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1 Introduction

How do individuals learn when they misinterpret information? The literature on misspecified
learning typically takes the following approach: fix an incorrect, or misspecified, model—such
as overreaction to signals or a failure to account for correlated information—and explore
how it impacts the long-run beliefs about the state. We know from this literature that
a misspecified model may lead to incorrect learning, where beliefs converge to the wrong
state, cyclical learning, where beliefs do not converge, entrenched disagreement, where agents
with different models become certain of different states, and path-dependent learning, where
multiple limit beliefs can arise—for example, correct and incorrect learning.1

In deriving these insights, studies usually consider a parameterized misspecified model
that captures the cognitive bias or heuristic of interest and assume that all individuals have
an identical level of this same bias.2 But multiple parameterizations can often capture a
given cognitive error, and these different parameterizations may yield different predictions
about asymptotic learning. Further, there may be model heterogeneity, either because agents
exhibit varying levels of the same bias, have fundamentally distinct biases, or use different
heuristics. This raises the question of whether it is valid to use a representative agent
approach or consider a single bias in isolation. Finally, a given form of misspecification
may have a different impact on learning depending on whether the source of information is
private, public, or social.

This paper develops a general framework to study how misinterpreting information im-
pacts learning. A central contribution of this framework is the ability to allow for model
heterogeneity. Our main result is a simple criterion to characterize long-run beliefs and be-
havior based on the underlying form of misspecification. We present this characterization in
the context of a social learning environment in which individuals observe a private signal and
the action choices of predecessors and critically, have misspecified models of how to interpret
these sources. We then highlight how our characterization applies to other learning envi-
ronments, including active individual learning settings and settings with different sources of
information (e.g. public signals, social outcomes).

This characterization provides a deeper understanding of how misspecification influences
learning and can be used to address the issues raised above. Specifically, it can determine
whether a class of misspecified models are robust—in that the learning predictions are not
sensitive to parametric specification and similar levels of a bias lead to similar learning
outcomes—without needing to analyze variations on a case-by-case basis. Such robustness
ensures that knowledge of the exact parametric form and level of a bias are not necessary to
accurately predict its impact on learning. When agents exhibit varying levels of the same
bias, the characterization can be used to evaluate whether a representative agent model is

1Berk (1966) showed that model misspecification can lead to incorrect learning. When information
depends on beliefs—as is the case when agents learn from their peers, their models vary with the history,
or their actions influence future signals—misspecification can also give rise to cyclical learning (e.g. Nyarko
(1991)) and path-dependent learning (e.g. (Rabin and Schrag 1999)), while when agents have heterogeneous
models, entrenched disagreement can emerge (e.g. Gagnon-Bartsch (2016)). See the Related Literature
section for additional references.

2Notable exceptions include Ortoleva and Snowberg (2015), which allows for heterogeneous levels of
correlation neglect, and Gagnon-Bartsch (2016); Frick, Iijima, and Ishii (2019), in which agents exhibit the
false consensus effect about other agents’ preferences or population characteristics.
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a good approximation, and in the case where it is not, to determine how such heterogeneity
impacts learning. When multiple biases coexist, it can be used to study how agents with
different models influence each others’ learning. Using a common framework to encompass
multiple learning environments provides insight into how the impact of misspecification varies
with the source of information.

Our framework captures a rich array of ways in which individuals are biased when pro-
cessing information and interpreting others’ choices. Depending on the context, the empirical
literature in psychology and economics has documented that individuals exhibit behavioral
biases such as systematically overreacting or underreacting to new information, slanting in-
formation towards a preferred state (e.g. partisan bias), selectively weighting information
(e.g. confirmation bias), incorrectly aggregating correlated information, or misperceiving
others’ preferences and beliefs (e.g. false consensus effect, pluralistic ignorance), and use
simplifying decision rules such as the counting and social-circle heuristics.3 Our framework
represents these and other cognitive biases and heuristics as misspecified models where indi-
viduals have incorrect models of the signal distribution, others’ preferences, and how others
interpret information. By studying the impact of different biases within a unified framework,
our characterization can synthesize the insights gleaned from papers that focus on a single
bias and can link seemingly distinct biases that have a similar effect on behavior.4

The details of our framework are as follows. In the social learning environment, a se-
quence of individuals learn about a binary state from the actions of their predecessors and a
private signal, then select an action; each agent’s payoff depends on this action and the state.
In the individual learning environment, a single myopic agent observes a sequence of signals
and acts repeatedly; future information can depend on the history, which can capture, for
example, active learning or a history-dependent model of inference. In both settings, an
agent’s type specifies preferences and a model of inference. This includes a subjective belief
about the signal distribution, which determines how she interprets signals, and a subjective
belief about the type distribution, which determines how she interprets actions via her be-
liefs about others’ preferences and models of inference. Agents are Bayesian learners with
respect to their subjective distributions. Model misspecification refers to the case where
these subjective distributions differ from the true distributions.

In order to derive meaningful predictions, our framework requires additional structure
on how agents interpret signals and actions. First, we focus on aligned type spaces in which
all agents share a common ordinal ranking of signal realizations and action choices in terms
of which are stronger evidence for a given state. Second, we focus on environments that

3See Section 2.3 for relevant citations and the details of how our framework models these biases. Biases
may be due to systematic errors or may emerge endogenously due to cognitive limitations (e.g. bounded
memory (Wilson 2014)) or belief-based utility (e.g. desire to appear competent, anticipatory utility (Brun-
nermeier and Parker 2005; Kőszegi 2006; Gottlieb 2015)). The context of the learning setting determines
which biases are of first order relevance.

4Our framework nests several prior behavioral models of learning. Section 4.2 shows how our framework
nests naive learning in Bohren (2016). Online Appendix E demonstrates how it nests the parameterization
of confirmation bias in Rabin and Schrag (1999) and the non-Bayesian learning rule in Epstein, Noor, and
Sandroni (2010). More generally, our framework can be used to study heuristics and biases that reduce to
Markovian updating rules. It cannot nest heuristics that reduce to non-Markovian updating rules or are
calibrated based on equilibrium objects (e.g. the analogy-based expectation equilibria in Guarino and Jehiel
(2013)).
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have uniformly informative actions, in that for each state, there is an action that occurs
with higher probability in this state at all possible beliefs. When all agents have a correctly
specified model, these assumptions ensure that learning is almost surely correct, in that
beliefs converge to the realized state—they rule out confounded learning and informational
herds (Banerjee 1992; Bikhchandani, Hirshleifer, and Welch 1992; Smith and Sørensen 2000).

This framework resolves several challenges that arise when incorporating model het-
erogeneity. First, model heterogeneity can lead to complicated higher-order beliefs. For
example, when an agent believes that others have a misspecified signal distribution, it is also
necessary to specify what the agent believes these misspecified agents believe about others,
and so on. In our framework, types serve as a modeling tool to represent agents’ hierar-
chies of beliefs; higher order beliefs are fully determined by the subjective type distributions.
Second, heterogeneity leads to a more complex learning process, as agents with different
models have different beliefs following the same history. These beliefs determine their action
choices. Therefore, when agents learn from others’ actions, the informational content of the
history depends on a vector of beliefs. Our framework provides substantial added structure
and tractability for analyzing this multidimensional belief process.

Using this framework, we explore when the asymptotic learning outcomes described
above—correct, incorrect, cyclical, entrenched disagreement and path-dependent—arise. Our
main result (Theorem 4) characterizes the set of learning outcomes that arise with positive
probability based on two expressions that are straightforward to derive from the primitives of
the misspecification: (i) the difference between the Kullback-Leibler divergence from a type’s
perceived action distribution in each state at a candidate learning outcome to the true action
distribution in the realized state at this learning outcome; and (ii) an ordering over the type
space—maximal accessibility—based on each type’s perceived action distributions at certain
beliefs (i.e. all types have a degenerate belief on one of the states).

To establish Theorem 4, we first determine whether a belief is locally stable in that
the belief process converges to it with positive probability from nearby beliefs. Building on
techniques used in Smith and Sørensen (2000) and Bohren (2016), we use the first expression
described above to derive a necessary and sufficient condition for local stability (Theorem 1).
Intuitively, at a given vector of beliefs, a type’s belief process moves towards the state that
is more likely to generate the observed history at that vector. The difference between the
Kullback-Leibler divergences at a degenerate belief determines whether this is the case in a
neighborhood of the belief, and therefore, whether the belief is locally stable. We also show
that non-degenerate beliefs cannot be locally stable—this stems from our focus on aligned
environments with uniformly informative actions. Therefore, each type is certain about the
state at any locally stable belief. The set of locally stable beliefs correspond to the set of
strict Berk-Nash equilibria.5

We next determine whether a locally stable learning outcome is globally stable, in that
beliefs converge to it with positive probability from any initial belief. This step follows
immediately from local stability for the learning outcomes in which all types have correct

5Berk-Nash equilibrium is a solution concept for agents with misspecified models developed in Esponda
and Pouzo (2016). In our framework, this means each agent plays optimally given her model and belief about
the state, where her belief is the best fitting stationary belief in terms of the Kullback-Leibler divergence
under the equilibrium strategy profile. By strict we mean equilibria in which there is a unique best-fitting
stationary belief at a given equilibrium strategy profile.
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or incorrect learning (Theorem 2). But in learning outcomes in which types have different
limit beliefs, i.e. disagreement outcomes, even if the outcome is locally stable, it may not be
possible to separate the beliefs of different types and push them to a neighborhood of the
disagreement outcome. Maximal accessibility—the second expression described above—is
sufficient to do this (Theorem 3).

Taken together, these local and global stability results establish Theorem 4. An important
feature of our characterization is that the two expressions we outline only need to be verified
at a finite set of beliefs—that is, the set of certain beliefs. When the informational content
of the history depends on the belief for each type, in principle, the asymptotic properties of
beliefs could depend on the dynamics of beliefs across the entire belief space. Therefore, this
feature significantly simplifies the calculations required to use the characterization in specific
settings. Given a particular form of misspecification, the expressions are straightforward to
verify.

From this characterization, we see that model heterogeneity has several important im-
plications for learning that are distinct from settings with a single type. First, entrenched
disagreement can arise within a population that observes a common history (see Section 4.3
for an application). This arises despite our focus on aligned type spaces, which ensures that
agents have a common interpretation of the relative informational content of signal realiza-
tions and action choices. Therefore, model heterogeneity provides an explanation for how
connected populations observing shared sources can perpetually disagree. Second, cognitive
biases impact the learning of agents who are not inherently biased but are misspecified due
to their unawareness of others’ biases. Such unawareness can have an equally severe impact
on learning as the bias itself (see Example 2).

We use our characterization to explore whether learning predictions are robust. We show
that, except for knife-edge cases, nearby misspecified environments will have the same set
of learning outcomes (Theorem 5). Further, learning is almost surely correct when agents
have approximately correct models (Theorem 6). These results strengthen the applicabil-
ity of correctly specified environments to real-world settings with mild biases. They also
establish that small errors on the part of a researcher in modeling or measuring biases will
not significantly alter the predicted learning outcomes. In contrast, Frick, Iijima, and Ishii
(2020a,b) show that correctly specified environments are not robust in settings with either
private actions and an infinite state space or that violate our uniformly informative actions
assumption.6

Given our characterization, we return to the issues raised in the second paragraph in the
context of specific biases. In Section 4.1, we demonstrate that overreaction has a qualitatively
different impact based on whether agents learn from a private or social source: when agents
learn from their peers, it can lead to cyclical learning, while when individuals learn directly
from signals, learning is almost surely correct. In contrast, Epstein, Noor, and Sandroni
(2008) find that a different parameterization of overreaction leads to incorrect learning when
agents observe signals directly, suggesting that overreaction is sensitive to modeling choice.
In Section 4.2, we show that a representative agent model is a good approximation when
agents fail to account for redundant information at a similar level, but when there is sufficient

6Madarász and Prat (2016) find a failure of robustness in an agency setting, which stems from the
interaction between misspecification and incentives.
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heterogeneity in their bias, the representative agent model will underestimate the set of
parameters that lead to correct learning. In Section 4.3, we show how agents using different
levels of reasoning impact each others’ learning outcomes. The presence of higher level
agents can lead to different learning outcomes for level-2 agents (i.e. naive learners) relative
to settings that consider the impact of naive learning in isolation (e.g. Eyster and Rabin
(2010); Bohren (2016)).

Related Literature. As discussed above, stable long-run beliefs in our characterization
are strict Berk-Nash equilibria (Esponda and Pouzo 2016). Arrow and Green (1973) pro-
vided the first equilibrium framework that explicitly distinguished between the true model
and agents’ subjective models in a setting with a misspecified oligopolist. Other solution
concepts for specific forms of misspecification include cursed equilibrium (Eyster and Ra-
bin 2005), analogy-based expectation equilibrium (Jehiel 2005), and personal equilibrium
(Spiegler 2016).

A rich literature explores which learning outcomes arise for specific forms of misspec-
ification. In an individual learning setting, selective attention (Schwartzstein 2014) and
misattribution of reference dependence (Bushong and Gagnon-Bartsch 2019) lead to incor-
rect learning almost surely, confirmation bias (Rabin and Schrag 1999) and overreaction to
signals (Epstein et al. 2010) lead to correct and incorrect learning, overconfidence in one’s
ability leads to inefficiently low effort (Heidhues, Kőszegi, and Strack 2018), and misspecified
prior beliefs (Nyarko 1991; Fudenberg, Romanyuk, and Strack 2017) lead to cyclical learning.
In contrast, underreaction to signals leads to correct learning almost surely (Epstein et al.
2010).

Turning to social learning, in the canonical binary state sequential environment, under-
estimating redundant information leads to correct and incorrect learning (Eyster and Rabin
2010; Bohren 2016), while overestimating redundant information leads to cyclical learning
(Bohren 2016). In a variation of this canonical environment, underestimating redundant
information leads to incorrect learning almost surely or cyclical learning (Gagnon-Bartsch
and Rabin 2016). Misinterpreting others’ preferences (Frick et al. 2020a) and the gambler’s
fallacy (He 2020) lead to incorrect learning almost surely; misinterpreting others’ prefer-
ences can also lead to cyclical learning (Gagnon-Bartsch 2016; Bohren and Hauser 2019a) or
entrenched disagreement (Gagnon-Bartsch 2016).7 In contrast, coarse reasoning (Guarino
and Jehiel 2013)—which also results in underestimating redundant information—or a linear
updating heuristic that puts sufficient weight on agents’ own signals (Jadbabaie, Molavi,
Sandroni, and Tahbaz-salehi 2012) lead to correct learning almost surely. By capturing mul-
tiple forms of model misspecification and learning environments within the same framework,
our analysis provides a tool to unify some of these insights.

A recent set of papers explore convergence in more general misspecified learning en-
vironments.8 For the most part, this work focuses on active individual learning settings.
Fudenberg et al. (2017) characterize long-run beliefs for an agent who learns about a bi-

7In other settings, correlation neglect leads to inefficient risk-taking (Levy and Razin 2015) and ideological
extremeness (Ortoleva and Snowberg 2015)

8An older statistics literature on model misspecification characterizes limiting beliefs in terms of the
Kullback-Leibler divergence (Berk 1966; Shalizi 2009). These papers do not apply to active and social
learning settings, as the signal process is exogenous, or to settings where an agent’s model varies with the
history, as the model is fixed across time.
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nary state from a diffusion process with drift that depends on the state and current action.
They use this characterization to illustrate how learning outcomes can differ for myopic and
patient misspecified agents. Esponda and Pouzo (2019) characterize steady state behavior
for a class of Markov decision problems, while Heidhues, Kőszegi, and Strack (2019) derive
convergence results in a setting with Gaussian signals and state. Fudenberg, Lanzani, and
Strack (2020); Esponda, Pouzo, and Yamamoto (2019) characterize properties of the limiting
action distribution when the agent is non-myopic and the state space is infinite. The former
show that if actions converge, then they must converge to a refinement of Berk-Nash equi-
librium. The latter characterize the long-run action distribution in terms of the solutions to
a generalization of a differential equation, providing insight into which action distributions
arise when actions fail to converge. In a social learning setting, Molavi, Tahbaz-Salehi, and
Jadbabaie (2018) study information aggregation when agents share beliefs on a network and
treat neighbors’ current beliefs as sufficient statistics for the history. They nest common rules
to aggregate beliefs on a network, including the canonical DeGroot model. Our paper com-
plements this work by focusing on the asymptotic properties of social learning environments
in which agents use heuristics or have biases that can be captured by misspecified Bayesian
updating and these misspecified models may differ across agents. Frick et al. (2020b) build
on our results to explore convergence in settings that have a finite number of states and can
violate our uniformly informative property. The technical challenges that arise when there
are more than two states are similar to those that arise from model heterogeneity in our
setting. Relaxing uniform informativeness necessitates new methods to characterize local
stability.

A complementary literature proposes explanations for how misspecification can persist
despite infinite data that contradicts the model. Gagnon-Bartsch, Rabin, and Schwartzstein
(2018) show that limited attention causes agents to ignore information that would overturn
their models. Kominers, Mu, and Peysakhovich (2018) consider a setting where updating
via Bayes rule is costly, and therefore, agents do not always update after observing new
information. In Ba (2021), an agent switches to an alternative model only if the alternative
model fits the data significantly better than the status quo model.9

The paper proceeds as follows. Section 2 sets up the model, Section 3 presents the analysis,
Section 4 develops several applications, and Section 5 concludes. Proofs for Section 3 are in
Appendix A and proofs for Section 4 are in Online Appendix C.

2 A General Framework

We first introduce a general framework for social learning, and then discuss how to adapt
it to individual learning. We conclude the section with several examples of settings that
our framework captures. A reader who prefers to skip the microfoundation for the learning
environment can jump to the reduced form stochastic process we analyze in Section 3.

9A related set of papers provide a foundation for non-Bayesian updating and model misspecification.
Ortoleva (2012) axiomatizes non-Bayesian updating rules in which agents deviate from Bayes rule when
reacting to “unexpected” news and Cripps (2018) axiomatizes rules that are independent of how information
is partitioned. Frick et al. (2019) show that the false consensus effect can arise when agents’ beliefs are
derived from local interactions in an assortative society.
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2.1 The Model: Social Learning

States and Actions. Nature selects one of two payoff-relevant states of the world ω ∈ {L,
R} at the beginning of the game according to prior p0 ≡ Pr(ω = R) ∈ (0, 1). A countably
infinite set of agents t = 1, 2, ... act sequentially and choose an action ãt from a finite set A
with M ≡ |A| ≥ 2 actions.10 Let ht ≡ (ã1, ..., ãt−1) denote the publicly observable action
history.

Signals. Agents learn about the state from private information and the actions of other
agents. Given state ω, agent t observes signal s̃t in [0, 1] governed by conditional c.d.f. F ω,
independently of the signals of other agents. No signal realization perfectly reveals the state:
FL and FR are mutually absolutely continuous with common support S. Therefore, there
exists a positive finite Radon-Nikodym derivative dFR/dFL. At least some signal realizations
are informative, which rules out dFR/dFL = 1 almost surely. As is conventional, normalize
the signal realization to be the posterior probability that the state is R following a neutral
prior, i.e. s = 1/(1 + dFL/dFR(s)) for all s ∈ S.

Types. Each agent has a privately observed type θ̃t ∈ Θ drawn independently from distribu-
tion π ∈ ∆(Θ), where Θ ≡ (θ1, ..., θn) is a non-empty finite set. A type specifies preferences
and a model of inference.11

Preferences. Type θi earns payoff ui(a, ω) from choosing action a in state ω, where
ui : A × {L,R} → R. Given probability p that the state is R, the type chooses the action
that maximizes its expected payoff (1 − p)ui(a, L) + pui(a,R). Assume that at least two
actions are not weakly dominated, no two actions yield the same payoff in both states,
and no action is optimal at a single belief. Without loss of generality, assume no action is
dominated for all types.

Model of Inference. A type interprets signals and actions using its subjective model of the
world. Type θi has a subjective signal distribution in each state, represented as conditional
c.d.f. F̂ ω

i in state ω, and subjective type distribution π̂i ∈ ∆(Θ).12 It believes that no signal
realization perfectly reveals the state: F̂L

i and F̂R
i are mutually absolutely continuous, with

full support on S to ensure realized signals are consistent with θi’s model. Given signal
realization s, let ŝi(s) ≡ 1/(1 + dF̂L

i /dF̂
R
i (s)) denote θi’s subjective belief that the state

is R following a neutral prior.13 All types share common prior p0 that the state is R. It
is straightforward to allow for type-specific prior beliefs or a model of inference that varies
with the belief about the state (see Online Appendix E for the latter extension). Agents do
not update their models of inference—we take these models as fixed and explore how they
impact learning about features that are directly payoff-relevant, i.e. the state.

10We maintain the convention that ai or a corresponds to an arbitrary element of A and ãt corresponds
to a random variable with support A, with analogous notation for subsequent random variables.

11While we assume types are private, suitably defining the action space and preferences so that each type
chooses distinct actions can render types observable.

12We implicitly restrict attention to forms of signal misspecification in which signal realizations that map
to the same true posterior also map to the same subjective posterior. In this case, it is without loss of
generality to define subjective signal distributions with respect to a signal space normalized to correspond
to private beliefs (Bohren and Hauser 2021b)).

