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Abstract. It is well understood that the distribution and quan-
tity of liquid water in snow is relevant for snow hydrology
and avalanche forecasting, yet detecting and quantifying liq-
uid water in snow remains a challenge from the micro- to the
macro-scale. Using near-infrared (NIR) spectral reflectance
measurements, previous case studies have demonstrated the
capability to retrieve surface liquid water content (LWC) of
wet snow by leveraging shifts in the complex refractive index
between ice and water. However, different models to repre-
sent mixed-phase optical properties have been proposed, in-
cluding (1) internally mixed ice and water spheres, (2) in-
ternally mixed water-coated ice spheres, and (3) externally
mixed interstitial ice and water spheres. Here, from within a
controlled laboratory environment, we determined the opti-
mal mixed-phase optical property model for simulating wet
snow reflectance using a combination of NIR hyperspectral
imaging, radiative transfer simulations (Discrete Ordinate
Radiative Transfer model, DISORT), and an independent di-
electric LWC measurement (SLF Snow Sensor). Maps of
LWC were produced by finding the lowest residual between
measured reflectance and simulated reflectance in spectral
libraries, generated for each model with varying LWC and
grain size, and assessed against the in situ LWC sensor. Our
results show that the externally mixed model performed the
best, retrieving LWC with an uncertainty of ∼ 1 %, while
the simultaneously retrieved grain size better represented wet
snow relative to the established scaled band area method.
Furthermore, the LWC retrieval method was demonstrated
in the field by imaging a snowpit sidewall during melt condi-

tions and mapping LWC distribution in unprecedented detail,
allowing for visualization of pooling water and flow features.

1 Introduction

The distribution and quantity of liquid water within a snow-
pack, introduced by rain and/or melt, are relevant for multi-
ple snow-related applications including snow hydrology, re-
mote sensing, and avalanche forecasting. In terms of snow
hydrology, water is an indicator of snow energy balance and
snowmelt timing; the change in phase from ice to water in-
dicates that the cold content of the snowpack is depleted and
that energy balance inputs are contributing to melt (DeWalle
and Rango, 2008). Rain on snow can accelerate this process
by contributing large energy inputs into the snowpack over
a short amount of time (Mazurkiewicz et al., 2008). Wa-
ter at the surface will also lower snow albedo, initiating a
positive feedback loop that increases absorbed solar radia-
tion, the main driver of snowmelt (Gupta et al., 2005). For
active and passive microwave remote sensing of snow, the
presence of water alters microwave signatures because of the
large difference in relative permittivity between liquid water
and ice (i.e., dry snow). For active microwave sensors, wet
snow causes characteristic changes in microwave backscatter
and reduces penetration depth (Shi and Dozier, 1992), while
for passive sensors, the emissivity of the snow surface is in-
creased (Walker and Goodison, 1993). For avalanche fore-
casting, the infiltration of liquid water into the snowpack
impacts snow stability (Conway and Raymond, 1993). The
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strength of the snowpack can be increased at lower water
content, where grains form well-bonded clusters, but reduced
at higher water content, when water flow through pore space
deteriorates a significant number of snow grain bonds, result-
ing in relatively cohesionless particles (Colbeck, 1982). Al-
though it is recognized as a critical snow property across the
cryospheric sciences, liquid water content (LWC) measure-
ments in a snowpack are notoriously difficult to accurately
quantify due to the high spatial and temporal variability in
liquid water distribution.

Here, the utility of mapping LWC in situ using near-
infrared hyperspectral imaging (NIR-HSI) and radiative
transfer model inversion is assessed. This approach leverages
the segments of the near-infrared (NIR) spectrum where the
optical properties of liquid water, hereafter referred to as wa-
ter, vary from those of ice. To date, wet snow has been mod-
eled using effective spheres with a known radius, referred to
as the effective grain radius (re), where the optical properties
of ice and water are mixed either internally or externally. In
wet snow, the arrangement of water relative to ice particles
and pore space varies based on the level of saturation, which
may be relevant for radiative transfer modeling. For example,
water saturation below 7 % (pendular regime), when water is
contained in menisci held in between the ice particles (Col-
beck, 1979), might be best represented using an internally
mixed particle model where an ice sphere is coated in wa-
ter. On the other hand, water saturation above 7 % (funicular
regime), when ice particles become surrounded by water as
it fills the pore space, might be best represented as an inter-
nally mixed-phase sphere or externally mixed interstitial ice
and water spheres.

Although different mixing model representations have
been proposed and demonstrated (Green et al., 2002; Hyvari-
nen and Lammasniemi, 1987), no study has quantitatively
compared the different approaches or compared LWC re-
trievals to established LWC measurement methods. Without
intercomparing or validation, the best approach for retriev-
ing LWC from NIR spectral reflectance has yet to be deter-
mined. Additionally, radiative transfer approaches to retriev-
ing re are based on the optical properties of ice and implicitly
assume dry snow, and such retrievals have not been assessed
for wet snow. The main objectives of this study are threefold:
(1) intercompare three wet snow reflectance models against
measured LWC from a dielectric measurement instrument in
a controlled laboratory environment, (2) simultaneously as-
sess effective grain size retrieval methods and their suitability
for use with wet snow, and (3) demonstrate the capability of
a compact NIR hyperspectral imager to simultaneously map
LWC and snow grain size at the laboratory and field scales.

2 Background

2.1 Liquid water in snow

Water infiltration through snow is a spatially and temporally
complex process, controlled by water saturation level, snow
microstructure, and topography. Generally, water infiltration
is described by two primary mechanisms: homogenous ma-
trix flow and heterogeneous preferential flow. Matrix flow
is described as the semi-uniform vertical movement of wa-
ter, while preferential flow is made up of concentrated wa-
ter pathways that follow the path of least resistance that can
extend deep into the snowpack, ahead of the matrix flow
(Schneebeli, 1995). Although gravitational forces primarily
drive vertical movement of water in snow, large amounts of
water can be diverted horizontally due to stratigraphic layers
in the snowpack, such as ice crusts or capillary barriers (i.e.,
fine grains over coarse grains) (Waldner et al., 2004; Webb et
al., 2021; Eiriksson et al., 2013). As the snowpack becomes
less stratified throughout the melt season, the general pat-
tern transforms from preferential flow to homogenous flow
(Webb et al., 2018).

2.2 Measurement of liquid water in snow

The complexity of water movement through snow makes
observations and measurements challenging. Early observa-
tions of water flow patterns through snow were made using
dye tracers (Seligman et al., 1936; Gerdel, 1954), a method
which is still used today. Dye tracers provide a spatial vi-
sualization of water infiltration that has been used to study
processes such as preferential flow (Schneebeli, 1995; Wald-
ner et al., 2004) and capillary barriers (Avanzi et al., 2016).
While these methods remain primarily a qualitative visual-
ization technique, Williams et al. (2010) quantified the three-
dimensional (3D) spatial distribution of meltwater within a
1 m3 snowpack using dye tracers and serial-section imaging.
The 3D data were binarized into dry and wet categories to
quantify flow features at the centimeter scale, but LWC is
not obtainable using this method.

