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Precipitation has become increasingly variable in the past century 
and will become more so in the coming decades due to climate 
warming (Seneviratne et al., 2012; Stocker, 2013). This increased 
variability can affect ecosystem services such as primary produc-
tion (Gherardi & Sala, 2019; Hsu et al., 2012; Knapp et al., 2008; 
Liu et al., 2020; Seneviratne et al., 2012), and can also drive state 
change in alternative stable state systems (Borgogno et al., 2007; 

Chen et al., 2018). Drylands are among the most sensitive eco-
systems to precipitation variability globally (Ahlström et al., 2015; 
Gherardi & Sala, 2019; Haverd et al., 2017). Moreover, drylands 
occupy ~45% of the global land surface, support nearly 40% of 
the world's population, and contribute significantly to the interan-
nual variability in global primary production (Haverd et al., 2017; 
�-�u;u�;|�-Ѵĺķ�ƑƏƑƏĸ��o�Ѵ|;u�;|�-Ѵĺķ�ƑƏƐƓĸ��u࢞�࢞Ѵb;ķ�ƑƏƐѵőĺ�$_;u;=ou;ķ�
it is imperative to investigate the effects of increased precipitation 
variability on dryland primary production (Gherardi & Sala, 2019; 
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Interannual variability in precipitation has increased globally as climate warming inten-
sifies. The increased variability impacts both terrestrial plant production and carbon 
(C) sequestration. However, mechanisms driving these changes are largely unknown. 
Here, we examined mechanisms underlying the response of aboveground net primary 
production (ANPP) to interannual precipitation variability in global drylands with 
mean annual precipitation (MAP) <500 mm yearƴƐ, using a combined approach of data 
synthesis and process- based modeling. We found a hump- shaped response of ANPP 
to precipitation variability along the MAP gradient. The response was positive when 
MAP < ~300 mm yearƴƐ and negative when MAP was higher than this threshold, with 
a positive peak at 140 mm yearƴƐ. Transpiration and subsoil water content mirrored 
the response of ANPP to precipitation variability; evaporation responded negatively 
and water loss through runoff and drainage responded positively to precipitation vari-
ability. Mean annual temperature, soil type, and plant physiological traits all altered 
the magnitude but not the pattern of the response of ANPP to precipitation variability 
along the MAP gradient. By extrapolating to global drylands (<500 mm yearƴƐ MAP), 
we estimated that ANPP would increase by 15.2 ±�ѵĺƏ�$]����;-uƴƐ in arid and hyper- 
arid lands and decrease by 2.1 ± 0.5 Tg C yearƴƐ in dry sub- humid lands under future 
changes in interannual precipitation variability. Thus, increases in precipitation vari-
ability will enhance primary production in many drylands in the future.
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aboveground net primary production, data synthesis, drylands, mean annual precipitation, 
precipitation variability, process- based model
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Haverd et al., 2017; Knapp et al., 2017; Luo et al., 2017; Rudgers 
et al., 2018).

The effect of precipitation variability on primary produc-
tion has been increasingly investigated during the past two 
decades, but mostly at intra- annual time scales (i.e., the event 
size or seasonality of precipitation) (Heisler- White et al., 2009; 
Knapp et al., 2002, 2008; Liu et al., 2020; Meng et al., 2021; 
Thomey et al., 2011) and much less at interannual time scales 
(i.e., year- to- year variation) (Gherardi & Sala, 2019; Haverd 
et al., 2017; Liu et al., 2020; Rudgers et al., 2018). Theory, ma-
nipulative experiments, and observations all generally suggest 
a positive effect of intra- annual precipitation variability on abo-
veground net primary production (ANPP) in xeric ecosystems 
and a negative effect in mesic ecosystems, with a mean annual 
ru;1brb|-|bom�Ő���ő�|_u;v_oѴ7�0;|�;;m�ƒƏƏ�-m7�ѵƔƏ�ll��;-uƴƐ 
(Heisler- White et al., 2008, 2009; Knapp et al., 2002, 2008; Liu 
et al., 2020; Thomey et al., 2011). Recently, Gherardi and Sala 
(2019) estimated the effect of interannual precipitation vari-
ability on ANPP as the slope of the regression line between the 
mean of ANPP and the coefficient of variation (CV ) of annual 
precipitation in 5- year moving windows at 43 globally distrib-
uted sites, where long- term ANPP observations were available. 
They found that the effect increased linearly with decreasing 
MAP and switched from negative to positive at 300 mm yearƴƐ, 
with the largest positive effect at the driest sites. However, 
their global synthesis included only one site under very dry 
conditions (i.e., MAP < 230 mm yearƴƐ), thus further analysis of 
low precipitation sites is needed. In fact, ANPP is hypothesized 
to be relatively insensitive to precipitation change at very dry 
sites, due to meristem constraints and little infiltration of pre-
cipitation into soil (Hsu et al., 2012; Hu et al., 2018; Reichmann 
et al., 2013). Moreover, the regression approach used by 
Gherardi and Sala (2019) does not account for the influence of 
possible covariates (e.g., mean annual temperature (MAT)), and 
thus this observation requires further testing, as argued by Liu 
et al. (2020). Indeed, using a different statistical method on a 
similar dataset, Hsu et al. (2012) found minor effects of interan-
nual precipitation variability on ANPP at 58 globally distributed 
vb|;vĺ�$o�7-|;ķ�omѴ��om;� Ѵom]Ŋ�|;ul�Őbĺ;ĺķ�ѵŊ��;-uő�;�r;ubl;m|�_-v�
experimentally manipulated interannual precipitation variabil-
ity, finding an initial negative, rather than a positive, effect on 
ANPP in a xeric grassland with ~240 mm yearƴƐ MAP (Gherardi 
& Sala, 2015).

The shift in the effect of precipitation variability on ANPP 
along the MAP gradient is usually explained by a hydrological 
hypothesis (Gherardi & Sala, 2019; Heisler- White et al., 2008, 
2009; Thomey et al., 2011), which states that large precipita-
tion events penetrate deeper into the soil profile. Subsoil water 
in xeric systems is depleted mostly by transpiration and less so 
by evaporative losses. In contrast, in mesic ecosystems, the-
ory predicts that large precipitation events can increase water 
loss through runoff and drainage, resulting in lower soil water 

availability per rain event (Knapp et al., 2008). Although fre-
quently inferred, this soil moisture hypothesis has been infre-
quently tested or tested with only surface soil water content 
measurements (Gherardi & Sala, 2019; Heisler- White et al., 
2008, 2009; Thomey et al., 2011), without any measurements 
of evaporation, transpiration, infiltration, runoff, or drainage, 
due to operational challenges.