13We can also take ŝ as a primitive: for any strictly increasing function ŝ : S → [0, 1] with ŝ(inf S) < 1/2
and ŝ(supS) > 1/2, there exists a pair of mutually absolutely continuous probability measures with full
support on S that are represented by ŝ (see (Bohren and Hauser 2021b)).
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A correctly specified type has a correct model of inference, (F̂L
i , F̂

R
i ) = (FL, FR) and

π̂i = π, while a misspecified type has an incorrect model, (F̂L
i , F̂

R
i ) 6= (FL, FR) and/or

π̂i 6= π. We group types into three categories. A noise type does not learn from its signal or
the action history: it believes that signals are uninformative, dF̂L

i /dF̂
R
i = 1 almost surely,

and all agents are noise types, π̂i(ΘN) = 1, where ΘN denotes the set of noise types. An
autarkic type learns from its signal but not the action history: it believes that signals are
informative and all agents are noise types. To avoid the case in which an autarkic type is
observationally equivalent to a noise type, assume that an autarkic type has preferences such
that there are at least two strictly optimal actions on the set of posterior beliefs that arise
from its subjective signal distribution. A social type learns from its signal and the action
history: it believes that both are informative. Let Θ be ordered such that the first k types
are social, denoted by ΘS ≡ (θ1, ..., θk), and the remaining n− k types are noise or autarkic,
denoted by ΘA and ΘN , respectively. A learning environment (Θ, π) is correctly specified if
all social types are correctly specified and otherwise is misspecified.

When agents have different models of inference, this can lead to complicated higher-order
beliefs. For example, when an agent believes that other agents have a misspecified signal
distribution, we also need to model what the agent believes these misspecified agents believe
about others. In our framework, higher-order beliefs are fully determined by the subjective
type distributions. If type θi believes that all agents are type θj, then θj’s subjective type
distribution π̂j captures θi’s second order beliefs, the subjective type distributions of the
types in the support of π̂j capture third order beliefs, and so on. Therefore, in addition
to describing the types that actually exist, Θ may contain types that serve as a tool to
represent hierarchies of beliefs—in other words, types that occur with positive probability
under a type’s subjective distribution but with probability zero under the true distribution.14

Aligned Environments. In order to derive meaningful predictions, our framework requires
some structure on how agents interpret signals and actions. We focus on environments that
are aligned, in that it is common knowledge that agents have the same ordinal ranking of
signal realizations and action choices in terms of which are stronger evidence for state R.
For the signal, this corresponds to subjective signal distributions that satisfy the following
assumption.

Assumption 1 (Aligned Subjective Signals). For each θi ∈ Θ, the subjective signal distri-
bution is either aligned with the true signal distribution, i.e. for any s, s′ ∈ S such that
s > s′, then ŝi(s) > ŝi(s

′) or uninformative, i.e. ŝi(s) = 1/2 for all s ∈ S.

In other words, for any two signal realizations s and s′, if s is stronger evidence for state R
than s′ under the true measure, then s is also stronger evidence for state R than s′ under
the subjective measure. We make one exception to allow for types who believe the signal
is uninformative. Types can differ in the perceived strength of signal realizations—both
relative to other types and to the true distribution. For example, all agents can believe that
lung cancer is stronger evidence that smoking is harmful than shortness of breath, but differ
in their perceived strength of this evidence. Assumption 1 implies common knowledge that

14Mertens and Zamir (1985) construct the universal type space, which is the set of hierarchies of beliefs
that satisfy certain consistency requirements. Finiteness combined with subsequent restrictions we impose
on Θ restrict the set of belief hierarchies we analyze to a subset of the universal type space.
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signals are aligned, since all agents believe that other agents have a type in Θ, and so on.
For actions, we assume that, when the state is known, each type has the same ordinal

ranking over its undominated actions. Types may have different sets of undominated actions,
and therefore, choose different actions when the state is known.

Assumption 2 (Aligned Preferences). The set of types Θ have aligned preferences, in that
there exists a complete order � on A such that if a � a′, then for each θi ∈ Θ, either
ui(a,R) > ui(a

′, R) or a is dominated for θi.
15

For example, all agents prefer a risky asset in one state and a safe asset in the other, but
differ in the belief at which they are willing to start investing in the risky asset or some
agents prefer less risky assets across all beliefs about the state. Given Assumption 2, we
maintain a complete order over the action space by relative preference in state R.16 Fixing
such an order, index actions A ≡ (a1, ..., aM) so that am � al iff m > l.

While signal and preference alignment are not necessary, they are a simple yet general
set of restrictions that allow us to derive sharp predictions in a broad class of learning
environments. These restrictions do rule out some natural economic settings—for example,
some versions of horizontally differentiated environments (e.g. the horizontally differentiated
preferences in Gagnon-Bartsch (2016)). In Section 3.6, we discuss how our techniques can
be applied to environments that are not aligned.

Informative Actions and Consistent Histories. We focus on environments that are
uniformly informative, in that for each state there is an action that occurs and is perceived
to occur with higher probability in this state regardless of the history. Since an autarkic type
believes its signal is informative and does not observe the history, its action choice depends
on its signal realization regardless of the history. Therefore, as we show in Section 3.1, the
following simple condition—combined with aligned signals and preferences—is sufficient to
establish that a1 is uniformly informative of state L—that is, it occurs with higher probability
in state L at all possible beliefs—and similarly, aM is uniformly informative of state R.

Assumption 3 (Informative Actions). For actions a ∈ {a1, aM}, there exists an autarkic
type θj ∈ ΘA with π(θj) > 0 that plays a with positive probability, and each social type
θi ∈ ΘS believes that such an autarkic type exists.

Alternative assumptions can also establish uniform informativeness. Our analysis carries
through unchanged provided at least one action is uniformly informative of each state. Fur-
ther, uniform informativeness does not need to hold with respect to actions—for example,
our analysis also applies if there is an alternative source that is uniformly informative. We
discuss this further in Section 3.1.

We also focus on settings in which the realized history is consistent with each type’s
model of inference. To rule out the possibility that a type observes what it believes to be
a zero probability history, we assume that social types believe that there is an autarkic or
noise type that plays each action with positive probability.

15For any undominated actions a and a′, if ui(a,R) > ui(a
′, R), then ui(a, L) < ui(a

′, L). Therefore, if
a � a′, then for each θi ∈ Θ, either ui(a

′, L) > ui(a, L) or a′ is dominated for θi.
16This order may not be unique since Assumption 2 places no restriction on how a type ranks its dominated

actions or actions that are optimal for a single type.
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Assumption 4 (Consistent Histories). For each a ∈ A and for each social type θi ∈ ΘS,
there exists an autarkic or noise type θj ∈ ΘA∪ΘN with π̂i(θj) > 0 that plays a with positive
probability.

This ensures that each social type believes that all histories are on the equilibrium path.
Any learning environment can be slightly perturbed so that it satisfies Assumptions 3 and 4
by adding such an autarkic or noise type with arbitrarily small probability.

Timing. At time t, agent t draws its type θ̃t and observes the history ht and signal s̃t, then
chooses action ãt. Then the history is updated to ht+1.

In Section 3.6, we discuss possible extensions to our framework, including misaligned type
spaces, heterogeneous signal distributions, and state-dependent type distributions.

2.2 The Model: Individual Learning

Our framework can capture misspecified learning with a single long-run agent by modifying
the learning environment so that the signal process is public. Suppose S is finite and oth-
erwise maintain the same assumptions on the true signal process as in Section 2.1. A single
type has subjective signal distributions F̂L and F̂R that are mutually absolutely continuous
with full support on S. Replace Assumption 3 with the assumption that signals are perceived
as informative, dF̂R/dF̂L 6= 1. When there is a single type, Assumptions 1, 2 and 4 are un-
necessary and the type distribution is trivial. Allowing the perceived signal distributions
F̂L and F̂R to vary with the belief about the state captures cognitive biases such as con-
firmation bias, nesting Rabin and Schrag (1999), and certain forms of under-/overreaction,
nesting Epstein et al. (2010) (see Online Appendix E). Allowing the true distributions FL

and FR to vary with the belief about the state captures an active learning model in which
action choices influence information. In Section 3.1, we show how this individual learning
set-up reduces to a belief process that satisfies the same properties as the social learning
set-up, and therefore, we can also apply our learning characterization to this setting.

2.3 Examples

The following examples demonstrate how our framework can capture many information-
processing biases, heuristics, and other misspecified models of inference.

Partisan Bias. A type systematically slants evidence towards one state (Bartels 2002;
Jerit and Barabas 2012). For example, an R-partisan type interprets all signal realizations
as being stronger evidence for state R than is actually the case, ŝ(s) = sν .

Under-/Overreaction. A type under- or overreacts to signals (Moore and Healy 2008;
Moore, Tenney, and Haran 2015; Angrisani, Guarino, Jehiel, and Kitagawa 2020). For

example, ŝ(s)
1−ŝ(s) = ( s

1−s)
ν , where ν ∈ [0, 1) corresponds to underreaction and ν ∈ (1,∞)

corresponds to overreaction.
Correlation Neglect/Naive Learning. A type underestimates the correlation in the actions

of prior agents: the true share of autarkic types is π(ΘA), but the type believes that the
share of autarkic types is π̂(ΘA) > π(ΘA) (Eyster and Rabin 2010; Bohren 2016; Enke and
Zimmermann 2019; Eyster, Rabin, and Weizsäcker 2020). The counting heuristic, where
agents simply count actions to form beliefs, provides a foundation for this bias (Ungeheuer
and Weber 2020).

Level-k/Cognitive Hierarchy. Level-1 is an autarkic type that believes all agents are noise
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types; level-2 believes all agents are level-1 and interprets each prior action as reflecting an
independent private signal; level-3 believes all agents are level-2, and so on (Costa-Gomes
and Crawford 2006; Penczynski 2017). The cognitive hierarchy model is similar, but allows
for richer beliefs over types (Camerer, Ho, and Chong 2004).

False Consensus Effect. A type overweights the likelihood that others have similar pref-
erences or models of inference (Ross, Greene, and House 1977; Marks and Miller 1987;
Gagnon-Bartsch 2016). For example, there are two types with preferences u1 6= u2. Both
types believe all agents share their preferences, π̂1(θ1) = 1 and π̂2(θ2) = 1.

Pluralistic Ignorance. A type underweights the likelihood that others have similar pref-
erences or models of inference (Miller and McFarland 1987, 1991). For example, all types
correctly interpret signals but believe others overreact.

A model of inference that depends on the belief about the state can capture confirmation
biases such as selective exposure, selective perception and selective recall (Nickerson 1998);
see Online Appendix E for this extension. Type-specific signal distributions can capture
biases that involve interpersonal comparisons of the quality of information, such as overcon-
fidence in the accuracy of one’s information relative to others (Moore and Healy 2008) and
overestimating the precision of signals from agents who have similar preferences or models
i.e. the social circle heuristic (Pachur, Rieskamp, and Hertwig 2004); see Section 3.6 for
details.

3 Asymptotic Learning

We study asymptotic learning outcomes—the long-run beliefs about the state—for social
types. Our main result characterizes how these long-run beliefs depend on two expressions
that are straightforward to derive from the primitives of the model.

3.1 Belief Updating

We first characterize how each type updates its belief about the state.

Individual Decision Problem. Consider an agent of type θi who observes history h and
private signal realization s. The agent uses her model of inference to compute the probability
of h in each state, P̂i(h|ω), and applies Bayes rule to form the likelihood ratio

λi(h) ≡ P̂i(R|h)

P̂i(L|h)
=

(
p0

1− p0

)
P̂i(h|R)

P̂i(h|L)

that the state is R versus L. By Assumption 4, θi believes that h occurs with positive
probability and therefore Bayes rule can be used to update beliefs. If the agent is an autarkic
or noise type, she believes that the history is uninformative, implying λi(h) = p0/(1 − p0)
for all h. The agent then uses her subjective signal distribution ŝi(s) to update to private
posterior belief λi(h)ŝi(s)/(1 − ŝi(s)) and chooses the action that maximizes her expected
payoff with respect to this belief. The following lemma represents each type’s decision rule
as a set of signal cutoffs.

Lemma 1 (Decision Rule). Assume Assumptions 1 and 2. For each θi ∈ Θ and λ ∈ [0,∞],
there exist signal cutoffs 0 = si,0(λ) ≤ si,1(λ) ≤ ... ≤ si,M(λ) = 1 such that an agent of type
θi chooses action am at likelihood ratio λ iff si,m−1(λ) 6= si,m(λ) and she observes private
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signal realization s ∈ (si,m−1(λ), si,m(λ)], with a closed interval if si,m−1(λ) = 0.17

Interpreting Action Histories. These signal cutoffs determine how agents interpret past
action choices. A social type θi ∈ ΘS believes type θj with likelihood ratio λj chooses am
with probability F̂ ω

i (sj,m(λj)) − F̂ ω
i (sj,m−1(λj)) in state ω, i.e. the subjective probability θi

assigns to θj observing a signal realization in the interval (sj,m−1(λj), sj,m(λj)] that lead to
choice am. Therefore, given likelihood ratios λ ≡ (λ1, ..., λk) ∈ [0,∞]k for social types and
λj = p0/(1− p0) for autarkic or noise types, θi believes that am is chosen with probability

ψ̂i(am|ω,λ) ≡
n∑
j=1

π̂i(θj)(F̂
ω
i (sj,m(λj))− F̂ ω

i (sj,m−1(λj))) (1)

in state ω, i.e. the subjective probability θi assigns to each type choosing am weighted by θi’s
subjective type distribution. Note that the probability of am varies with both the realized
state and the belief about the state. The true probability of am is analogous, substituting
the true signal and type distributions,

ψ(am|ω,λ) ≡
n∑
j=1

π(θj)(F
ω(sj,m(λj))− F ω(sj,m−1(λj))). (2)

When ψ̂i(am|ω,λ) 6= ψ(am|ω,λ), misspecification introduces a wedge between the subjective
and true probability of observing each action.

The following lemma establishes several key properties of ψ(a|ω,λ) and ψ̂i(a|ω,λ). First,
all social types perceive action a1 as uniformly informative of state L—that is, more likely
in state L at all values of the likelihood ratio—and perceive aM as uniformly informative of
state R. This follows from Assumptions 1 and 2, which rule out confounded learning, and
Assumption 3, which rules out informational herds.18 Additionally, ψ̂i(a|ω,λ) and ψ(a|ω,λ)
are continuous with respect to λ at certainty and no action is perceived to perfectly reveal
the state.

Lemma 2. Assume Assumptions 1 to 4. For all θi ∈ ΘS, action a1 (aM) is perceived as
uniformly informative of state L (state R),

sup
λ∈[0,∞]k

ψ̂i(a1|R,λ)

ψ̂i(a1|L,λ)
< 1 and inf

λ∈[0,∞]k

ψ̂i(aM |R,λ)

ψ̂i(aM |L,λ)
> 1,

17Throughout the paper, we work with the extended real number line R ∪ {−∞,∞} to allow λ = ∞ to
denote the belief at which an agent places probability one on state R.

18Confounded learning corresponds to an interior belief at which actions are uninformative even though
each type acts based on private information. When preferences are not aligned, such as u1 = 1a=ω and
u2 = 1a 6=ω, the aggregate probability that an action is chosen can be the same in each state even though
different types choose actions with different probabilities (Smith and Sørensen 2000). Model heterogeneity
can lead to the same issue when it is not common knowledge that signals and preferences are aligned. An
informational herd corresponds to an interior belief at which all types choose the same action regardless of
their private information (Banerjee 1992; Bikhchandani et al. 1992). Unbounded private signals also rule
out informational herds (Smith and Sørensen 2000). While signals may be unbounded in our setting, our
learning characterization requires the stronger notion of uniformly informative actions.
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these actions occur with positive probability in each state uniformly across λ ∈ [0,∞]k, and
λ 7→ ψ̂i(a|ω,λ) and λ 7→ ψ(a|ω,λ) are continuous at λ ∈ {0,∞}k for (a, ω) ∈ A × {L,R}.
Further, each action a ∈ A is boundedly informative i.e. there exists an ε > 0 such that
ψ̂i(a|R,λ)/ψ̂i(a|L,λ) ∈ [ε, 1/ε] for λ ∈ [0,∞]k.

From this point forward, our analysis is derived in terms of ψ(a|ω,λ) and ψ̂i(a|ω,λ).
Therefore, one could abstract from the microfoundations for individual and social learning
presented in Section 2 and work directly with a reduced form learning model represented by a
state and belief-dependent stochastic process on a finite set A. Our subsequent analysis holds
for any such process that satisfies the properties derived in Lemma 2 (uniform informativeness
can hold at any two elements in A—it does not necessarily need to hold at a1 and aM) and a
consistency requirement that all observed information is in the support of agents’ subjective
distributions.19 This allows our learning characterization to be immediately applied to large
class of dynamic decision problems with model misspecification—including active individual
learning models with myopic agents, learning from alternative sources of information (i.e.
stochastic outcomes, public signals), learning from multiple sources of information, and
models of inference that vary with agents’ beliefs about the state.20 While some common
economic settings violate uniform informativeness—namely, social learning with unbounded
private signals and individual learning with costly information acquisition—the property is
restored if there is an additional source of information or if all realizations of the information
process are a stochastic function of choices and the state (e.g. A corresponds to stochastic
outcomes as in Bohren and Hauser (2019a)).

The Likelihood Ratio Process. From Eq. (1), we derive how the likelihood ratios for
social types depend on the history. Each θi ∈ ΘS initially has likelihood ratio λi(h1) =
p0/(1− p0) ∈ (0,∞). At any history ht with t > 1,

λi(ht) =

(
p0

1− p0

) t−1∏
τ=1

ψ̂i(ãτ |R,λ(hτ ))

ψ̂i(ãτ |L,λ(hτ ))
.

The process is recursive: given λ(ht) and ãt, λi(ht+1) = λi(ht)
ψ̂i(ãt|R,λ(ht))
ψ̂i(ãt|L,λ(ht))

. Therefore, λt ≡
λ(ht) is sufficient for the history and we suppress the dependence on h. The behavior
of 〈λt〉∞t=1 determines the learning dynamics for each social type—where ψ̂i(a|L,λ) and

ψ̂i(a|R,λ) determine the update to the likelihood ratio, and ψ(a|ω,λ) in the realized state
determines the probability of this update. Characterizing the behavior of 〈λt〉∞t=1 is challeng-
ing: the process is an equilibrium object with nonlinear transitions that depend on its current
value, and in contrast to correctly specified environments, it is generally not a martingale.

We close with an example, which we use throughout the paper to illustrate our results.

Example 1 (Partisan Bias). Suppose agents systematically slant signal realizations towards

19Formally, for all θi ∈ ΘS and (a, ω, ω′) ∈ A× {L,R}2, ψ̂i(a|ω,λ) = 0 iff ψ(a|ω′,λ) = 0.
20Note that when ψ and ψ̂i are independent of λ, our set-up is a special case of Berk (1966). While in

principle, our analysis could be applied to non-myopic active learning problems, in practice, it would be a
significant challenge to verify the properties derived in Lemma 2 as ψ̂(·|ω,λ) would depend on the solution
to a dynamic optimization problem. Therefore, our framework does not easily apply to settings such as that
studied in Fudenberg et al. (2017).
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state R. There are two types of agents: θ1 is social and θ2 is autarkic, with share π(θ1) ∈ (0, 1)
of social types. Both have an identical level of partisan bias parameterized by F̂ ω

i (s) = F ω(sν)
for ν ∈ (0, 1) and S = [0, 1], which results in private belief ŝi(s) = sν. The social type
has a correctly specified type distribution, π̂1 = π. Both types seek to choose the action
that matches the state, A = {L,R} and ui(a, ω) = 1a=ω, and start with prior p0 = 0.5.
When the social type has likelihood ratio λ and observes signal realization s, it updates to
private belief λ

(
sν

1−sν
)
. It chooses action L if this private belief is less than one, which

occurs for signal realizations less than s1,1 = 1/(1 + λ)1/ν. Similarly, the autarkic type
chooses L for signal realizations less than s2,1 = 0.51/ν. The social type believes social types

choose L with probability F̂ ω
1 (1/(1+λ)1/ν) = F ω(1/(1+λ)) and autarkic types choose L with

probability F̂ ω
1 (0.51/ν) = F ω(0.5). At any λ ∈ (0,∞), this is greater than the true probabilities

F ω(1/(1+λ)1/ν) and F ω(0.51/ν), respectively, that each type chooses L. Therefore, the social
type overestimates the frequency of L actions.

3.2 Stationary Beliefs and Learning Outcomes

At a stationary belief, the likelihood ratio remains constant for any action that occurs with
positive probability.

Definition 1 (Stationary). Belief λ∗ ∈ [0,∞]k is stationary if for all a ∈ A, either (i)

ψ(a|ω,λ∗) = 0 or (ii) λ∗ = λ∗
(
ψ̂i(a|R,λ∗)
ψ̂i(a|L,λ∗)

)
for all θi ∈ ΘS.

From Lemma 2, actions a1 and aM are uniformly informative across the belief space. There-
fore, the set of stationary beliefs corresponds to the set of certain beliefs in which each type
places probability one on a single state.

Lemma 3 (Stationary Beliefs). Assume Assumptions 1 to 4. The set of stationary beliefs
is {0,∞}k. Given likelihood ratio process 〈λt〉∞t=1, for any belief λ∗ ∈ [0,∞]k, if λ∗i ∈ (0,∞)
for some θi ∈ ΘS, then Pr(λt → λ∗) = 0.