In situ measurements of LWC in snow have traditionally
been measured by centrifugal separation (Kuroda and Hu-
rukawa, 1954), melting calorimetry (Yosida, 1940), freez-
ing calorimetry (Jones et al., 1983), and the dilution method
(Davis et al., 1993). A more detailed summary of these meth-
ods can be found in Stein et al. (1997). Generally, these
methods are difficult to perform and time-consuming and
have only been occasionally used since their introduction.
More commonly, LWC is measured using dielectric meth-
ods at frequencies ranging from 1 MHz to 1 GHz by lever-
aging the large differences in the relative permittivity (εr)
between water (εr ≈ 88), ice (εr ≈ 3.15), and air (εr ≈ 1)
(Tiuri et al., 1984). This is done by time domain reflectom-
etry (TDR) or with capacitance sensors which measure the
relative permittivity of snow (Lundberg, 1997; Denoth et al.,
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1984). Although the measured relative permittivity is primar-
ily a function of LWC, snow density also has some influence.
Therefore, dielectric methods also require a separate den-
sity measurement. Examples of currently available dielec-
tric instruments include the snow fork (Sihvola and Tiuri,
1986); Denoth meter (Denoth, 1994); A2 Photonic WISe
sensor (A2 Photonic Sensors, 2019); and the SLF Snow Sen-
sor (FPGA Company, 2018), which was used in this study.
Although these instruments make measurements quicker rel-
ative to traditional methods, they often require destructive
sampling and only provide a discrete volume-averaged point
measurement. Therefore, there is currently no in situ method
to effectively quantify spatial variability in LWC at a high
(sub-centimeter) spatial resolution, which could be used, for
example, to validate process-based modeling of wet snow
(Hirashima et al., 2019) or initialization and validation of mi-
crowave radiative transfer models (e.g., Wiesmann and Mät-
zler, 1999; Picard et al., 2013).

Previous non-destructive measurements of LWC in snow
have been made using remote sensing techniques. Like di-
electric sensors, active and passive microwave sensors lever-
age the difference in relative permittivity between water, ice,
and air. At the ground-based scale, upward-looking ground-
penetrating radar (upGPR) has been used to measure the vol-
umetric LWC directly above antennas buried below a snow-
pack (Schmid et al., 2014). At the spaceborne scale, active
and passive microwave sensors have been used to make clas-
sification maps of wet or dry snow at spatial resolutions on
the order of tens of meters (e.g., Lund et al., 2020; Walker
and Goodison, 1993). Similarly, in the optical wavelengths,
the shift in absorption patterns of ice and water across the
NIR have been leveraged to map surface LWC (Green et al.,
2002), which is the primary method of interest in this work.

2.3 Modeling wet snow near-infrared reflectance

Absorption in the optical wavelengths is described by the
imaginary part of the complex refractive index. Although
the absorption patterns across the NIR are similar between
ice and water, there are shifts that distinguish the different
phases. The spectral complex refractive index for ice (War-
ren and Brandt, 2008) and water at 0 ◦C (Rowe et al., 2020)
across NIR wavelengths is shown in Fig. 1. Compared to
the difference in the relative dielectric properties across the
radio and microwave wavelengths, the shifts in the imagi-
nary part of the complex refractive index are relatively minor
and therefore require measured reflectance at multiple wave-
lengths and radiative transfer modeling to detect. Addition-
ally, the penetration of light in the NIR wavelengths is rela-
tively shallow, limiting detection of water to the snow surface
(∼ 2 cm). This has limited the use of optical methods to de-
tecting surface water using either in situ spectrometer mea-
surements or airborne imaging spectrometer measurements
(Green et al., 2002; Hyvarinen and Lammasniemi, 1987).

Figure 1. Complex refractive index of ice and liquid water at 0 ◦C
across the near-infrared region ranging from 900–1700 nm, which
is the same range measured by the Resonon Pika NIR-320 hyper-
spectral imager.

Inversion of radiative transfer models is commonly used in
remote sensing applications to retrieve physical snow proper-
ties from measured spectra, and many modeling approaches
have been proposed. Hyvarinen and Lammasniemi (1987)
modeled the reflectance of wet snow using a collection of
spheres with radius re to simultaneously estimate LWC and
grain size. To describe the optical properties of the effective
spheres, an effective complex refractive index (keff) was cal-
culated by volume-mixing the complex refractive index of
ice and water. Using a forward-modeling approach, LWC and
re were retrieved using only three bands (1030, 1260, and
1370 nm), which were assessed using a dilatometer in a lab-
oratory. Alternatively, Green et al. (2002) modeled wet snow
using two approaches: (1) as a collection of water-coated
ice spheres and (2) water spheres interspersed in the intersti-
tial space within an ice-sphere matrix. LWC and re were re-
trieved by matching the simulated spectra to measured spec-
tra by finding the lowest residual. By visual inspection, Green
et al. (2002) concluded that wet snow is best modeled as
water-coated ice spheres, though no quantitative retrieval as-
sessment was performed. More recently, a three-band ratio
method to classify wet or dry snow was proposed by Shekhar
et al. (2019), based on a correlation between field spectrom-
eter measurements and snow fork LWC measurements, al-
though snow grain size was not considered.

To date, three radiative transfer approaches for simulating
the reflectance of wet snow have been proposed: (1) mixed-
phase spheres, hereafter referred to as “keff spheres”;
(2) water-coated ice spheres, hereafter referred to as “coated
spheres”; and (3) externally mixed interstitial ice and wa-
ter spheres, hereafter referred to as “interstitial spheres”.
A schematic of each model is presented in Fig. 2. The
keff sphere and coated sphere models are referred to as in-
ternally mixed particles because the optical properties are
mixed inside of a single particle having a single re. The in-
terstitial sphere model is referred to as an external mixture
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Figure 2. A schematic of three ice and water optical mixing models
used to simulate the reflectance of wet snow.

because the components are assumed to be physically sepa-
rate from one another.

3 Methodology

Three optical property mixing models were used to simu-
late the bidirectional reflectance of wet snow across a range
of re and LWC using radiative transfer modeling. To deter-
mine the optimal mixing model for retrieving LWC from NIR
reflectance, snow samples were prepared in a controlled lab-
oratory environment with varying grain type, grain size, and
density and then subjected to warm air advection to induce
melt. During melt, time series NIR-HSI measurements were
taken, and LWC was retrieved in each pixel by best matching
the measured spectra to the simulated spectra from each of
the three models. For comparison to the NIR-HSI LWC re-
trievals, time series LWC measurements were taken with the
SLF Snow Sensor, a dielectric measurement instrument, and
compared to the average LWC from pixels covering the same
measurement area as the SLF Snow Sensor such that the
two measurements would be comparable on the same spatial
scale. Time series measurements of re were retrieved simul-
taneously with LWC and were compared against the estab-
lished scaled band area method of Nolin and Dozier (2000),
which has been previously applied to the same compact hy-
perspectral imager used in this study to map the re of dry
snow (Donahue et al., 2021). Lastly, retrievals were demon-
strated in the field across an image of a snowpit wall, visu-
alizing water infiltration and quantifying vertical LWC and
re distributions. The modeling and in situ measurements are
described in more detail in Sect. 3.1–3.3, and the retrieval
and assessment workflow is represented in Fig. 3.

