

1 **On the liquid-liquid phase transition of dense hydrogen**

2 Valentin V. Karasiev,¹ Joshua Hinz, and S. X. Hu

3 *Laboratory for Laser Energetics, University of Rochester,*

4 *250 East River Road, Rochester, New York 14623 USA*

5 S.B. Trickey

6 *Quantum Theory Project, Dept. of Physics,*

7 *University of Florida, Gainesville FL 32603 USA*

8 (Dated: August 16, 2021)

¹ vkarasev@lle.rochester.edu

9 **ARISING FROM** Bingqing Cheng *et al.* *Nature* [https://doi.org/10.1038/s41586-020-2677-y \(2020\)](https://doi.org/10.1038/s41586-020-2677-y)

11 Until recently the consensus theory/computation interpretation of the challenging liquid-
12 liquid phase transition (LLPT) of high-pressure hydrogen was first order [1-5]. Cheng *et al.*
13 [6] developed a machine-learnt potential (MLP) that, in larger molecular dynamics (MD)
14 simulations, gives a continuous transition instead. We show that the MLP does not
15 reproduce our still larger MD density-functional theory (MD-DFT) calculations as it should.
16 Since the MLP is not a faithful surrogate for the MD-DFT, the Ref. 6 prediction of a
17 supercritical atomic liquid is unfounded.

18 Prior MD-DFT calculations differ but, for example, our results on $700 \leq T \leq 3000$ K are a
19 curve along $320 \geq P \geq 70$ GPa [2]. Driven by molecular H_2 dissociation, transition signatures
20 include density jumps, qualitative sharp changes in ionic pair correlation functions (PCFs),
21 and abrupt dc conductivity and reflectivity changes. Coupled-electron ion Monte Carlo
22 (CEIMC) [5] results concur at least roughly and there is reasonable agreement with
23 experiment.

24 The continuous transformation found in Ref. [6] has an atomic liquid that goes
25 supercritical above $P \approx 350$ GPa, $T \approx 400$ K. They attributed the dramatic differences versus
26 MD-DFT to two causes which the MLP is expected to address. One is finite size effects that
27 foster the formation of defective solids, with the common use of *NVT* dynamics tending to
28 increase defect concentration compared to that from the *NPT* ensemble. The other is much
29 shorter simulation times in the MD-DFT and CEIMC calculations than possible for MD-MLP
30 runs.

31 Those diagnoses implicate other issues. Most of the MLP training was on $N \leq 108$ atoms

32 (1,833 512-atom configurations were used out of 38,716 total per Cheng et al. Supp. Info.[6]).
33 That raises questions of large-system transferability. Conceptually the issue is whether a
34 single MLP can represent two chemically distinct regimes (molecular, atomic) correctly. An
35 unambiguous test is to do longer MD-DFT runs on significantly larger systems. If the MD-
36 MLP represents the underlying theory (*ab initio* MD) faithfully and if the diagnosis based on
37 MD-MLP is correct, results from the two simulation types should match. To test that, we have
38 done much larger, longer MD-DFT calculations. The results are consistent with earlier MD-
39 DFT calculations, thus qualitatively different from the MD-MLP results. Neither the large
40 system nor longer run diagnosis from MD-MLP is sustained.

41 Our *NPT* MD simulations were driven by DFT forces with PBE exchange-correlation (XC)
42 [7]. (Ref. [6] used PBE to train the MLP.) We used from 256 through 2048 atoms per cell.
43 Brillouin zone sampling used the Baldereschi mean value point for the simple cubic
44 crystal structure $\mathbf{k} = (\frac{1}{4}, \frac{1}{4}, \frac{1}{4})$ [8]. Vasp [9, 10] was used for 1024 and 2048 atom systems,
45 while the i-PI interface [11] with QuantumEspresso [12] was used for 256 and 512 atoms.
46 Consistent results from the two confirm that the MD code and technical choices (thermostat,
47 barostat, etc.) are inconsequential.

