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Abstract

In forming teams or groups, one often aims to balance ex-
pertise in a main focus area while also encouraging diversity
of skills in each team. In this paper we model the prob-
lem of finding diverse groups of individuals who have ex-
pertise in a given task as a clustering problem on hyper-
graphs with heterogeneous edge types. Here, the hyperedge
types encode past experience types of groups, and the out-
put of the clustering is groups of individuals (nodes). Un-
like complementary problems that seek to find fair or bal-
anced clusters (e.g., in terms of some protected node at-
tributes), our model encourages diversity of past experience
within these groups by striking a balance between experi-
ence and diversity with respect to node participation in edge
types. We show that naive objectives lead to no diversity-
experience tradeoff, which motivates our refined model based
on regularizing an edge-based hypergraph clustering objec-
tive. While optimizing our objective is NP-hard, we design
a 2-approximation algorithm that works for a more general
class of problems where each node is allowed to have a pref-
erence for a particular cluster, and illustrate a technique for
computing regularization strength bounds that reveal mean-
ingful diversity/experience tradeoff regimes. We illustrate
the utility of our framework on several real-life datasets –
most notably to online review platform data – to curate sets
of reviews for a given type of product which exhibit a tradeoff
between reviewer experience, or familiarity with a product
type, and experience, or the reviewer’s tendency to also re-
view related product types. In the setting allowing for node
preferences, we show that our framework discovers sets of
reviews sensitive to user preference.

1 Introduction

Team formation within social and organizational con-
texts is ubiquitous, as success often relies on forming the
“right” teams. Diversity within these teams, both with
respect to socioeconomic attributes and expertise across
disciplines, often leads to synergy, and brings fresh per-
spectives which facilitate innovation. The study of di-
verse team formation with respect to expertise has a rich
history spanning decades of work in sociology, psychol-
ogy and business management [12, 15, 19]. In this pa-
per, we explore algorithmic approaches to diverse team
formation, where “diversity” corresponds to a tendency
of individuals to have a variety of experiences. In par-
ticular, we present a new algorithmic framework that
focuses on forming groups which are diverse and expe-
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rienced in terms of past group interactions. As a moti-
vating example, consider a diverse team formation task
in which the goal is to assign a task to a group of people
who (1) already have some level of experience working
together on the given task, and (2) are diverse in terms
of their previous work experience. As another example,
a recommender system may want to display a diverse
yet cohesive set of reviews for a class of products.

Here, we formalize diverse and experienced group
formation as a clustering problem on edge-labeled hy-
pergraphs. In this setup, a hyperedge represents a set of
individuals that have participated in a group interaction
or experience. The hyperedge label encodes the type or
category of interaction (e.g., a type of team project).
The output is then a clustering of nodes, with cluster
labels corresponding to hyperedge types. The goal is
to form clusters whose nodes are balanced in terms of
experience and diversity. By experience we mean that
a cluster with label ℓ should contain nodes that have
previously participated in hyperedges of type ℓ. By di-
versity, we mean that clusters should also include nodes
that have participated in other hyperedge types.

Our mathematical framework for diverse and ex-
perienced clustering builds on an existing objective for
clustering edge-labeled hypergraphs [4]. This objective
encourages cluster formation in such a way that hyper-
edges of a certain label tend to be contained in a cluster
with the same label We add a diversity-encouraging reg-
ularization term governed by a tunable hyperparameter
β ≥ 0 to this objective encouraging clusters to contain
nodes that have participated in many different hyper-
edge types. Although the resulting objective is NP-hard
in general, we design an LP algorithm that guarantees
a 2-approximation for any β. We show that certain val-
ues of β reduce to extremal solutions of the diversity-
regularized objective with closed-form solutions where
just diversity or just experience is maximized. In or-
der to guide a meaningful hyperparameter selection, we
show how to bound the region in which non-extremal
solutions occur by leveraging LP sensitivity techniques.
Furthermore, we show that our approximation actually
applies to a larger class of optimization problems, where
each node has a preference distribution for cluster as-
signments. The diversity regularization framework is
then the special case where a node’s preference for a
cluster is inversely related to its past experience for par-
ticipating in that cluster.

We demonstrate the utility of our framework by ap-
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plying it to team formation of users posting answers on
Stack Overflow, and the task of aggregating a diverse set
of reviews for categories of establishments and products
on review sites (e.g., Yelp or Amazon). We find that the
framework yields meaningfully more diverse clusters at
a small cost, and that our approximation algorithms
produce solutions within a factor of no more than 1.3
of optimality empirically. A second set of experiments
examines the effect of iteratively applying the diversity-
regularized objective while keeping track of the experi-
ence history of every individual. We observe in this syn-
thetic setup that regularization greatly influences team
formation dynamics over time, as increasing β leads to
more frequent role swapping.

1.1 Related work Our work on diversity in cluster-
ing is partly related to recent research on algorithmic
fairness and fair clustering. These results are based on
ideas that machine learning algorithms may make de-
cisions that are biased or unfair towards a subset of a
population [5, 10, 11]. There are now a variety of algo-
rithmic fairness techniques to combat this issue [16, 22].
For clustering problems, fairness is typically formulated
in terms of protected attributes on data points — a
cluster is “fair” if it exhibits a proper balance between
nodes from different protected classes, and the goal is to
optimize clustering objectives while adhering to balance
constraints on the protected attributes [3, 2, 9]. These
approaches are similar to our notion of diverse cluster-
ing; in both cases, the clusters are more heterogeneous
with respect to node attributes. While the primary at-
tribute addressed in fair clustering is the protected sta-
tus of a data point, in our case it is the “experience”
of that point. In this sense, we have similar algorith-
mic goals, but our approach targets discovering diverse
groups with respect to past experience.