These stationary beliefs are the candidate limit points of the likelihood ratio: if the likelihood
ratio converges for all types, then it must converge to λ∗ ∈ {0,∞}k. This rules out incomplete
learning, i.e. λi,t converges to an interior belief for some type.

We define asymptotic learning outcomes relative to the set of stationary beliefs.

Definition 2 (Learning Outcomes). In state L, correct learning (for type θi) denotes the
event where λt → 0k (λi,t → 0), incorrect learning (for type θi) denotes the event where λt →
∞k (λi,t →∞), entrenched disagreement denotes the event where λt → {0,∞}k \ {0k,∞k},
cyclical learning (for type θi) denotes the event where λt (λi,t) does not converge, and mixed
learning denotes the event where λi,t converges for some social types but not others. The
definitions are analogous in state R.

When all social types have the same limit belief, we refer to this as an agreement out-
come. Entrenched disagreement occurs when different types converge to different limit be-
liefs; throughout the paper, when we say ‘disagreement’ we are referring to ‘entrenched
disagreement’.21 Learning is complete if correct learning occurs almost surely and is path-
dependent if multiple learning outcomes arise with positive probability—for example, correct

21Types’ beliefs can also differ when beliefs do not converge i.e. cyclical or mixed learning.
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and incorrect learning. In correctly specified environments, the Martingale Convergence The-
orem rules out incorrect, cyclical, and mixed learning, and entrenched disagreement. This is
not the case in misspecified environments.

3.3 Stability of Learning Outcomes

In this section, we derive conditions for the likelihood ratio to converge to each stationary
belief with positive probability. To do so, we first characterize the behavior of the likelihood
ratio when it is in a neighborhood of a stationary belief. Building on results on the local
stability of nonlinear stochastic difference equations developed in Smith and Sørensen (2000),
we establish necessary and sufficient conditions for the likelihood ratio to converge to this
stationary belief with positive probability from nearby beliefs, which we refer to as local
stability (Theorem 1). We then determine when the likelihood ratio converges to a locally
stable belief with positive probability from any initial belief, which we refer to as global
stability (Theorems 2 and 3). This ensures that our characterization holds independently of
the initial belief.

Our approach builds on techniques used in Bohren (2016) to characterize asymptotic
learning outcomes when there is a single type with a misspecified model of the share of au-
tarkic types. Our key technical innovations are to allow for multiple types and to characterize
conditions for entrenched disagreement. Relative to Bohren (2016), establishing the global
stability of disagreement outcomes and belief convergence with multiple types requires novel
and different techniques.

Local Stability. A learning outcome is locally stable if the likelihood ratio converges to it
with positive probability from nearby beliefs and is unstable if the likelihood ratio almost
surely does not converge to it.

Definition 3 (Local Stability). λ∗ is locally stable if there exists an ε > 0 and neighborhood
Bε(λ

∗) such that Pr(λt → λ∗) > 0 for λ1 ∈ Bε(λ
∗) and is unstable if Pr(λt → λ∗) = 0 for

all λ1 ∈ (0,∞)k.

Our characterization of local stability depends on the sign of the average update from an
action, weighted by the true probability of each action. In state ω and at belief λ, this is
equal to

γi(ω,λ) ≡
∑
a∈A

ψ(a|ω,λ) log

(
ψ̂i(a|R,λ)

ψ̂i(a|L,λ)

)
for social type θi. This expression has two natural interpretations. First, at interior beliefs,
it corresponds to the expected change in the log likelihood ratio. Second, it is the difference
between (i) the Kullback-Leibler divergence from type θi’s subjective action distribution in
state L, ψ̂i(·|L,λ), to the true action distribution in state ω, ψ(·|ω,λ), and (ii) the Kullback-
Leibler divergence from θi’s subjective action distribution in state R, ψ̂i(·|R,λ), to the true
action distribution in state ω, ψ(·|ω,λ). If θi’s subjective action distribution in state L is
closer to the true action distribution than θi’s subjective action distribution in state R, then
this difference is negative and θi’s log likelihood ratio moves towards state L in expectation;
otherwise, it moves towards state R.

We show that the sign of each component of γ(ω,λ) ≡ (γi(ω,λ))ki=1 at a stationary belief

15



determines whether the belief is locally stable. Let

Λi(ω) ≡ {λ ∈ {0,∞}k|γi(ω,λ) < 0 if λi = 0 and γi(ω,λ) > 0 if λi =∞}, (3)

denote the set of certain beliefs at which γi(ω,λ) is negative if social type θi believes the
state is L and positive if θi believes the state is R. This is the first expression for our
learning characterization. Theorem 1 establishes that all beliefs in Λ(ω) ≡ ∩ki=1Λi(ω) are
locally stable and, subject to a minor technical condition, beliefs not in Λ(ω) are unstable.

Theorem 1 (Locally Stable Beliefs). Assume Assumptions 1 to 4. Then λ∗ ∈ {0,∞}k is
locally stable in state ω if λ∗ ∈ Λ(ω) and is unstable if λ∗ 6∈ Λ(ω) and γi(ω,λ

∗) 6= 0 for some
θi with λ∗ 6∈ Λi(ω). All λ∗ ∈ [0,∞]k \ {0,∞}k are unstable.

The intuition is as follows. Consider certain belief λ∗ ∈ {0,∞}k and suppose λ∗ ∈ Λ(ω).
By the continuity of γi(ω,λ) at λ∗, if λ∗i = 0, then γi(ω,λ) < 0 in a neighborhood of λ∗

and if λ∗i = ∞, then γi(ω,λ) > 0. Therefore, in expectation, the log likelihood ratio moves
towards λ∗ from nearby beliefs. By similar reasoning, if λ∗ 6∈ Λ(ω), the log likelihood ratio
moves away from λ∗ at nearby beliefs (provided γi(ω,λ

∗) 6= 0 for some θi with λ∗ 6∈ Λi(ω)).
The set Λ(ω) has a natural interpretation: it corresponds to the set of strict Berk-Nash

equilibria (Esponda and Pouzo 2016).22 At each λ∗ ∈ Λ(ω), each social type places proba-
bility one on the state that generates a perceived action distribution closest to the observed
action distribution—that is, the state that minimizes the Kullback-Leibler divergence from
the type’s perceived action distribution to the true action distribution when all types act
optimally with respect to λ∗. Given the strict inequalities in Eq. (3), this state is unique
for each type and the equilibrium is strict. Therefore, Theorem 1 establishes that all strict
Berk-Nash equilibria are locally stable. Esponda et al. (2019); Fudenberg et al. (2020) es-
tablish a similar result in an individual learning setting that allows for non-myopic agents
and a more general state space.

When γi(ω,λ
∗) = 0 for a type, the perceived action distributions in each state are equally

close to the true action distribution. At a stationary belief λ∗ ∈ {0,∞}k, if γi(ω,λ
∗) = 0

for all social types with λ∗ 6∈ Λi(ω), we cannot determine whether λ∗ is stable or unstable
from the sign of γi(ω,λ

∗) (these correspond to weak Berk-Nash equilibria). Conditions for
stability in this case significantly complicate the analysis without adding much economic
insight. Going forward, we focus on learning environments in which this does not occur.

Definition 4 (Identified at Certainty). A learning environment is identified at certainty if
γi(ω,λ) 6= 0 for all θi ∈ ΘS, λ ∈ {0,∞}k and ω ∈ {L,R}.
The set of learning environments that are identified at certainty is generic in the set of
environments that satisfy Assumptions 1 to 4. Note that all correctly specified environments
that satisfy Assumptions 1 to 4 are identified at certainty. When the learning environment
is identified at certainty, Theorem 1 simplifies to the following corollary.

Corollary 1. Assume Assumptions 1 to 4. If the learning environment is identified at
certainty, then λ∗ ∈ {0,∞}k is locally stable in state ω if and only if λ∗ ∈ Λ(ω). All

22By strict we mean equilibria in which there is a unique vector of stationary beliefs that minimizes
the Kullback-Leibler divergence from the subjective to the true action distribution at the given equilibrium
strategy profile.
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λ∗ ∈ [0,∞]k \ {0,∞}k are unstable.

In other words, if the likelihood ratio converges for all social types, then it must converge to a
limit random variable whose support lies in Λ(ω). This reduces characterizing local stability
to determining the sign of γi(ω,λ) for each social type at certain beliefs. It is straightforward
to do so in applications, as demonstrated in the following example.

Example 1 (Partisan Bias, cont.). From the perceived and true probabilities of each action
derived in Section 3.1, γ1(L, 0) is equal to

(π(θ1) + π(θ2)F
L(.5

1
ν )) log

π(θ1) + π(θ2)F
R(.5)

π(θ1) + π(θ2)FL(.5)︸ ︷︷ ︸
L−action

+ π(θ2)(1− FL(.5
1
ν )) log

1− FR(.5)

1− FL(.5)︸ ︷︷ ︸
R−action

.

The construction of γ1(L,∞) is analogous. When the bias is small (ν is close to one), both
γ1(L, 0) and γ1(L,∞) are negative, and Λ(L) = {0}. As the bias grows, R actions occur more
frequently and both expressions increase. For intermediate levels of bias, γ1(L, 0) is positive,
γ1(L,∞) is negative, and Λ(L) = ∅. When the bias is sufficiently large, both expressions are
positive and Λ(L) = {∞}. See Online Appendix B.1 for this derivation.

Global Stability. We are interested in a characterization of asymptotic learning that is
independent of the initial belief. Therefore, we need a stronger notion of stability than local
stability. We say a learning outcome is globally stable if the likelihood ratio converges to this
outcome with positive probability, from any initial belief.

Definition 5 (Global Stability). λ∗ is globally stable if for any initial belief λ1 ∈ (0,∞)k,
Pr(λt → λ∗) > 0.

Clearly, the set of globally stable learning outcomes is a subset of the set of locally stable
learning outcomes. It remains to establish when local stability implies global stability.

Aligned signals and preferences (Assumptions 1 and 2) guarantee that there exist actions
that move the beliefs of all types in the same direction. Therefore, from any initial belief, it
is possible to construct a finite sequence of actions that occur with positive probability and
move the likelihood ratio arbitrarily close to an agreement outcome. Once the likelihood
ratio is in a neighborhood of the agreement outcome, local stability establishes convergence.
Therefore, global stability follows immediately from local stability for an agreement outcome.

Theorem 2 (Global Stability of Agreement). Consider a learning environment that is iden-
tified at certainty and satisfies Assumptions 1 to 4. Agreement outcome λ∗ ∈ {0k,∞k} is
globally stable in state ω if and only if λ∗ ∈ Λ(ω).23

Given Theorem 2, deriving Λ(ω) is the only calculation necessary to determine whether
correct or incorrect learning occur with positive probability: these learning outcomes occur
with positive probability if and only if the corresponding limit beliefs are in Λ(ω). Further,
this result fully characterizes global stability when there is a single social type.

Global stability does not immediately follow from local stability for disagreement out-
comes, as it may not be possible to separate the beliefs of different types and reach a

23When a learning environment is not identified at certainty, our proof establishes that any agreement
outcome λ∗ ∈ Λ(ω) is globally stable in state ω.
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neighborhood of the disagreement outcome. For example, the beliefs of two similar types
can remain close together when starting from a common prior, even if disagreement is pos-
sible when they start with very different priors. The second expression for our learning
characterization—maximal accessibility—provides a sufficient condition to separate beliefs
and push the likelihood ratio arbitrarily close to a given disagreement outcome. We first
define a partial order on how types update following a1, which decreases the likelihood ratio,
and aM , which increases it.

Definition 6 (Maximal R-order). Define the maximal R-order �λ over Θ at belief λ as
θi �λ θj iff θi interprets a1 and aM as stronger evidence of state R than θj,

ψ̂j(a|R,λ)

ψ̂j(a|L,λ)
≤ ψ̂i(a|R,λ)

ψ̂i(a|L,λ)
(4)

for a ∈ {a1, aM}, with strict order �λ if Eq. (4) holds with strict inequality for at least one
action a ∈ {a1, aM}.
We use this order to define maximal accessibility. As the number of possible disagreement
outcomes increases with the number of social types, so does the complexity of such a property;
we present the case of two social types here and relegate the case of more than two social
types to Online Appendix D.

Definition 7 (Maximal Accessibility (k = 2)). Disagreement outcome (0,∞) is maximally
accessible if θ2 �(0,0) θ1 or θ2 �(∞,∞) θ1, and disagreement outcome (∞, 0) is maximally
accessible if θ1 �(0,0) θ2 or θ1 �(∞,∞) θ2.

It is straightforward to verify maximal accessibility in applications by evaluating Eq. (4) at
beliefs (0, 0) or (∞,∞).

When a disagreement outcome is maximally accessible, for any initial belief, there exists
a finite sequence of actions that moves beliefs to a neighborhood of the disagreement out-
come. To see this, suppose θ2 �(0,0) θ1. As discussed above, the likelihood ratio enters a
neighborhood of (0, 0) with positive probability from any initial belief. Given θ2 �(0,0) θ1,
we can construct a sequence of a1 and aM actions that decrease θ1’s beliefs and increase θ2’s
beliefs in a neighborhood of (0, 0). We show that this guarantees that there exists a finite
sequence of actions that occurs with positive probability and moves beliefs from a neigh-
borhood of (0, 0) to a neighborhood of (0,∞). Once the likelihood ratio is sufficiently close
to the disagreement outcome, local stability establishes convergence. Therefore, the global
stability of a disagreement outcome follows from maximal accessibility and local stability.24

Theorem 3 (Global Stability of Disagreement (k = 2)). Consider a learning environment
that satisfies Assumptions 1 to 4. If disagreement outcome λ∗ ∈ {(0,∞), (∞, 0)} is in Λ(ω)

24Maximal accessibility is simple and tractable, but it can be restrictive, especially in models with large
action spaces. In Theorem 7 in Appendix A.3, we establish a more general condition that uses all actions
to separate beliefs, which we call separability (Definition 8). It is more cumbersome to verify but holds for
a larger set of learning environments. Another simple sufficient condition to separate beliefs is: (0, 0) ∈
Λ1(ω) \ Λ2(ω) or (∞,∞) ∈ Λ2(ω) \ Λ1(ω) for (0,∞), with an analogous condition for (∞, 0). It can be
directly verified from the construction of Λ(ω) but will not hold when both agreement outcomes are locally
stable.
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and maximally accessible, then λ∗ is globally stable in state ω.

See Section 4.3 for an application that uses maximal accessibility.

Mixed Learning. Next, we establish conditions to rule out mixed learning. Suppose ω = L
and consider the mixed outcome in which θ1 has correct learning and θ2 has cyclical learning.
If either (0, 0) ∈ Λ2(L) or (0,∞) ∈ Λ2(L), then 〈λ2,t〉 converges with positive probability
when λ∗1 = 0, and hence, almost surely cannot oscillate infinitely often. Therefore, in order
for this mixed outcome to arise with positive probability, it must be that (0, 0) 6∈ Λ2(L) and
(0,∞) 6∈ Λ2(L), i.e. in a neighborhood of (0, 0) or (0,∞), θ2’s beliefs drift away from the
outcome. Generalizing this intuition, let ΛM(ω) denote the set of mixed outcomes in which
there are no locally stable beliefs for the non-convergent types in state ω. When k = 2, this
corresponds to

ΛM(ω) ≡ {(λ∗i , θi) ∈ {0,∞}× {θ1, θ2}|(λ∗i , 0) 6∈ Λ−i(ω) and (λ∗i ,∞) 6∈ Λ−i(ω)}, (5)

where (λ∗i , θi) denotes the mixed outcome in which θi’s beliefs converge to λ∗i and θ−i’s beliefs
do not converge. As in the case of disagreement, mixed learning is more involved when there
are more than two social types; we relegate this case to Online Appendix D and define
ΛM(ω) = ∅ when k = 1. The following result establishes that if a mixed outcome is not in
ΛM(ω), then it almost surely does not occur.

Lemma 4 (Unstable Mixed Outcomes (k = 2)). Consider a learning environment that is
identified at certainty and satisfies Assumptions 1 to 4. If (λ∗i , θi) 6∈ ΛM(ω), then Pr(λi,t →
λ∗i and λ−i,t does not converge) = 0 in state ω.

Therefore, ΛM(ω) = ∅ rules out mixed learning in state ω.25 It is straightforward to derive
ΛM(ω) from Λi(ω). See Example 2 and Sections 4.2 and 4.3 for applications that show
ΛM(ω) is empty.

Lemma 4 does not determine whether a mixed outcome in ΛM(ω) arises with positive
probability. Doing so presents a novel challenge relative to stationary learning outcomes,
as it requires characterizing the movement of the convergent type’s belief across all possible
beliefs for the non-convergent type. We leave this question for future research.

3.4 Learning Characterization

We use the stability results in the previous section to characterize the set of asymptotic
learning outcomes in each state. The final piece of the characterization involves showing when
the likelihood ratio converges almost surely for all social types (Lemma 7 in Appendix A.5).
This establishes our main result.

Theorem 4 (Learning Characterization (k ≤ 2)). Consider a learning environment that is
identified at certainty and satisfies Assumptions 1 to 4. When the state is L:

(i) Correct learning occurs with positive probability if and only if 0k ∈ Λ(L).

(ii) Incorrect learning occurs with positive probability if and only if ∞k ∈ Λ(L).

25A simple sufficient condition for ΛM (ω) = ∅ is that both agreement outcomes or both disagreement
outcomes are in Λ(ω). When k > 2, an analogous condition rules out mixed outcomes in which one type
has cyclical learning. Ruling out mixed outcomes in which more than one type has cyclical learning requires
joint conditions on Λi(ω) for the non-convergent types.
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(iii) Entrenched Disagreement occurs with positive probability if Λ(L) contains a max-
imally accessible disagreement outcome and almost surely does not occur if Λ(L) con-
tains no disagreement outcome. Each maximally accessible disagreement outcome in
Λ(L) occurs with positive probability.

(iv) Cyclical Learning occurs almost surely if and only if Λ(L) = ∅ when k = 1. When
k = 2, cyclical learning occurs almost surely for both social types if Λ(L) = ∅ and
ΛM(L) = ∅, occurs almost surely for at least one social type if Λ(L) = ∅, and almost
surely does not occur if Λ(L) contains an agreement outcome or maximally accessible
disagreement outcome and ΛM(L) = ∅.

An analogous result holds in state R.

See Online Appendix D for the analogous result for k > 2 social types, using the generalized
definitions of maximal accessibility and ΛM(ω).

The conditions for correct and incorrect learning are tight: these learning outcomes arise
if and only if the respective limit beliefs are in Λ(ω). For a disagreement outcome, there
is a wedge between the sufficient conditions for it to arise—maximal accessibility—and not
arise—instability.26 This wedge disappears if all locally stable disagreement outcomes are
maximally accessible (see Section 4.3 for an example.) If multiple learning outcomes occur
with positive probability, then learning is path-dependent—agents become certain of different
states following different histories (again see Section 4.3). Theorem 4 also determines when
learning is complete, as stated in the following corollary (using the expanded definition of
ΛM(ω) in Online Appendix D when k > 2.)

Corollary 2 (Complete Learning). If Λ(L) = {0k} and ΛM(L) = ∅, correct learning occurs
almost surely in state L. An analogous result holds in state R.

It follows immediately from the martingale property of the likelihood ratio that these con-
ditions are satisfied in a correctly specified environment.27 As we show in Example 1 at the
end of this subsection, they can also hold in misspecified environments.

An important feature of Theorem 4 is that the characterization requires calculations at
a finite set of beliefs—in particular, determining Λ(ω), ΛM(ω) and maximal accessibility
only requires computing ψ(a|ω,λ) and ψ̂(a|ω,λ) at stationary beliefs λ ∈ {0,∞}k. Since
action choices depend on beliefs, in principle, determining the asymptotic properties of the
likelihood ratio could require characterizing its behavior across the entire belief space. The
fact that this is not necessary makes Theorem 4 straightforward to use in applications.

Several economic insights emerge from Theorem 4. First, belief convergence forces action
convergence: each type eventually settles on an action if and only if its beliefs converge. It
follows that the limit action choice is efficient if and only if learning is correct. If learning is
incorrect for a type, the type will choose inefficient actions infinitely often, and if learning is
cyclical, the type will choose both efficient and inefficient actions infinitely often.28

26Theorem 7 in Appendix A.3 presents a weaker condition—separability—to establish the global stability
of disagreement outcomes.

27The likelihood ratio is a martingale in state L and the log function is concave. Together with Assump-
tions 2 and 3, this implies γi(L,λ) < 0 for all λ ∈ [0,∞]k, so Λ(L) = {0k} and ΛM (L) = ∅.