48 Our new large-system MD-DFT results agree with prior MD-DFT and CEIMC simula-
49 tions [2, 3, 13]: there is a sharp molecular-to-atomic transition. Fig. 1 shows the qualitatively
50 different character versus the MD-MLP prediction. The left-column panels show density
51 profiles $\rho_{\text{H}}(T)$ along isobars. At 350 and 300 GPa, the large-scale MD-DFT $\rho_{\text{H}}(T)$ values jump
52 $\approx 1\%$ near $T = 650$ K. At 300 GPa, that is above the experimental melting temperature T_{m}
53 [14]. In contrast, the 300-GPa MD-MLP isobar has a steep density increase near $T = 500$

54 K (in the stable solid phase) [6], but passes smoothly through both the melt line and the
55 LLPT. Except for a systematic offset, the MD-MLP $\rho_H(T)$ matches the MD-DFT $\rho_H(T)$ in the
56 atomic fluid region.

57 Figure 1 also shows clearly that there are *no important finite-size effects* on the calculated
58 LLPT. The MD-DFT density profiles on each of the isobars ($P = 250, 200, 150$, and 100
59 GPa) are almost identical *irrespective* of atom count, $256 - 2048$. The MD-MLP profiles.
60

61 FIG. 1. Comparison of MD results from the PBE XC-based MLP and *ab initio* MD-DFT (DFT) *NPT*
62 simulations. Left column panels (a): Hydrogen density as function of T along six
63 isobars. Experimental melting temperature T_m for each isobar is shown by a vertical dashed line [14].
64 Middle column panels (b): Molar heat capacity as a function of T along the isobars. Right column
65 panels (c): Pair correlation function (PCF) for each isobar for two temperatures below the density
66 jump and two above.

67 are *qualitatively* different. We find the transition character to be insensitive to system size
68 while the transition temperature T_{LLPT} is affected only modestly. For example, at $P = 200$ GPa
69 (for which T_{LLPT} is distinctly away from the melting line) going from 256 to 2048 atoms
70 decreases T_{LLPT} by less than 100 K; ρ_H values jump $\approx 3\%$ in MD-DFT simulations for all system
71 sizes. Computational resources limited us to 512 atoms for 300 and 350 GPa but that does
72 not vitiate the clear finding on the other four isobars: the MLP-DFT does not reproduce the
73 underlying MD-DFT. Note that a 512 atom system seems to be the smallest sufficient to
74 control finite-size effects. That agrees with Ref. [15]: four well-defined molecular shells in
75 the PCF of a 3456 -atom system were captured well in a 500 -atom supercell calculation.

76 The molar heat capacity from MD-DFT as a function of T is shown in Fig. 1, middle column.
77 All the isobars exhibit divergent heat capacity character across the transition. Evidently

78 finite-size effects on T_{LLPT} are small and do not modify that character. To check on the
79 possibility that finite-size effects trapped our simulations in defective solid configurations,
80 we calculated the mean-squared displacement (MSD) of the 512 atom systems as a function
81 of time along the 150 and 200 GPa isobars for $1100 \leq T \leq 1400$ K and $900 \leq T \leq 1200$ K
82 respectively. The MSD grows near-linearly with time, as is characteristic of a liquid but not a
83 solid. See Supplemental Information for details and figures.

84 Figure 1 right-hand column shows the PCF on each isobar at temperature pairs below and
85 above the density jump. Above, the first PCF peak virtually disappears, confirmation of the
86 density jump being in conjunction with the molecular dissociation [2].

87 To test possible long simulation duration effects on T_{LLPT} or its character, we did up to six
88 sequential MD-DFT runs of roughly 1.8-ps duration each for a total of ≈ 10 -ps duration. This
89 was at 200 GPa with 512 and 2048 atoms. There were no meaningful differences in the
90 results in either case. This outcome agrees with that of Geng et al. [15] who did runs up to 6
91 ps and found no meaningful differences with respect to 1.5 ps (after equilibration).

92 To investigate whether the nanosecond timescale might make the simulated transition
93 smooth, we performed a set of 2048-atom MD-DFT *NPT* simulations beginning with the
94 atomic fluid at 200 GPa. Starting at 950 K, we cooled the system in sequential runs to

95

96 FIG. 2. The LLPT boundary from the present large-scale MD-DFT (DFT/PBE) simulations compared
97 to MLP (MLP/PBE) C_p^{\max} and ρ^{\max} curves.

98 899, 849, and 824 K with simulation duration around 8 ps for each temperature. If the
99 nanosecond timescale were to yield a smooth transition, the hydrogen density during such

100 a fast cooling curve would not drop sharply below the hypothetical smooth long-duration
101 curve. But, as evident in the Fig. 1 density plot at 200 GPa (left column), the cooling curve
102 (thin blue curve, circles), is almost identical to the one from MD-DFT simulations when the
103 molecular fluid T is increased gradually (sharp transition shown by the solid orange curve).