There is also research on algorithmic diverse team
formation [17, 26]. However, this research largely fo-
cuses diversity with respect to inherent node-level at-
tributes, without an emphasis on diversity of expertise;
our work is the first to explicitly address this issue.

Our framework also facilitates a novel take on di-
versity within recommender systems. An application we
study in Section 4 is selecting expert, yet diverse sets of
reviews for product categories. This differs from exist-
ing recommendation paradigms on two fronts: First, the
literature focuses on user-centric recommendations; for
us, a set of reviews is curated for a category of products
that allows any user to glean both expert and diverse
opinions regarding it. Further, recommender systems
research has defined diversity for a set of objects based
on dissimilarity derived from pairwise relations [7, 21].
There are some set-proxies for diverse recommendations
[8, 25], but they do not deal explicitly with higher-order
interactions among objects. In contrast, our work en-
courages diversity in recommendations through an ob-
jective that captures higher-order information about re-

lations between subsets of objects.

2 Clustering with Diversity and Experience

After introducing notation for edge-labeled clustering,
we analyze a seemingly natural approach for clustering
based on experience and diversity that leads to only
trivial solutions. This motivates us to develop a more
meaningful objective through regularization of the cat-
egorical edge clustering objective, to which the rest of
the paper is devoted.
Notation. Let G = (V,E, L, ℓ) be a hypergraph with
labeled edges, where V is the set of nodes, E is the set
of (hyper)edges, L is a set of edge labels, and ℓ : E → L
maps edges to labels, where L = {1, . . . , k} and k is the
number of labels. Furthermore, let Ec ⊆ E be the edges
with label c, and r the largesr hyperedge size. Following
graph-theoretic terminology, we often refer to elements
in L as “colors”; in data, L represents categories or
types. For any node v ∈ V , let dcv be the number of
hyperedges of color c in which node v appears. We refer
to dcv as the color degree of v for color c.

We seek a clustering C, where each node is assigned
to exactly one cluster, and there is exactly one cluster
for each color in L, so that it outputs a color for each
node. We use C(i) to denote the nodes assigned to color
i. A target clustering promotes both diversity (clusters
have nodes from a range of colored hyperedges), and
experience (for all i ∈ L, C(i) contains nodes that have
experience participating in hyperedges of color i).

2.1 A flawed but illustrative first approach We
start with an illustrative clustering objective that will
prove to be useful in the rest of the paper. For this,
we first define diversity and experience scores for a
color i, denoted D(i) and E(i), as follows: D(i) =
∑

v∈C(i),c 6=i d
c
v , E(i) =

∑

v∈C(i) d
i
v. In words, D(i)

measures how much nodes in cluster i have participated
in hyperedges that are not color i, and E(i) measures
how much nodes in cluster i have participated in hy-
peredges of color i. A seemingly natural but ultimately
naive objective for balancing experience and diversity
is:

(2.1) maxC
∑

i∈L[E(i) + βD(i)].

The regularization parameter β determines the relative
importance of the diversity and experience scores. It
turns out that the solutions to this objective are overly-
simplistic, with a phase transition at β = 1. We define
two simple types of clusterings as follows:
• Majority vote clustering : Node v is placed in cluster
C(i) where i ∈ argmaxc∈L dcv, i.e., node v is placed in
a cluster for which it has the most experience.

• Minority vote clustering : Node v is placed in cluster
C(i) where i ∈ argminc∈L dcv, i.e., node v is placed in
a cluster for which it has the least experience.
The following theorem explains why (2.1) does not

provide a meaningful tradeoff between diversity and
experience.
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Theorem 2.1. A majority vote clustering opti-
mizes (2.1) for all β > 1, and a minority vote
clustering optimizes the same objective for all β < 1.
Both are optimal when β = 1.

Proof. Assume w.l.o.g. that colors 1, 2, . . . , k are or-
dered so that d1i ≥ · · · ≥ dki for node i. Clustering i

to color 1 adds d1i + β
∑k

j=2 d
j
i to the objective, while

clustering it to color c 6= i adds dci + β
∑

j 6=c d
j
i . Since

d1i ≥ · · · ≥ dki , the first contribution is greater than or
equal to the second if and only if β ≤ 1. Hence, ma-
jority vote is optimal when β ≥ 1. A similar argument
proves optimality for minority vote when β ≤ 1.

Objective (2.1) is easy to analyze, but has optimal
points that do not provide a balance between diversity
and experience. This occurs because a clustering will
maximize the total diversity

∑

c∈L D(c) if and only if
it minimizes the total experience

∑

c∈L E(c), as these
terms sum to a constant. The following observation
formalizes this.

Observation 2.1.
∑

c∈L[E(c) + D(c)] is a constant
independent of the clustering C.

We will use this observation when developing our clus-
tering framework in the next section.