3.1 Instruments

3.1.1 Near-infrared hyperspectral imager

Snow reflectance in the NIR was mapped with a Resonon
Inc. Pika NIR-320 near-infrared hyperspectral imager. A
brief description of the instrument follows (for a more de-
tailed description see Donahue et al., 2021). The imager has
a spectral resolution of 4.9 nm, measuring 164 bands across
the NIR region from 900–1700 nm. The imager constructs a

2D image containing the full spectrum in each pixel by col-
lecting the image line by line, known commonly as a “push
broom” or “line” scanner. Thus, to collect an image, the cam-
era needs to be moving (translating or rotating) relative to the
scene, or the scene needs to be moving relative to the imager.
Here, both types of image acquisition techniques are used.
In the laboratory, a linear scanning stage was used to move
the sample beneath the sensor, while in the field, a rotational
stage mounted on top of a tripod was used to scan the snowpit
wall.

3.1.2 SLF Snow Sensor

The SLF Snow Sensor (FPGA Company, 2018), hereafter re-
ferred to as the “SLF sensor”, is a capacitance sensor that is
placed on the snow surface to measure the relative permit-
tivity. This is used to determine snow density and LWC in
dry snow and wet snow conditions, respectively. The factory
calibration for the LWC measurement is based on an empir-
ical equation derived from reference measurements of snow
with varying wetness and density using the dilution method
(Davis et al., 1985) and weighted volumes. The sensor mea-
sures a snow surface area of 45× 95 mm, and the penetra-
tion of the electric field into the snow is ∼ 17 mm. The SLF
sensor produces a spatially comparable measurement to the
retrieved LWC from the NIR-HSI method presented here be-
cause the penetration of NIR light into snow is similarly shal-
low. Additionally, time series LWC measurements over the
same surface area can be made because the sensor is non-
destructive to the snow surface.

3.2 Experimental setup

3.2.1 Laboratory

The hyperspectral imager was mounted onto the Resonon
benchtop linear scanning stage, which positions the imager
on a stationary tower above a linear translating stage where
samples are placed (shown in Fig. 4a). The lens of the imager
is surrounded by four halogen lamps, and both are positioned
for nadir viewing and illumination. The halogen lamps and
lens of the imager were at a height of 38 and 47 cm above
the snow surface, respectively. This quasi-monostatic config-
uration results in a bidirectional reflectance measurement in
each pixel of the image when calibrated using a white refer-
ence panel. A large Spectralon ® 99 % reflectance panel was
placed at the same height as the surface of the snow samples
and filled the imager’s entire field of view, such that each
snow sample was calibrated from radiance to reflectance on
a pixel-by-pixel basis. This method of calibration is ideal for
hyperspectral imaging because it minimizes effects to illumi-
nation imperfections across the scene.

Snow samples were prepared in the laboratory using
laboratory-made and collected natural snow to generate a
dataset with a range of grain types including precipitation
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Figure 3. Liquid water content and effective grain radius retrieval and assessment workflow.

particles (PP), decomposing and fragmented precipitation
particles (DF), rounded grains (RG), melt forms (MF), and
faceted crystals (FC) (Fierz et al., 2009). The dry snow
density, measured by weighing the sample container with a
known volume and using the SLF sensor, ranged between
115 and 510 kg m−3. Detailed properties for each snow sam-
ple are given in Table 1. Snow samples were made by sieving
snow into a rectangular wooden sample container having di-
mensions of 17.1 cm× 12.4 cm× 8.5 cm (H ×W ×D). The
wooden sample container was subdivided into three regions
of interest (ROIs), each having dimensions slightly larger
than the SLF sensor, such that LWC measurements would
not be impacted by edge effects from the sample container.
The surface of each snow sample was scraped with a crystal
card to create a flat surface level with the top of the sam-
ple container and to minimize surface roughness. Snow sam-
ples were then kept in a cold room at −10 ◦C for 24 h to

equilibrate and ensure the sample was completely dry (i.e.,
LWC= 0 %).

For each snow sample, an initial image was taken while the
cold room was at −10 ◦C to obtain the dry snow condition.
The dry snow surface density in each ROI was measured us-
ing the SLF sensor and used as the input dry snow density to
the SLF sensor for the subsequent LWC measurements. Fol-
lowing dry snow measurements, the cold room was turned
off, and the door was opened to ambient air, gradually in-
creasing the air temperature in the cold room to room tem-
perature (20 ◦C). The NIR-HSI images were taken every 1–
3 min during the warming process, and SLF sensor measure-
ments, in each ROI, were taken in between images. For com-
parison between the two instruments, the mean LWC was
calculated over the 10 717 pixels within each ROI, resulting
in a 0.4 mm2 resolution, and was compared against the corre-
sponding SLF sensor measurements at each time step, creat-
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Table 1. Laboratory snow samples (reported re is from scaled band area method).

Sample Description Sieve Initial Dry Warming
number size re density time

(mm) (µm) (kg m−3) (min)

1 PP, snowmaker snow 2 113 115 111
2 DF, snowmaker snow 2 130 212 161
3 RG, natural snow 2 176 455 118
4 MF, natural snow 5 398 440 103
5 FC, natural snow 2.5 463 493 86
6 MF, Sample 4 melt/refreeze 1× n/a 699 468 99
7 MF, Sample 4 melt/refreeze 2× n/a 898 510 208

n/a stands for not applicable.

Figure 4. Schematic of laboratory setup. (a) Front view of the
Resonon hyperspectral imaging benchtop system and wooden snow
sample container. (b) Top view of the snow sample container show-
ing the three regions of interest (ROIs) measured by the SLF Snow
Sensor, which is shown inside of ROI no. 1.

ing a densely populated comparison dataset spanning a wide
range of LWC.

3.2.2 Field

To demonstrate the applicability of the NIR-HSI method for
retrieving LWC and re in the field, natural snow was imaged
across the vertical wall of a snowpit. The snowpit was exca-
vated to the ground within a protected study plot adjacent to
the Alpine Weather Station, at Bridger Bowl Ski Area (Boze-
man, MT; 45.82902◦ N, −110.92227◦W), on 3 April 2021.
The total snow depth was 150 cm, the snowpit wall was
143 cm wide, and there was approximately 2 m of working
room behind the snowpit wall. The day was selected because
the 2 d preceding were sunny, and diurnal temperatures did
not drop below freezing, making the likelihood of imaging
wet snow high. Before imaging, standard snowpit observa-
tions were collected including a temperature profile, snow
density profile using a 1000 cm3 wedge cutter, and stratigra-
phy with grain types.

The imager was mounted onto the Resonon outdoor field
system, which includes a tripod-mounted rotational stage,
and was placed 110 cm from the snowpit wall. The snow-
pit wall was illuminated with two 500 W halogen lamps
mounted on a tripod, line-powered (120 V AC) through the
weather station. The lights were placed perpendicular to the
wall at a distance of 90 cm, similar to the laboratory setup
presented in Donahue et al. (2021). For controlled lighting
conditions, sun light (direct and diffuse) was blocked by
placing an opaque tarp over the top of the snowpit. A de-
tailed schematic of the field setup is shown in Fig. 5. For
a pixel-by-pixel calibration of the NIR-HSI measurements
from radiance to reflectance, a 36 % spectrally flat reflectance
calibration tarp was hung in front of the snowpit wall, com-
pletely covering the field of view of the imager and ROI of
the snowpit.

