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Until recently the consensus theory/computation interpretation of the challenging liquid-
liquid phase transition (LLPT) of high-pressure hydrogen was first order [1-5]. Cheng et al.
[6] developed a machine-learnt potential (MLP) that, in larger molecular dynamics (MD)
simulations, gives a continuous transition instead. We show that the MLP does not
reproduce our still larger MD density-functional theory (MD-DFT) calculations as it should.
Since the MLP is not a faithful surrogate for the MD-DFT, the Ref. 6 prediction of a

supercritical atomic liquid is unfounded.

Prior MD-DFT calculations differ but, for example, our results on 700 < T < 3000 K are a
curve along 320 = P 2 70 GPa [2]. Driven by molecular H: dissociation, transition signatures
include density jumps, qualitative sharp changes in ionic pair correlation functions (PCFs),
and abrupt dc conductivity and reflectivity changes. Coupled-electron ion Monte Carlo
(CEIMC) [5] results concur at least roughly and there is reasonable agreement with

experiment.

The continuous transformation found in Ref. [6] has an atomic liquid that goes
supercritical above P = 350 GPa, T # 400 K. They attributed the dramatic differences versus
MD-DFT to two causes which the MLP is expected to address. One is finite size effects that
foster the formation of defective solids, with the common use of NVT dynamics tending to
increase defect concentration compared to that from the NPT ensemble. The other is much
shorter simulation times in the MD-DFT and CEIMC calculations than possible for MD-MLP

runs.

Those diagnoses implicate other issues. Most of the MLP training was on N < 108 atoms
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(1,833 512-atom configurations were used out of 38,716 total per Cheng et al. Supp. Info.[6]).
That raises questions of large-system transferability. Conceptually the issue is whether a
single MLP can represent two chemically distinct regimes (molecular, atomic) correctly. An
unambiguous test is to do longer MD-DFT runs on significantly larger systems. If the MD-
MLP represents the underlying theory (ab initio MD) faithfully and if the diagnosis based on
MD-MLP is correct, results from the two simulation types should match. To test that, we have
done much larger, longer MD-DFT calculations. The results are consistent with earlier MD-
DFT calculations, thus qualitatively different from the MD-MLP results. Neither the large

system nor longer run diagnosis from MD-MLP is sustained.

Our NPT MD simulations were driven by DFT forces with PBE exchange-correlation (XC)
[7]. (Ref. [6] used PBE to train the MLP.) We used from 256 through 2048 atoms per cell.
Brillouin zone sampling used the Baldereschi mean value point for the simple cubic
crystal structure k — (%v %7 i) [8]. Vasp [9, 10] was used for 1024 and 2048 atom systems,
while the i-PI interface [11] with QuantumEspresso [12] was used for 256 and 512 atoms.
Consistent results from the two confirm that the MD code and technical choices (thermostat,

barostat, etc.) are inconsequential.

Our new large-system MD-DFT results agree with prior MD-DFT and CEIMC simula-
tions [2, 3, 13]: there is a sharp molecular-to-atomic transition. Fig. 1 shows the qualitatively
different character versus the MD-MLP prediction. The left-column panels show density
profiles pu(T) along isobars. At 350 and 300 GPa, the large-scale MD-DFT pu(T) values jump

~ 1% near T = 650 K. At 300 GPa, that is above the experimental melting temperature Tm

[14]. In contrast, the 300-GPa MD-MLP isobar has a steep density increase near T =500
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K (in the stable solid phase) [6], but passes smoothly through both the melt line and the
LLPT. Except for a systematic offset, the MD-MLP pu(7T) matches the MD-DFT pu(T) in the

atomic fluid region.

Figure 1 also shows clearly that there are no important finite-size effects on the calculated
LLPT. The MD-DFT density profiles on each of the isobars (P = 250, 200, 150, and 100

GPa) are almost identical irrespective of atom count, 256 - 2048. The MD-MLP profiles.

FIG. 1. Comparison of MD results from the PBE XC-based MLP and ab initio MD-DFT (DFT) NPT
simulations. Left column panels (a): Hydrogen density as function of T along six

isobars. Experimental melting temperature T for each isobar is shown by a vertical dashed line [14].
Middle column panels (b): Molar heat capacity as a function of T along the isobars. Right column
panels (c): Pair correlation function (PCF) for each isobar for two temperatures below the density
jump and two above.

are qualitatively different. We find the transition character to be insensitive to system size
while the transition temperature Tiipr is affected only modestly. For example, at P =200 GPa
(for which Tirpr is distinctly away from the melting line) going from 256 to 2048 atoms
decreases TiLprby less than 100 K; puvalues jump = 3% in MD-DFT simulations for all system
sizes. Computational resources limited us to 512 atoms for 300 and 350 GPa but that does
not vitiate the clear finding on the other four isobars: the MLP-DFT does not reproduce the
underlying MD-DFT. Note that a 512 atom system seems to be the smallest sufficient to
control finite-size effects. That agrees with Ref. [15]: four well-defined molecular shells in

the PCF of a 3456-atom system were captured well in a 500-atom supercell calculation.