2.2 Diversity-regularized categorical edge clus-
tering We now turn to a more sophisticated approach:
a regularized version of the categorical edge clustering
objective [4]. For a clustering C, the objective accumu-
lates a penalty of 1 for each hyperedge of color c that
is not completely contained in the cluster C(c). More
formally, the objective is:

(2.2) minC
∑

c∈L

∑

e∈Ec
xe,

where xe is 1 if hyperedge e ∈ Ec is not contained
in cluster C(c), but is zero otherwise. This penalty
encourages entire hyperedges to be contained inside
clusters of the corresponding color. For our context,
this objective can be interpreted as promoting group
experience in cluster formation: if a group of people
have participated together in task c, this is an indication
they could work well together on task c in the future.
However, we want to avoid the scenario where groups
of people endlessly work on the same type of task
without the benefiting from the perspective of others
with different experiences. Therefore, we regularize
objective (2.2) with a penalty term β

∑

c∈L E(c). Since
∑

c∈L[E(c)+D(c)] is a constant (Observation 2.1), this
regularization encourages higher diversity scores D(c)
for each cluster C(c).

While the “all-or-nothing” penalty in (2.2) may
seem restrictive at first, it is a natural choice for our ob-
jective function for several reasons. First, we are build-
ing on recent research showing applications of Objective
(2.2) on datasets similar to ours, namely edge-labeled
hypergraphs [4], and this type of penalty is a standard

in hypergraph partitioning [6, 14, 18]. Second, if we con-
sider an alternative penalty which incurs a cost of one
for every node that is split away from the color of the
hyperedge, this reduces to the “flawed first approach”
in the previous section, where there is no diversity-
experience tradeoff. Developing algorithms that can
optimize more complicated alternative hyperedge cut
penalties is an active area of research [20, 27]. Translat-
ing these ideas to our setting constitutes an interesting
open direction for future work, but here we focus on the
standard hyperedge cut penalty. Our experimental re-
sults indicate that this approach produces meaningfully
diverse clusters on real-world and synthetic data.

We now formalize our objective, which we
call diversity-regularized categorical edge clustering
(DRCEC), that will be the focus for the remainder of
the paper. We state it as an integer linear program
(ILP):
(2.3)
min

∑

c∈L

∑

e∈Ec
xe + β

∑

v∈V

∑

c∈L dcv(1− xc
v)

s.t. for all v ∈ V :
∑k

c=1 x
c
v = k − 1,

for all c ∈ L, e ∈ Ec: x
c
v ≤ xe for all v ∈ e;

for all c ∈ L, v ∈ V , e ∈ E: xc
v, xe ∈ {0, 1}.

The binary variable xc
v equals 1 if node v is not

assigned label c, and is 0 otherwise. The first constraint
guarantees every node is assigned to exactly one color,
while the second constraint guarantees that if a single
node v ∈ e is not assigned to the cluster of the color of
e, then xe = 1.
A polynomial-time 2-approximation algorithm.
Optimizing the case of β = 0 is NP-hard [4], so DRCEC
is also NP-hard. Although the optimal solution to (2.3)
may vary with β, we develop a simple algorithm based
on solving an LP relaxation of the ILP that rounds to a
2-approximation for every value of β. Our LP relaxation
of the ILP in (2.3) replaces the binary constraints
xc
v, xe ∈ {0, 1} with linear constraints xc

v, xe ∈ [0, 1].
The LP can be solved in polynomial time, and the
objective score is a lower bound on the optimal solution
score to the NP-hard ILP. The values of xc

v can then be
rounded into integer solutions to produce a clustering
that is within a bounded factor of the LP lower bound,
and therefore within a bounded factor of optimality.
Our algorithm is simply stated:

Algorithm 1

1. Solve the LP relaxation of the ILP in (2.3).
2. For each v ∈ V , assign v to any c ∈ argminj x

j
v.

The LP relaxation gives a 2-approximation:

Theorem 2.2. For any β ≥ 0, Algorithm 1 returns a
2-approximation for Objective (2.3).

Proof. Let the relaxed solution be {x∗
e, x

∗c
v }e∈E,v∈V,c∈L

and the rounded solution be {xe, x
c
v}e∈E,v∈V,c∈L. Let

ycv = 1− xc
v and y∗cv = 1− x∗c

v . Our objective evaluated
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at the relaxed and rounded solutions respectively is

S∗ =
∑

e

x∗
e+β

∑

v∈V

∑

c∈L

dcvy
∗c
v , S =

∑

e

xe+β
∑

v∈V

∑

c∈L

dcvy
c
v.

We will show that S ≤ 2S∗ by comparing the first
and second terms of S and S∗ respectively. The first
constraint in (2.3) ensures that xc

v < 1/2 for at most
a single color c. Thus, for every edge e with xe = 1,
x∗c
v ≥ 1/2 for some v ∈ e. In turn, x∗

e ≥ 1/2, so
xe ≤ 2x∗

e. If xe = 0, then xe ≤ 2x∗
e holds trivially.

Thus,
∑

e xe ≤ 2
∑

e x
∗
e. Similarly, since xc

v = 1
(ycv = 0) if and only if x∗c

v ≥ 1/2 (yc∗v ≤ 1/2), and
xc
v = 0 otherwise, it follows that ycv ≤ 2y∗cv . Thus,

∑

v∈V

∑

c∈L dcvy
c
v ≤ 2

∑

v∈V

∑

c∈L dcvy
∗c
v .