Images of the wall were taken at 13:00 MST, at which time
there were few clouds, and the air temperature was 10 ◦C.
Prior to imaging the snowpit sidewall, the entire face of the
snowpit was cut back ∼ 10 cm to minimize impacts from ex-
posure to ambient air temperature. The entire vertical profile
of the snowpit was not captured in a single image; therefore
two images were taken and stitched together capturing only
the upper 110 cm of the snowpit at a 6.5 mm2 pixel reso-
lution. The bottom 40 cm of the snowpit was not captured
because perpendicular illumination conditions could not be
achieved with the minimum height of the lighting and im-
ager tripods used.

Immediately following imaging, LWC measurements
were made with the SLF sensor along a vertical profile at
5 cm increments. For optimal LWC measurements, the SLF
sensor requires the dry snow density; however, the snow was
already wet, and therefore the dry snow density could not be
obtained. Instead, the density of the snow from the adjacent
density cut measurement was used, which introduced a small
error in the LWC measurement. Following the methodology
proposed by FPGA Company (2018), this error was corrected
by subtracting the mass of water from the wet snow density
based upon the initial LWC. The updated density was used

The Cryosphere, 16, 43–59, 2022 https://doi.org/10.5194/tc-16-43-2022



C. Donahue et al.: Mapping liquid water content in snow at the millimeter scale 49

Figure 5. Schematic of the near-infrared hyperspectral imaging
setup in the field for measurement of liquid water content across
a snowpit wall. The area at the bottom 40 cm of the snowpit was not
imaged and is shown with hatched lines.

to calculate an updated LWC using the empirical calibration
equation. This calculation was repeated, with each iteration
returning a smaller change in snow density. Through multi-
ple iterations it converges on the dry snow density and cor-
rected LWC.

3.3 Radiative transfer modeling

3.3.1 Single scattering

To simulate the optical properties of snow, the single-
scattering optical properties of constituents (ice, air, water,
and impurities) as well as their relative arrangement to one
another must be represented. The scattering properties of a
single particle are described using three dimensionless opti-
cal parameters: (1) the absorption efficiency Qabs, (2) scat-
tering efficiency Qsca, and (3) asymmetry factor g (Bohren
and Huffman, 2008). Dry snow particles are often assumed
to scatter as a collection of ice spheres with radius re (e.g.,
Nolin and Dozier, 2000). With a known re and complex re-
fractive index, Mie scattering theory (Bohren and Huffman,
2008) can be used to calculate the three dimensionless opti-
cal parameters. For clean dry snow, this modeling approach
is straightforward because only the complex refractive index
of ice is needed. For wet snow, on the other hand, the com-
plex refractive index of ice and water is volume-mixed, and
there are multiple approaches that can be used to define the
arrangement of ice and water relative to each other. The three
previously proposed mixing models used in this comparison,
defined in Sect. 2, are described here.

First, the keff sphere model uses a collection of spheres
with re and keff, which was determined using volume-
weighted portions of the complex refractive index of
ice (kice) and water (kwater).

keff = (1−%LWC) · kice+%LWC · kwater (1)

Second, the coated sphere model used the Miecoated scatter-
ing code of Mätzler (2002). The radius of the ice core (ri)

Figure 6. Simulated bidirectional reflectance of snow using three
optical mixing models: (1) keff spheres, (2) coated spheres, and
(3) interstitial spheres. For comparison, each mixing model has an
effective grain radius of 1000 µm and 20 % liquid water content by
volume.

and thickness of the water coating (tw) was determined by
volume weights of ice (Vi) and water (Vw).

Vi =
4
3
πr3

i (2)

Vw =
%LWC ·Vi

1−%LWC
(3)

tw =

[
3 ·Vw

4π + ri

] 1
3
− ri (4)

re = ri+ tw (5)

Lastly, the interstitial sphere model calculates the single-
scattering optical properties (i.e., Qabs, Qsca, and g) of pure
ice spheres and water spheres separately, each having the
same re. Then, the optical properties were mixed using a
volume-weighted average. This method is similar to the
keff sphere model; however, the differences are a result of the
non-linearity of Mie scattering theory (Lesins et al., 2002).
At shorter wavelengths, the differences in reflectance are
small, but at larger wavelengths a notable divergence occurs
(shown in Fig. 6).

For each model clean snow is assumed, and the effects
of light-absorbing particles (LAPs, i.e., dust and soot) are
not considered (discussed further in Sect. 5.3.1). The single-
scattering optical properties were calculated for re values
ranging from 30–1500 µm in 10 µm intervals and 0 % to 25 %
LWC in 1 % intervals, resulting in 3848 simulated combina-
tions per model. Single-scattering optical properties for each
case were then used as inputs to solve for snow reflectance,
the result of multiple-scattering events.

3.3.2 Multiple scattering

To generate a spectral library to match to measured spectra,
directional-hemispherical reflectance for each mixing model
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was simulated using a general-purpose 16-stream plane-
parallel Discrete Ordinate Radiative Transfer model (DIS-
ORT; Stamnes et al., 1988). DISORT allows the user to de-
fine optical properties of multiple layers; here, a single op-
tically thick layer was used since the penetration of NIR
light into the snowpack is shallow. Optical property inputs
for this layer included single-scattering albedo, defined as
the ratio of the scattering efficiency and extinction efficiency(

Qsca
Qsca+Qabs

)
, and g, which were computed from Mie scatter-

ing theory. Incoming light can be modeled at multiple user-
defined zenith angles; here, the zenith angle was set to 0◦ to
represent nadir lighting.

The output from DISORT was directional-hemispherical
reflectance, whereas NIR-HSI measurements are bidirec-
tional reflectance. This is a suitable approach because of the
experimental setup: the NIR-HSI measurements were made
at nadir illumination and viewing angles and calibrated us-
ing a Lambertian white reference target. Under these con-
ditions, snow is nearly Lambertian, allowing for a direction
comparison, which would not be the case for non-nadir view-
ing angles, given that snow heavily favors forward scattering
(Dumont et al., 2010).

3.3.3 Retrieving snow properties

To simultaneously retrieve LWC and re, measured spec-
tra in each pixel of the NIR-HSI image were compared to
each spectrum in the spectral library to determine the best
match by finding the minimum least square residual across
106 bands, ranging from 961 to 1472 nm. Hereafter, this
method for matching measured and simulated spectra is re-
ferred to as the “residual method”. Examples of (1) measured
spectrum from NIR-HSI, (2) retrieved simulated spectra us-
ing the interstitial sphere model, and (3) residuals across each
band are shown in Fig. 7. Once the measured spectrum is
best matched to a simulated spectrum, the associated re and
LWC are assigned to the pixel, producing separate maps of re
and LWC for the imaged area. To reduce impact from sen-
sor noise at the lower limit of the sensor (900 nm), 961 nm
was chosen as the starting point for calculating the residuals
while still capturing ample spectral data for the left side of
the absorption feature centered at 1030 nm (Fig. 7). At longer
wavelengths, 1472 nm was chosen as the endpoint for calcu-
lating residuals because both ice and water are highly ab-
sorptive beyond this point, resulting in a low signal-to-noise
ratio.