28In the proof of Theorem 4, we show that if the likelihood ratio for a type does not converge, then it
enters a neighborhood of each certain belief infinitely often.
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Second, model misspecification gives rise to two potential sources of entrenched dis-
agreement in society. Model heterogeneity can lead to entrenched disagreement within a
population due to differing interpretations of a common history. A signal realization that,
for instance, a vaccine is safe or a politician is corrupt can cause agents to update in op-
posite directions based on their belief about the credibility of the source. This arises even
though preferences and signals are aligned, so that agents have a common interpretation
of whether one signal realization or action choice is relatively more likely in a given state
than another. Therefore, model heterogeneity can explain how connected populations ob-
serving shared sources can perpetually disagree.29 Path-dependent learning can also lead
to entrenched disagreement, but across populations that observe different histories rather
than within populations that have different models.30 This can explain how separate popu-
lations with similar models can come to have polarized ingrained views. When both sources
are present, then within-population disagreement can vary across populations depending on
whether the observed history has a common or polarizing interpretation—in other words,
the order in which information arrives will impact the level of disagreement within a popu-
lation. For example, in a cognitive hierarchy learning model, agreement emerges following
some histories while disagreement emerges following others (see the working paper version
of this article for this analysis (Bohren and Hauser 2021a)).

While path-dependent learning—and hence, across-population disagreement—can also
occur in correctly specified social learning environments (Banerjee 1992; Bikhchandani et al.
1992), learning is incomplete at all but at most one possible limit beliefs (the degenerate
belief on the correct state). Since agents remain uncertain about the state, disagreement
between populations can be easily resolved by introducing a common source. In contrast,
misspecified learning gives rise to path-dependent learning with multiple degenerate limit
beliefs. As different populations come to place high probability on different states, it becomes
increasingly difficult to reconcile prolonged disagreement with common information.

The following examples demonstrate how to apply Theorem 4.

Example 1 (Partisan Bias, cont.). Applying Theorem 4 to the characterization of Λ(L)
above establishes that correct learning occurs almost surely for mild partisan bias, cyclical
learning arises almost surely for intermediate levels, and incorrect learning occurs almost
surely for severe partisan bias (see Proposition 5 in Online Appendix B.1.)

Example 2 (Partisan Bias and Unawareness). In the presence of model heterogeneity, agents
have a more complex inference problem—in order to be correctly specified, an agent must know
the form and frequency of different biases in the population. In this example, we show that
when a type accurately interprets signals but does not account for others’ partisan bias, it can
be just as wrong as the partisan types. Augment Example 1 to include non-partisan agents
who have correctly specified signal distributions. Analogous to the partisan types, there is
a social and an autarkic non-partisan type. Neither social type is aware that some agents
have a different subjective signal distribution. An analogous derivation of Λ(L) establishes
that the non-partisan social type has the same long-run learning outcome as the partisan

29For example, Gagnon-Bartsch (2016) show that taste projection can lead to entrenched disagreement.
30Earlier work establishing that path-dependent learning with multiple degenerate limit beliefs arises for

specific misspecified models includes Rabin and Schrag (1999) (confirmation bias), Epstein et al. (2010)
(overreaction) and Eyster and Rabin (2010); Bohren (2016) (naive social learning).
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Figure 1. Partisan Bias and Unawareness
(ω = L, FL(s) = 2s− s2, FR(s) = s2, share autarkic types=0.1)

social type—correct learning occurs almost surely for both types when there is a small share
of partisan agents or mild bias, cyclical learning arises almost surely for intermediate levels,
and incorrect learning occurs almost surely when there is a large share of very biased partisan
agents. In other words, the presence of a large share of unaccounted for partisan types can
prevent types who correctly interpret signals from making efficient choices. On the other
hand, the presence of many agents who correctly interpret signals can help even severely
biased agents adopt the efficient action. Fig. 1 illustrates these three learning regions. See
Online Appendix B.2 for the analysis.

3.5 Robustness of Learning.

We next establish that learning is generally robust to the details of the environment. Specifi-
cally, correctly specified environments are robust to some misspecification in that learning is
complete when social types have approximately correct models. Misspecified environments
are also robust, in that except for knife-edge cases that separate different learning regions,
nearby misspecified environments will have the same set of learning outcomes. To explore ro-
bustness, we first fix a learning environment and show that the same learning outcomes arise
in environments with sufficiently similar equilibrium distributions of actions. We then use
this result to establish that learning is complete when social types’ models of inference are
sufficiently close to correctly specified. Taken together, these results strengthen the applica-
bility of correctly specified environments to real-world settings with mild biases and establish
that small errors in measuring or forecasting more severe biases will not significantly alter
the predicted learning outcomes.

For the first result, we focus on learning environments in which Theorem 4 fully character-
izes learning outcomes—that is, environments that satisfy Assumptions 1 to 4, are identified
at certainty, and in which all locally stable disagreement outcomes are maximally accessible
and mixed learning almost surely does not arise, ΛM(L) = ΛM(R) = ∅ (using the general-
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ized definitions of maximal accessibility, ΛM(ω), and the property that either Λ(ω) = ∅ or
G(ω) has no cycles from Online Appendix D when k > 2). We refer to such environments
as regular.31 Fixing a regular learning environment, Theorem 5 establishes that any learn-
ing environment with sufficiently similar action distributions has the same set of long-run
learning outcomes, where we use the total variation distance to measure the closeness of
distributions.32

Theorem 5 (Robustness). Let (Θ∗, π∗) be a regular learning environment with set of stable
learning outcomes Λ∗(ω) in state ω. There exists a δ > 0 such that any learning environment
(Θ, π) that satisfies Assumptions 1 to 4, has the same number of social types, and is suffi-
ciently close to (Θ∗, π∗) in terms of the true and perceived distributions over actions in that
||ψ∗(·|ω,λ)−ψ(·|ω,λ)|| < δ, ||ψ̂∗i (·|L,λ)− ψ̂i(·|L,λ)|| < δ and ||ψ̂∗i (·|R,λ)− ψ̂i(·|R,λ)|| < δ
for all λ ∈ {0,∞}k and i = 1, ..., k, has the same set of long-run learning outcomes as
(Θ∗, π∗) in state ω i.e. given sets Λ(ω) and ΛM(ω) for (Θ, π), (i) Λ(ω) = Λ∗(ω); (ii)
ΛM(ω) = ∅; and (iii) all disagreement outcomes in Λ(ω) are maximally accessible.

This result follows from the continuity of γ(ω,λ) in ψ and ψ̂i, which implies that, provided
γi(ω,λ) 6= 0, it does not change sign at belief λ when ψ and ψ̂i are perturbed. Therefore,
the locally stable set Λ(ω) remains the same, the mixed outcome set ΛM(ω) remains empty,
and locally stable disagreement outcomes remain globally stable. For example, in Fig. 1 we
see that for any environment that is identified at certainty (i.e. does not lie on the two blue
lines dividing the learning regions), nearby environments have the same learning outcome.

Correctly specified environments are regular and have complete learning. Therefore,
fixing a correctly specified environment, Theorem 5 establishes that learning is complete
in misspecified environments with similar action distributions. We use this to establish
robustness when social types’ models of inference are approximately correct. In order to
compare models of inference without needing to define a complicated metric over types,
we vary social types’ models of inference while holding fixed other aspects of the learning
environment—specifically, the preferences of social types and the preferences and models of
autarkic and noise types. Formally, (Θ, π) is structurally equivalent to (Θ∗, π∗) if |ΘS| = |Θ∗S|,
ui = u∗i for i = 1, ..., k, ΘA = Θ∗A, ΘN = Θ∗N , and π(θi) = π∗(θ∗i ) for i = 1, ..., n.33

Theorem 6 establishes that learning is complete when social types have subjective type and
signal distributions close enough to the true distributions, where again we use the total

31Within the set of environments that satisfy Assumptions 1 to 4 and are identified at certainty, this
includes all correctly specified environments and all environments with a single social type, as well as the
environments with multiple social types in Example 2 and Sections 4.2 and 4.3. Robustness also holds locally
for environments with ΛM (ω) 6= ∅ or disagreement outcomes that are not globally stable.

32The total variation distance between distributions ψ and ψ′ is ||ψ(·|ω,λ) − ψ′(·|ω,λ)|| ≡
maxA⊂A |

∑
a∈A(ψ(a|ω,λ) − ψ′(a|ω,λ))|. Pinsker’s inequality implies that our results also hold for the

Kullback-Leibler divergence, which has been used to study robustness in subsequent work (Frick et al.
2020a,b).

33Recall that a correctly specified environment requires all social types to be correctly specified, but au-
tarkic types may be misspecified. Therefore, misspecified environments have structurally equivalent correctly
specified environments.
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variation distance to measure the closeness of distributions.34,35

Theorem 6 (Robustness). Let (Θ∗, π∗) be a correctly specified environment that satisfies As-
sumptions 2 and 3. There exists a δ > 0 such that in any structurally equivalent misspecified
environment (Θ, π) that satisfies Assumptions 1 to 4 and in which social types have suffi-
ciently correct models of inference in that ||π̂i−π|| < δ, ||F̂L

i −FL|| < δ and ||F̂R
i −FR|| < δ

for all θi ∈ ΘS, learning is complete.

A similar result holds for an individual type that has an approximately correct model of
inference, regardless of the degree to which other types are misspecified. Therefore, agents
do not need to know exactly how their misspecified peers behave in order to accurately
learn from their choices. Beyond Theorems 5 and 6, we can use Theorem 4 for a precise
characterization of how large perturbations to the environment can be before they alter the
set of learning outcomes. For example, in Fig. 1, we see that if the share of non-partisan
types is 0.8, then learning is complete for any level of bias ν > 0, whereas if the share of
non-partisan types is 0.5, then learning is complete when ν > 0.4.

These robustness results may not seem surprising, since Bayes rule is continuous. But
in an infinite horizon setting, nearby models with small per-period differences in belief up-
dating have the potential to aggregate to very different limit beliefs. For example, if agents’
models are equidistant from the truth in either state at a certain belief—and therefore, the
environment is not identified at certainty—then arbitrarily small perturbations alter the set
of learning outcomes that arise. In Fig. 1, this is the case for the environments described by
the parameters (q, ν) that trace out the boundaries dividing the different learning regions.
At these parameters, there is an abrupt shift from complete learning to cyclical learning or
cyclical learning to incorrect learning. But this corresponds to a measure zero set.

More generally, uniformly informative actions ensure that identification at certainty is a
generic property of the learning environments we consider—and therefore, so is robustness.
Further, it ensures that all correctly specified environments are identified at certainty, and
therefore, all correctly specified environments are robust. The same holds true in Bohren
(2016), whose robustness result is a special case of Theorem 6. In contrast, when actions
are not uniformly informative, Frick et al. (2020b) show that a failure of robustness occurs
in a correctly specified environment that is not identified at certainty. Identification at
certainty fails because actions (or signals) are perceived to be uninformative at certainty—
in contrast to our framework, in which individual actions are perceived to be informative
but identification at certainty fails because the Kullback-Leibler divergence from a type’s
perceived action distribution to the true action distribution is the same in each state (a

34In a slight abuse of notation, we simultaneously let || · || denote the total variation distance between
two probability measures over the type space, i.e. ||π − π′|| ≡ supX⊂{1,...,n} |

∑
i∈X(π(θi) − π′(θ′i))|, and

the distance between two signal c.d.f.s with common support, i.e. ||F − F ′|| ≡ supX∈BS |PF (X)− PF ′(X)|,
where BS denotes the Borel σ-algebra on S and PF (X) denotes the probability of X ∈ BS under the measure
described by c.d.f. F .

35An analogous result holds in settings where agents are very wrong about the type distribution, as long
as the types that they believe exist are “close” to the actual types. For example, neither type in Example 2
allows for the possibility of the other—their subjective type distributions have non-overlapping supports.
But learning is complete when the partisan type is not too biased, as the partisan type is sufficiently close to
the non-partisan type. By defining a suitable measure of distance between types, one could use Theorem 5
to derive an analogous result to Theorem 6 for such settings.
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property that cannot arise in a correctly specified model).
Frick et al. (2020a) also demonstrate a failure of robustness in a social learning setting

with an infinite state space and privately observed actions. In this environment, action
choices are sensitive to small amounts of misspecification and agents with almost correct
models can come to place probability one on an incorrect state. Together with our results,
this demonstrates that the details of the learning environment are important to consider
when exploring robustness. If one wishes to design a robust learning environment, then
adjusting these details may be an important lever.

Robustness relates to whether a learning outcome is a weak or strict Berk-Nash equi-
librium. In our setting, correct learning is a strict and unique Berk-Nash equilibrium in
correctly specified environments. This ensures that correct learning is also the unique Berk-
Nash equilibrium in nearby misspecified environments. In contrast, when a correctly speci-
fied environment is not identified at certainty—as in Smith and Sørensen (2000); Frick et al.
(2020b)—correct learning is a weak Berk-Nash equilibrium and therefore is not robust.

3.6 Discussion

Focus on Asymptotic Learning. We focus on how misspecification affects long-run learn-
ing. When using this approach, an important question is whether the long-run is econom-
ically relevant. For incorrect learning, cyclical learning, or disagreement, showing these
outcomes arise asymptotically establishes that agents are bounded away from efficiency or
agreement, irrespective of the amount of information that agents observe or the rate of
learning. Therefore, the source of these inefficiencies is not a lack of sufficient information to
learn the state or the slow pace at which this information arrives. Long-run results also high-
light an important distinction between inefficient action choices due to incomplete learning
in correctly specified environments versus incorrect learning in misspecified environments.
Incomplete learning is fragile and a herd can be overturned by a relatively uninformative
piece of information at any point in time. In contrast, when incorrect learning arises, more
informative interventions are required to overturn longer incorrect herds.

When correct learning arises asymptotically leaves open important questions such as how
quickly actions converge to efficiency. The expression γ(λ, ω) also determines the asymptotic
rate of learning; we leave further study of this to future work.

Extensions. We outline several possible extensions to the learning framework.
Misaligned Type Spaces. Set Λ(ω) also characterizes locally stable beliefs in misaligned

environments. Beyond ruling out confounded learning, the aligned assumptions are used
to establish the global stability of agreement—they guarantee that there are actions that
uniformly move social types’ beliefs towards both agreement outcomes. If a misaligned
environment has an action that uniformly moves all social types’ beliefs towards a stationary
belief, then our method can also be used to establish the global stability of this belief.

Signal and Type Distributions. It is a straightforward extension to allow types to observe
signals from different distributions, to believe that other types observe signals from different
distributions, or to allow the true and/or subjective type distributions to depend on the state.
Simply augment the definition of a type to include the additional primitives. The extension
to heterogeneous signal distributions allows us to model biases that involve interpersonal
comparisons related to the quality of information. For instance, a natural way to model
overconfidence is with a type that correctly interprets its own signal but believes other
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agents observe signals from a less informative distribution. It is also straightforward to allow
multiple pieces of information to arrive at the same time—for example, a finite number of
agents act simultaneously or all agents also observe a public signal process (for the latter,
see an earlier working paper version of this article (Bohren and Hauser 2019b)). As long as
the model reduces to a belief process that satisfies the conditions outlined in Lemma 2, our
characterization applies.

Action and State Space. For technical convenience, we assume that the action space is
finite. Allowing for a continuous action space would not qualitatively change the analysis.
Similar techniques to those we use can be used to analyze a finite state space with more
than two states, with the caveats that the definition of an aligned environment is more
complicated and the notation is more cumbersome. We use results pertaining to stochastic
difference equations in our analysis, which means that generalizing to an infinite state space
requires different techniques.

4 Applications

We present three applications to demonstrate how our general framework can be used to
address the issues raised in the introduction. First, we show that overreaction—a form of
signal misspecification—has a fundamentally different impact when individuals learn from
social versus private sources. Second, we examine whether a representative agent model is
a good approximation in a setting with heterogeneous levels of naive learning. Finally, we
show that entrenched disagreement arises and agreement almost surely does not in a level-k
social learning model where different types have fundamentally distinct models of inference.
All proofs for the results in this section are in Online Appendix C.

4.1 Overreaction: Individual versus Social Learning

This application demonstrates how our characterization can be used to determine whether
the impact of a bias differs when agents learn from private versus social sources. We explore
this question in a setting in which individuals overreact to signals.36 We show that over-
reaction interacts with social learning to create long-run inefficiencies that are not present
when agents learn directly from signals. In particular, cyclical learning arises for sufficiently
severe levels of overreaction when agents learn from a social source, whereas learning is
complete regardless of the severity of the bias when agents learn directly from signals. We
conclude with a discussion of other models of overreaction and highlight how these different
parameterizations differentially impact learning.

We model overreaction as a type who forms beliefs as if it has observed the same signal
realization multiple times. The type believes that the private signal is distributed according
to F̂ ω(s) = F ω( sν

(1−s)ν+sν ) in state ω, where F ω is continuous with support S = [0, 1] and

ν ∈ (1,∞) captures the degree of overreaction. This leads to private belief ŝ(s)
1−ŝ(s) =

(
s

1−s

)ν
following signal realization s. For example, if ν = 2, the signal is double counted—the private
belief following realization s corresponds to the correct belief following two realizations s—
independent of the direction and strength of the signal realization.

Benchmark: Individual Learning. Given that the level of overreaction is independent
of the realized signal, when type θ1 learns directly from signals, the bias does not alter the

36Overreaction has been widely documented empirically; see Section 2.3 for citations.
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sign of γ1(ω,λ): as in the correctly specified model, γ1(ω,λ) < 0 for all λ and learning is
complete for any level of overreaction. This follows almost directly from Berk (1966).

Observation 1. If type θ1 observes signals directly, learning is complete for any ν ∈ [1,∞).

Social Learning. When signals are filtered through other agents’ actions, the induced level
of overreaction to an action depends on the observed action. Therefore, the bias can alter the
sign of γi(ω,λ), and hence, the set of learning outcomes. We illustrate this in a learning en-
vironment with symmetric preferences and signal distributions, so that there are no inherent
asymmetries in the underlying overreaction to signals or the mapping from beliefs to actions.
Suppose there are two types of agents: θ1 is social and θ2 is autarkic, with π(θ1) ∈ (0, 1).
Both types have the same level of overreaction, as outlined above, face a decision problem
with four actions, a ∈ {a1, a2, a3, a4} (ordered according to increasing preference in state R)
and a symmetric signal, FL(s) = 1− FR(1− s), and have the same symmetric preferences,
i.e. if a1 is optimal at belief p that the state is R, then a4 is optimal at belief 1 − p, and
similarly for a2 and a3. Given this symmetry, the agent’s decision-rule can be represented
as a cutoff rule p∗ ∈ (0, 1/2) such that the agent chooses a1 if p ≤ p∗, a2 if p ∈ (p∗, 0.5],
a3 if p ∈ (0.5, 1 − p∗] and a4 if p ∈ (1 − p∗, 1]. To ensure that moderate actions a2 and a3
are chosen for a sufficiently large window of beliefs, assume p∗ is sufficiently small so that

FL(p∗)−FR(p∗)
logFL(p∗)−logFR(p∗) < FR(.5). To close the model, assume that θ1 has a correct subjective

type distribution and both types have prior p0 = 1/2.
The following result establishes that social learning causes overreaction to interfere with

asymptotic learning. In particular, sufficiently severe overreaction leads to cyclical learning.

Proposition 1. There exists a cutoff π̄ ∈ (0, 1) on the share of social types such that: (i)
if π(θ1) > π̄, then there exists a cutoff ν̄(π(θ1)) ∈ (1,∞), which is decreasing in π(θ1),
such that cyclical learning arises almost surely if ν > ν̄(π(θ1)) and learning is complete if
ν < ν̄(π(θ1)); (ii) if π(θ1) < π̄, then learning is complete for all ν ∈ [1,∞).

When beliefs are close to zero, action a1 is chosen for a larger set of signal realizations than
a4. Therefore, the overreaction is asymmetric: it is stronger with respect to contradictory
a4 actions than confirmatory a1 actions. This pulls beliefs away from zero. Similarly, when
beliefs are close to infinity, overreaction is stronger with respect to contradictory a1 actions.
For sufficiently severe overreaction, this gives rise to cyclical learning, as illustrated in Fig. 2.

Other Parameterizations. Other approaches to modeling overreaction include Epstein
et al. (2010), who model overreaction as a linear updating rule that places negative weight
on the prior belief and a weight above one on the correctly specified posterior belief, and
Bushong and Gagnon-Bartsch (2019), where an agent underestimates the extent of her ref-
erence dependence, which leads her to overreact when recalling past outcomes.37 These
different parameterizations are of consequence: when an agent learns directly from signals,
Epstein et al. (2010)’s parameterization of overreaction alters updating in an asymmetric way
and sufficiently severe overreaction leads to the possibility of incorrect learning. Similarly,
incorrect learning can arise in Bushong and Gagnon-Bartsch (2019) when the agent is loss
averse, so that she overreacts asymmetrically to losses and gains. In contrast, if the agent is
not loss averse, the overreaction is symmetric and, as in our individual learning setting, this

37In Online Appendix E, we show how our framework nests Epstein et al. (2010).
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Figure 2. Overreaction to social information
(FL = 2s− s2, FR = s2, p∗ = .25.)

does not interfere with learning.

4.2 Naive Learning with Model Heterogeneity

As discussed in the introduction, papers that study model misspecification generally assume
that all agents have the same form and level of misspecification. This can be viewed as
a representative agent approach, which significantly simplifies the analysis. However, the
empirical literature has shown that even when agents have similar biases, they will exhibit
it in differing degrees. As this application demonstrates, our characterization can determine
whether a representative agent approach is valid in the face of heterogeneity in the sense
that the long-run behavior of a representative agent approximates the long-run behavior
of heterogeneous agents. This provides a template for evaluating the representative agent
approach that is straightforward to apply to other forms of misspecification.