2.3 A general preference-regularized objective
In fact, Algorithm 1 offers a 2-approximation for a much
larger class of preference-regularized categorical edge
clustering (PRCEC) objectives. This happens because
Objective (2.3) still admits a 2-approximation via Al-
gorithm 1 if we replace the color degree distribution
[d1v, . . . , d

k
v ] of node v with an arbitrary preference dis-

tribution [p1v, . . . , p
k
v ], where each non-negative compo-

nent pcv represents node v’s reluctance to be in cluster
c. Formally, the PRCEC objective is

(2.4) min
∑

c∈L

∑

e∈Ec
xe + β

∑

v∈V

∑

c∈L pcv(1− xc
v)

with the same constraints as in Objective (2.3). We
can prove that we obtain a 2-approximation for the
PRCEC objective by replacing dcv with pcv throughout
the proof of Theorem 2.2. This generalized result opens
the door to a host of other applications, such as forming
experienced teams while at the same time attempting to
satisfy team assignment preferences.

2.4 Extremal LP and ILP solutions at large
enough values of β In general, Objective (2.3) pro-
vides a meaningful way to balance group experience (the
first term) and diversity (the regularization). However,
when β → ∞, the objective corresponds to simply min-
imizing experience, (i.e., maximizing diversity), which
is solved via the minority vote assignment. We for-
mally show that the optimal integral solution (2.3), as
well as the relaxed LP solution under certain conditions,
transitions from standard behavior to extremal behav-
ior (specifically, the minority vote assignment) when β
increases past the maximum degree in the hypergraph.
In Section 3, we show how to bound these transition
points numerically, to ensure meaningful solutions.

We first consider a bound on β above which minor-
ity vote is optimal. Let dmax be the largest number of
edges any node participates in.

Theorem 2.3. For every β > dmax , a minority vote
assignment optimizes (2.3).

Proof. Let {xe, x
c
v} encode a clustering for (2.3) that is

not a minority vote solution. This means there exists
at least one node v so that xc

v = 0 for some color c /∈

argmini∈L div. If we move node v from cluster c to some
cluster m ∈ argmini∈L div, then the regularization term
would decrease by β(dcv−dmv ) ≥ β > dmax , since degrees
are integer-valued and dcv > dmv . Meanwhile, the first
term would increase by at most

∑

e:v∈e xe = dmax < β.
So deviating from the minority vote assignment cannot
be optimal when β > dmax .

A slight variant of this result also holds for the LP
relaxation. For a node v ∈ V , let Mv ⊂ L be the set
of minority vote clusters for v, i.e., Mv = argminc∈L dcv
(treating argmin as a set). The next theorem says that
for β > dmax , the LP places all “weight” for v on its
minority vote clusters. We call this a relaxed minority
vote LP solution, and Algorithm 1 will round the LP
relaxation to a minority vote clustering.

Theorem 2.4. For every β > dmax , an optimal
solution to the LP relaxation of (2.3) will satisfy
∑

c∈Mv
(1 − xc

v) = 1 for every v ∈ V . So the rounded
solution from Algorithm 1 is a minority vote clustering.

Proof. Let {xe, x
c
v} encode an arbitrary solution to the

LP relaxation of (2.3), and assume that it is not a
minority vote solution. For every v ∈ V and c ∈ L,
let ycv = 1 − xc

v. The ycv indicates the “weight” of v
placed on cluster c, with

∑

c∈L ycv = 1. Since {xe, x
c
v}

is not a minority vote solution, there exists some v ∈ V
and j /∈ Mv such that yjv = ε > 0.

We will show that when β > dmax , we obtain a
strictly better solution by moving this weight of ε from
cluster j to a cluster in Mv. Choose any m ∈ Mv, and
define a new set of variables ŷjv = 0, ŷmv = ymv + ε, and
ŷiv = yiv for all other i /∈ {m, j}. Define x̂c

v = 1− ŷcv for
all c ∈ L. For any u ∈ V , u 6= v, we keep variables the
same: ŷcu = ycu for all c ∈ L. Set edge variables x̂e to
minimize the LP objective subject to the ŷc variables,
i.e., for c ∈ L and every e ∈ Ec, let x̂e = maxu∈e x̂

c
u.

The new variables take ε weight from cluster j and
move it to m ∈ Mv. This improves the regularization
term by at least βε: β

∑

c∈L dcv[y
c
v − ŷcv] = βdmv (ymv −

ŷmv )+βdjv(y
j
v−ŷjv) = −βdmv ε+βdjvε = βε(djv−dmv ) ≥ βε.

Next, the first part of the objective increases by at
most εdmax . To see this, note that for e ∈ Ej with
v ∈ e, x̂e ≥ 1 − ŷjv = 1 =⇒ x̂e = 1 and xe ≥
1 − yjv = 1 − ε. Therefore, for e ∈ Ej , v ∈ e, we know
x̂e−xe = 1−xe ≤ 1−(1−ε) = ε. For e ∈ Em with v ∈ e
we know x̂e − xe ≤ 0, since x̂e = maxu∈e(1 − ŷmu ) and
xe = maxu∈e(1 − ymu ), but the only difference between
ymu and ŷmu is that ŷmv = ymv +ε =⇒ (1−ŷmv ) < (1−ymv ).
For all other edge sets Ec with c /∈ {m, j}, x̂e = xe. So
∑

e:v∈e[x̂e − xe] ≤ εdmax . So when β > ε, we improve
the objective by moving weight yjv = ε from a non-
minority vote cluster j /∈ Mv to some m ∈ Mv. Hence
for every v ∈ V ,

∑

c∈Mv
ycv = 1 at optimality.