Additionally, re was mapped at each time step using the
scaled band area method following Donahue et al. (2021).
Briefly, the scaled band area is the area underneath a contin-
uum line spanning an absorption feature and is a shape-based
method that is independent of absolute reflectance. Here, the
scaled band area was calculated for measured spectra using a
predefined start and end point for the continuum line across
the absorption feature centered at 1030 nm. The pixel-by-

Figure 7. Example of a measured NIR-HSI spectrum, retrieved sim-
ulated spectrum using the interstitial sphere model, and the residuals
at each band.

pixel calibration performed here reduced noise at the lower
limit of the sensor compared to Donahue et al. (2021), al-
lowing for the defined continuum endpoints to be similar to
bands suggested by Nolin and Dozier (2000) (i.e., 961 and
1087 nm). A lookup table was populated with “dry snow”
(all ice, no water) scaled band areas for simulated re rang-
ing from 30–1500 µm. We note that we used the simulated
spectra from the interstitial sphere model but that the dry
snow representations for all mixing models were identical,
with variation in spectra introduced only when water was
represented. This allowed us to (1) define the starting re for
each of the prepared laboratory samples (Table 1), (2) com-
pare re retrieved from scaled band area to that from the resid-
ual method, and (3) assess the suitability of the scaled band
area method for grain size retrievals over wet snow.

4 Results

4.1 Laboratory experiments

4.1.1 Liquid water content retrieval

The LWC retrieved from NIR-HSI was compared to the SLF
sensor across seven samples, spanning a wide range of ini-
tial dry snow grain sizes from approximately 100 to 900 µm,
measured using the established scaled band area method.
LWC measured with the SLF sensor ranged from 0 % to 17 %
across 21 ROIs and 40 time steps, producing 690 data points
for comparison. It was found that the interstitial sphere model
consistently performed the best, whereas the coated sphere
model performed the most poorly, relative to the in situ SLF
sensor measurements.

An example of the LWC maps produced as melt pro-
gressed in a single snow sample is presented in Fig. 8. These
examples are of the same ROI and show LWC retrieved using
the interstitial sphere model. The initial image (Fig. 8a) was
taken at the start of the experiment, when the snow was dry,
and 98 % of pixels (10 450 pixels) retrieved 0 % LWC. The
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Figure 8. (a–d) Time series liquid water content mapping over a
single region of interest during a laboratory experiment. (e) Liquid
water content distribution in images (a–d) shown in a histogram.

other 2 % of pixels (267 pixels) retrieved 1 % LWC, which
was found to be due to sensor noise. The remaining images
in Fig. 8 capture melt progressing through 5 % (Fig. 8b),
10 % (Fig. 8c), and 16 % (Fig. 8d) mean LWC, and the cor-
responding SLF sensor measurement is noted in each panel.
Additionally, the distribution of values also broadens with
increasing LWC, shown in the per-pixel distribution of LWC
for each image in Fig. 8e. The summary statistics show melt
progression, as expected, but the maps allow visualization
and quantification of melt initiation and LWC distribution.
The melt features that begin to develop in early time steps
can be tracked to later time steps (e.g., Fig. 8c to d).

The full performance comparison across all datasets is
summarized in Fig. 9, which plots LWC from the SLF sensor

against that from each mixing model applied across all sam-
ples. To help visualize the difference between experiments,
the comparison points are symbolized by different colors
as well as marker size that varies with the mean initial dry
snow re retrieved using the scaled band area method. Close
proximity to the 1 : 1 line would indicate the best match be-
tween NIR-HSI and the SLF sensor. The root mean square
error (RMSE) and bias for each sample are summarized in
Table 2.

For the two samples with the smallest initial re (113 and
130 µm), precipitation particles and decomposed and frag-
mented particles, it was found that the LWC retrieval method
did not perform well using any of the mixing models, with
the highest RMSE and bias (Table 2). The retrieval is near
0 % LWC in dry snow conditions; however the LWC re-
trievals increase rapidly as small amounts of water are in-
troduced. In the coated sphere model, the retrievals reach the
LWC limit of the spectral library (25 %) when the measured
LWC from the SLF sensor was∼ 10 % (Fig. 9b). For keff and
interstitial spheres, there is a similar pattern of LWC increas-
ing too fast, although these models do not reach the upper
limit of the spectral library. Because none of the models eval-
uated performed well for small grain sizes, these two samples
(113 and 130 µm) were excluded from the calculation of the
best fit line (red line in Fig. 9). This result is discussed further
in Sect. 5; however, the exclusion of these data is reasonable
because water is not commonly mixed with these types of
particles (new snow) in natural environments and therefore
not a primary focus for wet snow mapping applications.

For the remaining samples, ranging from 176–898 µm, the
mixing models retrieve LWC values that more closely match
the SLF sensor measurements. Visually, both keff and inter-
stitial spheres fall close to the 1 : 1 line. The keff spheres do
have the lowest RMSE and bias for the smallest grains (Sam-
ples 1–3), but for the remaining samples containing medium-
to large-sized grains, the retrieved LWC consistently has a
negative bias, and the RMSE is ∼ 2 %. Overall, the intersti-
tial sphere model has the lowest RMSE (∼ 1 %) and bias,
which does not trend with grain size, with the best compari-
son for Samples 4–7 and similar values to keff for Sample 3.
The uncertainty in the interstitial sphere model was deter-
mined by taking the mean RMSE across Samples 3–7, which
is 1.4 %. This is supported by the dry snow retrieval shown
in Fig. 8a, where no pixels retrieved greater than 1 % LWC.
The coated sphere model performed most poorly relative to
measurements with a high RMSE and consistently had a pos-
itive bias across all samples, although like the other mixing
models, the values do fall close to the 1 : 1 line at low LWC
(< 7 %). Overall, these experiments and model comparisons
show that the interstitial sphere model performed exception-
ally well for medium to large grains, and LWC ranges be-
tween 0 % and 15 %, which are the conditions most likely to
be found in natural snow covers.
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Figure 9. Comparison of LWC measured with the SLF Snow Sensor versus the mean LWC retrieved from NIR-HSI using the residual
method. Three optical property mixing models are compared using the same datasets: (a) keff spheres, (b) coated spheres, and (c) interstitial
spheres. The initial (dry) effective grain radius for each sample is shown in the legend, and the R2 value is for the best fit line, which excludes
113 and 130 µm datasets.

Table 2. Liquid water content retrieval results from the laboratory (reported re is from scaled band area method). Bold values indicate the
lowest RMSE and bias for a given sample.