The molar heat capacity from MD-DFT as a function of T is shown in Fig. 1, middle column.

All the isobars exhibit divergent heat capacity character across the transition. Evidently
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finite-size effects on Tuiipr are small and do not modify that character. To check on the
possibility that finite-size effects trapped our simulations in defective solid configurations,
we calculated the mean-squared displacement (MSD) of the 512 atom systems as a function
of time along the 150 and 200 GPa isobars for 1100 < T < 1400K and 900 < T < 1200K

respectively. The MSD grows near-linearly with time, as is characteristic of a liquid but not a

solid. See Supplemental Information for details and figures.

Figure 1 right-hand column shows the PCF on each isobar at temperature pairs below and
above the density jump. Above, the first PCF peak virtually disappears, confirmation of the

density jump being in conjunction with the molecular dissociation [2].

To test possible long simulation duration effects on TiLpr or its character, we did up to six
sequential MD-DFT runs of roughly 1.8-ps duration each for a total of *10-ps duration. This
was at 200 GPa with 512 and 2048 atoms. There were no meaningful differences in the
results in either case. This outcome agrees with that of Geng et al. [15] who did runs up to 6
ps and found no meaningful differences with respect to 1.5 ps (after equilibration).

To investigate whether the nanosecond timescale might make the simulated transition
smooth, we performed a set of 2048-atom MD-DFT NPT simulations beginning with the

atomic fluid at 200 GPa. Starting at 950 K, we cooled the system in sequential runs to

FIG. 2. The LLPT boundary from the present large-scale MD-DFT (DFT/PBE) simulations compared
to MLP (MLP/PBE) Cpmaxand pmax curves.

899, 849, and 824 K with simulation duration around 8 ps for each temperature. If the

nanosecond timescale were to yield a smooth transition, the hydrogen density during such
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a fast cooling curve would not drop sharply below the hypothetical smooth long-duration
curve. But, as evident in the Fig. 1 density plot at 200 GPa (left column), the cooling curve
(thin blue curve, circles), is almost identical to the one from MD-DFT simulations when the

molecular fluid T is increased gradually (sharp transition shown by the solid orange curve).

Figure 2 shows the LLPT curves associated with density jumps, heat capacity peaks, and
PCF peak disappearance. For the new large-scale MD-DFT calculations, those three criteria
give one curve (virtually identical P, T values; small differences in the transition temperature
(less than 100 K for P < 150 GPa) are caused by numerical errors in calculating the molar
heat capacity using finite differences), shown in red with squares at data points. Two MD-
MLP curves emerge from the analysis, however, one for the location of molar heat capacity
maxima Cp™2%, and another for the maximum density, pm2x. Consistent with the foregoing
discussion, there are striking differences. The MLP Cpm2x curve lies well below the MD-DFT
curve. The MLP pmax curve is flatter than the MD-DFT reference curve and lies close to it only

atabout P =70 GPa, T = 2800 K and then again for P between about 170 and 300 GPa.

Given that neither the finite-size nor simulation duration diagnosis advanced in Ref. 6 is
sustained by direct calculation, the only plausible remaining source of the different physics
they found must be the MLP. The detailed origins seem obscure. We did find evidence (see
Supplemental Information) in the Supp. Info. to Ref. 6 that the MLP does not reproduce the
behavior (be it physical or not) of several MD-DFT calculations. In addition to the stark LLPT
differences discussed here, such deviations are consistent with the assessment that the MLP
is not systematically related to the physics of a well-defined Born-Oppenheimer electronic

structure treatment of the H system. Instead it seems to be consistent, at least, with the MLP
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being a single interpolative, approximate representation of the electronic structure of two

chemically distinct regimes (molecular, atomic) of the hydrogen liquid.

We conclude that the MD-MLP results for the LLPT do not reproduce the fundamental
MD-DFT results as they should. Up to 2048 atoms and 10 ps simulation duration, our results
are consistent with the earlier sub-critical behavior predictions. The basic inconsistency of
the MD-MLP numerical data with the MD-DFT results would seem to make any subsequent
analysis of the MD-MLP data ill-founded. It is at least plausible that the supercritical behavior
finding may be an artifact of a disconnect of the MLP from electronic structure differences

inherent in the chemistry of the LLPT.

Data availability
The data that support the findings shown in the figures are available from the corresponding

author upon reasonable request.
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