Theorem 2.4 implies that if there is a unique minor-
ity vote clustering, then it is optimal for both the orig-
inal objective and the LP relaxation when β > dmax .
Whether or not the the optimal solution to the LP
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is the same as the ILP one, the rounded solution still
corresponds to some minority vote clustering that does
not meaningfully balance diversity and experience. The
bound β > dmax is loose in practice; our experiments
show that the transition occurs for smaller β. In the
next section, we use LP sensitivity analysis to better
bound the phase transition computationally.

3 Bounding Hyperparameters that Yield
Extremal Solutions

In order to find a meaningful balance between experi-
ence and diversity, we would like to first find the small-
est value of β, call it β∗, for which β > β∗ yields a
minority vote clustering. After, we could consider the
hyperparameter regime β < β∗. Given that the objec-
tive is NP-hard in general, computing β∗ exactly may
not be feasible. However, we will show that we can
exactly compute the minimum value β̂ for which a re-
laxed minority vote solution is no longer optimal for
the LP relaxation. This has several useful implications.
First, when the minority vote clustering is unique, The-
orem 2.4 says that this clustering is also optimal for the
ILP for large enough β. Even when the minority vote
clustering is not unique, an integral minority vote solu-
tion may still be optimal for the LP relaxation for large
enough β; indeed, we later observe this in real datasets.
In these cases, we know that β∗ ≤ β̂, which allows us to
rule out a wide range of parameters leading to solutions
that effectively ignore the experience part of our objec-
tive. Still, even in cases where an integral minority vote
solution is never optimal for the LP relaxation, comput-
ing β̂ lets us avoid parameter regimes where Algorithm
1 does not return a minority vote clustering.

Our approach for computing β̂ is based on tech-
niques for bounding the optimal parameter regime for
a relaxed solution to a clustering objective [13, 24]. We
adapt these results for our regularized objective.

The LP relaxation of our regularized objective can
be written abstractly in the following form

(3.5) min
x

cTe x+ βcTd x s.t. Ax ≥ b,x ≥ 0,
where x stores variables {xe, x

c
v}, Ax ≥ b encodes

constraints given by the LP relaxation of (2.3), and
ce, cd denote vectors corresponding to the experience
and diversity terms in our objective, respectively. In
this format, the LP-relaxation is a parametric linear
program in β. Standard results on parametric linear
programming [1] guarantee that any solution to (3.5)
for a fixed value of β will in fact be optimal for a range
of values [βℓ, βu] containing β. The optimal solutions
to (3.5) as a function of β correspond to a piecewise
linear, concave, increasing curve, where each linear piece
corresponds to a range of β values for which the same
feasible LP solution is optimal.

We begin by solving this LP for some β0 > dmax ,
which is guaranteed to produce a solution vector x0 that
is at least a relaxed form of minority vote (Theorem 2.4)
that would round to a minority vote clustering via

Table 1: Summary statistics of datasets. The computed
β̂ bounds using the tools in Section 3 are much smaller
than the dmax bound in Theorem 2.4.

Dataset |V | |E| L dmax β̂

music-blues-reviews 1106 694 7 127 0.50
madison-restaurants-reviews 565 601 9 59 0.42
vegas-bars-reviews 1234 1194 15 147 0.50
algebra-questions 423 1268 32 375 0.50
geometry-questions 580 1193 25 260 0.50

Algorithm 1. Our goal is to find the largest value
β̂ for which x0 no longer optimally solves (3.5). To
do so, define cT = cTe + βcTd so that we can re-write
objective (3.5) with β = β0 as

(3.6) min
x

cTx s.t. Ax ≥ b,x ≥ 0.

Finding β̂ amounts to determining how long the
minority vote solution is “stable” as the optimal solution
to (3.6). Consider a perturbation of (3.6),

(3.7) min
x

c(θ)Tx = cTx− θcTd x s.t. Ax ≥ b,x ≥ 0,

where θ = β0 − β for some β < β0, so that (3.7)
corresponds to our clustering objective with the new
parameter β. Since x0 is optimal for (3.6), it is optimal
for (3.7) when θ = 0. Solving the LP below provides the
range θ ∈ [0, θ+] for which x0 is still optimal for (3.7):
(3.8)
maxy,θ θ s.t. ATy ≤ c− θcd, b

Ty = cTx0 − θcTd x0.

Let (y∗, θ∗) be the optimal solution to (3.8). The
constraints imply that (x0,y

∗) satisfy primal-dual op-
timality conditions for the perturbed LP (3.7) and its
dual, and the objective function seeks to find the max-
imum value of θ such that these conditions hold. Thus,
θ∗ = θ+, and β = β0−θ+ will be the smallest parameter
value such that x0 is optimal for the LP relaxation.

Finally, after entering a regime where x0 is no
longer optimal, the objective function strictly decreases.
Again, by Theorem 2.4, for large enough β, the relaxed
LP solution is a (relaxed) minority vote. Since we find
the minimizer of the LP, the solution is the (relaxed) mi-
nority vote solution with the smallest objective. Thus,
moving to the new parameter regime will no longer cor-
respond to minority vote, either in the LP relaxation or
in the Algorithm 1 rounding.