104 Figure 2 shows the LLPT curves associated with density jumps, heat capacity peaks, and
105 PCF peak disappearance. For the new large-scale MD-DFT calculations, those three criteria
106 give one curve (virtually identical P, T values; small differences in the transition temperature
107 (less than 100 K for $P \leq 150$ GPa) are caused by numerical errors in calculating the molar
108 heat capacity using finite differences), shown in red with squares at data points. Two MD-
109 MLP curves emerge from the analysis, however, one for the location of molar heat capacity
110 maxima C_P^{\max} , and another for the maximum density, ρ^{\max} . Consistent with the foregoing
111 discussion, there are striking differences. The MLP C_P^{\max} curve lies well below the MD-DFT
112 curve. The MLP ρ^{\max} curve is flatter than the MD-DFT reference curve and lies close to it only
113 at about $P = 70$ GPa, $T = 2800$ K and then again for P between about 170 and 300 GPa.

114 Given that neither the finite-size nor simulation duration diagnosis advanced in Ref. 6 is
115 sustained by direct calculation, the only plausible remaining source of the different physics
116 they found must be the MLP. The detailed origins seem obscure. We did find evidence (see
117 Supplemental Information) in the Supp. Info. to Ref. 6 that the MLP does not reproduce the
118 behavior (be it physical or not) of several MD-DFT calculations. In addition to the stark LLPT
119 differences discussed here, such deviations are consistent with the assessment that the MLP
120 is not systematically related to the physics of a well-defined Born–Oppenheimer electronic
121 structure treatment of the H system. Instead it seems to be consistent, at least, with the MLP

122 being a single interpolative, approximate representation of the electronic structure of two
123 chemically distinct regimes (molecular, atomic) of the hydrogen liquid.

124 We conclude that the MD-MLP results for the LLPT do not reproduce the fundamental
125 MD-DFT results as they should. Up to 2048 atoms and 10 ps simulation duration, our results
126 are consistent with the earlier sub-critical behavior predictions. The basic inconsistency of
127 the MD-MLP numerical data with the MD-DFT results would seem to make any subsequent
128 analysis of the MD-MLP data ill-founded. It is at least plausible that the supercritical behavior
129 finding may be an artifact of a disconnect of the MLP from electronic structure differences
130 inherent in the chemistry of the LLPT.

131 **Data availability**

132 The data that support the findings shown in the figures are available from the corresponding
133 author upon reasonable request.

134

135 [1] Gregoryanz, E. et al. Everything you always wanted to know about metallic hydrogen but were
136 afraid to ask. *Matter Radiat. Extremes* **5**, 038101 (2020).

137 [2] Hinz, J. et al. Fully consistent density functional theory determination of the insulator-metal
138 transition boundary in warm dense hydrogen. *Phys. Rev. Research* **2**, 032065(R) (2020).

139 [3] Rillo, G., Morales, M. A., Ceperley, D. M. & Pierleoni, C. Optical properties of high-pressure fluid
140 hydrogen across molecular dissociation. *Proc. Natl. Acad. Sci.* **116**, 9770-9774 (2019).

141 [4] Lu, B., Kang, D., Wang, D., Gao, T. & Dai, J. Towards the same line of liquid-liquid phase
142 transition of dense hydrogen from various theoretical predictions. *Chin. Phys. Lett.* **36**, 103102
143 (2019).

144 [5] Pierleoni, C., Morales, M. A., Rillo, G., Holzmann, M. & Ceperley, D. M. Liquid-liquid phase
145 transition in hydrogen by coupled electron-ion Monte Carlo simulations. *Proc. Natl. Acad. Sci.*
146 **113**, 4953-4957, (2016).

147 [6] Cheng, B., Mazzola, G., Pickard, C. J. & Ceriotti, M. Evidence for supercritical behaviour of high-
148 pressure liquid hydrogen. *Nature* **585**, 217-220 (2020).

149 [7] Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple.
150 *Phys. Rev. Lett.* **77**, 3865-3868 (1996); **78**, 1396(E) (1997).

151 [8] Baldereschi, A. Mean-value point in the Brillouin zone. *Phys. Rev. B* **7**, 5212-5215 (1973).