We explore this question in a setting in which agents are naive learners who overestimate
the private information reflected in actions. We compare learning in a setting in which agents
have heterogeneous levels of naivete to a representative agent setting in which a single type
has a level of naivete equal to the average naivete of the population (the latter is a special
case of Bohren (2016)). We show that when heterogeneity is small, this representative
agent model is a good approximation of the underlying heterogeneous environment in that
both environments have the same learning outcomes, whereas when heterogeneity is large,
incorrect learning arises with positive probability in the corresponding representative agent
model even though both types almost surely learn the correct state.

As in Bohren (2016), we model naive learning as a misspecified belief about the share
of autarkic types. Let θA denote the autarkic type and assume π(θA) ∈ (0, 1). To capture
model heterogeneity, suppose there are two social types, θ1 and θ2, that occur with equal
probability, π(θ1) = π(θ2). Both social types overestimate the share of autarkic types, with
type θ2 having a more severe bias, π(θA) < π̂1(θA) ≤ π̂2(θA) ≤ 1. This leads agents to
underestimate the correlation between prior actions. In the representative agent setting,
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a single social type believes that the autarkic type occurs with probability π̂ ∈ (π(θA), 1].
We compare heterogeneous environments with biases (π̂1(θA), π̂2(θA)) to the corresponding
representative agent environment with a bias equal to the average bias in the heterogeneous
setting, i.e. π̂ = (π̂1(θA) + π̂2(θA))/2. To close the model, assume that each agent faces a
binary decision problem in which she earns a payoff of one from choosing the action that
matches the state, A = {L,R} and u(a, ω) = 1a=ω, all types correctly interpret private
signals, social types have correct beliefs about the relative frequency of each social type, and
all types have common prior p0 = 1/2.

We first show that the representative agent model is a good approximation when hetero-
geneity is sufficiently small.

Proposition 2. Generically, for any average bias π̂ ∈ (π(θA), 1], there exists an ε > 0 such
that if heterogeneity is sufficiently small, |π̂1(θA) − π̂2(θA)| < ε, then the heterogeneous and
representative agent settings have the same set of long-run learning outcomes.

This result illustrates the robustness of misspecified environments discussed in Theorem 5.
Next, we explore how heterogeneity affects learning. It is a priori unclear whether het-

erogeneity will facilitate or hinder learning, compared to the representative agent model.
The type with milder misspecification may facilitate learning by counteracting the type with
more severe misspecification, or the type with the more severe misspecification may distort
information in a way that hinders learning for both types. The following result establishes
that the first effect dominates and heterogeneity facilitates learning.

Proposition 3. Suppose the signal distribution is symmetric, FL(s) = 1 − FR(1 − s). If
learning is almost surely correct in the representative agent model with π̂ ∈ (π(θA), 1], then
learning is almost surely correct in the heterogeneous model for all π̂1(θA) ∈ (π(θA), 1] and
π̂2(θA) ∈ (π̂1(θA), 1] such that (π̂1(θA) + π̂2(θA))/2 = π̂, and if incorrect learning occurs
with positive probability in the heterogeneous model with π̂1(θA) ∈ (π(θA), 1] and π̂2(θA) ∈
(π̂1(θA), 1], then incorrect learning occurs with positive probability in the representative agent
model with π̂ ≡ (π̂1(θA) + π̂2(θA))/2. For all π̂1(θA) ∈ (π(θA), 1] and π̂2(θA) ∈ [π̂1(θA), 1],
almost surely learning is either correct or incorrect.

Type θ1 is more adept at correcting for correlated information, and as a result, asymptotically
adopts the inefficient action with lower probability than θ2. In turn, this helps θ2 learn the
true state. Actions from θ1 confirm the state and θ2 overestimates the private information
reflected in these actions. This reduces the probability that θ2 herds on an inefficient action.38

Fig. 3 illustrates these learning regions.
This characterization allows us to precisely determine how much heterogeneity can be

present before the representative agent model is no longer a good approximation. For the
parameters considered in Fig. 3, when the average bias is low or high—for example, 0.4 or
0.8—any feasible level of heterogeneity results in the same set of learning outcomes as the
corresponding representative agent model. At intermediate levels of the average bias—for
example, 0.6—sufficient heterogeneity yields different learning outcomes than the represen-

38Heterogeneity does not always improve learning. If heterogeneity leads to fundamentally different
biases—for example, if one type overestimates the correlation in prior actions and the other type underes-
timates it—then sufficient heterogeneity will interfere with long-run learning, even when the average bias is
close to the truth (e.g. π̂ ≈ π(θA)) and learning is complete in the representative agent model.
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Figure 3. Naive Learning with a Representative Agent
(π(θA) = .3, FL(s) = 2s− s2, FR(s) = s2)

tative agent model. In the knife-edge case of an average bias of 0.48, the representative agent
model is not identified at certainty—representative agent models with π̂ < 0.48 are robust
to any level of heterogeneity while representative agent models with π̂ slightly above 0.48
are only robust to a very small level of heterogeneity.

Proposition 3 has important implications for policy interventions aimed at mitigating
inefficient choices. Suppose a social planner wishes to intervene if and only if agents face
the possibility of incorrect learning. The planner measures the average level of bias in the
population and uses a representative agent approach to determine whether to intervene.
Given Proposition 3, this method will result in overintervention, in that there are levels
of bias at which the planner will intervene even though learning is almost surely correct.
However, underintervention will not be an issue, as the planner will never fail to intervene
when incorrect learning arises.

4.3 Entrenched Disagreement in a Level-k Learning Model

As discussed in the introduction, a central contribution of our framework is the ability to
allow for model heterogeneity—either due to varying levels of the same bias, as illustrated
in Section 4.2, or due to fundamentally distinct biases. This section demonstrates how our
characterization can be used to explore whether agents with distinct models influence each
others’ learning and to determine when entrenched disagreement emerges. We illustrate
this in the context of a social learning setting where agents use level-k reasoning. We
show that entrenched disagreement emerges as a robust feature of this setting. Further,
the presence of agents who use level-3 reasoning alters the learning outcomes of agents
who use level-2 reasoning. This contrasts with settings that consider level-2 reasoning in
isolation (Eyster and Rabin 2010; Bohren 2016), highlighting the potential error in predicting
learning outcomes without properly accounting for the interaction between different models
of inference.

Level-k models describe how boundedly rational agents draw inference in strategic set-
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tings (Costa-Gomes and Crawford 2006). Agents are characterized by their “depth” of
reasoning, where higher levels use progressively more sophisticated reasoning. Applying this
model of inference to a social learning setting, each level corresponds to a type with a mis-
specified model of the strategic link between prior actions and private signals. Level-0 is a
noise type that chooses an action without learning from its signal or the actions of others,
i.e. ŝ0(s) = 1/2 and π̂0(θ0) = 1. Higher levels accurately learn from their signals but misin-
terpret actions, which is captured by a misspecified type distribution. Level-1 is an autarkic
type who acts solely based on its private signal, i.e. it believes all agents are noise types,
π̂1(θ0) = 1. Level-2 fails to account for redundant information in prior actions, i.e. it believes
all agents are autarkic types, π̂2(θ1) = 1.39 Level-3 understands that prior actions contain
redundant information, but does not allow for the possibility that other agents also account
for this, i.e. it believes almost all other agents are level-2, π̂3(θ2) = 1 − ε for some small
ε > 0 (for technical reasons, we assume this type places arbitrarily small probability on the
level-1 type, π̂3(θ1) = ε).40 As is customary, the level-0 type anchors the model of level-1
but does not actually exist in the population, π(θ0) = 0. To close the model, assume that
each agent faces a binary decision problem in which she earns a payoff of one from choosing
the action that matches the state, A = {L,R} and u(a, ω) = 1a=ω, the level-1 type occurs
with positive probability, π(θ1) ∈ (0, 1), there are no level-4 or higher types, and all types
have common prior p0 = 1/2.41 Note that a correctly specified environment is not a special
case of this set-up, as no type allows for the existence of its own type.

Although depth of reasoning models feature prominently in the empirical literature on
social learning (Kübler and Weizsäcker 2004; Penczynski 2017), it has been relatively unex-
plored in the corresponding theoretical literature—despite the interest in naive learning—as
characterizing learning outcomes is significantly more complex when agents learn in different
ways.42 The addition of level-3 adds two complications relative to a naive learning model
with only level-2. First, it is necessary to characterize learning outcomes for multiple types
simultaneously. Second, the presence of level-3 affects the learning of level-2, even though
level-2 is not aware of level-3.

Proposition 4 establishes that either entrenched disagreement or cyclical learning almost
surely arise, depending on the true distribution over types. Strikingly, agreement almost
surely does not arise for any distribution over types.

Proposition 4. There exists an ε > 0 such that if ε ∈ (0, ε), then either learning is cyclical
almost surely or entrenched disagreement occurs almost surely. For ε ∈ (0, ε), there exists

39A level-2 type is analogous to the “BRTNI” agents in Eyster and Rabin (2010) and the “naive Bayesians”
in Hung and Plott (2001). The naive learners in Bohren (2016) are a modified level-2 type that allows for
the possibility of other level-2 agents. In Eyster and Rabin (2010), all agents have the same model—they
are all level-2—while Bohren (2016), level-1 and level-2 types both occur with positive probability.

40The exact parameterization of the level-k model, i.e. ε = 0, violates Assumptions 3 and 4. An alter-
native similar model that can be captured with this set-up is the cognitive hierarchy model (Camerer et al.
2004), where level-3 places non-trivial probability on level-1 and level-2 types. We explore this alternative
parameterization in the working paper version of this article (Bohren and Hauser 2021a).

41Our framework can allow for higher levels, but empirical studies rarely find evidence of such reasoning.
For example, in a social learning experiment, Penczynski (2017) finds that most agents’ behavior is consistent
with level-1, 2 or 3 types, with a modal type of level-2.

42As far as we know, no theoretical papers characterize asymptotic learning in a level-k framework. While
naive learners are analogous to the level-2 type, existing models focus on the case where all agents are level-2.
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a cutoff π̄3 ∈ (0, 1) such that if π(θ3) > π̄3, then almost surely learning is cyclical, there
exists a cutoff π̄2 ∈ (0, 1) such that if π(θ2) > π̄2, then both disagreement outcomes arise
with positive probability, and there exists a cutoff π̄1 ∈ (0, 1) such that if π(θ1) > π̄1, then the
disagreement outcome in which level-2 learns the correct state and level-3 learns the incorrect
state arises almost surely.

In contrast, cyclical learning does not arise in settings that examine level-2 reasoning in
isolation (Eyster and Rabin 2010; Bohren 2016). Given the empirical evidence for both
level-2 and level-3 reasoning in social learning settings (Penczynski 2017), the presence of
both models of inference is important to take into account.

Disagreement is driven by level-2’s imitation of the more frequent action and level-3’s
anti-imitation in order to correct for level-2’s overreaction. If a large share of agents are
level-1, then level-2’s model is close to correct and almost surely level-2 agents learn the
correct state. Therefore, the disagreement outcome in which level-2 agents learn the correct
state and level-3 agents learn the incorrect state arises almost surely. Note that in this case,
a higher level of reasoning performs strictly worse than a lower level of reasoning. Otherwise,
if a large share of agents are level-2, then both disagreement outcomes emerge and learning is
path-dependent. Therefore, two similar populations who learn from different action histories
may converge to different forms of disagreement. If a large share of agents are level-3, then
neither disagreement outcome is stable and learning is almost surely cyclical. Intuitively,
near beliefs (0,∞) where level-2 agents choose L and level-3 agents choose R, a level-2 agent
overreacts to the more frequently chosen R action, pulling her belief away from state L, and
similarly for the other disagreement outcome. Correct and incorrect learning almost surely
do not arise because the level-2 and level-3 agents have models that interpret actions in
opposite ways, which prevents agreement.

Fig. 4 illustrates the learning regions for the level-k model, including the thresholds
described in Proposition 4.43 Penczynski (2017)’s estimate of the type distribution lies in
the gray region in which both disagreement outcomes arise with positive probability.

5 Conclusion

We develop a general framework to study learning with model misspecification, which cap-
tures many information-processing biases and heuristics of interest in economic decision-
making. A key contribution of our framework is the ability to allow for model heterogeneity,
in which agents exhibit different levels of a bias or have distinct biases. Our main result
characterizes the set of asymptotic learning outcomes based on two expressions that are
straightforward to derive from the underlying form of misspecification. This characteriza-
tion provides a unified way to compare different forms of misspecification that have been
previously studied and yields new insights about forms of misspecification that have not
been previously explored. The characterization also provides a rationale for entrenched dis-
agreement, in which agents with different models converge to different certain beliefs despite
observing a common history. Our results yield insights into how the source of information
(i.e. social versus private) impacts learning, whether learning predictions are sensitive to

43In Online Appendix C.3, we show analytically that the qualitative features Fig. 4 hold for the full
characterization of learning outcomes across (π(θ1), π(θ2), π(θ3)) ∈ ∆2; for expositional clarity, we state a
partial characterization in Proposition 4.
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Figure 4. Entrenched Disagreement in Level-k Learning
(ω = L, FL = 10

3 (s− .5s2)− .6, FR(s) = 5
3 (s2 − .04))

different parameterizations of a bias, and when a set of learning outcomes is robust to vary-
ing levels of misspecification. In the presence of model heterogeneity, our results can also
be used to explore how different biases interact and to determine whether a representative
agent approach generates accurate learning predictions.
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Eyster, E., M. Rabin, and G. Weizsäcker (2020): “An Experiment on Social Mislearning,”

Unpublished Manuscript, available at https://ideas.repec.org/p/rco/dpaper/73.html.
Frick, M., R. Iijima, and Y. Ishii (2019): “Dispersed Behavior and Perceptions in Assorta-

tive Societies,” Cowles Foundation Discussion Paper No. 2128R, available at https://ssrn.com/
abstract=3362249.

——— (2020a): “Misinterpreting others and the fragility of social learning,” Econometrica, 88,
2281–2328.

——— (2020b): “Stability and Robustness in Misspecified Learning Models,” Cowles Foundation
Discussion Paper No. 2235, available at https://ssrn.com/abstract=3600633.

Fudenberg, D., G. Lanzani, and P. Strack (2020): “Limits Points of Endogenous Misspeci-
fied Learning,” Unpublished Manuscript, available at https://papers.ssrn.com/sol3/papers.cfm?
abstract id=3553363.

Fudenberg, D., G. Romanyuk, and P. Strack (2017): “Active learning with a misspecified
prior,” Theoretical Economics, 12, 1155–1189.

Gagnon-Bartsch, T. (2016): “Taste Projection in Models of Social Learning,” Mimeo.
Gagnon-Bartsch, T. and M. Rabin (2016): “Naive Social Learning, Mislearning and Unlearn-

ing,” .
Gagnon-Bartsch, T., M. Rabin, and J. Schwartzstein (2018): “Channeled attention and

34

https://ssrn.com/abstract=3783840
http://dx.doi.org/10.2139/ssrn.3783840
https://arxiv.org/abs/1502.06901
http://arxiv.org/abs/1904.08551
http://arxiv.org/abs/1904.08551
https://ideas.repec.org/p/rco/dpaper/73.html
https://ssrn.com/abstract=3362249
https://ssrn.com/abstract=3362249
https://ssrn.com/abstract=3600633
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3553363
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3553363


stable errors,” HBS Working paper 18-108.
Gottlieb, D. (2015): “Will you never learn? Self deception and biases in information processing,”

Unpublished Manuscript, 1–46.
Guarino, A. and P. Jehiel (2013): “Social Learning with Coarse Inference,” American Economic

Journal: Microeconomics, 5, 147–174.
He, K. (2020): “Mislearning from Censored Data: The Gambler’s Fallacy in Optimal-Stopping

Problems,” Unpublished Manuscript, available at http://arxiv.org/abs/1803.08170.
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A Proofs from Section 3

Throughout this section, we use the following notation. Given ε > 0 and κ ∈ {1, ..., k}, define
a neighborhood of λ ∈ {0,∞}κ as Bε(λ

∗) ≡ {λ ∈ [0,∞]κ|λi ∈ [0, ε) if λ∗i = 0 and λi ∈
(1/ε,∞] if λ∗i =∞}. Let int(Bε(λ

∗)) ≡ Bε(λ
∗) ∩ (0,∞)κ.

A.1 Proofs of Lemmas 1 to 3

Proof of Lemma 1. Let pi(λi(h), s) ≡ P̂i(R|h, s) denote the private belief of type θi follow-
ing history h and signal realization s. Given λ ∈ (0,∞) and s ∈ S, consider type θi’s choice
at private belief pi(λ, s). Recall that actions (a1, ...aM) are ordered by relative preference
in state R. Since no two actions yield the same payoff in both states, no action is optimal
at a single belief, and preferences are aligned (Assumption 2), there exist belief thresholds
0 = pi,0 ≤ pi,1 ≤ ... ≤ pi,M = 1 such that we can partition the belief space [0, 1] into a
finite set of closed intervals, with action am optimal at pi(λ, s) if pi(λ, s) ∈ [pi,m−1, pi,m] and
pi,m−1 6= pi,m, and am never optimal iff pi,m−1 = pi,m. Without loss of generality, assume the
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tie-breaking rule is to choose the optimal action with the lower index at each interior cutoff
pi,m ∈ (0, 1), i.e. if pi,m−1 6= pi,m, choose am over any other optimal action am+κ at belief
pi,m. Since there are at least two undominated actions, there are at least two intervals with
a non-empty interior. Since signals are aligned (Assumption 1), when θi ∈ ΘS ∪ΘA, pi(λ, s)
is strictly increasing in s for all λ ∈ (0,∞). Therefore, for each λ ∈ (0,∞), we can define the
decision rule with respect to signal cutoffs 0 ≡ si,0(λ) ≤ si,1(λ) ≤ ... ≤ si,M(λ) ≡ 1, where
si,m(λ) ≡ inf{s ∈ [0, 1] : pi(λ, s) > pi,m for all s ∈ S s.t. s > s} for m = 1, ...,M − 1, so
that the agent chooses action am iff si,m−1(λ) 6= si,m(λ) and she observes signal realization
s ∈ (si,m−1(λ), si,m(λ)], with a closed interval if si,m−1(λ) = 0. When θi ∈ ΘN , pi(λ, s) is
constant with respect to s for all λ ∈ [0,∞]. Therefore, the same set of actions are optimal
at all signal realizations, and generically, this set is a singleton. We define an analogous set
of signal cutoffs as follows: if am is the optimal action with the lowest index at λ ∈ (0,∞),
then si,0(λ) = ... = si,m−1(λ) = 0, si,m(λ) = ... = si,M−1(λ) = supS and si,M(λ) = 1. The
case of λ ∈ {0,∞} for θi ∈ ΘS ∪ ΘA is similar to the noise type: a single action is optimal
at all signal realizations and we can define the cutoffs analogously. �

Proof of Lemma 2. Let si,m(λ) denote the cutoff rules defined in Lemma 1 for m = 0, ...,M

and θi ∈ Θ. To establish the uniform bound, we first show that ψ̂i(a1|R,λ) ≤ ψ̂i(a1|L,λ)
for all λ ∈ [0,∞]k and social types θi ∈ ΘS, and then show that this inequality is strict. Fix
λ ∈ [0,∞]k and consider how social type θi updates its beliefs following a1. By Lemma 1,
θi ∈ ΘS believes that type θj ∈ Θ plays a1 with probability F̂ ω

i (sj,1(λj)). By Lemma A.1
in Smith and Sørensen (2000), FR(s) ≤ FL(s), with strict inequality except when both
terms are 0 or 1. Since a social type believes the signal is informative, by Assumption 1,
this is also true for F̂R

i (s) and F̂L
i (s). Therefore, F̂R

i (sj,1(λj)) ≤ F̂L
i (sj,1(λj)). This implies

ψ̂i(a1|R,λ) ≤ ψ̂i(a1|L,λ), since ψ̂i(a|ω,λ) is a convex combination of F̂ ω
i (sj,1(λj)) for each

θj ∈ Θ. To see that the inequality is strict, recall that autarkic types have a likelihood ratio
that is constant and equal to p0/(1− p0). Therefore, for social type θi,

ψ̂i(a1|R,λ)

ψ̂i(a1|L,λ)
=

∑
θj∈ΘA π̂i(θj)F̂

R
i (sj,1(

p0
1−p0 )) +

∑
θj∈ΘS π̂i(θj)F̂

R
i (sj,1(λj))∑

θj∈ΘA π̂i(θj)F̂
L
i (sj,1(

p0
1−p0 )) +

∑
θj∈ΘA π̂i(θj)F̂

L
i (sj,1(λj))

≤
∑

θj∈ΘA π̂i(θj)F̂
R
i (sj,1(

p0
1−p0 )) +

∑
θj∈ΘS π̂i(θj)F̂

L
i (sj,1(λj))∑

θj∈ΘA π̂i(θj)F̂
L
i (sj,1(

p0
1−p0 )) +

∑
θj∈ΘS π̂i(θj)F̂

L
i (sj,1(λj))

≤
∑

θj∈ΘA π̂i(θj)F̂
R
i (sj,1(

p0
1−p0 )) + π̂i(ΘS)∑

θj∈ΘA π̂i(θj)F̂
L
i (sj,1(

p0
1−p0 )) + π̂i(ΘS)

< 1 (6)

where the first line follows by definition, the second line follows from F̂R
i (s) ≤ F̂L

i (s), the
third line follows from

∑
θj∈ΘS π̂i(θj)F̂

L
i (s) ≤ π̂i(ΘS), and the bound of one follows from

Assumption 3, which ensures there exists at least one autarkic type θj ∈ ΘA with π̂i(θj) > 0

and sj,1(
p0

1−p0 ) such that F̂R
i (sj,1(

p0
1−p0 )) < F̂L

i (sj,1(
p0

1−p0 )). Therefore, ψ̂i(a1|R,λ)/ψ̂i(a1|L,λ)
is uniformly bounded away from one. Similar logic holds for action aM .