4 Numerical Experiments

Here we present three sets of experiments on real-
world data to demonstrate our theory and methods.
The first uses the diverse clustering objective to mea-
sure the quality of the LP relaxation and our bounds
on β̂; we find that regularization costs little while
greatly improving diversity within clusters. Further,
we show that we can use diversity regularization to
discover diverse sets of reviews within product cate-
gories. The next set of experiments involves cluster-
ing regularized by user preference, and we find that we
can satisfy a high percentage of preferences at a small
cost. The last set of experiments studies what happens
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Table 2: Summary statistics of datasets with hyperedges
based on product ratings. Fast runtimes indicate the
scalability of our approach.

Runtime (seconds)

Dataset vol. |V | |E| β = 0.00 0.07 0.14 0.21

software 11.1K 1.82K 2.00K 0.82 0.58 0.26 0.23
beauty 26.6K 3.81K 3.45K 0.55 2.33 0.5 0.47
pantry 126K 14.2K 11.2K 2.22 4.52 4.07 2.77
digital-music 137K 16.5K 17.7K 3.26 59.21 3.24 3.48
instruments 209K 27.5K 21.7K 6.19 10.08 6.74 6.52
arts 419K 56.2K 41.8K 15.22 18.77 16.6 15.39
office 714K 101K 59.9K 30.15 83.97 23.38 22.74
patio 714K 103K 73.4K 40.93 80.19 29.57 25.33
grocery 1.02M 127K 88.7K 38.31 188.05 78.9 38.36
automotive 1.56M 194K 156K 62.9 112.98 74.87 66.83

if we apply the diversity-regularized clustering intera-
tively. Here, we see a clear effect of the regularization
on team dynamics over time. An implementation of
our algorithm, and all code and datasets used to run
these experiments is found at https://tinyurl.com/

diverse-and-experienced-groups.

4.1 Datasets and algorithm scalability The
datasets we use come from online user reviews sites and
the MathOverflow question-and-answer site. We pro-
cure two distinct types of datasets. In in first case, the
nodes are users on the given site while hyperedges are
groups of users that post reviews or answer questions
in a certain time period. Table 1 contains summary
statistics for these datasets. In the second case, nodes
are still users while hyperedges now link groups of re-
viewers who gave the same rating to the same product
for a given Amazon product category. Table 2 shows
summary statistics and runtimes for these datasets.
Hyperedges based on posting time.
1. music-blues-reviews. This dataset comes from a
crawl of Amazon product reviews [23]. We consider
all reviews on products that include the tag “regional
blues,” a subset of vinyl music. We partition the reviews
into month-long segments. For each time segment, we
create hyperedges of all users who posted a review for
a product with a given sub-tag (hyperedge category) of
the regional blues tag (e.g., Chicago Blues).
2. madison-restuarants-reviews, vegas-bars-reviews.
These datasets are derived from reviews on Yelp1 for
restaurants in Madison, WI and bars in Las Vegas, NV.
We perform the same time segmentation as the music-
blues-reviews dataset, creating hyperedges of groups of
users who reviewed a place with a given sub-tag (e.g.,
Thai restaurant for Madison) in a given time segment.
3. algebra-questions, geometry-questions. These are de-
rived from users answering questions on MathOverflow
that contain the tag “algebra” or “geometry”. We use
the same time segmentation and hyperedge construction
as for the reviews datasets. The sub-tags are given by
all tags matching the regular expressions *algebra* or
*geometry* (e.g., lie-algebras or hyperbolic-geometry).

1https://www.kaggle.com/yelp-dataset/yelp-dataset
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Figure 1: Various performance metrics as a function of
β. Dots mark the corresponding β̂.

Hyperedges based on product ratings.
1. software, beauty, pantry, digital-music, (musical)-
instruments, arts, office, patio, grocery, automotive.
Here, hyperedges connect all reviewers who gave a par-
ticular rating (1–5 stars) to a product in one of 10 Ama-
zon product categories. We chose 10 medium/large cat-
egories among the total 29 to keep the list of results
manageable and runtimes/computational expenses rea-
sonable, as we ran the code on a laptop computer.

Here, a diverse clustering of users from a review
platform corresponds to composing groups of users for
a particular category that contains both experts (with
reviews in the given category) and those with diverse
perspectives (having reviewed other categories). The
reviews from these users could then be used to present
a “group of reviews” for a given category. A diverse
clustering for the question-and-answer platforms joins
users with expertise in one math topic with those who
have experiences in another topic. This serves as an
approximation to how one might construct experienced
and diverse teams, given historical data on experiences.
Scalability. The datasets in Table 2 are arranged in
order of increasing volume. We can see that runtimes for
hypergraphs with hundreds of thousands of nodes and
hyperedges are on the order of a minute on a laptop
computer. These results indicate good scalability of our
method across all regularization strengths. Runtimes
for the first set of (smaller) datasets is on the order of
1 second or less, and are omitted for brevity.