152 [9] Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations
153 using a plane-wave basis set. *Phys. Rev. B* **54**, 11169-11186 (1996).

154 [10] Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave
155 method. *Phys. Rev. B* **59**, 1758-1775 (1999).

156 [11] Kapil, V. et al. I-PI 2.0: A universal force engine for advanced molecular simulations. *Comput.*
157 *Phys. Commun.* **236**, 214-223 (2019).

158 [12] Giannozzi, P. et al. Advanced capabilities for materials modelling with quantum espresso. *J.*
159 *Phys.: Condens. Matter* **29**, 465901 (2017).

160 [13] Lorenzen, W., Holst, B. & Redmer, R. First-order liquid-liquid phase transition in dense
161 hydrogen. *Phys. Rev. B* **82**, 195107 (2010).

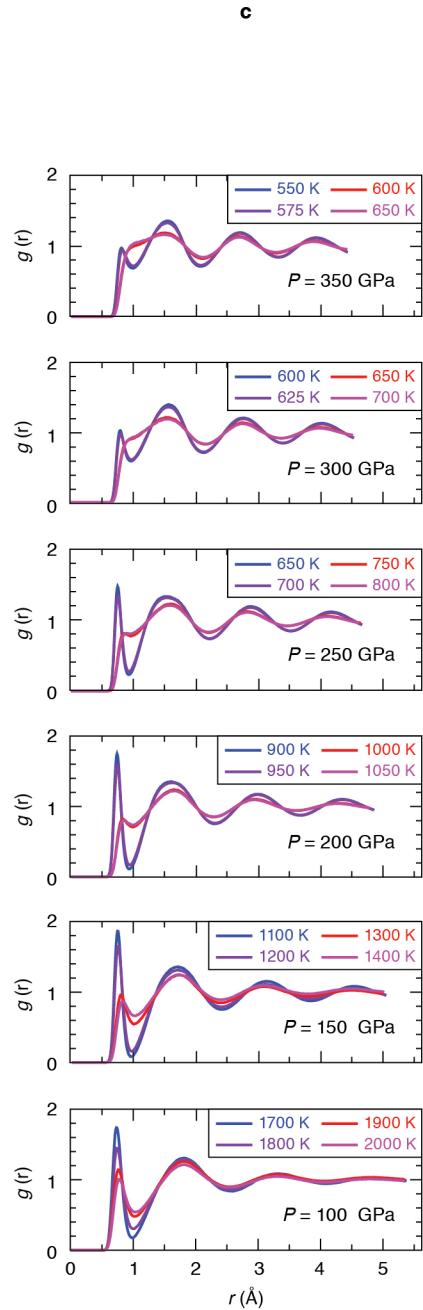
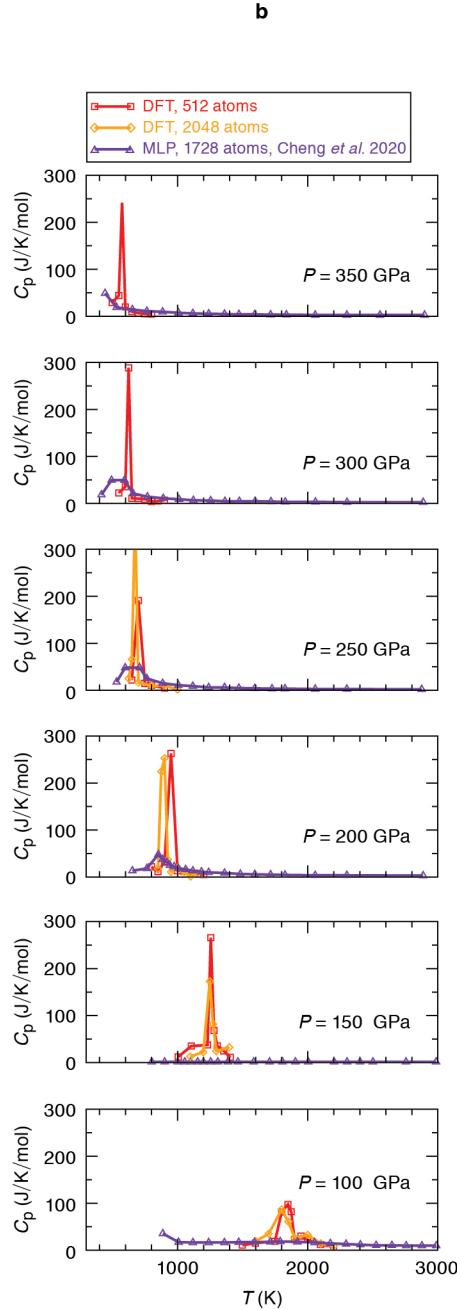
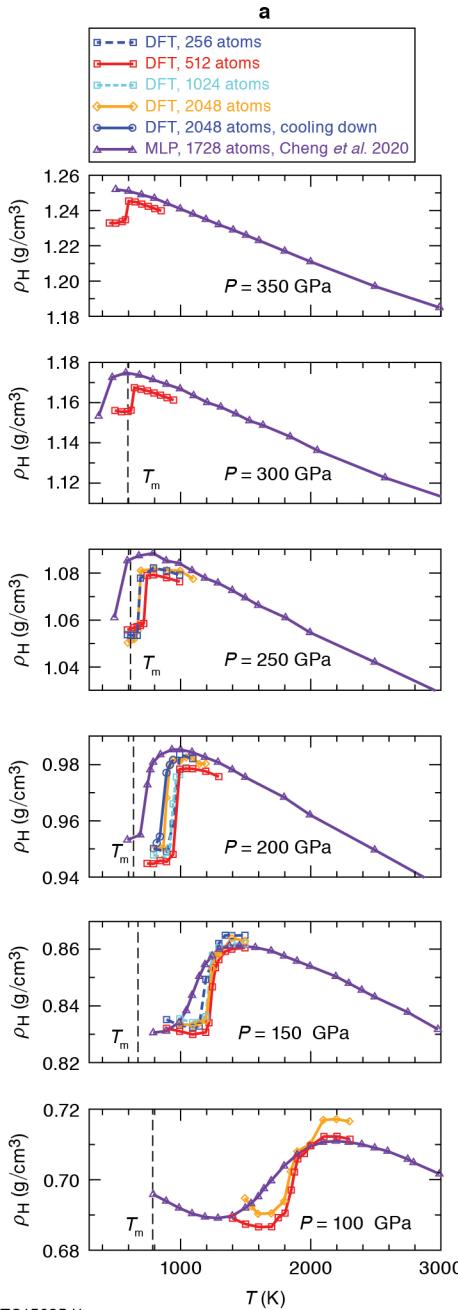
162 [14] Zha, C. S., Liu, H., Tse, J. S. & Hemley, R. J. Melting and high P-T transitions of hydrogen up to
163 300 GPa. *Phys. Rev. Lett.* **119**, 075302 (2017).