Fix θi ∈ ΘS and a ∈ A. From Assumption 4, ψ̂i(a|ω,λ) > 0 for each ω ∈ {L,R}
and λ ∈ [0,∞]k. Further, ψ̂i(a|ω,λ) is bounded below by the perceived probability that
autarkic or noise types play a in state ω, which is independent of λ. Therefore, ψ̂i(a|ω,λ)
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is uniformly bounded away from zero for λ ∈ [0,∞]k. It follows that a is perceived to be
boundedly informative, i.e. there exists an ε > 0 such that ψ̂i(a|R,λ)/ψ̂i(a|L,λ) ∈ [ε, 1/ε]
for all λ ∈ [0,∞]k. Similar reasoning uses Assumption 3 to establish that ψ(a1|ω,λ) and
ψ(aM |ω,λ) are uniformly bounded away from zero for λ ∈ [0,∞]k in each state.

To establish the continuity of ψ(am|ω,λ) at λ ∈ {0,∞}k, from Eq. (2), it is sufficient
to show that λ 7→ F ω(si,m(λ)) is continuous at λ ∈ {0,∞} for all m = 0, ...,M , θi ∈ ΘS

and ω ∈ {L,R}. Consider continuity at λ = 0. Fix an ε > 0. Since a perfectly informative
signal realization does not occur with positive probability and is not perceived to occur with
positive probability, there exists an s̃ ∈ S such that s̃ < 1, 1−F ω(s̃) < ε for each ω ∈ {L,R},
and ŝi(s̃) 6∈ {0, 1} for each θi ∈ ΘS.44 From Lemma 1, it follows that for each m = 1, ...,M−1
and θi ∈ ΘS, si,m(0) ∈ {0, supS}, with si,m(0) = supS if and only if si,m(λ) > 0 for some
λ ∈ (0,∞). From the properties of Bayes Rule, there exists a δ > 0 such that if λ < δ, then
for each m = 1, ...,M − 1 and θi ∈ ΘS such that si,m(0) = supS, si,m(λ) ≥ s̃. Therefore,
|F ω(si,m(λ)) − F ω(si,m(0))| ≤ |F ω(s̃) − 1| < ε for ω ∈ {L,R}. For m = 1, ...,M − 1 and
θi ∈ ΘS such that si,m(0) = 0, it follows from Lemma 1 that si,m(λ) = 0 for all λ ∈ [0,∞]
and therefore, |F ω(si,m(λ))−F ω(si,m(0))| = 0 for ω ∈ {L,R}. By definition, si,0(λ) = 0 and
si,M(λ) = 1 for all λ ∈ [0,∞], and so |F ω(si,m(λ)) − F ω(si,m(0))| = 0 for m ∈ {0,M} and
ω ∈ {L,R}. Taken together, this establishes the continuity of λ 7→ F ω(si,m(λ)) at λ = 0 for
all m = 0, ...,M , θi ∈ ΘS and ω ∈ {L,R}. Analogous reasoning establishes continuity at
λ =∞. To establish continuity for ψ̂i(am|ω,λ), it is sufficient to show that λ 7→ F̂ ω

i (sj,m(λ))
is continuous at λ ∈ {0,∞} for all m = 0, ...,M , θj ∈ ΘS and ω ∈ {L,R}. This follows from
identical logic to the case of ψ(am|ω,λ). �

Proof of Lemma 3. At a stationary belief λ∗ ∈ [0,∞]k, λ∗ = λ∗ ψ̂i(a|R,λ
∗)

ψ̂i(a|L,λ∗)
for all a such that

ψ(a|ω,λ∗) > 0. Trivially, this is satisfied for all λ∗ ∈ {0,∞}k, independent of ψ(a|ω,λ∗),
and these beliefs are stationary. It remains to be determined whether it is satisfied for any
interior beliefs λ∗ ∈ (0,∞)k. Suppose λ∗ ∈ (0,∞)k. By Assumption 3, ψ(a1|ω,λ∗) > 0 for

each ω ∈ {L,R}. By Lemma 2, ψ̂i(a1|R,λ∗)
ψ̂i(a1|L,λ∗)

< 1. Therefore, this does not hold for a1 and λ∗

cannot be stationary.
Suppose beliefs converge to a non-stationary belief λ∗ ∈ [0,∞]k \ {0,∞}k with positive

probability. By Lemma 2, following action ãt = aM , λi,t+1 − λi,t is bounded uniformly away
from zero for all social types θi ∈ ΘS. For sufficiently small ε > 0, when λt ∈ Bε(λ

∗),
λi,t+1 6∈ Bε(λ

∗) for any type with an interior belief λi,t ∈ (0,∞). The probability Pr(∃t <
T s.t. ãt = aM) converges to one as T → ∞. Therefore, the likelihood ratio almost surely
leaves Bε(λ

∗). �

A.2 Local Stability

Proof of Theorem 1. Without loss of generality, consider the case where ω = L.
Part 1. We first show that if λ∗ ∈ Λ(L), then λ∗ is locally stable. Consider λ∗ = 0k and

suppose γi(L, 0
k) < 0 for all social types θi ∈ ΘS. By the continuity property established in

44If there did not exist such an s̃, then 1 − Fω(s) ≥ ε for all s ∈ [0, 1). Given Fω(1) = 1, this implies
that there is a mass point at s = 1, i.e. a perfectly informative signal realization that occurs with positive
probability. This is a contradiction.
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Lemma 2, there exists an ε > 0 such that for neighborhood Bε(0
k) ≡ [0, ε]k,∑

a∈A

ψ(a|L, 0k)gi(a) < 0, (7)

for all θi ∈ ΘS, where gi(a) ≡ supλ∈Bε(0k) log ψ̂i(a|R,λ)
ψ̂i(a|L,λ)

denotes the maximal update for type θi

following action a across all beliefs in Bε(0
k). Let g(a) ≡ (g1(a), ..., gk(a)) denote the vector

of maximal updates for action a, ḡi ≡ maxa∈A gi(a) denote the maximal update across all
actions, and g ≡ (ḡ1, ..., ḡk) denote the corresponding vector of maximal updates.

For any δ > 0, choose εδ ∈ (0, ε] such that supλ∈[0,εδ ]k |ψ(a|L,λ) − ψ(a|L, 0k)| < δ.

By Lemma 2, ψ(a|L,λ) is continuous at λ = 0k, so such an εδ exists. Let ψδ(a) ≡
infλ∈[0,εδ ]k ψ(a|L,λ). Define a linear system 〈λδ,t〉∞t=1 as follows: λδ,1 = λ1, and for each
a ∈ A, whenever ãt = a and λt ∈ [0, εδ]

k, let logλδ,t+1 = logλδ,t + g(a) with probabil-
ity ψδ(a)/ψ(a|L,λt) and logλδ,t+1 = logλδ,t + ḡ otherwise. When ω = L, ψδ(a) is the
joint probability of ãt = a and the former event (i.e. ψ(a|L,λt) ∗ ψδ(a)/ψ(a|L,λt)), while
ψ̄δ ≡ 1 −

∑
a∈A ψδ(a) is the cumulative probability of the latter event across all actions.

To complete the construction, if λt 6∈ [0, εδ]
k then independent of the realization of ãt let

logλδ,t+1 = logλδ,t + g(a) with probability ψδ(a) for each a ∈ A and logλδ,t+1 = logλδ,t + ḡ
otherwise. The transition probabilities and updates to 〈λδ,t〉 are i.i.d. By construction, when
λt ∈ [0, εδ]

k, the update to the process 〈λδ,t〉 is larger than the update to the process 〈λt〉
(this follows from log ψ̂i(a|R,λt)

ψ̂i(a|L,λt)
≤ gi(a) ≤ ḡi for all θi ∈ ΘS). It follows that if λt ≤ λδ,t and

λt ∈ [0, εδ]
k, then λt+1 ≤ λδ,t+1.

From a straightforward adaptation of Lemma C.1 of Smith and Sørensen (2000) to a
multidimensional Markov process, if

ψ̄δḡi +
∑
a∈A

ψδ(a)gi(a) < 0 (8)

for all θi ∈ ΘS, then almost surely limt→∞ λδ,t = 0k. By Eq. (7), Eq. (8) holds for sufficiently
small δ (this follows from λ 7→ ψ(a|ω,λ) continuous at 0k (Lemma 2) and limδ→0 ψδ(a) =
ψ(a|L, 0k), which implies limδ→0 ψδ = 0). Let δ1 > 0 denote an upper bound such that
Eq. (8) holds for all δ < δ1.

Fix δ ∈ (0, δ1) and choose a corresponding εδ > 0 as defined above. Conditional on the
event that λt ∈ [0, εδ]

k for all t ≥ 1, 〈λt〉 is bounded above by a stochastic process that
converges to zero almost surely. Therefore, conditional on this event, limt→∞ λt = 0k almost
surely. We next show that there exists an ε∗ ∈ (0, εδ] such that the probability of this event
is uniformly bounded away from zero across [0, ε∗]k. For any λ ∈ (0,∞)k, when λ1 = λ,
limt→∞ λδ,t = 0k almost surely, and therefore, Pr(∪t ∩s≥t {λδ,s ∈ [0, εδ]

k}|λ1 = λ) = 1. It
follows that there exists a finite τ(λ) ≥ 1 such that Pr(λδ,t ∈ [0, εδ]

k ∀t ≥ τ(λ)|λ1 = λ) > 0.
Since τ(λ) < ∞ and gi(a) and ḡi are bounded for all a ∈ A and θi ∈ ΘS, suppλδ,τ(λ) ⊂
(0,∞)k. Since the system is linear, for any λ′ ∈ suppλδ,τ(λ) such that Pr(λδ,t ∈ [0, εδ]

k ∀t ≥
τ(λ)|λδ,τ(λ) = λ′) > 0, Pr(λδ,t ∈ [0, εδ]

k ∀t ≥ 1|λ1 = λ′) > 0. Further, since 〈λδ,t〉 has i.i.d.
transitions, Pr(λδ,t ∈ [0, εδ]

k ∀t ≥ 1|λ1 = λ′′) ≥ Pr(λδ,t ∈ [0, εδ]
k ∀t ≥ 1|λ1 = λ′) > 0 for

λ′′ ≤ λ′. Therefore, there exists an ε∗ ∈ (0, εδ] such that for λ1 ∈ (0, ε∗]k, with probability
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uniformly bounded away from zero, λt ∈ [0, εδ]
k for all t ≥ 1. Therefore, for λ1 ∈ (0, ε∗]k,

limt→∞ λt = 0k with probability uniformly bounded away from zero i.e. 0k is locally stable.45

The proofs for the other stationary beliefs λ∗ ∈ {0,∞}k are analogous. If λ∗i = ∞,
substitute λ−1i for type θi and modify the transition rules accordingly.

Part 2. We next show that λ∗ ∈ {0,∞}k is unstable if λ∗ 6∈ Λ(L) and γi(ω,λ
∗) 6= 0 for

some θi with λ∗ 6∈ Λi(L). Without loss of generality, order the types so that the first κ types
correspond to λ∗i = 0 and the latter k− κ types correspond to λ∗i =∞. Suppose λ∗1 = 0 but
γ1(L,λ

∗) > 0. By the continuity property established in Lemma 2, there exists an ε > 0
such that for neighborhood Bε(λ

∗) ≡ [0, ε]κ × [1/ε,∞]k−κ,∑
a∈A

ψ(a|L,λ∗)g1(a) > 0, (9)

where g1(a) ≡ infλ∈Bε(λ∗) log ψ̂1(a|R,λ)
ψ̂1(a|L,λ)

denotes the minimal update for type θ1 following action

a across Bε(λ
∗). Let g

1
≡ mina∈A g1(a) denote the minimal update across all actions.

For any δ ∈ (0, ε], let ψδ(a) ≡ infλ∈Bδ(λ∗) ψ(a|L,λ) and τ1(δ) ≡ min{τ |λt ∈ Bδ(λ
∗)} de-

note the first time 〈λt〉 enters Bδ(λ
∗). Define a linear system 〈λδ,t〉∞t=1 as follows: λδ,t = λ1,t

for t ≤ τ1(δ), where λ1,t denotes the likelihood ratio for θ1 at time t. For t > τ1(δ), for
each a ∈ A, whenever ãt = a and λt ∈ Bδ(λ

∗), log λδ,t+1 = log λδ,t + g1(a) with probability
ψδ(a)/ψ(a|L,λt) and log λδ,t+1 = log λδ,t + g

1
otherwise. When ω = L, ψδ(a) is the joint

probability of ãt and the former event, while ψ
δ
≡ 1 −

∑
a∈A ψδ(a) is the cumulative prob-

ability of the latter event across all actions. To complete the construction, for t > τ1(δ),
if λt 6∈ Bδ(λ

∗) then independent of ãt, log λδ,t+1 = log λδ,t + g1(a) with probability ψδ(a)
for each a ∈ A and log λδ,t+1 = log λδ,t + g

1
otherwise. By construction, if λ1,t ≥ λδ,t and

λt ∈ Bδ(λ
∗), then λ1,t+1 ≥ λδ,t+1. The increments (log λδ,t+1 − log λδ,t)

∞
t=τ1(δ)

form an i.i.d.
process with expectation equal to

ψ
δ
g
1

+
∑
a∈A

ψδ(a)g1(a). (10)

By Eq. (9), Eq. (10) is strictly positive for sufficiently small δ (this follows from λ 7→ ψ(a|ω,λ)
continuous at λ∗ (Lemma 2) and limδ→0 ψδ = 0). Let δ1 ∈ (0, ε] denote an upper bound such
that Eq. (10) is strictly positive for all δ < δ1.

Fix δ ∈ (0, δ1). Conditional on the event τ1(δ) = T for some T < ∞, by the Law of
Large Numbers, 1

t−T
∑t−1

s=T (log λδ,s+1− log λδ,s) converges to Eq. (10) almost surely, which is

45One can apply an identical argument to any component i of the likelihood ratio process to show that
when 0k ∈ Λi(ω), for small enough ε > 0 we can construct an analogous one-dimensional process that starts
at λi,1 and, for some ε∗ ∈ (0, ε], remains in Bε(0) with probability uniformly bounded away from zero across
λi,1 ∈ [0, ε∗]. Further, this process bounds 〈λi,t〉 from above provided λs ∈ Bε(0

k) for all s < t. This
establishes that if 〈λt〉 almost surely exits Bε(0

k) and 0k ∈ Λi(ω), then with probability uniformly bounded
away from zero, 〈λj,t〉 exits Bε(0) for some j 6= i. A similar observation holds for the other stationary beliefs.
We use this observation in the proof of Lemma 4.
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positive. Given λ1,1 ∈ (0,∞) and Lemma 2, λ1,T ∈ (0,∞). Therefore,

lim
t→∞

log λδ,t = lim
t→∞

(log λ1,T +
t−1∑
s=T

(log λδ,s+1 − log λδ,s)) =∞ a.s.

This implies that if 〈λt〉 remains in Bδ(λ
∗) for all t > T , then almost surely limt→∞ log λ1,t ≥

limt→∞ log λδ,t = ∞, which is a contradiction. Therefore, conditional on τ1(δ) = T , almost
surely τ2(δ) ≡ min{τ > τ1(δ)|λt 6∈ Bδ(λ

∗)} is finite. Since the log likelihood ratio process
is linear, the same reasoning establishes that whenever 〈λt〉 enters Bδ(λ

∗), it almost surely
exits. Therefore, letting τ(δ) ≡ min{τ |λt ∈ Bδ(λ

∗) ∀t ≥ τ} be the first time 〈λt〉 enters
Bδ(λ

∗) and never exits, it follows that conditional on τ1(δ) = T , τ(δ) = ∞ almost surely.
Given τ(δ) ≥ τ1(δ), conditional on τ1(δ) = ∞, τ(δ) = ∞. Together, this establishes that
τ(δ) = ∞ almost surely, and therefore, Pr(λt → λ∗) = 0. The logic is analogous when
λ∗1 =∞ and γ1(L,λ

∗) < 0.
Part 3. Finally, Lemma 3 established that for λ∗ ∈ [0,∞]k \ {0,∞}k, Pr(λt → λ∗) = 0

for all λ1 ∈ (0,∞)k. Therefore, such λ∗ are unstable. �

A.3 Global Stability

Preliminary Notation. From Theorem 1, for each λ∗ ∈ Λ(ω), there exists an ε > 0 and a
stable neighborhood Bε(λ

∗) such that Pr(λt → λ∗|λ1) is uniformly bounded away from zero
across λ1 ∈ Bε(λ

∗). Also, for each λ∗ ∈ {0,∞}k\Λ(ω), there exists an ε > 0 and an unstable
neighborhood Bε(λ

∗) such that when λ1 ∈ int(Bε(λ
∗)), 〈λt〉 almost surely leaves Bε(λ

∗).
Additionally, for each ε′ > 0 such that Bε′(λ

∗) is an unstable neighborhood, there exists an
ε ∈ (0, ε′) such that for each θi with λ∗ ∈ Λi(λ∗), if 〈λi,t〉 is in Bε(λ

∗
i ), then as long as 〈λt〉

is in Bε′(λ
∗), 〈λi,t〉 is bounded above by a process that with probability uniformly bounded

away from zero (i) converges to λ∗i and (ii) almost surely does not leave Bε′(λ
∗
i ). Moreover,

given the continuity at certainty property established in Lemma 2, for each λ∗ ∈ {0,∞}k
and each ε′ > 0 such that Bε′(λ

′) is a stable or unstable neighborhood of λ′ ∈ {0,∞}k \λ∗,
we can select a sufficiently small ε > 0 such that Bε(λ

∗) is a stable or unstable neighborhood
and if λt ∈ Bε(λ

∗), then for each θi such that (λ′)i 6= (λ∗)i, Pr(λi,t+1 ∈ Bε′((λ
′)i)) = 0.

This also implies that Pr(λt+1 ∈ Bε′(λ
′)) = 0. Fixing state ω, choose an ε(λ∗) ∈ (0, 1) for

each λ∗ ∈ {0,∞}k such that the set of neighborhoods {Bε(λ∗)(λ
∗)}λ∗∈{0,∞}k satisfies these

properties. Define
E ≡ min

λ∗∈{0,∞}k
− log ε(λ∗). (11)

Note E ∈ (0,∞). If log λi ∈ R ∪ {−∞,∞} \ [−E,E] for each θi ∈ ΘS, then λ is contained
in one of these stable or unstable neighborhoods. Let

BE(λ∗) ≡ {λ ∈ [0,∞]k| log λi < −E if λ∗i = 0 and log λi > E if λ∗i =∞} (12)

denote the corresponding neighborhood for each stationary λ∗, where in a slight abuse of
notation, when using E we switch from the neighborhood subscript denoting the bound for
the likelihood ratio to denoting the bound for the log likelihood ratio to simplify future
notation. Let B ≡ ∪λ∗∈Λ(ω)BE(λ∗) denote the union of the stable neighborhoods and let
BU ≡ ∪λ∗∈{0,∞}k\Λ(ω)BE(λ∗) denote the union of the unstable neighborhoods. We will use
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these neighborhoods in subsequent proofs.

Proof of Theorem 2. Suppose the agreement outcome 0k ∈ Λ(ω) is locally stable. By
Lemma 2, a1 occurs with positive probability and observing a1 decreases the likelihood ratio.
Given initial likelihood ratio λ1 ∈ (0,∞)k, let N be the minimum number of consecutive
a1 actions required for the likelihood ratio to reach the stable neighborhood of 0k defined
in Eq. (12), i.e. λN+1 ∈ BE(0k). By Lemma 2, the change in the likelihood ratio following
a1 is bounded away from zero. Therefore, N < ∞. Further, given a1 occurs with positive
probability each period, the probability of a1 occurring N times is strictly positive. Let τ1 ≡
min{t|λt ∈ BE(0k)} be the first time that 〈λt〉 enters BE(0k), τ2 ≡ min{t > τ1|λt 6∈ BE(0k)}
be the first that 〈λt〉 leaves BE(0k) after entering, and τ3 ≡ min{τ |λt ∈ BE(0k) ∀t ≥
τ} be the first time the likelihood ratio enters BE(0k) and never leaves. We know that
Pr(τ1 < ∞) > 0, since the probability of transitioning from λ1 to BE(0k) is bounded
below by the probability of observing N consecutive a1 actions starting in period one. Also,
Pr(τ2 =∞) > 0, since by local stability, when the likelihood ratio is in BE(0k), with positive
probability, it never leaves. Therefore, Pr(τ3 <∞) > Pr(τ1 <∞∧ τ2 =∞) > 0. Therefore,
with positive probability, the likelihood ratio eventually enters and remains in BE(0k). By
Theorem 1, if the likelihood ratio remains in BE(0k) for all t, beliefs almost surely converge
to 0k. Therefore, if 0k ∈ Λ(ω), then from any initial belief λ1 ∈ (0,∞)k, Pr(λt → 0k) > 0.
The proof for agreement outcome ∞k is analogous. �

Global Stability of Disagreement. We first state a result that uses a much weaker but
more complicated to verify condition called separability to establish the global stability of
a disagreement outcome (see Theorem 7 below). Starting from any interior initial belief,
separability uses all of the actions to separate the beliefs of the different types and reach
a neighborhood of the disagreement outcome. Therefore, together with local stability, the
separability condition implies global stability. We then prove Theorem 3 by showing that
maximal accessibility—which is easier to verify but only uses actions a1 and aM to separate
beliefs—implies separability.