4.2 Diversity regularization Here, we analyze the
performance of Algorithm 1 on datasets with hyper-
edges constructed based on posting time (Table 1) and
those constructed based on product ratings (Table 2).
I. Hyperedges based on posting time. Here, we
examine the performance of Algorithm 1 for various reg-
ularization strengths β and compare the results to the
unregularized case (Figure 1). We observe that the regu-
larization only yields mild increases in cost compared to
the optimal solution of the original unregularized objec-
tive. This “cost of diversity” ratio is always smaller than
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Figure 2: fwithin for within-cluster reviews/posts.

3 and is especially small for the MathOverflow datasets
(Figure 1, top left). Furthermore, the ratio between the
LP relaxation of the regularized objective and the LP
relaxation of the unregularized (β = 0) objective has
similar properties (Figure 1, top right). This is not sur-
prising, given that every node in each of the datasets has
a color degree of zero for some color, and thus for very
large values of β, each node is put in a cluster where it
has a zero color degree, so that the second term in the
objective is zero. Also, the approximation factor of Al-
gorithm 1 on the data is small (Figure 1, bottom left),
which we obtain by solving the exact ILP, indicating
that the relaxed LP performs very well. In fact, solving
the relaxed LP often yields an integral solution, mean-
ing that it solves the ILP. The computed β̂ bound also
matches the plateau of the rounded solution (Figure 1,
top left), which we also expect from the small approxi-
mation factors and the fact that each node has at least
one color degree of zero. We also examine the “edge sat-
isfaction”, i.e., the fraction of hyperedges whose nodes
are clustered to the same color as the hyperedge [4] (Fig-
ure 1, bottom right). As regularization increases, more
diversity is encouraged, and edge satisfaction decreases.
Lastly, we note that the runtime of Algorithm 1 is small
in practice, taking at most a couple of seconds.
Within-cluster diversity. Next, we examine the ef-
fect of regularization strength on diversity within clus-
ters. To this end, we measure the average fraction of
within-cluster reviews/posts. Formally, for a cluster-
ing C, this measure, which we call fwithin, is calculated
as follows: fwithin =

∑

i∈L |C(i)|/|V |
∑

v∈C(i) d
i
v/dv. In

computing this measure, within each cluster we com-
pute the fraction of all user reviews/posts having the
same category as the cluster. Then we average these
fractions across all clusters, weighted by cluster size.
Figure 2 shows that fwithin decreases with regulariza-
tion strength, indicating that our clustering framework
yields meaningfully diverse clusters.
Case study: Mexican restaurants in Madison,
WI. We now take a closer look at the output of Algo-
rithm 1 on one dataset to better understand the way in
which it encourages diversity within clusters. We clus-
ter each reviewer in madison-restaurant-reviews to write
reviews of restaurants falling into one of nine cuisine
categories. After that, we examine the set of review-
ers grouped to review Mexican restaurants. To com-
pare the diversity of experience for various regulariza-
tion strengths, we plot the distribution of reviewers’ma-
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Figure 3: (Left) Distribution of node (reviewer) ma-
jority categories within the Mexican restaurant review
cluster. (Right) The fraction (experience homogeneity
score) of user reviews in the Mexican cluster that were
written in that same category.

jority vote assignment categories in Figure 3 (left). In
other words, the majority category is the one in which
they have published the most reviews. We see that as
β increases, the cluster becomes more diverse, as the
dominance of the Mexican majority category gradually
subsides, and it is overtaken by the Chinese category. At
β = 0 (no regularization), 95% of nodes in the Mexican
reviewer cluster have a majority category of Mexican,
while at β = 0.04, only 20% still do. Thus, as regu-
larization increases, we see greater diversity within the
cluster, as “expert” reviewers from other cuisines are
clustered to review Mexican restaurants.

Similarly, as β increases we see a decrease in the
fraction of users’ reviews that are for Mexican restau-
rants, when this fraction is averaged across all users as-
signed to the Mexican restaurant cluster (Figure 3, right
side). We refer to this ratio as the experience homogene-
ity score, which for a cluster C(i) is formally written as
experience homogeneity score(C(i)) =

∑

v∈C(i) d
i
v/dv.

This measure is similar to fwithin except that we look at
only one cluster. However, this score does not decrease
as much as the corresponding fraction in Figure 3 (left
side), falling from 91% to 38%, which illustrates that
while the “new” reviewers added to the cluster with in-
creasing β have expertise in other areas, they have also
reviewed some Mexican restaurants in the past.
II. Hyperedges based on ratings: finding diverse
review sets. Here, we assess the quality of solutions
given by Algorithm 1 for the diversity-regularized
objective on the 10 Amazon product category datasets
shown in Table 2. To do this quantitatively, for each
hypergraph we assign to reviewer v a reviewer score
rv, equal to the average rating that this reviewer gave
to products in the dataset. This provides a measure of
how negative or positive the reviewer tends to be when
rating products, on a scale from 1 to 5. We can in turn
use these scores to provide an aggregate measure of
how positive or negative an entire cluster C(i) of re-
viewers tends to be. This is accomplished by averaging
reviewer scores: average cluster reviewer score(C(i)) =
1/|C(i)|

∑

v∈C(i) rv. This score is plotted in Figure 4

for the 1-star review cluster, C(1). For low β, the
average score of the cluster is closer to 1 while tending
to 5 with increased β. This suggests that without
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Figure 4: (Left) Average cluster reviewer score for clus-
ter 1. (Middle left) Refined average cluster reviewer
score for cluster 1. (Middle right) Distribution of aver-
age cluster reviewer score in the Amazon Pantry prod-
uct category. (Right) Distribution of refined average
cluster reviewer score in the same category.