This hydrological mechanism is even harder to test empirically 
at interannual time scales, when antecedent or legacy effects of 
precipitation may be a factor (Reichmann et al., 2013; Sala et al., 
2012). Nevertheless, the mechanism can be investigated using 
a process- based model that can incorporate a wide range of 
scenario settings (Liu et al., 2020; Sala et al., 2015). For exam-
ple, using a process- based hydrological model, Sala et al. (2015) 
found that the effects of interannual precipitation variability 
on soil water availability and transpiration were positive when 
MAP < 380 mm yearƴƐ (ranged between 350 and 440 mm yearƴƐ) 
and negative at higher values of MAP. While the results generally 
supported the hydrological mechanism, the model used did not 
consider water losses through runoff nor was it validated by any 
measurement at the simulated sites. Moreover, the hydrological 
model did not include any C cycle representation and therefore 
provides only partial insight into the effects of precipitation vari-
ability on the C cycle.

In addition to MAP, the effect of precipitation variability on 
ANPP may be also modulated by MAT, soil type, vegetation type, 
as well as the variability patterns (i.e., magnitude, duration, and 
stochasticity) and antecedent effects of precipitation (Felton 
et al., 2021; Liu et al., 2020; Rudgers et al., 2018; Sala et al., 2012). 
For example, an ecosystem with high MAT loses more water from 
surface soil through evaporation, and therefore may benefit more 
from the percolation of large precipitation events to deep soil than 
an ecosystem with lower MAT where evaporation is less (Liu et al., 
2020). Sandy soils facilitate infiltration and therefore may benefit 
more from increased precipitation variability under low MAP, but 
can lose more water under high MAP due to lower water holding 
capacity, in comparison to loamy or clay soils (Sala et al., 1988, 
2015). Vegetation type can modulate the effect of precipitation 
variability on ANPP through plant physiological properties that are 
closely related to plant uptake and utilization of water, such as leaf 
growth rate and soil- profile root distribution (Rudgers et al., 2018; 
Xu et al., 2015). For example, a fast growth rate allows plants to 
rapidly increase biomass when water is available and therefore 
may benefit from increased soil water availability under variable 
precipitation at dry sites (Rudgers et al., 2018; Xu et al., 2015). 
Deep roots benefit from increased precipitation variability due to 
deep penetration of large precipitation events into soil (Gherardi 
& Sala, 2015).

Although a number of mechanisms have been proposed to 
explain the effect of precipitation variability on ANPP, most of 
the mechanisms have been tested at only a small number of sites 
(Gherardi & Sala, 2015; Heisler- White et al., 2008, 2009; Liu et al., 
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2020; Rudgers et al., 2018). Whether these mechanisms can be gen-
eralized is unclear, and the relative importance of each mechanism 
under broad environmental conditions remains poorly understood. 
This knowledge gap needs to be filled in order to predict dryland 
primary production in response to future changes in precipitation 
variability at regional to global scales.

We investigated the effect of interannual precipitation variabil-
ity (hereafter precipitation variability) on ANPP in global drylands 
(outlined by UNEP- WCMC (2007)) with MAP < 500 mm yearƴƐ, 
using a combined approach of data synthesis and modeling. We 
focused on these drylands because of their high precipitation vari-
ability (Knapp, Hoover, et al., 2015) and high sensitivity to annual 
precipitation (Huxman et al., 2004; Maurer et al., 2020). In addi-
tion, drylands with MAP < 230 mm yearƴƐ have been less studied 
(Gherardi & Sala, 2019; Hsu et al., 2012), despite accounting for 
15.1% of global land surface. For data synthesis, we compiled a 
7-|-0-v;� o=� Ѵom]Ŋ�|;ul� ŐƾƐƏ� �;-uvő� �����l;-v�u;l;m|v� =uol� Ɠƒ�
globally distributed dryland sites, to explore the empirical relation-
ship between the effect of precipitation variability on ANPP and 
MAP. Next, we conducted 8,330 long- term (i.e., 50 years) precipita-
tion manipulation experiments using the process- based Terrestrial 
ECOsystem (TECO) model (Weng & Luo, 2008), to see whether 
the model can reproduce the empirical relationship, and to explore 
the underlying mechanisms. Finally, we extrapolated both the ob-
served effects of precipitation variability on ANPP (using a machine 
learning approach) and the simulated ones to global drylands with 
MAP < 500 mm yearƴƐ, to reveal global patterns of precipitation 
variability on ANPP.

We hypothesized that the effect of precipitation variability on 
ANPP would (1) show a unimodal relationship with MAP, (2) be mod-
ulated by MAT, soil type, and vegetation type, and (3) be explained 
mainly by how precipitation is partitioned into transpiration for 
plant growth versus loss through evaporation, runoff, and drainage. 
By testing these hypotheses, we can improve our understanding of 
the response of dryland ANPP to precipitation variability and the 
underlying mechanisms, and therefore gain a more predictive under-
standing of ANPP dynamics under future increases in precipitation 
variability.

ƑՊ |Պ��$��	"
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lands to estimate the effect of interannual precipitation variability 
on ANPP. The long- term ANPP datasets were compiled by search-
ing EcoTrends database (EcoTrends database, 2004), the Oak Ridge 
National Laboratory Distributed Active Archive Center (ORNL 
DAAC) database (Oak Ridge National Laboratory Distributed Active 
Archive Center, 2009), Long Term Ecological Research (LTER) data-
0-v;� Ő�om]� $;ul��1oѴo]b1-Ѵ� !;v;-u1_��;|�ouhķ� ƑƏƐѵőķ� -m7� ]oo]Ѵ;�
scholar using the keyword of “ANPP” or “above- ground net primary 
production.” To be included in our database, the site or the ANPP 
measurements had to meet all of the following criteria. (1) Site was 
a dryland with MAP < 500 mm yearƴƐ that has not had significant 
human disturbance, that is, no fertilization, irrigation, anthropo-
genic fire regime, or land use change history. Grasslands that have 
been slightly, but not moderately or heavily, grazed were included. 
(2) ANPP was measured for at least 10 years, and annual (calendar) 
precipitation in the corresponding years was available or could be 
reliably derived from nearby weather stations. Multiple ecosystems 
with different vegetation types or locations at the same research 
station were taken as multiple sites.

In total, we compiled long- term ANPP measurements from 43 
globally distributed drylands with MAP < 500 mm yearƴƐ, including 
35 grasslands, 7 shrublands, and 1 savanna (Figure 1a; Table S1). Our 
database included all 29 sites with MAP < 500 mm yrƴƐ in Gherardi 
and Sala (2019) as well as another 14 sites. For each site, we have 
also recorded geographic location (i.e., latitude and longitude), el-
evation, MAT, and soil particle size measurements when available. 
We have filled missing values of MAT (53.5%) and soil particle size 
(83.7%) by values derived from WorldClim (Fick & Hijmans, 2017) 
and HWSD databases (Wieder et al., 2014), respectively, using site 
geographic location.