Define Ψ(λ) as the matrix consisting of the log of the ratios of the perceived action
probabilities in each state at belief λ, where each row corresponds to the ratios for social
type θi and each column corresponds to the ratios for action am,

Ψ(λ)im ≡ log
ψ̂i(am|R,λ)

ψ̂i(am|L,λ)
, (13)

and define the submatrix

Ψ [θi, θj; a1, aM ](λ) ≡

log ψ̂i(a1|R,λ)
ψ̂i(a1|L,λ)

log ψ̂i(aM |R,λ)
ψ̂i(aM |L,λ)

log
ψ̂j(a1|R,λ)
ψ̂j(a1|L,λ)

log
ψ̂j(aM |R,λ)
ψ̂j(aM |L,λ)

 (14)

as these ratios for social types θi and θj from actions a1 and aM . We use Ψ(λ) to define
separability (Definition 8) and use Ψ [θi, θj; a1, aM ](λ) to show that maximal accessibility
implies separability.

Given a belief λ∗ = (0κ,∞k−κ), we say λ∗ is separable at zero for type θκ if there exists
a finite sequence of actions that are on average more likely in state R than state L for θκ
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and the types with λ∗i = ∞, and are on average more likely in state L than state R for
the remaining κ − 1 types with λ∗i = 0. In other words, in a neighborhood of λ∗, there
exists a finite sequence of actions that will decrease the beliefs of types (θ1, ..., θκ−1) and
increase the beliefs of types (θκ, ..., θk). Separability at infinity is similar—in a neighborhood
of λ∗, there exists a finite sequence of actions that will on average decrease the beliefs of
types (θ1, ..., θκ+1) and increase the beliefs of types (θκ+2, ..., θk). The following definition
formalizes this notion for an arbitrary stationary belief.

Definition 8 (Separability (k ≥ 2)). (i) Belief λ∗ ∈ {0,∞}k \ ∞k is separable at zero for
type θi with λ∗i = 0 if there exist vectors c ∈ [0,∞)|A| and G ∈ Rk with Gi > 0, Gj > 0
for all j with λ∗j = ∞ and Gj < 0 for all j 6= i with λ∗j = 0, such that Ψ(λ∗) · c = G; (ii)
Belief λ∗ ∈ {0,∞}k \ 0k is separable at infinity for type θi with λ∗i =∞ if there exist vectors
c ∈ (0,∞)|A| and G ∈ Rk with Gi < 0, Gj > 0 for all j 6= i with λ∗j =∞ and Gj < 0 for all
j with λ∗j = 0, such that Ψ(λ∗) · c = G.

The following result shows that separability can be used to establish the global stability
of a disagreement outcome for the case of two social types. Theorem 7′ in Online Appendix D
presents an analogous result for the case of more than two social types.

Theorem 7 (Global Stability of Disagreement (k = 2)). Consider a learning environment
that is identified at certainty and satisfies Assumptions 1 to 4. If (0,∞) ∈ Λ(ω) and (0, 0)
is separable at zero for θ2 or (∞,∞) is separable at infinity for θ1, then (0,∞) is globally
stable in state ω. Similarly, if (∞, 0) ∈ Λ(ω) and (0, 0) is separable at zero for θ1 or (∞,∞)
is separable at infinity for θ2, then (∞, 0) is globally stable in state ω.

We use Lemmas 5 and 6 to establish Theorem 7. We say a belief λ∗2 ∈ {0,∞}k is adjacent
to a belief λ∗1 ∈ {0,∞}k if all but one component of the vectors are equal, i.e. there exists
exactly one i = 1, ..., k such that (λ∗2)i 6= (λ∗1)i (where the subscript of λ∗ is used to index
different stationary beliefs). In other words, all but one social type have the same beliefs
in λ∗1 and λ∗2. We say a belief λ∗2 ∈ {0,∞}k is adjacently accessible from adjacent belief
λ∗1 ∈ {0,∞}k if, given the likelihood ratio process is at an interior value in a neighborhood
of λ∗1, then with positive probability it enters a neighborhood of λ∗2 in finite time.

Definition 9 (Adjacently Accessible (k ≥ 2)). Belief λ∗2 ∈ {0,∞}k is adjacently accessible
from adjacent belief λ∗1 ∈ {0,∞}k if for any ε2 > 0, there exists an ε1 > 0 such that for
any λ ∈ int(Bε1(λ

∗
1)), there exists a τ(λ) < ∞ such that if λt = λ, then Pr(λt+τ(λ) ∈

int(Bε2(λ
∗
2))) > 0.

The following lemma establishes that separability can be used to establish adjacent accessi-
bility for any number of social types.

Lemma 5 (Adjacently Accessible (k ≥ 2)). Consider a learning environment that satisfies
Assumptions 1 to 4. If λ∗1 ∈ {0,∞}k \ ∞k with (λ∗1)i = 0 is separable at zero for θi, then
adjacent belief λ∗2 with (λ∗2)i =∞ is adjacently accessible from λ∗1. If λ∗1 ∈ {0,∞}k \ 0k with
(λ∗1)i =∞ is separable at infinity for θi, then adjacent belief λ∗2 with (λ∗2)i = 0 is adjacently
accessible from λ∗1.

Proof. Given κ ∈ {1, ..., k}, let λ∗1 = (0κ,∞k−κ), λ∗2 = (0κ−1,∞k−κ+1) and suppose λ∗1
is separable at zero for θκ. We will show that for any ε2 > 0, there exists an ε1 > 0
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such that for any λ ∈ int(Bε1(λ
∗
1)), there exists a τ(λ) < ∞ such that if λt = λ, then

Pr(λt+τ(λ) ∈ int(Bε2(λ
∗
2))) > 0.46 Since the log likelihood ratio process is linear, we can

show this for λ1 = λ and it immediately follows that it holds when λt = λ.
We first define several pieces of notation. Given ε > 0, recall that Bε(λ

∗
1) ≡ [0, ε)κ ×

(1/ε,∞]k−κ denotes an ε-neighborhood of λ∗1. Let `(ε) ≡ − log ε. Then [−∞,−`(ε))κ ×
(`(ε),∞]k−κ denotes the corresponding neighborhood of logλ∗1. Let

gε,i(a) ≡

infλ∈Bε(λ∗1) log ψ̂i(a|R,λ)
ψ̂i(a|L,λ)

i ≥ κ

supλ∈Bε(λ∗1) log ψ̂i(a|R,λ)
ψ̂i(a|L,λ)

i < κ

denote the smallest (largest) update to the log likelihood ratio for type θi with i ≥ κ (i < κ)
following action a when the likelihood ratio is in the neighborhood Bε(λ

∗
1), and let

ḡε,κ(a) ≡ sup
λ∈Bε(λ∗1)

log
ψ̂κ(a|R,λ)

ψ̂κ(a|L,λ)

denote the largest update to the log likelihood ratio for type θκ following action a when the
likelihood ratio is in the neighborhood Bε(λ

∗
1). By Lemma 2, for any ε > 0, gε,i(a) and

gε,κ(a) are bounded for all i = 1, ..., k and a ∈ A.
We next define a set of processes that we use to separate the beliefs of types (θ1, ..., θκ−1)

and type θκ. By λ∗1 separable at zero for θκ, there exist vectors c ∈ [0,∞)k and G ∈ Rk

that satisfy the separability condition. Moreover, since the rationals are dense in the reals,
there exists vector c ∈ [0,∞)k of rational numbers and vector G ∈ Rk that satisfies the
separability condition. Therefore, there exists an ε3 > 0 and finite integers ca ≥ 0 for each
a ∈ A such that

Gi ≡
∑
a∈A

cagε3,i(a), (15)

with Gi > 0 for all i ≥ κ and Gi < 0 for all i < κ. Let

Gκ ≡
∑
a∈A

caḡε3,κ(a) (16)

and noteGκ ≥ Gκ > 0. Next we define processes ξi,t ≡
∑t−1

s=1 gε3,i(as) and ξ̄κ,t ≡
∑t−1

s=1 ḡε3,κ(as)
for t > 1 and ξi,1 = ξ̄κ,1 = 0. Consider an action sequence with ca realizations of each a,
starting with the action that minimizes ḡε3,κ(a), followed by the action that leads to the sec-
ond lowest ḡε3,κ(a), and so on. Following this action sequence, at time τ1 ≡

∑
A ca + 1 <∞,

the process ξi,τ1 = Gi by Eq. (15) and ξ̄κ,τ1 = Gκ by Eq. (16). For i ≥ κ, Gi > 0, and
therefore, ξi,τ1 > 0, while for i < κ, Gi < 0, and therefore, ξi,τ1 < 0. Since gε,i(a) and gε,κ(a)
are bounded, there exists a K > 0 such that ξi,t ≥ −K for all t < τ1 and i > κ, and there
exists a K > 0 such that ξi,t < K for all t < τ1 and i < κ. Therefore, for any K > 0,
there exists an NK <∞ such that following NK repetitions of this action sequence, at time
τK ≡ NK

∑
A ca + 1 <∞, the following properties hold:

46Note that the subscript of λ∗ is used to index different stationary beliefs, while the subscript of λ is
used to denote the likelihood ratio process at a given time i.e. λt is the value of the process at time t.
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(i) ξi,τK < −K for all i < κ,

(ii) ξi,τK > 0 for all i ≥ κ,

(iii) For all t < τK , ξi,t ≤ K for all i < κ and ξi,t ≥ −K for all i > κ,

(iv) ξ̄κ,t ≤ NKGκ for all t ≤ τK , with equality at t = τK (the inequality holds due to the
order of the action sequence described above).

In summary, following NK repetitions of the action sequence, the processes 〈ξi,t〉 for i < κ
and the process 〈ξκ,t〉 are separated by at least K, and at all t during the sequence, the
processes 〈ξi,t〉 for i < κ are bounded above by K and the processes 〈ξi,t〉 for i > κ are
bounded below by −K.

These processes bound the updates to the likelihood ratio while it remains in an ε3-
neighborhood of λ∗1: when λs ∈ Bε3(λ

∗
1) for all s ≤ t, then log λi,t − log λi,1 ≤ ξi,t ≤ K for

i < κ, ξκ,t ≤ log λκ,t − log λκ,1 ≤ ξ̄κ,t, and −K ≤ ξi,t ≤ log λi,t − log λi,1 for i > κ. Further, if
the likelihood ratio remains in an ε3-neighborhood of λ∗1 for all t ≤ τK , then at time τK the
update to the log likelihood ratios of types (θ1, ..., θκ−1) and type θκ are separated by K, i.e.
log λκ,τK − log λκ,1 − (log λi,τK − log λi,1) > K for i < κ.

Using these processes, we establish local accessibility in three steps. Fix an ε3 > 0 that
satisfies Eq. (15), with corresponding processes ξi,t and ξ̄κ,t, constants ca, Gi and Gκ, and
bounds K and K defined above. Fix ε2 ∈ (0, ε3). Given ε2 and ε3, there exists an N2 <∞
such that for any log λκ,t > −`(ε3), following N2 realizations of aM , log λκ,t+N2 > `(ε2) (recall
`(ε) ≡ − log ε). Let K2 > 0 be the most that the log likelihood ratio increases for any type
θi with i < κ across all beliefs in Bε2(λ

∗
1) following these N2 actions. Note K2 < ∞ since

N2 <∞ and no type believes aM is perfectly informative. Fix K ≥ K + K2 and, given the
corresponding NK , choose ε1 > 0 such that for λ ∈ Bε1(λ

∗
1), log λi < −`(ε2)−max(K,NKGκ)

for i ≤ κ and log λi > `(ε2)+K for i > κ. Note ε1 < ε2. Choose an arbitrary λ ∈ int(Bε1(λ
∗
1))

and suppose λ1 = λ.
Step 1. Repeat the sequence of ca realizations of each action a (ordered as described

above) NK times, where NK and ca are finite as established above. It follows from the
chosen ε1 and properties (iii) and (iv) above that λt remains in int(Bε2(λ

∗
1)) for all t ≤ τK ,

where τK ≡ NK

∑
A ca + 1 as defined above, and from properties (i) and (ii) that log λi,τK <

log λi,1 −K for i < κ, log λκ,τK ∈ (log λκ,1,−`(ε2)), and log λi,τK > `(ε1) for i > κ.
Step 2. Continue repeating this sequence of ca realizations of each action a until the first

action such that log λκ,t > −`(ε3). It is possible to do this with a finite number of actions
n(λκ,1) since λκ,1 ∈ (0,∞) and log λκ,τK > log λκ,1. As shown in Step 1, the likelihood
ratios for i 6= κ remain in int(Bε2(λ

∗
1)) after every action in this sequence. For i < κ, given

log λi,τK < log λi,1−K < −`(ε1)−K following Step 1, it follows that log λi,t < −`(ε1)−K+K
for all t ∈ {τK + 1, ..., τK + n(λκ,1)}. We use this observation in the following step.

Step 3. Repeat N2 realizations of aM so that log λκ,τK+n(λκ,1)+N2 > `(ε2). Since aM
increases the likelihood ratio, beliefs remain in int(Bε2(λ

∗
1)) for i > κ. For i < κ, given

log λi,τK+n(λκ,1) < −`(ε1)−K+K, after N2 realizations of aM , log λi,t < −`(ε1)−K+K+K2.

Given K ≥ K +K2, beliefs remain in int(Bε2(λ
∗
1)) for i < κ.

Following these three steps, the likelihood ratio is in int(Bε2(λ
∗
2)). Each step requires

a finite number of actions that occur with positive probability. Therefore, given ε1 and ε2
defined above, for any λ ∈ int(Bε1(λ

∗
1)), there exists a τ(λ) < ∞ such that if λ1 = λ,
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then Pr(λ1+τ(λ) ∈ int(Bε2(λ
∗
2))) > 0. The cases of the other disagreement outcomes λ∗1 ∈

{0,∞}k \∞k that are separable at zero are analogous, as are the cases of λ∗1 ∈ {0,∞}k \ 0k

that are separable at infinity. �

We say an belief λ∗ ∈ {0,∞}k is accessible if, from any interior initial belief, with positive
probability the likelihood ratio process enters a neighborhood of λ∗ in finite time.

Definition 10 (Accessible (k ≥ 2)). A belief λ∗ ∈ {0,∞}k is accessible if for any initial
belief λ1 ∈ (0,∞)k and any ε > 0, there exists a τ <∞ such that Pr(λτ ∈ Bε(λ

∗)) > 0.

We next show that adjacent accessibility can be used to establish accessibility.

Lemma 6 (Accessible Disagreement (k ≥ 2)). Consider a learning environment that satisfies
Assumptions 1 to 4. Disagreement outcome λ∗ ∈ {0,∞}k \ {0k,∞k} is accessible if there
exists a finite sequence of stationary beliefs λ∗1,λ

∗
2, . . . ,λ

∗
L = λ∗, with λ∗1 ∈ {0k,∞k} and

λ∗l+1 adjacently accessible from adjacent belief λ∗l for l = 1, ..., L− 1.

Proof. Given disagreement outcome λ∗, suppose there exists a finite sequence of stationary
beliefs λ∗1,λ

∗
2 . . .λ

∗
L, with λ∗1 ∈ {0k,∞k}, λ∗l+1 adjacently accessible from adjacent belief λ∗l

for l = 1, ..., L − 1 and λ∗L = λ∗. By definition of adjacently accessible, for any εL > 0,
there exists an εL−1 > 0 and τL < ∞ such that if λt ∈ int(BεL−1

(λ∗L−1)), then Pr(λt+τL ∈
BεL(λ∗L)) > 0. Iterating back to λ∗1, for any εL > 0, there exists an ε1 > 0 and τ2 < ∞
such that if λt ∈ int(Bε1(λ

∗
1)), then Pr(λt+∑L

l=2 τl
∈ BεL(λ∗L)) > 0. Consider agreement

outcome λ∗1 ∈ {0k,∞k}. By Theorem 2, for any initial belief λ1 ∈ (0,∞)k and any ε1 > 0,
there exists a finite sequence of τ1 actions that occur with positive probability such that
following this sequence, λτ1+1 ∈ int(Bε1(λ

∗
1)). Therefore, starting from any initial belief,

Pr(λτ1+1 ∈ int(Bε1(λ
∗
1))) > 0. Therefore, for any εL > 0 and initial belief λ1 ∈ (0,∞)k,

Pr(λτ ∈ BεL(λ∗L)) > 0, where τ ≡
∑L

l=1 τl + 1 < ∞ since each τl < ∞. By definition, this
means that λ∗ = λ∗L is accessible. �

Accessibility and local stability together imply global stability. Therefore, by Lemmas 5
and 6, the separability of an agreement outcome combined with the local stability of an
adjacently accessible disagreement outcome establishes that the disagreement outcome is
globally stable.

Proof of Theorem 7. Suppose (0,∞) ∈ Λ(ω) and either (0, 0) is separable at zero for θ2
or (∞,∞) is separable at infinity for θ1. By Lemma 5, (0,∞) is adjacently accessible from
(0, 0). It follows from Lemma 6 that (0,∞) is accessible. Fix initial belief λ1 ∈ (0,∞)2 and
choose ε < e−E, where E is defined in Eq. (11). By accessibility, there exists a finite sequence
ξ of N actions that occurs with positive probability, such that following ξ, λN+1 ∈ Bε(0,∞).
From (0,∞) ∈ Λ(ω), Pr(λt → (0,∞)|h = ξ) > 0. Therefore, from any initial belief,
Pr(λt → (0,∞)) > 0, which implies that (0,∞) is globally stable. The proof of (∞, 0) is
analogous. �

Finally, to prove Theorem 3, we show that maximal accessibility implies the conditions for
separability outlined in Theorem 7.
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Proof of Theorem 3. Suppose θ2 �(0,0) θ1. We show that this implies (0, 0) is separable at
zero for θ2. Since θ2 �(0,0) θ1, the submatrix Ψ [θ2, θ1; a1, aM ](0, 0) defined in Eq. (14) has a
positive determinant. Therefore, there exists a c ∈ R2

+ that solves

Ψ [θ2, θ1; a1, aM ](0, 0) · c =

(
1
0

)
.

By continuity, there exists a perturbation of c to c̃ ∈ R2
+ such that

Ψ [θ2, θ1; a1, aM ](0, 0) · c̃ =

(
G2

G1

)
,

where G1 < 0 and G2 > 0. Therefore, by Definition 8, (0, 0) is separable at zero for θ2, since
the definition holds for vector c′ ∈ (0,∞)|A| with c′1 = c1, c

′
M = c2 and c′i = 0 otherwise. The

case where θ2 �(∞,∞) θ1 is analogous, as is the proof for (∞, 0). �

A.4 Mixed Learning

Proof of Lemma 4. Fix state ω and consider the mixed learning outcome (0, θ1) in which
θ1’s belief converges to zero and θ2’s belief doesn’t converge. Suppose (0, θ1) 6∈ ΛM(ω),
i.e. (0, 0) ∈ Λ2(ω) or (0,∞) ∈ Λ2(ω). Without loss of generality, consider the case where
(0, 0) ∈ Λ2(ω). Let ε ∈ (0, e−E), where E is defined in Eq. (11). Suppose λ1,1 ∈ Bε(0),
and let τ ≡ min{t|λ1,t 6∈ Bε(0)} be the first time that θ1’s belief leaves a neighborhood of
zero. We will show that almost surely, either (i) τ < ∞ or (ii) 〈λt〉 converges to (0, 0) or
(0,∞). By the linearity of the likelihood ratio process, this implies the same holds whenever
λ1,t ∈ Bε(0), and therefore, almost surely (0, θ1) does not occur.