RMSE (% LWC) Bias (% LWC)

Sample n Initial % LWC keff Coated Interstitial keff Coated Interstitial
number re (µm) range spheres spheres spheres spheres spheres spheres

1 66 113 0–14.6 8.7 11.9 9.4 7.5 10.5 8.0
2 102 130 0–15.9 7.7 11.5 8.6 7.1 10.8 7.9
3 78 176 0–17.2 2.0 7.0 2.6 1.0 5.8 1.6
4 123 398 0–13.4 1.8 4.0 0.9 −1.5 3.2 –0.5
5 132 463 0–15.2 1.9 4.7 1.1 −1.5 4.0 –0.3
6 102 699 0–8.8 1.6 2.8 1.0 −1.2 2.3 0.3
7 90 898 0–10.4 2.2 3.3 1.4 −1.6 2.3 –0.1

4.1.2 Effective grain radius retrieval

Using the residual method, all mixing models retrieved sim-
ilar grain size values because the grain size retrievals are
primarily dependent on the absolute reflectance driven by
ice absorption. Here, we present results from the intersti-
tial sphere model because it performed best in the LWC re-
trieval. For initial dry snow conditions, the re retrieval using
the scaled band area method (re,SBA) had a positive bias rela-
tive to the residual method (re,residual), and the bias becomes
more positive with increasing grain size (Fig. 10). For the re-
maining wet snow comparisons, the re,SBA remains relatively
constant or increases at low LWC followed by a decrease at
high LWC. For Samples 1 and 2, re,SBA remained flat with
increasing LWC. For Samples 3–6, re,SBA increased initially
with low LWC and then decreases at high LWC. For Sam-
ple 7, re,SBA slightly increases before significantly decreas-
ing with increasing LWC. In comparison, the re,residual in-
creases with increasing LWC for all samples, which is ex-
pected because the presence of water is known to acceler-
ate snow grain growth (Marsh, 1987). The comparison, fur-

ther discussed in Sect. 5.2, shows that the scaled band area
method is impacted by the presence of water, such that the
residual method may be better suited for wet snow.

4.2 Field experiment

Although a controlled laboratory environment is ideal for
identifying the best-suited optical mixing model, the primary
applications for this method would be in situ field studies,
motivating the field-based testing of the re and LWC re-
trieval. The maps of re and LWC generally reflect the profile
measurements of LWC and stratigraphy, though at signifi-
cantly higher detail (Fig. 11). The snowpit was representative
of a spring intermountain snowpack undergoing melt, with
the density values ranging from ∼ 300 to ∼ 450 kg m−3 and
LWC measurements ranging from ∼ 6 %–16 %. The temper-
ature profile, not shown, was isothermal at 0 ◦C. The general
stratigraphy was ice lenses and melt form grains in the up-
per layers, rounded grains in the central portion, and faceted
grains (depth hoar) near the ground. Note that the full pit
profile is shown for observations (Fig. 11a and d), while the
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Figure 10. Mean effective grain radius (re) retrieval comparison
between residual and scaled band area methods using the interstitial
sphere model at each time step for Samples 1–7. Best fit line is
drawn through the dry snow condition for each sample.

re and LWC retrievals extend across only the upper 110 cm
(Fig. 11b and c).

The maps were processed using each of the mixing models
introduced above, but based on the laboratory findings, only
retrievals from the interstitial sphere model are presented
here. The SLF sensor measurements were taken along the
left side of the ruler (gray stripe or NaNs down the center of
snowpit), represented as the dashed red box in Fig. 11c. For
comparison, LWC was depth-averaged in pixels covering the
area of the SLF sensor measurements (red line in Fig. 11d)
in addition to the depth average LWC across the entire width
of the snowpit (gray line in Fig. 11d). The mean LWC, stan-
dard deviation (σ ), and number of measurements (n) for the
SLF sensor, NIR-HSI along the same profile as the SLF sen-
sor, and the depth average of the entire width of the snowpit
are shown in Table 3. Generally, the LWC from the NIR-HSI
retrieval had a positive bias compared to the SLF sensor, par-
ticularly notable at the top of the snowpack, although the pat-
terns and peaks have similar trends. The difference between
retrievals and measurements is discussed further in Sect. 5.1.

For comparison, when processed with the coated sphere
model the LWC reached the model limit at 25 % over much
of the scene. The keff sphere model did have mean values
slightly closer to the SLF sensor; however this was not un-
expected given that the laboratory results were biased nega-
tive. The magnitude of values, with coated spheres retrieving
higher values and keff spheres retrieving lower values relative
to interstitial spheres, mimics the bias present in laboratory
results (Table 2).

The high resolution of the maps shows how stratigraphy
influences re and LWC distributions in higher detail than can
be captured with standard field-based observations. At the
top of the snowpit, it can be discerned that the snow was sat-
urated with water, which was pooling on top of the ice lens
at 130 cm snow height. The SLF sensor only captures the

average LWC, particularly between 110 and 130 cm, where
there is high variability in LWC between layered ice lenses.
At the ice lenses (130, 122, and 110 cm) the grains are large,
while the LWC is low. Water pooling above ice lenses, rather
than the ice lens itself having water content, is sensible be-
cause there is minimal pore space for water to reside or pass
through. Below the ice lens, a few isolated preferential flow
paths extend to lower layers, while other features show wa-
ter concentrated (at∼ 90 and∼ 75 cm) but not flowing along
the plane of the snowpit wall.

5 Discussion

5.1 Liquid water content retrieval

The interstitial sphere and keff sphere models performed sim-
ilarly because the optical properties are volume-mixed in
both cases, albeit internally versus externally mixed. The ex-
ternal mixing of interstitial water spheres results in a notable
shift in the reflectance spectrum at wavelengths ranging from
1300–1450 nm when compared to keff spheres (Fig. 6). Since
the interstitial sphere model performed the best, this result
indicates that the particle size of water in wet snow plays an
important role in the simulated reflectance, whereas the par-
ticle size of water is not considered in the keff model. Before
mixing the optical properties, the particle size of the water
sphere was the same size as the ice sphere, which is a rea-
sonable approximation. It would be possible to mix water
and ice spheres of differing size, although this approach is
computationally expensive given that the number of possible
simulated spectra combinations would approach infinity.

The coated sphere model performed reasonably in the pen-
dular regime, where water is contained in menisci held in be-
tween the ice particles, but then considerably overestimated
LWC in the funicular regime. The coated sphere model
was chosen over the interstitial sphere model by Green et
al. (2002), based on visual inspection, considering the bands
in the ice absorption feature centered at 1030 cm, which en-
compasses only part of the distinct shifts between ice and
water that are present in the complex refractive index across
the NIR (Fig. 1). This study used a greater number of NIR
bands that span multiple distinguishable shifts between ice
and water, which is a more robust approach.

For small snow grains of PP (Sample 1) and DF (Sam-
ple 2) crystal type, LWC retrievals did not perform well us-
ing any of the models, one potential reason being that PP and
DF crystal types are complex shapes, and reflectance may not
be accurately represented using spheres. Using a ray tracing
model, Picard et al. (2009) showed that grain shape can influ-
ence reflectance. Although it is possible to have wet PP and
DF crystal types (e.g., rain on snow), low-density dendritic
snow crystals are more commonly found at temperatures well
below freezing (Judson and Doesken, 2000). It is far more
common for wet snow to contain larger rounded grains pri-
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Figure 11. Results from the snowpit at Bridger Bowl Ski Area. (a) Density profile using 1000 cm3 wedge cutter and depth-averaged effective
grain radius. (b) Map of effective grain radius across snowpit wall. (c) Map of liquid water content across snowpit wall with the SLF sensor
vertical profile area outlined by the dashed red line. (d) Liquid water content profiles from the SLF Snow Sensor, NIR-HSI depth averaged
across the entire width of the snowpit, and NIR-HSI depth averaged over the area covered by the SLF sensor area only. NaN (not a number)
values in (b) and (c) correspond to no retrieval data due to a ruler that was placed in the scene.

Table 3. Liquid water content retrieval results from the field.