We used precipitation SD rather than precipitation CV to rep-
resent precipitation variability (Figure 1), because the SD, but not 
the CV, of annual precipitation was less dependent on MAP across 

 ��&!� �ƐՊ	bv|ub0�|bom�o=�7u�Ѵ-m7v��b|_�l;-m�-mm�-Ѵ�ru;1brb|-|bom�Ő���ő�o=�<500 mm yearƴƐ. (a) Geographical distributions of global 
drylands with MAP < 500 mm yearƴƐ (color filled), and the 43 dryland sites (circles) where long- term aboveground net primary production 
measurements were obtained for this study. (b) Climatological distribution of the 43 dryland sites along MAP and mean annual temperature 
gradients. Circle size is proportional to the standard deviation of annual precipitation (PPT SD, mm yearƴƐ) [Colour figure can be viewed at 
wileyonlinelibrary.com]
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sites (SD: r = 0.30, p = 0.054; CV: r =�ƴƏĺƕѵķ�p < 0.001). We aggre-
gated the synthesized data at each site in 5- year moving windows 
and calculated the mean of ANPP and the SD of annual precipitation 
for each time window. We then constructed a linear relationship be-
tween the 5- year moving ANPP mean (Y axis) and precipitation SD 
(X axis) at each site. Slope of the linear regression line at each site 
was used to quantify the effect of precipitation variability on ANPP. 
The slope was regressed against MAP using a sample size- weighted 
regression approach to quantify the relationship between the effect 
of precipitation variability on ANPP and MAP.

ƑĺƑՊ |Պ�o7;Ѵ�vbl�Ѵ-|bomv

We performed model simulations with the TECO model (Jiang et al., 
2018; Weng & Luo, 2008) for four purposes. One was to explore 
whether the model can reproduce the observed effect of precipi-
tation variability on ANPP along the MAP gradient. The second 
purpose was to extend the relationship to very dry conditions (i.e., 
MAP < 230 mm yearƴƐ) where long- term ANPP observations were 
rare (Table S1). The third purpose was to explore the hydrological 
mechanisms underlying ANPP response to precipitation variability 
along the MAP gradient (Gherardi & Sala, 2019; Sala et al., 2015). 
The fourth purpose was to explore whether and how MAT, soil type, 
and vegetation type would modulate the effect of precipitation vari-
ability on ANPP.

The TECO model has proven to be a useful tool to examine the 
responses of terrestrial C and water cycles to multiple global change 
factors (e.g., precipitation) in diverse ecosystems (e.g., grasslands, 
shrublands, and forests) (Jiang et al., 2018; Paschalis et al., 2020; 
Weng & Luo, 2008). The TECO model is driven by six climate vari-
ables, including precipitation, wind speed, solar radiation, air tem-
perature, relative humidity, and vapor pressure deficit. It couples 
terrestrial C, water, and energy dynamics at an hourly time step. 
The C cycle includes photosynthesis, C allocation, and C transfor-
mation (Weng & Luo, 2008). Leaf photosynthesis is based on the 
Farquhar model, which is mainly a function of leaf maximum car-
boxylation rate (Vcmax). Leaf photosynthetic rate is constrained by 
water supply through a roots- weighted soil water scaler. The soil is 
divided into 10 layers, with soil thickness of 5 cm for the first layer, 
10 cm for the second layer, 15 cm for the third to fifth layers, and 
20 cm for the sixth to tenth layers. The soil water subroutine simu-
lates soil water content based on the balance between water inputs 
(precipitation) and outputs (evaporation, transpiration, runoff, and 
drainage). Evaporation depletes water from the topsoil (i.e., the first 
layer of soil). Transpiration depletes water from all soil layers where 
roots are present and is allocated to the soil layers based on the root 
fraction in each soil layer. The movement of water between adjacent 
soil layers is simulated based on unsaturated water flow (Ryel et al., 
2002). More details about the TECO model can be seen in Text S1.

Before model simulations, we calibrated the TECO model with 
8 years (2010– 2017) of measurements of C, water, and energy 
dynamics in a desert grassland in the Sevilleta National Wildlife 

!;=�];� bm� �;�� �;�b1oķ� &ĺ"ĺ� ŐƒƓĺƓ� �ķ� ƐƏѵĺƕ� )őķ� |_;� vb|;� o=� |_;�
Sevilleta LTER Program. The grassland is a typical dryland, where 
MAP (~250 mm yearƴƐ) is in the middle of the MAP range we ex-
plored (20– 500 mm yearƴƐ), MAT (13.5) is in the middle of MAT 
range in drylands (typically be 0– 25), and soil type (sandy loam) 
is common in drylands. Our model simulated well 8- year changes in 
C, water, and energy fluxes in the desert grassland (Figure S1; Table 
S2). This prototype served as a robust basis for the following model 
simulations.

To address the first two modeling purposes, we simulated the 
effect of precipitation variability on ANPP in four steps, as de-
scribed below and illustrated in Figure S2. First, we generated 50- 
year climate data (including the six climate variables listed above) to 
drive our TECO model, with each year climate data were randomly 
selected from the 8- year climate data at the Sevilleta site. Second, 
we increased precipitation variability in the 50- year climate data 
while keeping MAP and other climate data constant. To do this, we 
increased precipitation in half of the 50 years and decreased pre-
cipitation in the other half of the 50 years with the same magni-
tude. The years in which precipitation was increased or decreased 
were selected randomly. The magnitude of precipitation change 
(i.e., increase or decrease) in a year was increased stepwise from 0 
to 120 mm yearƴƐ with a step of 2.5 mm yearƴƐ by scaling all precip-
itation events in the year. This generated 49 precipitation scenarios 
with the same MAP but different interannual precipitation variabil-
ities. Model simulations on this set of precipitation scenarios were 
used to estimate the effect of precipitation variability on ANPP at 
~250 mm yearƴƐ MAP, that is, calculated as the slope of the regres-
sion line between 50- year ANPP mean (Y axis) and precipitation SD 
(X axis).