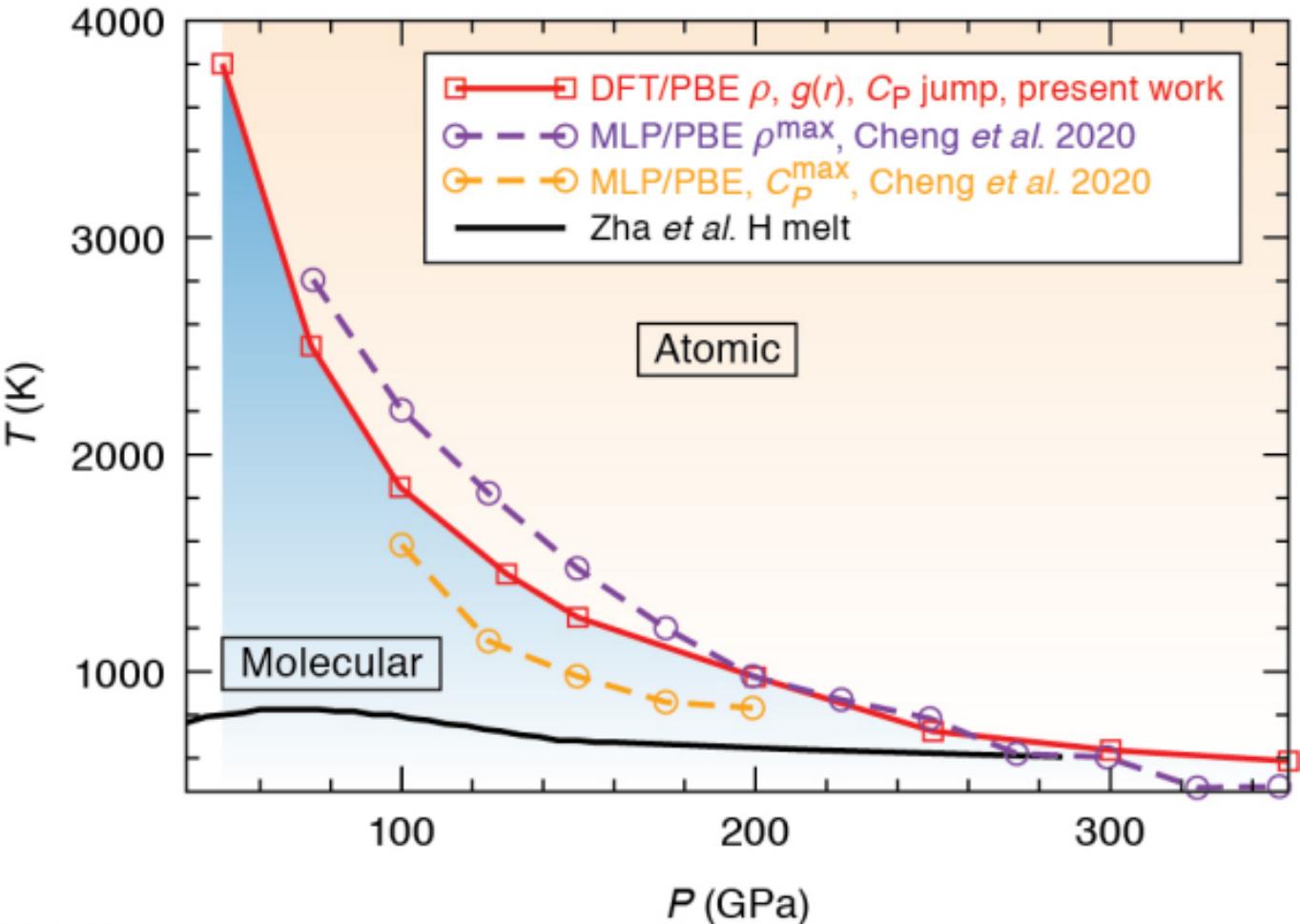
164 [15] Geng, H. Y., Wu, Q., Marqu'es, M. & Ackland, G. J. Thermodynamic anomalies and three distinct
165 liquid-liquid transitions in warm dense liquid hydrogen. *Phys. Rev. B* **100**, 134109 (2019).