Keff spheres Coated spheres Interstitial spheres

SLF Sensor Full Sensor Full Sensor Full
sensor area profile area profile area profile

Mean LWC [%] 12.6 15.6 15.1 23.5 23.2 16.3 15.7
σ 2.3 3.2 2.7 1.8 1.1 3.4 3.2
n 28 21 758 243 386 21 758 243 386 21 758 243 386

marily because the presence of water rapidly increases the
rate of snow grain growth, especially through melt and re-
freeze cycles. Small RG (Sample 3), having only slightly
larger re values than the PP and DF crystals, performed sim-
ilarly to the medium- and large-sized grains, further suggest-
ing that the complex shapes of PP and DF may be driving the
poor performance. Based on the results at small grain sizes,
the mixing models have potential to classify dry versus wet
snow but not quantitatively retrieve LWC.

Interestingly, for the largest grains, Samples 6 and 7, the
highest LWC measurements from the SLF sensor are∼ 10 %
(Fig. 9). These apparent maxima, seen in both measurements
and retrievals, are attributed to the large grains having a re-
duced water-holding capacity within the pore space (Yam-
aguchi et al., 2010). Although the snow sample could con-
tain higher than 10 % LWC by volume, water is able to drain

below the near-surface detection limit of the SLF sensor and
NIR-HSI.

5.2 Effective grain radius retrieval

The scaled band area method assumes dry snow, but in re-
mote sensing and field applications there is typically no a
priori knowledge of snow wetness; thus comparing re,SBA
to re,residual allows us to test the validity of this assumption
for wet snow. To visualize the difference between the resid-
ual and scaled band area methods, an example of a measured
spectrum from a dry and wet snow (12 % LWC) sample is
shown in Fig. 12, along with the corresponding simulated
spectrum retrieved using the two methods. For the dry snow
spectrum, re,SBA is larger than re,residual, which is a con-
sistent trend across all samples (Fig. 10 best fit line). This
is attributed to the scaled band area method using a fixed
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Figure 12. Effective grain radius (re) retrieval comparison between the residual and scaled band area methods using the interstitial sphere
model. (a) An example of measured spectra from a dry and wet snow sample and the corresponding retrieved simulated spectra using the
residual and scaled band area methods. (b) Dry snow spectra from (a) including the continuum lines, shown in gray, over the absorption
feature. (c) Wet snow spectra from (a) including the continuum lines over the absorption feature, shown in gray.

wavelength range spanning the area of the absorption fea-
ture centered at 1030 nm (961 to 1087 nm), which makes it
sensitive to small changes in the shape of the measured ab-
sorption feature and location of the continuum line shoul-
ders (shown as gray lines in Fig. 12b), whereas the resid-
ual method finds the best fit spectrum over all NIR wave-
lengths ranging from 961 to 1472 nm. In the example shown
(Fig. 12b), the left shoulder of the matched simulated spec-
trum using the residual method is slightly below the mea-
sured spectrum, resulting in the scaled band area of the mea-
sured spectrum (2.92) being higher than that of the matched
simulated spectra (2.46).

In the wet snow case, the absorption feature centered at
1030 nm shifts to shorter wavelengths and broadens. Similar
to the comparison for dry snow, the fixed wavelength range
and continuum line of the scaled band area method fail to
fully capture the wet snow absorption feature, resulting in
a reduction in the scaled band area. This result is shown in
the spectral reflectance example (Fig. 12c) and is responsible
for the decreasing re,SBA at high LWC seen for Samples 3–7
(Fig. 10). In this example, the shift to the left is highlighted
with the arrow pointing to the flattening of the feature that is
incorrectly included by the scaled band area fixed continuum
line (shown as gray lines in Fig. 12c), resulting in a smaller
scaled band area. This example also shows the broadening of
the feature relative to the shape of ice absorption alone. The
shape of the wet snow feature is better represented by the
matched simulated spectrum using the residual method. It is
possible that this has implications for previous studies that
have applied the scaled band area method over potentially
wet snow (e.g., Skiles and Painter, 2017).

5.3 Uncertainties

5.3.1 Simulated snow reflectance

All the mixing models examined in this study are approxi-
mate representations of the relative arrangement of ice and
water in wet snow. The spherical particle approximation
used in this study to represent wet snow is a reasonable ap-
proach because ice grains in the presence of water tend to
be rounded. The arrangement of ice and water, on the other
hand, is dependent on the level of water saturation; there-
fore using a single mixing model to determine the LWC
across a large range of water saturations results in inherent
uncertainty. Since no a priori knowledge of snow wetness is
known when taking NIR-HSI measurements, the goal of this
research only aims to find the modeling approach that has the
best retrieval of LWC across ranges commonly found in natu-
ral environments when compared to an established dielectric-
based instrument.

Simulations of clean snow reflectance, assuming no LAPs,
were valid for the laboratory experiments; however snow
in natural environments contains varying concentrations of
LAPs. Since LAPs predominately effect the visible part of
the spectrum (Nolin and Dozier, 2000), it is unlikely that
typical concentrations would impact this retrieval method.
However, at high concentrations of LAPs their impact ex-
tends into the NIR, and in extreme cases this can make the ice
absorption feature more shallow (Skiles et al., 2018), which
would increase uncertainties in this retrieval method.

5.3.2 Measured snow reflectance

There is uncertainty in the measurement of absolute spec-
tral reflectance, the accuracy of which is important for us-
ing the residual method. To minimize this uncertainty in the
laboratory, spectral measurements were taken with consis-
tent lighting conditions and at close proximity, resulting in
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near-perfect conditions, which was ideal for the compari-
son study. Similarly, uncertainties related to lighting condi-
tions in the field experiment were minimized by blocking all
sunlight with an opaque tarp and illuminating the snowpit
wall with a known lighting source. This approach is rec-
ommended and is used with other optical methods, such as
contact spectroscopy (Painter et al., 2007; Skiles and Painter,
2017). Using natural light in a standard snowpit orientation
(i.e., facing away from the sun) would make the conversion
from radiance to reflectance challenging because the snowpit
wall is unevenly illuminated by diffuse light and would need
to be accounted for in the radiative transfer modeling. Addi-
tionally, there may not be enough light on the snowpit wall
for imaging; however, this was not tested here.

Similarly, if the orientation of the imager or light source is
off-nadir, this needs to be accounted for in the radiative trans-
fer modeling such that the measured and simulated spectra
are comparable. Here, we did not image the bottom 40 cm
of the snowpit because positioning the camera and lights off-
nadir would introduce errors in the comparison to the simu-
lated spectra at nadir viewing, which is discussed in more de-
tail in Donahue et al. (2021). However, the full snowpit could
be imaged in nadir orientation by digging a larger snowpit
such that the camera and lighting source are farther away
from the snowpit wall or by using a tripod that lowers closer
to the ground.

Additionally, the residual method benefits from the high
signal-to-noise ratio (1885) and spectral resolution (4.9 nm)
of the instrument used here. For application of this method
at the airborne or satellite scales, spectral measurements con-
tain more noise than those in the laboratory and require atmo-
spheric and topographic correction, introducing additional
uncertainty into absolute reflectance values. Although not
within the scope of this study, instruments at these scales
also need to account for water vapor in the air, which is dis-
cussed further in Green et al. (2006). Finally, due to the rel-
atively minor shift in NIR reflectance, this approach is likely
not suitable for mixed pixels (not pure snow), which become
more common as spatial coverage and pixel sizes increase.