Third, we changed MAP in the 49 precipitation scenarios by scal-
ing all precipitation events with a scaling factor of 0.1, 0.2, 0.3, 0.4, 
ƏĺƔķ�Əĺѵķ�Əĺƕķ�ƏĺѶķ�ƏĺƖķ�ƐĺƏķ�ƐĺƑķ�ƐĺƓķ�Ɛĺѵķ�ƐĺѶķ�ƑĺƏķ�ƑĺƑķ�ou�ƑĺƓĺ��o7;Ѵ�
simulations on this set of precipitation scenarios enabled us to ex-
plore the effect of precipitation variability on ANPP at sites with 
MAP ranging from ~20 to ~500 mm yearƴƐ, assuming that MAP is 
the main predictor of the effect of precipitation variability on ANPP. 
Validation of this assumption is tested as our fourth modeling pur-
pose, which is described as follows. Fourth, we repeated the above 
three steps 10 times in order to generate more robust estimates of 
precipitation variability effects. The above four steps of precipita-
tion manipulations resulted in a total of 8330 precipitation scenar-
ios, which were calculated as 49 precipitation variability scenarios 
(step 2) × 17 MAPs (step 3) × 10 replicates (step 4). We ran model 
simulations on each of the 8330 precipitation scenarios. Before each 
model simulation, we ran model spin- up for 50 years, which was long 
enough for ANPP to stabilize in the TECO model.

To address the third modeling purpose, we calculated the effect 
of precipitation variability on ecosystem water fluxes (including tran-
spiration, evaporation, runoff, and drainage) and water availability in 
the soil profile from our model simulations using a method similar 
to the calculation of the effect of precipitation variability on ANPP. 
Water availability in each soil layer was calculated as the difference 
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in water input and output of the soil layer. Changes in water fluxes 
and soil- profile water availability along the MAP gradient were fitted 
with smooth curves.

Since our TECO model is an ecosystem model with climate, soil 
type, and vegetation type set according to the dryland selected for 
calibration, the above inferences are restricted to drylands with 
similar environmental conditions and ecosystem properties. Our 
inferences may be also applicable to other drylands, if MAP is the 
main predictor of the effect of precipitation variability on ANPP, as 
suggested in some previous studies (Gherardi & Sala, 2019; Liu et al., 
2020). Whether and how MAT, soil type, and vegetation type (in-
dexed by leaf Vcmax and soil- profile root distribution) would modulate 
the effect of precipitation variability on ANPP were explored as our 
fourth modeling purpose by changing these site properties in our 
TECO model. Specially, we changed MAT from 13.5 (default) to 
18.5, soil type from sandy loam soil (default) to loam soil (corre-
sponding soil hydraulic properties in Table S3), leaf Vcmax (determines 
leaf photosynthesis rate in the model) from 80 μmol mƴƑ sƴƐ (default 
value) to 40 μmol mƴƑ sƴƐ, or soil- profile root distribution from the 
default setting to a deeper or a shallower root distribution (details in 
Table S4), and re- conducted model simulations on all 8,330 precip-
itation scenarios.

ƑĺƒՊ |Պ�Ѵo0-Ѵ�r-||;umv

At the global scale, we examined the spatial patterns of ANPP 
response to historical (1905– 2010) and future (2010– 2095) 
changes in precipitation variability in global drylands with 
MAP < 500 mm yearƴƐ. The drylands were selected as the intersec-
tion of global drylands outlined by UNEP- WCMC (2007) and global 
lands with MAP < 500 mm yearƴƐ, which has an area of 43.5 mil-
lion km2 and covers 29.2% of global land surface (Figure 1a).

In brief, ANPP change due to historical or future changes in pre-
cipitation variability was calculated as:

where VarChangehistorical indicates the historical change in precip-
itation variability, which was calculated as the difference of precipi-
|-|bom� "	� 0;|�;;m� ƐƖƏƐŋ�ƐƖƐƏ� -m7� ƑƏƏѵŋ�ƑƏƐƔ� ŐƐƏŊ��;-u� �bm7o�vő�
based on the Climatic Research Unit Time Series (CRU TS) dataset 
(Harris et al., 2014). VarChangefuture indicates the future change in 
precipitation variability, which was calculated as the difference of pre-
1brb|-|bom�"	�0;|�;;m�ƑƏƏѵŋ�ƑƏƐƔ�-m7�ƑƏƖƏŋ�ƑƏƖƖ�ruof;1|;7��m7;u�
RCP8.5 scenario by each of the nine Coupled Model Intercomparison 
Project Phase 5 (CMIP5) models (Table S5) (Taylor et al., 2012). Similar 
VarChangehistorical and VarChangefuture results were obtained when 
using 15- year or 20- year windows (results not shown). VarEffectANPP 
indicates the effect of per unit precipitation SD on ANPP. It was either 
predicted from our model simulations with global MAP as the input or 
extrapolated from the observed effects at the 43 sites.

Observed- effect based VarEffectANPP values were extrapolated 
to the global scale by a boosted regression tree (BRT) model. The 
BRT model took the observed effects of precipitation variability 
on ANPP at the 43 sites as the predicted values, site properties 
including MAP, MAT, vegetation type, and soil sand content and 
clay content as the predictors, and sample size as the weighting 
factor. Before constructing the final BRT model, we optimized 
model parameters (including bag fraction and learning rate). We set 
tree complexity to be 1, which indicates no interaction between 
predictors, due to a small sample size (Elith et al., 2008). To avoid 
model overfit, we pre- selected predictors by looking into the rel-
ative importance of all predictors. We found that vegetation type 
was of minor importance, and therefore excluded it from our final 
BRT model. For global extrapolation, we used MAP and MAT during 
1951– 2000 from CRU TS datasets (Harris et al., 2014), and soil 
sand content and clay content from HWSD database (Wieder et al., 
2014) as model inputs. We performed all BRT analyses with the 
“gbm” package version 2.1.5 (Bivand & Piras, 2015) plus the custom 
code of another study (Elith et al., 2008) in R version 3.5.0 (R Core 
Team, 2020). Finally, we examined regional patterns by summing 
up the extrapolated ANPP response to historical or future changes 
in precipitation variability by aridity levels, that is, hyper- arid, arid, 
semi- arid, or dry sub- humid lands, defined according to UNEP- 
WCMC (2007).

The standard error of ANPP response to historical change in 
precipitation variability in each global grid or each aridity group 
was calculated based on two estimates, that is, (observed- effect 
or simulated- effect based VarEffectANPP) × historical change in 
precipitation variability. The standard error of ANPP response to 
future change in precipitation variability was calculated based on 
18 estimates, that is, (observed- effect or simulated- effect based 
VarEffectANPP) × future change in precipitation variability projected 
by each of the nine CMIP5 models. All global spatial data were re-
gridded into 1°×1° resolution if original data were not at that scale.