regularization, cluster C(1) is simply bringing together
reviewers that tend to give low ratings to all products.
On the other hand, increasing β means more positive
reviewers are assigned to the 1-star cluster (the average
cluster score increases), revealing products that receive
low ratings even from reviewers who otherwise tend to
give more positive scores. However, this measure does
not distinguish whether the score increases because
of whole hyperedges (i.e., products) are placed in the
1-star cluster, or because a handful of positive indi-
viduals were pulled from different hyperedges in order
to improve the regularization term in our objective.
To see whether more whole hyperedges are indeed
being placed in the 1-star cluster, we define a refined
cluster reviewer score given by refined score(C(i)) =

1
|Einternal(i)|

∑

e∈Einternal(i)

[

1/|e|
∑

v∈e rv
]

, where

Einternal(i) = {e ∈ E s.t e ⊂ C(i), ℓ(e) = i}. In words,
for each i-star hyperedge, we average the reviewer
scores in that hyperedge, and then average that value
across all hyperedges in the cluster. Figure 4 (top right)
shows that this score increases with regularization for
the 1-star cluster, meaning that we isolate 1-star
products that have received poor reviews even from
reviewers that are otherwise positive.

4.3 Preference regularization Here, we show that
our objective is able to accommodate user preferences
at a low cost. Figure 5 shows the preference satisfaction
score (fraction of nodes assigned to their preferred
category) for a majority vote (assign pcv=0 for one
majority color and the rest to 1) preference distribution
(top left), and a random preference distribution (top
right) based on the solution given by Algorithm 1.
As β increases these scores increase in both cases
but the increase is even more profound in the case
of a random preference distribution. This is intuitive
since a majority vote preference is symbiotic with the
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Figure 5: Metrics for preference regularization.
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Figure 6: Color assignments over time for a subset of
nodes and tags in the geometry-questions dataset for
different regularization parameters β (from left to right
and top to bottom: β = 0, 0.07, 0.1, 0.2, 0.4, 0.7).

“edge” part of the objective, while a random preference
distribution almost surely competes against it. At
the same time, the cost of the preference-regularized
solution from Algorithm 1 in terms of the cost of
the optimal solution to the unregularized objective
(Figure 5 (bottom left) and Figure 5 (bottom right))
is comparatively very modest (never more than 3) even
in the case of a random node preference distribution.

4.4 Dynamic group formation Here, we consider
a dynamic variant of our diversity-regularized frame-
work where we iteratively update the hypergraph. More
specifically, given the hypergraph up to time t, we (i)
solve our regularized objective to find a clustering C
and (ii) create a set of hyperedges at time t + 1 cor-
responding to C, i.e., all nodes of a given color create
a hyperedge. At the next step, experience levels of all
nodes change. This mimics a scenario in which teams
are repeatedly formed via Algorithm 1 for various types
of tasks. We only track the experiences from a window
of the last w time steps; in other words, the hypergraph
just consists of the hyperedges appearing in the previ-
ous w steps. We initialize node histories based on the
aforementioned datasets. After, we run the iteration
for w steps to “warm start” the dynamical process, and
consider this state to be the initial condition. Finally,
we run the iterative procedure for T times.

When β = 0 (i.e., no regularization), after the first
step, the clustering will create new hyperedges that
increase the experience levels of each node for some
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Figure 7: Mean number of node exchanges.

color. In the next step, no node has any incentive to
cluster with a different color than the previous time
step, so the clustering will be the same. Thus, the
dynamical process is entirely static. At the other
extreme, if β > dmax at every step, then the optimal
solution is a minority vote assignment by Theorem 2.4.
In this case, after each step, each node v will increase its
color degree in one color, which may change its minority
vote solution in the next iteration. With randomly
broken times, this leads to uniformity in the historical
cluster assignments of each node as T → ∞.

For several datasets, we ran the dynamical process
for T = 50 steps. We say that a node exchanges if it is
clustered to different colors in consecutive time steps.
Figure 7 shows the mean number of exchanges. As
expected, for small β, nodes are always assigned the
same color, resulting in no exchanges; for large enough
β, nearly all nodes exchange in the minority vote regime.
Figure 6 shows the clustering of nodes on a subset of the
geometry-questions dataset for different regularization
levels. For small β, nodes accumulate experience before
exchanging. When β is large, nodes exchange at every
iteration. This is the large-β regime in Figure 7.

5 Discussion

We present a new framework for clustering that balances
diversity and experience or preference and experience
in cluster formation. We cast our problem as a hyper-
graph clustering task, where a regularization parameter
controls cluster diversity, and write an algorithm that
achieves a 2-approximation for any value of the regular-
ization parameter. In numerical experiments, the ap-
proximation algorithm is effective and finds solutions
that are nearly as good as the unregularized objective.

Managing hyperparameters is generally daunting.
Remarkably, we are able to characterize solutions for ex-
tremal values of the regularization parameter and also
compute intervals for which it provides a meaningful
tradeoff for our objective. As the regularization param-
eter changes from zero to infinity, our problem tran-
sitions from being NP-hard to polynomial time solv-
able. In future work, we plan to explore how and when
this transition occurs, and whether we can obtain better
parameter-dependent approximation guarantees.
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