5.3.3 Dielectric liquid water content measurements

Dielectric instruments, including the SLF sensor used here,
have their own uncertainties. Based on the empirical calibra-
tion of the SLF sensor (FPGA Company, 2018), the RMSE
of the LWC measurement is ∼ 1.2 %. These types of instru-
ments also rely on an independent snow density measure-
ment to calculate LWC. In the case of the SLF sensor, the
“dry snow” density, which describes the fraction of ice in
a wet snow volume, is required to calculate a LWC value
(FPGA Company, 2018). In the laboratory experiments, this
was not an issue because all snow samples started dry, and
the dry snow density was used for all subsequent LWC mea-
surements during melt. Conversely, in the field experiment,
the snow was already wet, and there was no way of isolating

a dry snow density. The preferred solution offered by FPGA
Company (2018) is to measure density in the morning if the
snow has refrozen, but this was not possible here. A sec-
ond solution, described in Sect. 3.2.2 and applied here, is to
use an iterative approach to determine an estimated dry snow
density. Since the measured LWC is dominated by water con-
tent rather than snow density, the change in corrected LWC
was small, ranging from 0.4 %–1.2 %. Due to the cubic em-
pirical calibration curve (FPGA Company, 2018), high LWC
values had a smaller correction, while smaller LWC values
had a larger correction. Nevertheless, a known dry snow den-
sity at the time of measurement would give the most accurate
LWC measurement from the SLF sensor. Although there is
inherent uncertainty associated with the SLF sensor, it was
found to be the most suitable LWC measurement instrument
for comparison to LWC retrieved from NIR reflectance be-
cause it is non-destructive to the snow surface, measures a
flat surface, and has minimal penetration into snow, similar
to NIR light.

5.3.4 Field measurements

Acquiring a vertical profile of LWC, using any instrument,
requires digging a snowpit and exposing the sidewall. The
atmospheric exposure can change snow properties and intro-
duce uncertainties to the measurement. Shea et al. (2012)
observed that a statistically significant change in the sur-
face temperature across a snowpit wall occurred within the
first 90 s of exposure, providing evidence that atmospheric
equalization affects the surface temperature more strongly
than from heat behind the snowpit wall. Here, the snowpit
was isothermal, and the air temperature was above freezing
(10 ◦C), meaning that any additional energy into the snow-
pack directly goes to melting snow and increasing LWC.
To minimize these uncertainties, a systematic approach was
taken where the snowpit sidewall was cut back∼ 10 cm prior
to taking hyperspectral images and SLF sensor measure-
ments. Additionally, the snowpit was covered with an opaque
tarp, blocking all diffuse sunlight on the snowpit wall. Ac-
quiring two hyperspectral images took approximately 2 min,
while acquiring the 28 SLF sensor measurements in a verti-
cal profile took approximately 5 min, resulting in the snowpit
sidewall being exposed for ∼ 7 min. The comparison of the
two instruments cannot occur simultaneously and requires
the snowpit to be exposed for an extended time, which would
lead to uncertainties if the LWC on the snowpit wall in-
creased during this time.

5.4 Implications for future applications

Controls on liquid water movement through snow include
LWC, grain size, and wet snow metamorphism (Hirashima
et al., 2019). Multi-dimensional snowmelt models have been
developed to represent the relationship between grain growth
and water percolation (Hirashima et al., 2014), but limited
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observations for validation at large spatial scales currently
exist. Being able to coincidently map re and LWC spatial
distributions in such high detail could support process-based
studies and validate models coupling wetting front propaga-
tion with grain size and grain growth.

Coincident re and LWC maps could also be used to bet-
ter interpret microwave remote sensing retrievals and for
comparison to microwave radiative transfer models, such
as the Microwave Emission Model for Layered Snow-
packs (MEMLS) (Wiesmann and Mätzler, 1999) and the
Dense Media Radiative Transfer Multi-Layer model (DMRT-
ML) (Picard et al., 2013). Generally, these models are ini-
tialized with physical snow properties, including re, LWC,
and layer thickness. Currently, discrete in situ measurements
of re and LWC measurements are taken using instruments,
such as the IceCube and the SLF sensor, respectively. These
instruments are generally affordable and portable and do not
require a large snowpit working space. However, to measure
snow properties, multiple instruments are needed, and mea-
surements are discrete and asynchronous, making it chal-
lenging to capture spatial variability. Additionally, multiple
measurements require the snowpit wall to be exposed for
longer, increasing uncertainty in the measured snow prop-
erties. Although logistically more challenging to implement
in the field, the NIR-HSI method addresses these limitations
by measuring re, LWC, and layer thickness in high resolution
simultaneously while minimizing the time the snowpit wall
is exposed to ambient air.

There is also broader relevance for the assessment and de-
velopment of snow property retrievals from measured spec-
tral reflectance with upcoming satellite imaging spectrome-
ter missions. These include the Surface Biology and Geol-
ogy (SBG) imaging spectrometer mission and the Coperni-
cus Hyperspectral Imaging Mission (CHIME). Although al-
gorithm suites have been developed to retrieve snow prop-
erties from airborne imaging spectroscopy (Painter et al.,
2013), LWC is not a standard part of the retrieval and has
only been demonstrated as a case study (Green et al., 2002).
Time series mapping of LWC could be used to monitor melt
initiation and how it varies with slope, aspect, and elevation.

6 Conclusions

The results in this study show that the externally mixed in-
terstitial sphere model performs best when compared to a di-
electric LWC measurement instrument, relative to the pre-
viously proposed keff sphere (Hyvarinen and Lammasniemi,
1987) and coated sphere models (Green et al., 2002). It was
also found that for the smallest grains (i.e., new and de-
composing precipitation particles), none of the models in-
vestigated compared well to the SLF sensor. For low LWC
(< 7 %), all the retrievals compare well to measurements, but
at higher LWC the keff and coated spheres were biased posi-
tive and negative, respectively. Overall and across the widest

range of initial grain types, re (162–859 µm) and LWC (0 %–
17.2 %), the interstitial sphere model performed the best,
with ∼ 1 % uncertainty.

For the re comparison, between the two optically based
residual and scaled band area methods, it was found that the
scaled band area retrieval had a positive bias compared to the
residual method. This bias was lowest for small grains and
increased with grain size. For wet snow, the scaled band area
method was impacted by the presence of water due to the
shift in the absorption feature to shorter wavelengths, result-
ing in decreasing re at high LWC. Because scaled band area
implicitly assumes dry snow, it is based on ice absorption
alone, and caution is encouraged when applying this method
without knowing that the snow is dry.

The field application of the NIR-HSI method produced
maps that reflect the general understanding of what a snap-
shot of a snowpit would look like during snowmelt progres-
sion but mapped the stratigraphy of snow properties (i.e.,
LWC and grain size) at much higher resolution relative to
standard profile-based observations. The retrieved LWC was
found to be slightly higher than that measured by the SLF
sensor, which was attributed to both the inability to deter-
mine the dry snow density and the high level of detail in the
maps that could not be captured by the volume-averaged di-
electric sensor.
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