ƒՊ |Պ !�"&�$"
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The observed effect of precipitation variability on ANPP varied from 
ƴƏĺƑƖ�|o�ƏĺƑƐ�Ől;-m�ƏĺƏƑő�]���lƴƑ mmƴƐ yearƴƐ across the 43 sites 
(Figure 2a). The effect decreased linearly with increasing MAP and 
switched from positive to negative at about 335 mm yearƴƐ, both 
within grasslands and across all sites (R2 = 0.14 and 0.13, respec-
tively, p < 0.05; Figure 2a). Moreover, the effect of precipitation vari-
ability increased linearly with increasing MAT both within grasslands 
and across all sites excluding the only savanna, which had the highest 
��$�ŐƑƕĺѵ) (R2 = 0.21 and 0.25, respectively, p < 0.05; Figure 2b). If 
the savanna site was included, the effect of precipitation variability 
on ANPP would show a unimodal relationship with MAT (R2 =�ƏĺƑѵķ�
p = 0.002; Figure 2b). The opposite changes in the effect along the 

Historical (orFuture)ANPPchange = VarChangehistorical
(

orVarChangefuture
)

×VarEffectANPP,
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MAP and the MAT gradients were probably related to the negative 
correlation between MAP and MAT (r =�ƴƏĺƔƕķ�p < 0.001; Figure 1b).

The effect of precipitation variability on ANPP did not differ 
significantly between grasslands and shrublands with similar MAP 
and MAT (p > 0.05; Figure 2a,b). Moreover, the effect was not sig-
nificantly related to soil sand content (r = 0.14, p = 0.40) or clay 
content (r = 0.15, p =�Əĺƒƒőĺ��!$�-m-Ѵ�vbvķ��_b1_�;�rѴ-bm;7�ѵƏѷ�o=�
the total variation in the effect (Figure 2c), confirmed that MAP and 
MAT were the most important predictors, while soil sand content 
and clay content were less important predictors (Figure 2d), and 
vegetation type was of minor importance and therefore excluded 
from the final BRT model. Relative importance of MAT and MAP in 
predicting effects of variability was indicated differently by the re-
gression analysis and the BRT analysis, again, probably due to the 
collinearity between MAP and MAT (Figure 1b).

ƒĺƑՊ |Պ "bl�Ѵ-|;7�;==;1|v�o=�ru;1brb|-|bom��-ub-0bѴb|��
om������-m7��-|;u�=Ѵ��;v

Our process- based model simulated comparable effects of precipita-
tion variability on ANPP within the MAP range of the observational 

7-|-�Őbĺ;ĺķ�ƐƐѵŋ�ƓƑƕ�ll��;-uƴƐ), and showed that the simulated effect 
switched from positive to negative at about 300 mm yearƴƐ MAP 
(Figure 3a). Moreover, modeling analysis identified a positive peak 
effect at about 140 mm yearƴƐ MAP, which was not captured by the 
observational data (Figure 3a).

Importantly, our modeling analysis revealed the effects of 
precipitation variability on ecosystem water fluxes and water 
availability in the soil profile (Figure 3b,c). Increased precipitation 
variability altered the partitioning of precipitation into transpi-
ration, evaporation, and water loss through runoff and drainage 
(Figure 3b). The effect of precipitation variability on transpira-
tion mirrored that on ANPP (Figure 3a,b). The opposite pattern 
was generally true for the effect of precipitation variability on 
evaporation, which was consistently negative (Figure 3b). The ef-
fect of precipitation variability on water loss through runoff and 
drainage was consistently positive and increased gradually with 
increasing MAP (Figure 3b). Increased precipitation variability 
consistently decreased shallow soil (<5 cm depth) water avail-
ability and also decreased subsoil (>5 cm) water availability at 
MAP > 300 mm yearƴƐ, but increased subsoil water availability at 
lower MAP (Figure 3c). The positive effect of precipitation vari-
ability on subsoil water availability peaked round 140 mm yearƴƐ 

 ��&!� �ƑՊ$_;�;==;1|�o=�bm|;u-mm�-Ѵ�ru;1brb|-|bom��-ub-0bѴb|��om�-0o�;]uo�m7�m;|�rubl-u��ruo7�1|bom�Ő����ő�bm�u;Ѵ-|bom�|o�b|v�ru;7b1|ouvĺ�
The effect of interannual precipitation variability, indexed by the standard deviation (SD) of annual precipitation, on ANPP was a function 
of (a) mean annual precipitation (MAP) and (b) mean annual temperature (MAT). (c) The observed effect versus the effect predicted by 
a boosted regression tree model. (d) Relative importance of the predictors quantified using the boosted regression tree model. In (a,b), 
point size is proportional to sample size; the sample size- weighted regression line is given in grasslands (green) and across all sites (black, 
but orange when the only savanna site was excluded); the shaded band indicates the 95% confidence interval. In (c), the black line and the 
shaded band indicate the regression line and the 95% confidence interval, respectively. In (d), Sand and Clay indicate soil sand content and 
clay content, respectively [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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MAP (Figure 3c), the same MAP value where the positive effects 
on transpiration and ANPP peaked.

When MAP was <230 mm yearƴƐ, a higher MAT reduced ANPP 
(Figure S3a) and its sensitivity (i.e., less positive) to precipitation vari-
ability (Figure 4a). When MAP was higher than this threshold, higher 
MAT increased evaporation (Figure S3c) and decreased the effects 

of precipitation variability on evaporation and water loss through 
runoff and drainage (Figure S4a), resulting in more positive or less 
negative effects on transpiration (Figure S4a) and ANPP (Figure 4a). 
Sandy loam soil facilitates water infiltration and thus increased tran-
spiration and ANPP over loam soil (Figure 4b; Figure S4b). In com-
parison to sandy loam soil, loam soil lost more water through surface 

 ��&!� �ƒՊ��7u-�Ѵb1�l;1_-mbvl�
underlying the effect of interannual 
precipitation variability on aboveground 
net primary production (ANPP). (a) 
The effect of interannual precipitation 
variability on ANPP in model simulations 
(gray line) generally matched well with the 
effect calculated from long- term ANPP 
observations (black line and shaded band, 
as in Figure 2a) along the mean annual 
precipitation (MAP) gradient. In modeling 
analysis, (b) interannual precipitation 
variability affected ANPP mainly by 
altering the partitioning of precipitation 
into transpiration, evaporation, and 
loss from the ecosystem via runoff and 
drainage. (c) Interannual precipitation 
variability altered the partitioning of 
precipitation into transpiration and 
evaporation further by changing water 
availability in the soil profile (unit: 
mm mmƴƐ yearƴƐ). In (c), the black point 
indicates the fraction of roots in each soil 
layer used in the model [Colour figure can 
be viewed at wileyonlinelibrary.com]

 ��&!� �ƓՊ"bl�Ѵ-|;7�;==;1|�o=�
interannual precipitation variability on 
aboveground net primary production 
(ANPP) is modulated by mean annual 
temperature (MAT), soil type, and plant 
physiological traits. (a) MAT; (b) soil type; 
(c) leaf maximum carboxylation rate 
(Vcmax); (d) root distribution in soil profile. 
In each subplot, the gray line indicates 
the effect simulated with the default 
parameter values, and the colored line(s) 
indicate the effect(s) simulated with the 
altered parameter value(s) [Colour figure 
can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
www.wileyonlinelibrary.com
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runoff (Figure S3d); meanwhile, loam soil had a larger water holding 
capacity (Table S3) and therefore should retain more water in the 
surface soil layer, which was depleted by evaporation (Figure S3c).