166 **Acknowledgements**

167 This report was prepared as an account of work sponsored by an agency of the U.S.
168 Government. Neither the U.S. Government nor any agency thereof, nor any of their
169 employees, makes any warranty, express or implied, or assumes any legal liability or
170 responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
171 product, or process disclosed, or represents that its use would not infringe privately owned
172 rights. Reference herein to any specific commercial product, process, or service by trade
173 name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its
174 endorsement, recommendation, or favoring by the U.S. Government or any agency thereof.
175 The views and opinions of authors expressed herein do not necessarily state or reflect those
176 of the U.S. Government or any agency thereof.

177 V.V.K., J.H., and S.X.H. were supported by the Department of Energy National Nuclear
178 Security Administration Award Number DE-NA0003856 and US National Science
179 Foundation PHY Grant No. 1802964. Partial funding for S.X.H. was provided by NSF Physics
180 Frontier Center Award PHY-2020249. S.B.T. was supported by Department of Energy Grant
181 DE-SC0002139. This research used resources of the National Energy Research Scientific
182 Computing Center, a DOE Office of Science User Facility supported by the Office of Science of
183 the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Part of the
184 computations were performed on the Laboratory for Laser Energetics HPC systems.




185 **Author contributions** V.V.K. conceived the project and designed the study. V.V.K. and J.H.
186 performed the MD-DFT simulations and post-processed the data. V.V.K. wrote the initial
187 manuscript with inputs from S.X.H. S.B.T. revised the conception and scope. V.V.K. and S.B.T.
188 rewrote the manuscript. All authors discussed the results and revised the paper extensively.


189 **Conflict of interests** The authors declare that they have no conflicts of interest.

190 **Additional information**

191 **Supplementary information** is available for this paper at <https://doi.org/10.1038/xx>

192 **Correspondence** and requests for materials should be addressed to V.V.K.

