yes Yes Yes 

Fe 71.9 14.8 44.6 3.2 50.1 7.0 Yes Yes Yes 

Heme B 53.3 25.9 24.9 21.5 39.3 26.1 Yes Yes Yes 

LPC (16:0) 52.8 11.2 60.6 13.5 57.1 13.2 Yes Yes Yes 

LPC (18:0) 37.1 13.9 36.7 11.9 38.9 13.6 No No No 

LPC (18:2) 72.0 6.6 75.0 6.8 74.1 6.6 Yes Yes No 

LPC (20:4) 46.2 13.9 52.2 14.4 48.8 13.6 Yes No Yes 

LPC (p-18:0) 43.9 14.4 50.3 15.9 47.8 16.3 Yes Yes No 

PC (30:0) 44.8 8.9 54.8 11.9 49.9 10.4 Yes Yes Yes 

PC (32:0) 49.0 20.6 63.9 23.7 61.5 25.5 Yes Yes No 

PC (34:0) 46.3 14.1 47.6 13.7 48.5 12.8 No No No 

PC (34:1) 51.7 16.7 44.7 13.4 49.5 15.4 Yes No Yes 

PC (34:2) 59.2 15.9 62.8 15.6 66.6 17.9 Yes Yes No 

PC (34:3) 50.6 14.2 56.0 15.0 58.0 17.9 Yes Yes No 

PC (36:0) 54.5 16.6 64.4 19.8 62.7 18.9 Yes Yes No 

PC (p-32:0) 50.6 14.2 56.0 15.0 58.0 17.9 Yes Yes No 

PC (p-34:0) 47.9 18.7 51.6 20.5 55.9 20.1 Yes Yes No 

PC (p-34:1) 55.8 13.8 74.3 18.1 66.5 16.6 Yes Yes Yes 

PC (p-36:2) 53.4 15.2 61.8 17.2 60.4 16.7 Yes Yes No 

PC (p-36:4) 53.6 17.7 64.2 18.2 60.0 18.6 Yes Yes No 

PC (p-36:5) 40.4 15.8 55.2 16.9 47.7 16.9 Yes Yes Yes 

PC (p-38:4) 47.5 18.6 61.6 22.8 58.5 21.2 Yes Yes No 

PC (p-38:5) 45.5 14.3 58.8 16.9 52.3 15.4 Yes Yes Yes 

PC (p-38:6) 52.0 15.0 65.0 18.0 59.6 16.8 Yes Yes Yes 

PC (p-40:5) 48.8 14.1 68.2 18.7 58.2 16.6 Yes Yes Yes 

PE (26:4) 38.2 13.0 45.4 14.9 40.6 14.0 Yes No Yes 

PE (38:2) 44.0 20.3 48.6 22.5 50.5 22.8 Yes Yes No 

PE (p-34:1) 47.4 15.8 51.7 17.2 55.2 19.0 Yes Yes No 

PE (p-34:2) 44.2 20.6 55.9 22.6 54.8 25.1 Yes Yes No 
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PE (p-34:3) 51.5 12.0 52.9 12.1 50.7 12.0 No No No 

PE (p-36:3) 52.8 12.0 66.7 16.3 58.9 13.9 Yes Yes Yes 

PE (p-36:4) 56.1 16.2 67.4 17.3 64.7 19.4 Yes Yes No 

PE (p-34:1) 45.2 21.6 30.6 17.8 40.5 21.4 Yes Yes Yes 

PE (p-40:5) 58.1 18.1 39.5 15.2 48.0 18.9 Yes Yes Yes 

SM (d18:1/17:0) 27.7 13.0 49.4 29.1 34.4 18.1 Yes Yes Yes 

SM (d18:1/20:0) 56.5 18.3 54.4 18.4 61.8 20.3 No Yes Yes 

SM (d18:1/21:1) 49.6 17.5 65.2 20.8 59.5 21.3 Yes Yes Yes 

SM (d18:1/23:2) 58.9 13.9 69.7 15.0 67.1 16.3 Yes Yes No 

SM (d18:1/24:0) 52.8 14.4 72.6 18.1 61.7 16.1 Yes Yes Yes 

SM (d18:1/24:3) 44.9 13.9 66.1 21.8 53.6 16.9 Yes Yes Yes 

CAR (16:0) 37.0 17.1 44.3 17.2 38.5 15.6 Yes No Yes 

CAR (18:1) 21.6 4.8 24.0 3.6 22.4 4.2 Yes No Yes 

2H Cer 

(d18:1/20:1) 
42.1 20.4 33.6 9.6 36.2 14.3 Yes Yes No 

2H Cer 

(d18:1/25:1) 
57.6 16.0 48.6 14.8 52.3 15.8 Yes Yes Yes 

2H OH Cer 

(d18:1/20:0) 
46.0 13.7 50.4 14.7 48.2 15.1 Yes No No 

Glc(d18:1/26:1 

(17Z)) 
44.2 19.6 29.7 10.7 36.4 14.9 Yes Yes Yes 

a t-test probabilities were calculated to determine if there are statistically significant differences in 
localizations of each detected ion among red pulp, white pulp, and marginal zone regions. ‘Yes’ in green 
indicates significant differences between the compared areas. ‘No’ in orange indicates no significant 
difference between the compared areas. Probabilities are significant at a 99% confidence interval. 
 

Conclusions 

We have developed and evaluated a new computational workflow to register LA-ICP-MS 

and MALDI-MS images. Our workflow is written in Python and contains functions for image pre-

processing, dimensionality reduction, registration, and validation. It is freely available via GitHub 

at https://github.com/Vachet-Lab/MS-Registration. Registration of MALDI-MS and LA-ICP-MS 

images of adjacent tissue sections can be performed, enabling registrations of the two imaging 

modalities with accuracies within ± 50 µm. The computational workflow generates a unified 

dataset, enabling quantitative comparisons of tissues from mice treated with nanomaterial siRNA 

delivery systems. The resulting quantitative correlations provide insight into how the 

nanomaterials influence lipid levels in site-specific manner, which will allow us to more carefully 

study how nanomaterial delivery systems influence biochemistry in tissues. Additionally, 
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registration of LA-ICP-MS and MALDI-MS images allows us to leverage the higher precision data 

associated with LA-ICP-MS imaging to better segment MALDI-MS images. The improved 

segmentation leads to identification of lipids that are most associated with each of the three 

different sub-organ regions of the spleen. We expect that in the future other statistical models, 

already present as libraries in Python or elsewhere, can be used to further deepen our 

understanding of drug delivery systems. 
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