A decrease in Vcmax from 80 to 40 µmol mƴƑ sƴƐ reduced ANPP 
(Figure S3a) as well as its sensitivity to precipitation variability 
when MAP was <240 mm yearƴƐ, but had little impact on sensitiv-
ity when MAP was higher than this threshold (Figure 4c). Shallow 
roots benefited more from increased precipitation variability at 
MAP < 170 mm yearƴƐ, whereas deep roots benefited more or lost 
less at MAP > 170 mm yearƴƐ (Figure 4d).

ƒĺƒՊ |Պ $_;�;==;1|�o=�ru;1brb|-|bom��-ub-0bѴb|��om�
�����bm�]Ѵo0-Ѵ�7u�Ѵ-m7v��b|_�����ƺ�ƔƏƏ�ll��;-uƴƐ

The effect of precipitation variability on ANPP was positive in 
southwestern Australia, the Middle East, and northwestern China, 
and negative in central North America, southern Russia, and north-
eastern China (Figure 5a,b), in accordance with the MAP of these 
regions (Figure 1a). These projected spatial patterns were similar be-
tween extrapolation from the observations using the BRT method 
and predictions from the model simulations (Figure 5a,b; Figure S5a). 
An exception was in the hyper- arid Sahara region, where the effects 
predicted from the model simulations were generally minor, but the 
effects extrapolated from the observations were strong and posi-
tive (Figure 5a,b). This difference resulted from the linear change in 
the observed effect while a unimodal change in the simulated effect 
along the MAP gradient (Figure 3a).

Year- to- year variation in precipitation has increased over the 
past century and will further increase in the future in most global 
drylands, with large spatial variations (Figure 5c,d). There were also 
large variations in further changes in precipitation variability among 
lo7;Ѵv� Őb]�u;�"ѵőĺ�	;vrb|;�1omvb7;u-0Ѵ;��m1;u|-bm|b;v� bm�o�u�;v|b-
mated ANPP responses to precipitation variability change (Figure 
S5b,c), there were some spatial patterns of the ANPP responses 
(Figure 5e,f). Given historical changes in precipitation variability 
(Figure 5c), ANPP increased in Mongolia, northwestern China, west-
ern Australia, and Arabia, and decreased in central North America, 
northeastern China, and central Australia (Figure 5e). These patterns 
will be enhanced by future changes in precipitation variability; that 
is, ANPP will generally increase in areas where ANPP has increased 
and decrease in areas where ANPP has decreased (Figure 5e,f). 
An exception was in inner Australia, where ANPP has increased 
(Figure 5e) but will decrease (Figure 5f) due to decrease in precipita-
tion variability in the future (Figure 5d).

��;u-ѴѴķ������_-v�bm1u;-v;7�0��ƐѵĺƐ�± 2.4 Tg C yearƴƐ and will in-
crease by an additional 12.2 ± 5.8 Tg C yearƴƐ due to changes in pre-
cipitation variability in global drylands with MAP < 500 mm yearƴƐ 
Őb]�u;�Ɣ]ķ_őĺ������_-v�bm1u;-v;7�0��ƐƖĺѵ�± 4.4 Tg C yearƴƐ in arid 
Ѵ-m7v� -m7� _�r;uŊ�-ub7� Ѵ-m7vķ� 1_-m];7� Ѵb||Ѵ;� ŐƴƐĺƏ�± 1.0 Tg C yearƴƐ) 
in semi- arid lands, and decreased by 2.5 ± 1.0 Tg C yearƴƐ in 
dry sub- humid lands due to historical changes in precipitation 
variability (Figure 5g). Given future changes in precipitation 

variability, we predict that ANPP will increase by an additional 
15.2 ±�ѵĺƏ�$]����;-uƴƐ in arid lands and hyper- arid lands, will change 
Ѵb||Ѵ;�bm�v;lbŊ�-ub7�Ѵ-m7v�ŐƴƏĺƖ�± 0.7 Tg C yearƴƐ), and will decrease by 
an additional 2.1 ± 0.5 Tg C yearƴƐ in dry sub- humid lands (Figure 5h).

ƓՊ |Պ	�"�&""���

ƓĺƐՊ |Պ $_;�;==;1|�o=�ru;1brb|-|bom��-ub-0bѴb|��om�
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The effect of precipitation variability on ANPP estimated based on our 
o0v;u�-|bomv�Ő0;|�;;m�ƴƏĺƑƖ�-m7�ƏĺƑƐ�]���lƴƑ mmƴƐ yearƴƐ; Figure 2a) 
-m7�lo7;Ѵbm]�-m-Ѵ�v;v�Ő0;|�;;m�ƴƏĺƏѵ�-m7�ƏĺƐƓ�]���lƴƑ mmƴƐ yearƴƐ; 
Figure 3a) were both comparable to the estimates by Gherardi and Sala 
ŐƑƏƐƖő�ŐƴƏĺƐѶ�|o�ƏĺƐѵ�]���lƴƑ mmƴƐ yearƴƐ at MAP < 500 mm yearƴƐ, 
recalculated from ANPP change per unit of precipitation CV). While 
empirical estimates of the effect of precipitation SD or CV on ANPP 
may be influenced by possible covariates (e.g., MAP and MAT), our 
modeling analysis has produced comparable estimates with the covari-
ates controlled and thus confirmed the empirical estimates. Our esti-
mates were larger in magnitude than the estimates by Hsu et al. (2012) 
ŐƴƏĺƏƕ�-m7�Ə�]���lƴƑ mmƴƐ yearƴƐ at MAP < 500 mm yearƴƐ), in which 
a similar dataset but a different statistical method (partial derivative 
of a quadratic approximation) was used. Estimates in Hsu et al. (2012) 
may be less robust, because they were derived indirectly from the non-
linearity of the relationship between ANPP and precipitation at each 
site, which depends on the nonlinear function used, an approach that 
lacks statistical power due to small sample sizes. The effect of precipi-
tation variability on ANPP estimated in our study and Gherardi and Sala 
(2019) was of the same magnitude as previously estimated effects of 
ru;1brb|-|bom�l;-m�om������bm�7u�Ѵ-m7v�Őlov|Ѵ��0;|�;;m�Ə�-m7�ƏĺѵƏ�
(mean about 0.30) g C mƴƑ mmƴƐ yearƴƐ) (Hu et al., 2018; Wilcox et al., 
2017; Wu et al., 2011).

As predicted by our first hypothesis, the simulated effect of 
precipitation variability on ANPP showed a unimodal relationship, 
rather than a linear negative relationship, with MAP, with a positive 
peak at 140 mm yearƴƐ (Figure 3a). The peak was not revealed in 
prior analyses, which did not include the extremely dry conditions 
(MAP < 140 mm yearƴƐ) (Gherardi & Sala, 2019; Heisler- White et al., 
2008; Knapp et al., 2002; Thomey et al., 2011). This threshold was 
also not revealed in our observational data (Figure 2a), which in-
cluded more sites with MAP < 230 mm yearƴƐ than Gherardi and Sala 
(2019) but with only one site at MAP < 140 mm yearƴƐ. Nevertheless, 
observations in our study and Gherardi and Sala (2019) and our mod-
eling analysis consistently showed that when MAP > 140 mm, the 
effect of precipitation variability on ANPP decreased gradually with 
increasing MAP. This result differs from Hsu et al. (2012), in which no 
significant change in the effect of precipitation variability along the 
MAP gradient was found.

As predicted by our second hypothesis, both our observations 
and modeling analysis showed that MAT modulated the effect 
of precipitation variability on ANPP. This result is in line with two 
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recent studies (Liu et al., 2020; Rudgers et al., 2018). Rudgers et al. 
(2018) suggested that rising temperature in drylands can modulate 
the effect of interannual precipitation variability on ANPP, based 
on an analysis of 12– 15 years of ANPP and climate measurements 
at three Sevilleta sites. Liu et al. (2020) found that more extreme 
precipitation regimes positively affected ANPP in a warm grassland 
(MAT 13.2) at Sevilleta but negatively affected ANPP in a cold 

]u-vvѴ-m7�Ő��$�ƴƏĺƔ) in Inner Mongolia, China, where MAP (250 
vs. 358 mm yearƴƐő�-m7�vobѴ�|;�|�u;�ŐѵѶѷ��vĺ�ѵƏѷ�v-m7ķ�ƐƏѷ��vĺ�ƑƐѷ�
clay) are similar.

Soil type and plant physiological traits also modulated the effect 
of precipitation variability on ANPP. Theory predicts that soil type or 
soil particle size can mediate the effect of precipitation variability on 
primary production, because it can affect infiltration and soil water 

 ��&!� �ƔՊ�Ѵo0-Ѵ�r-||;umv�o=�1_-m];v�bm�bm|;u-mm�-Ѵ�ru;1brb|-|bom��-ub-0bѴb|��-m7�|_;bu�;==;1|v�om�-0o�;]uo�m7�m;|�rubl-u��ruo7�1|bom�
(ANPP) in drylands with mean annual precipitation <500 mm yearƴƐ. The effect of interannual precipitation variability on ANPP estimated 
based on (a) observations and (b) model simulations, respectively. Changes in interannual precipitation variability during (c) 1905– 2010 
and (d) 2010– 2095, respectively. Ensemble mean ANPP changes caused by changes in interannual precipitation variability during (e) 
1905– 2010 and (f) 2010– 2095, respectively. ANPP changes caused by changes in interannual precipitation variability in different types of 
drylands during (g) 1905– 2010 and (h) 2010– 2095, respectively. In (g,h), error bar indicates standard error [Colour figure can be viewed at 
wileyonlinelibrary.com]
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holding capacity (Sala et al., 2015). This hypothesis is confirmed by 
our modeling analysis but not by our observations, probably because 
gap- filled data of soil particle size were inaccurate. Similarly, whether 
vegetation type can influence the effect of precipitation variability 
on ANPP cannot be rigorously tested by our observations due to 
limited sample sizes in shrubland and savanna, but it was suggested 
to be significant by our modeling analyses with alternative leaf Vcmax 
and soil- profile root distribution. Our modeling results (Figure 4c,d) 
support the hypothesis that vegetation type can modulate the ef-
fect of precipitation variability on ANPP through plant physiological 
traits (Griffin- Nolan et al., 2019; Rudgers et al., 2018).

ƓĺƑՊ |Պ�;1_-mbvlv��m7;uѴ�bm]�|_;�;==;1|�o=�
ru;1brb|-|bom��-ub-0bѴb|��om�����

Consistent with our third hypothesis, our modeling analysis revealed 
that the primary mechanism underlying the effect of precipitation 
variability on ANPP lies in how precipitation is partitioned into tran-
spiration for plant growth versus water loss through evaporation, 
runoff, and drainage. The positive peak of the effect at 140 mm yearƴƐ 
MAP was because that sites with ~140 mm yearƴƐ MAP supported 
the optimum percolation depth (5– 30 cm) for maximal plant growth 
(Figure 3c). The small response of ANPP to increased precipitation 
variability at extremely dry sites (MAP < 140 mm yearƴƐ) is in line 
with the meristem constraints hypothesis (Dalgleish & Hartnett, 
ƑƏƏѵĸ�!;b1_l-mm�;|�-Ѵĺķ�ƑƏƐƒőķ��_b1_�v|-|;v� |_-|� bm�;�|u;l;Ѵ��7u��
year or site meristem density constrains ANPP and its sensitivity to 
precipitation by limiting recruitment of new meristems. At sites with 
MAP <300 mm yearƴƐ, ecosystem water loss through runoff and 
drainage was minimal (Figure S3d). Increased precipitation variabil-
ity increased water availability of the subsoil where it was depleted 
mainly by plants via transpiration, and correspondingly decreased 
water availability of the shallow soil where it was lost primarily by 
;�-rou-|bom�Őb]�u;�ƒ0ķ1őĺ��|��;||;u�vb|;v�Ő����ƾ�ƒƏƏ�ll��;-uƴƐ), a 
significant proportion of precipitation was lost through runoff and 
drainage (Figure S3d). Increased precipitation variability resulted 
in disproportionately greater water loss through runoff and drain-
age in wet years or sites than in dry years or sites (Figure S3d). 
Consequently, at these sites, the partitioning of precipitation into 
transpiration for plant growth was reduced as precipitation variabil-
ity increased (Figure 3b).

MAT, soil type, and plant physiological traits all altered the mag-
nitude but not the pattern of the simulated effect of precipitation 
variability on ANPP along the MAP gradient. A positive impact of 
MAT on the effect of precipitation variability on ANPP has been 
suggested by our observations, and also by our modeling analysis 
at MAP > 230 mm yearƴƐ. The positive MAT impact could occur 
because hot climates drive more water loss through evaporation, 
making plants benefit more or lose less from variable precipita-
tion patterns that recharge subsoil water (Liu et al., 2020; Rudgers 
et al., 2018). This mechanism is important when the partitioning of 
precipitation into evaporation is low, but not when the partition is 

already very high (i.e., close to 100%), as observed at very dry and 
hot sites (Figure S3b,c; Sala et al., 2015). At very dry and hot sites, 
high temperature can reduce leaf photosynthetic rate directly due 
to the temperature effect on photosynthesis and indirectly by fur-
ther reducing soil water availability (Duffy et al., 2021; Quan et al., 
2019), which probably explains why high MAT reduced the simulated 
effect of precipitation variability on ANPP at MAP < 230 mm yearƴƐ 
(Figure 4a). Such a negative MAT impact was not revealed by our 
observational data (p =�ƏĺƐѵķ�n = 9, at MAP < 230 mm yearƴƐ), prob-
ably because of lack of statistical power. As expected, our modeling 
analysis showed that the sandy loam soil facilitated water infiltra-
tion and plant growth over the loam soil under increased precipi-
tation variability in the dry conditions we explored (Figure 4b). The 
inverse texture hypothesis predicts that in wetter conditions ANPP 
on sandy loam soil may be reduced more by increased precipitation 
variability than that on loam soil, due to more water lose from sandy 
loam soil through drainage (Sala et al., 1988, 2015).

The interaction between plant physiological traits and MAP mod-
ulated the effect of precipitation variability on ANPP. When MAP 
was <240 mm yearƴƐ, decreased leaf Vcmax reduced ANPP (Figure 
S3a) and its sensitivity to precipitation variability (Figure 4c), which 
is consistent with previous studies at dry sites that showed more 
benefits of plants with a fast growth rate from variable precipitation 
than plants with a slower growth rate (Rudgers et al., 2018; Xu et al., 
2015). At wetter sites (MAP > 240 mm yearƴƐ), decreased Vcmax, how-
ever, did not lead to a smaller negative effect on ANPP (Figure 4c), 
probably because of more water loss through drainage at increased 
precipitation variability (Figure S3d). As precipitation variability in-
creased, shallow roots promoted plant growth more than deep roots 
at low MAP < 170 mm yearƴƐ, whereas deep roots benefited more or 
lost less than shallow roots at higher MAP (Figure 4d), probably be-
cause water infiltrates to deeper soil layers with increasing MAP and 
precipitation variability. Similarly, previous studies on drylands with 
MAP > 170 mm yearƴƐ have shown that increased interannual pre-
cipitation variability promoted the production of deep- rooted shrub 
or tree species but decreased that of shallow- rooted grass species 
(Gherardi & Sala, 2015; Rudgers et al., 2018; Xu et al., 2015).

ƓĺƒՊ |Պ�Ѵo0-Ѵ�r-||;umv�o=�ru;1brb|-|bom��-ub-0bѴb|��
;==;1|�om�����

Our results showed widespread but heterogeneous responses of 
ANPP to changes in precipitation variability both historically and 
in the future (Figure 5e,f). The heterogeneous responses were at-
tributed to both spatial heterogeneity in the effect of precipitation 
variability on ANPP (Figure 5a,b) and spatial heterogeneity in precip-
itation variability change (Figure 5c,d). Spatial heterogeneity in the 
effect size was further ascribed to spatial heterogeneities in MAP, 
MAT, and soil particle size (Figure 2d). Our prediction models did 
not include potential predictors such as community structure, plant 
diversity, nutrients, disturbances (e.g., fire), and intra- annual variabil-
ity in precipitation (Fay et al., 2015; Knapp, Carroll, et al., 2015; Liu 
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et al., 2020; Rudgers et al., 2018; Sala et al., 2015; Yu et al., 2017), 
and therefore could underestimate spatial heterogeneity in the ef-
fect size. Spatial heterogeneity in precipitation variability change 
could also be underestimated due to the “coarse- graining problem,” 
where heterogeneities with spatial grids are lost through spatial av-
eraging (Newman et al., 2019). Therefore, spatial heterogeneities in 
ANPP response to precipitation variability change revealed in our 
study are conservative.

Uncertainties in our estimates of ANPP response to precipitation 
variability change could be large, due to several reasons. First, as 
stated above, we did not include some potential predictors in our 
models. Second, we assumed that only precipitation variability has 
changed in the past or will change in the future, while other environ-
mental factors (e.g., MAP, MAT, and atmospheric CO2 concentration) 
and ecosystem properties (e.g., community structure and nutrients) 
are constant during the studied periods. Finally, when predicted 
to the future, additional uncertainties were introduced by uncer-
|-bm|b;v� bm� =�|�u;� 1_-m];v� bm� ru;1brb|-|bom� �-ub-0bѴb|�� Őb]�u;� "ѵőĺ�
Therefore, our global patterns of ANPP response to precipitation 
variability change may be considered as working hypotheses to be 
tested by future long- term precipitation manipulation experiments 
and long- term ANPP observations. Despite these uncertainties, our 
global estimate of ANPP response to future precipitation variability 
(12.2 ± 5.8 Tg C yearƴƐ) is improved compared with the estimate by 
�_;u-u7b�-m7�"-Ѵ-�ŐƑƏƐƖő�ŐƴƐƏƏ�|o�ƴƒƏƏ�$]����;-uƴƐ), in which neither 
spatial heterogeneity in precipitation variability effect on ANPP nor 
spatial heterogeneity in precipitation variability change was con-
sidered (i.e., averages were used). The large difference in the two 
global estimates could be also because of the different MAP ranges 
used between our study (<500 mm yearƴƐ) and their study (up to 
>1,000 mm yearƴƐ).

ƔՊ |Պ �����&"���

Our results suggest that changes in precipitation variability have a 
net positive impact on primary production when integrated across 
global drylands with MAP < 500 mm yearƴƐ. Future increases in pre-
cipitation variability will likely increase primary production in arid 
and hyper- arid ecosystems but will decrease primary production in 
dry sub- humid lands. The primary mechanism underlying ANPP re-
sponses to changes in precipitation variability is how precipitation 
is partitioned into runoff, drainage, and percolation into shallow soil 
versus subsoil layers, which also varies with ecosystem properties 
and climate conditions. These results suggest that primary produc-
tion will respond differently to future precipitation variability in 
global drylands as a function of both environmental factors and eco-
system properties.
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