Whenever 〈λt〉 is in Bε(0)× [ε, 1/ε], 〈λt〉 almost surely exits Bε(0)× [ε, 1/ε]. Therefore,
when λ1 ∈ Bε(0) × (0,∞), almost surely either λ1,t exits Bε(0) or 〈λt〉 is in Bε(0, 0) or
Bε(0,∞) infinitely often,

Pr(τ <∞ or λt ∈ Bε(0, 0) ∪ Bε(0,∞) i.o.) = 1. (17)

We next determine how the behavior of 〈λt〉 in Bε(0, 0) and Bε(0,∞) depends on Λ1(ω)
and Λ2(ω). The following properties follow from the proof of Theorem 1. (i) Suppose
(0, 0) ∈ Λ(ω). If 〈λt〉 enters Bε(0, 0), then with probability bounded away from zero across
Bε(0, 0), 〈λt〉 converges to (0, 0) and almost surely, 〈λt〉 either converges to (0, 0) or exits
Bε(0, 0). Therefore, if 〈λt〉 is in Bε(0, 0) infinitely often, then 〈λt〉 almost surely converges
to (0, 0). (ii) Suppose (0, 0) ∈ Λ2(ω) \ Λ1(ω). If 〈λt〉 enters int(Bε(0, 0)), then 〈λt〉 exits
Bε(0, 0) almost surely and with probability uniformly bounded away from zero, 〈λ1,t〉 exits
Bε(0) (this follows from Footnote 45). Therefore, if 〈λt〉 enters int(Bε(0, 0)) infinitely often,
then 〈λ1,t〉 exits Bε(0) almost surely, and hence, τ < ∞ almost surely. Combined with
Eq. (17), it follows that almost surely either τ <∞ or 〈λt〉 enters Bε(0,∞) infinitely often,
Pr(τ < ∞ or λt ∈ Bε(0,∞) i.o.) = 1. (iii) When (0,∞) ∈ Λ2(ω), the behavior of 〈λt〉 in a
neighborhood of (0,∞) is similar to the case of (0, 0). From property (i), if (0,∞) ∈ Λ1(ω),
then if 〈λt〉 is in Bε(0,∞) infinitely often, 〈λt〉 almost surely converges to (0,∞). From
property (ii), if (0,∞) 6∈ Λ1(ω), then Pr(τ < ∞ or λt ∈ Bε(0, 0) i.o.) = 1. (iv) When
(0,∞) 6∈ Λ2(ω), then if 〈λt〉 enters int(Bε(0,∞)), it exits Bε(0,∞) almost surely. We use
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these properties to establish the claim outlined in the first paragraph for four possible cases.
Case (i): Suppose (0, 0) ∈ Λ(ω) and (0,∞) ∈ Λ(ω). If 〈λt〉 is in Bε(0, 0) ∪ Bε(0,∞)

infinitely often, then since both (0, 0) and (0,∞) are locally stable, 〈λt〉 almost surely con-
verges to (0, 0) or (0,∞). Combined with Eq. (17), this implies that almost surely either
τ <∞ or 〈λt〉 converges to (0, 0) or (0,∞).

Case (ii): Suppose (0, 0) ∈ Λ2(ω) \Λ1(ω) and (0,∞) ∈ Λ(ω). As established in property
(ii), Pr(τ <∞ or λt ∈ Bε(0,∞) i.o.) = 1. If 〈λt〉 is in Bε(0,∞) infinitely often, then since
it is locally stable, 〈λt〉 almost surely converges to (0,∞). Therefore, almost surely either
τ < ∞ or 〈λt〉 converges to (0,∞). If (0, 0) ∈ Λ(ω) and (0,∞) ∈ Λ2(ω) \ Λ1(ω), then by
analogous reasoning, almost surely either τ <∞ or 〈λt〉 converges to (0, 0).

Case (iii): Suppose (0, 0) ∈ Λ(ω) and (0,∞) 6∈ Λ2(ω). Then by property (iv), if 〈λt〉
enters int(Bε(0,∞)), it exits Bε(0,∞) almost surely. First suppose 〈λt〉 enters Bε(0) ×
[ε, 1/ε] from Bε(0,∞) with positive probability. Then with probability uniformly bounded
away from zero across Bε(0) × [ε, 1/ε], either 〈λt〉 enters Bε(0, 0) or 〈λ1,t〉 exits Bε(0) (and
hence, τ <∞).47 When 〈λt〉 enters Bε(0, 0), then with probability uniformly bounded away
from zero across Bε(0, 0), 〈λt〉 converges to (0, 0). Together, this establishes that if 〈λt〉
is in Bε(0,∞) infinitely often and 〈λt〉 enters Bε(0) × [ε, 1/ε] from Bε(0,∞) with positive
probability, then almost surely either τ < ∞ or 〈λt〉 converges to (0, 0). Next suppose
〈λt〉 enters Bε(0) × [ε, 1/ε] from Bε(0,∞) with probability zero. Then when 〈λt〉 enters
int(Bε(0,∞)), almost surely τ < ∞. Taken together, this establishes that if 〈λt〉 is in
int(Bε(0,∞)) infinitely often, then almost surely either τ < ∞ or 〈λt〉 converges to (0, 0).
We already established that if 〈λt〉 enters Bε(0, 0) infinitely often, then 〈λt〉 converges to
(0, 0) almost surely. It follows from Eq. (17) that almost surely either τ < ∞ or 〈λt〉
converges to (0, 0).

Case (iv): Suppose (0, 0) ∈ Λ2(ω) \ Λ1(ω) and (0,∞) 6∈ Λ(ω). When 〈λt〉 enters
int(Bε(0, 0)), with probability uniformly bounded away from zero, 〈λ1,t〉 exits Bε(0). There-
fore, if 〈λt〉 enters int(Bε(0, 0)) infinitely often, then τ < ∞ almost surely. If (0,∞) ∈
Λ2(ω) \ Λ1(ω), then the same holds for Bε(0,∞) and it follows from Eq. (17) that τ < ∞
almost surely. If (0,∞) 6∈ Λ2(ω), then by property (iv), if 〈λt〉 enters int(Bε(0,∞)), it exits
Bε(0,∞) almost surely. First suppose 〈λt〉 enters Bε(0) × [ε, 1/ε] from Bε(0,∞) with pos-
itive probability. By similar reasoning to Case (iii), when 〈λt〉 enters Bε(0) × [ε, 1/ε], with
probability uniformly bounded away from zero across Bε(0)× [ε, 1/ε], 〈λt〉 enters Bε(0, 0) or
〈λ1,t〉 exits Bε(0). When 〈λt〉 enters int(Bε(0, 0)), then with probability uniformly bounded
away from zero, 〈λ1,t〉 exits Bε(0). Together, this establishes that if 〈λt〉 enters Bε(0,∞)
infinitely often and 〈λt〉 enters Bε(0)× [ε, 1/ε] from Bε(0,∞) with positive probability, then
almost surely τ < ∞. If 〈λt〉 enters Bε(0) × [ε, 1/ε] from Bε(0,∞) with probability zero,
then when 〈λt〉 enters int(Bε(0,∞)), almost surely τ <∞. Taken together, this establishes
that if 〈λt〉 enters int(Bε(0,∞)) infinitely often, then τ < ∞ almost surely. We already
established that if 〈λt〉 enters int(Bε(0, 0)) infinitely often, then τ < ∞ almost surely. It
follows from Eq. (17) that τ <∞ almost surely.

Together, these cases establish the claim outlined above when (0, 0) ∈ Λ2(ω). The case

47This follows from Lemma 2, which guarantees that there exists a finite sequence of a1 actions that
occurs with positive probability such that following this sequence, 〈λt〉 enters Bε(0, 0)∪ [ε,∞)× (0, 1/ε] from
any starting belief in Bε(0) × [ε, 1/ε]. An analogous property follows from a finite sequence of aM actions
when the role of (0, 0) and (0,∞) are switched.
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of (0,∞) ∈ Λ2(ω) and the other mixed outcomes are analogous. �

A.5 Learning Characterization

Lemma 7 (Belief Convergence (k ≤ 2)). Consider a learning environment that is identified
at certainty and satisfies Assumptions 1 to 4. If (i) k = 1 and Λ(ω) 6= ∅ or (ii) k = 2,
Λ(ω) contains an agreement outcome or maximally accessible disagreement outcome and
ΛM(ω) = ∅, then for any initial belief λ1 ∈ (0,∞)k, there exists a random variable λ∞ with
supp(λ∞) = Λ(ω) such that λt → λ∞ almost surely in state ω.

Proof. Fix state ω and consider the case of k = 2. Recall that B is the set of stable
neighborhoods and BU is the set of unstable neighborhoods defined in Eq. (12). We define a
similar set of neighborhoods for mixed outcomes. Consider (0, θ1). Let ε ≡ e−E (where E is
defined in Eq. (11)) and choose ε1 ∈ (0, ε) such that there exist a τ < ∞ and τ ′ < ∞ such
that for any λ1 ∈ Bε1(0) × [ε, 1/ε], following τ realizations of action aM , λτ+1 ∈ Bε(0,∞)
and following τ ′ realizations of action a1, λτ ′+1 ∈ Bε(0, 0). Define BM

ε,ε1
(0, θ1) ≡ Bε(0, 0) ∪

Bε(0,∞) ∪ (Bε1(0) × [ε, 1/ε]) as the mixed neighborhood of (0, θ1), with int(BM
ε,ε1

(0, θ1)) ≡
BM
ε,ε1

(0, θ1) ∩ (0,∞)2. By construction, with probability uniformly bounded away from zero
across Bε1(0)× [ε, 1/ε], 〈λt〉 enters Bε(0, 0) and Bε(0,∞) in finite time from Bε1(0)× [ε, 1/ε].
Given analogous definitions for the mixed neighborhoods of (∞, θ1), (0, θ2), and (∞, θ2)
with corresponding ε2, ε3, and ε4, let BM denote the union of these mixed neighborhoods,
int(BM) ≡ BM ∩ (0,∞)2, and I ≡ [0,∞]2 \ BM .

Suppose Λ(ω) contains an agreement outcome or maximally accessible disagreement out-
come and ΛM(ω) is empty. Taken together, previous results have already shown that almost
surely, either 〈λt〉 does not converge for both types or 〈λt〉 converges to a learning outcome
in Λ(ω). This follows from Lemma 3 which shows that 〈λt〉 does not converge to a non-
stationary belief, Theorem 1 which establishes that almost surely 〈λt〉 does not converge to
an unstable stationary belief, and Lemma 4 which establishes that almost surely 〈λt〉 does
not converge for one type. Therefore, it remains to show that 〈λt〉 almost surely converges.

We first establish the following claim: if λ1 ∈ int(BM), then with probability uniformly
bounded away from zero across int(BM), 〈λt〉 enters I ∪ B in finite time. Again by the
linearity of the log likelihood ratio, this implies that the same holds when λt ∈ int(BM).
Without loss of generality, suppose (∞,∞) ∈ Λ(ω). If λ1 ∈ (Bε2(∞)× [ε, 1/ε]) ∪ ([ε, 1/ε]×
Bε4(∞))∪Bε(∞,∞), the claim follows from the definitions of ε2 and ε4 and Bε(∞,∞) ⊂ B.
Therefore, suppose λ1 ∈ int(BM

ε,ε1
(0, θ1) ∪ BM

ε,ε3
(0, θ2)).

Case (i): Suppose Λ(ω) = {(∞,∞)}, so B = {Bε(∞,∞)}. Then by ΛM(ω) = ∅, either
(0,∞) ∈ Λ2(ω) \ Λ1(ω) or (∞, 0) ∈ Λ1(ω) \ Λ2(ω). Without loss of generality suppose
(0,∞) ∈ Λ2(ω) \ Λ1(ω). By the logic in Lemma 4, with probability uniformly bounded
away from zero across int(BM

ε,ε1
(0, θ1) \ Bε(0, 0)), 〈λt〉 enters I ∪ Bε(∞,∞) ∪ (Bε2(∞) ×

[ε, 1/ε]) ∪ ([ε, 1/ε]×Bε4(∞)) from int(BM
ε,ε1

(0, θ1) \Bε(0, 0)). This implies 〈λt〉 enters I ∪ B
from int(BM

ε,ε1
(0, θ1) \ Bε(0, 0)) with probability uniformly bounded away from zero across

int(BM
ε,ε1

(0, θ1) \ Bε(0, 0)). Additionally, if λ1 ∈ int(BM
ε,ε3

(0, θ2)), 〈λ2,t〉 almost surely exits
Bε(0), which implies 〈λt〉 almost surely enters (0,∞)2 \ BM

ε,ε3
(0, θ2). Since we have already

established that 〈λt〉 enters I ∪B from int(BM \BM
ε,ε3

(0, θ2)) with probability bounded away
from zero across int(BM \BM

ε,ε3
(0, θ2)), it follows that this also holds for int(BM).

Case (ii): Suppose (∞,∞) ∈ Λ(ω) and (0,∞) ∈ Λ(ω). If λ1 ∈ int(BM
ε,ε1

(0, θ1) \
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BM
ε,ε3

(0, θ2)), the claim follows from the definition of ε1 andBε(0,∞) ⊂ B. If λ1 ∈ int(BM
ε,ε3

(0, θ2)),
then by similar reasoning to the previous case, 〈λt〉 almost surely enters (0,∞)2\(BM

ε,ε3
(0, θ2)\

B). Since we have already established that 〈λt〉 enters I ∪B from int(BM \BM
ε,ε3

(0, θ2)) with
probability bounded away from zero across int(BM \ BM

ε,ε3
(0, θ2)), it follows that this also

holds across int(BM). The case of {(∞,∞), (∞, 0)} ∈ Λ(ω) is analogous.
Case (iii): Suppose Λ(ω) = {(0, 0), (∞,∞)}. If λ1 ∈ (BM

ε,ε1
(0, θ1) ∪ BM

ε,ε3
(0, θ2)) \

(Bε(∞, 0) ∪ Bε(0,∞)), the claim follows from the definitions of ε1 and ε3 combined with
Bε(0, 0) ⊂ B. If λ1 ∈ int(Bε(0,∞)), 〈λt〉 almost surely enters int(BM \ (Bε(∞, 0) ∪
Bε(0,∞)))∪I. When it enters int(BM \ (Bε(∞, 0)∪Bε(0,∞))), prior reasoning established
that it enters I ∪ B with probability uniformly bounded away from zero. The reasoning is
analogous for λ1 ∈ int(Bε(∞, 0)). It follows that the claim holds across int(BM).

Taken together, these three cases establish the claim when (∞,∞) ∈ Λ(ω). The logic
is analogous for the other cases. To complete the proof, let τ1 ≡ min{t|λt ∈ B} be the
first time that 〈λt〉 enters B. By Lemma 2 and Theorem 7, there exists a finite sequence
of actions that occurs with positive probability such that for any λ1 ∈ I, following this
sequence 〈λt〉 is in B. Therefore, the probability of entering B is uniformly bounded away
from zero across I. Moreover, as shown in the claim above, the probability of entering I ∪B
is uniformly bounded away from zero across int(BM). Given I ∪ int(BM) = (0,∞)k, this
implies Pr(λt ∈ B i.o.) = 1. But if 〈λt〉 is in a neighborhood of a locally stable belief
infinitely often, then almost surely 〈λt〉 converges. The proof for k = 1 is analogous, without
needing to consider disagreement or mixed outcomes. �

Proof of Theorem 4. Fix state ω. Parts (i) and (ii) follow from the local and global
stability of agreement outcomes (Theorems 1 and 2). Part (iii) follows from the local and
global stability of disagreement outcomes (Theorems 1 and 3). For part (iv), Lemma 3 rules
out convergence to non-stationary beliefs, Theorem 1 rules out convergence to stationary
outcomes that are not locally stable, and Lemma 4 rules out convergence to a mixed learning
outcome when ΛM(ω) = ∅. Therefore, if Λ(ω) = ∅, there are no locally stable learning
outcomes and almost surely the likelihood ratio does not converge for at least one social
type. If additionally ΛM(ω) = ∅, then almost surely the likelihood ratio does not converge
for any social type. The final statement in part (iv) follows from Lemma 7, which establishes
when the likelihood ratio almost surely converges. �

A.6 Robustness

Proof of Theorem 5. Fix a regular learning environment (Θ∗, π∗). Let ψ∗(·|ω,λ) and
ψ̂∗i (·|ω,λ) denote the true and perceived action distributions in this environment, and analo-
gously for γ∗(ω,λ), Λ∗(ω), Λ∗M(ω) and G∗(ω) (when k > 2, see Eq. (20) in Online Appendix D
for the generalized definition of ΛM(ω) and Definition 15 for the definition of G(ω)). Through-
out the proof, restrict attention to learning environments (Θ, π) that have the same number
of social types as (Θ∗, π∗) and satisfy Assumptions 1 to 4. We first consider local stability
of nearby learning environments. The mapping (ψ(a|ω,λ), ψ̂i(a|ω,λ)) 7→ γi(ω,λ) is con-
tinuous. By definition of identified at certainty, the sign of γ∗i (ω,λ) is strictly positive or
negative at λ ∈ {0,∞}k. Therefore, there exists a δ1(ω) > 0 such that in any learning envi-
ronment (Θ, π) that is sufficiently close to (Θ∗, π∗) in that ||ψ∗(·|ω,λ)− ψ(·|ω,λ)|| < δ1(ω),
||ψ̂∗i (·|L,λ)− ψ̂i(·|L,λ)|| < δ1(ω) and ||ψ̂∗i (·|R,λ)− ψ̂i(·|R,λ)|| < δ1(ω) for all λ ∈ {0,∞}k
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and i = 1, ..., k, continuity implies that γi(ω,λ) has the same sign as γ∗i (ω,λ) for all
λ ∈ {0,∞}k and i = 1, ..., k. This implies Λi(ω) = Λ∗i (ω) for i = 1, ..., k, and therefore,
Λ(ω) = Λ∗(ω), so (Θ, π) has the same set of locally stable outcomes as (Θ∗, π∗) in state
ω. Given ΛM(ω) and G(ω) are constructed from Λi(ω), in any such learning environment,
ΛM(ω) = Λ∗M(ω) and G(ω) = G∗(ω) follows from Λi(ω) = Λ∗i (ω) for i = 1, ..., k. By definition
of regular, given Λ∗M(ω) = ∅, this implies ΛM(ω) = ∅.

Finally, consider the global stability of locally stable disagreement outcomes in a learning
environment with Λ(ω) = Λ∗(ω). Suppose k = 2 and (0,∞) ∈ Λ(ω). Then (0,∞) ∈ Λ∗(ω)
and by definition of regular, (0,∞) is maximally accessible in (Θ∗, π∗), i.e. either θ∗2 �(0,0) θ

∗
1

or θ∗2 �(∞,∞) θ
∗
1. Suppose θ∗2 �(0,0) θ

∗
1. By the proof of Theorem 3, this implies (0, 0) is

separable at zero for θ∗2, so there exists a vector G = (G1, G2)
′ with G1 < 0 and G2 > 0 and

a vector c ∈ R|A|+ such that Ψ ∗(0, 0) · c = G, where Ψ ∗ is the matrix defined in Eq. (13) for

(Θ∗, π∗). Since Ψ(0, 0)·c is continuous in ψ̂i, there exists a δ(0,∞) > 0 such that in any learning

environment (Θ, π) that is sufficiently close to (Θ∗, π∗) in that ||ψ̂i(·|L,λ) − ψ∗(·|L,λ)|| <
δ(0,∞) and ||ψ̂i(·|R,λ)−ψ∗(·|R,λ)|| < δ(0,∞) for all λ ∈ {0,∞}2 and i = 1, 2, the expressions
(Ψ(0, 0) · c)1 < 0 and (Ψ(0, 0) · c)2 > 0, where Ψ is the matrix defined in Eq. (13) for
(Θ, π). Therefore, in any such learning environment, (0, 0) is separable at zero for θ2.

48 By
Theorem 7, this implies (0,∞) is globally stable in state ω for (Θ, π). The case of θ∗2 �(∞,∞) θ

∗
1

is analogous, as is the proof for disagreement outcome (∞, 0) using some δ(∞,0) > 0. When
k > 2, a similar argument shows that a disagreement outcome λ∗ that is locally stable and
maximally accessible in (Θ∗, π∗) is locally stable and separable in sufficiently close learning
environments, where close is defined relative to some δλ∗ > 0, and therefore, globally stable
(see Online Appendix D for the expanded definition of maximally accessible when k >
2). Let δ2(ω) ≡ minλ∗∈{Λ∗(ω)\{0k,∞k} δλ∗ denote the minimum δλ∗ across all locally stable
disagreement outcomes in state ω for (Θ∗, π∗). Then any learning environment (Θ, π) that
has Λ(ω) = Λ∗(ω), ||ψ̂∗i (·|L,λ) − ψ̂i(·|L,λ)|| < δ2(ω) and ||ψ̂∗i (·|R,λ) − ψ̂i(·|R,λ)|| < δ2(ω)
for all λ ∈ {0,∞}k and i = 1, ..., k has the same set of globally stable outcomes as (Θ∗, π∗)
in state ω.

Let δ ≡ min{δ1(ω), δ2(ω)}. Then any learning environment (Θ, π) with ||ψ∗(·|ω,λ) −
ψ(·|ω,λ)|| < δ, ||ψ̂∗i (·|L,λ) − ψ̂i(·|L,λ)|| < δ and ||ψ̂∗i (·|R,λ) − ψ̂i(·|R,λ)|| < δ for all
λ ∈ {0,∞}k and i = 1, ..., k has the same set of long-run learning outcomes as (Θ∗, π∗) in
state ω. �

Proof of Theorem 6. Fix a correctly specified environment (Θ∗, π∗) that satisfies As-
sumptions 2 and 3. Let ψ∗(a|ω,λ) denote the distribution over actions in this environ-
ment. In a correctly specified environment, ψ̂∗i (a|ω,λ) = ψ∗(a|ω,λ) for i = 1, ..., k. By
Corollary 2, learning is complete in (Θ∗, π∗). Further, correctly specified environments are
regular. Throughout the proof, restrict attention to learning environments (Θ, π) that are
structurally equivalent to (Θ∗, π∗) and satisfy Assumptions 1 to 4.

We first construct ψ̂i(a|ω,λ) and ψ(a|ω,λ) for such a (Θ, π). Let λ0 ≡ p0/(1 − p0).
From the decision rules constructed in Lemma 1, an autarkic or noise type θj ∈ ΘA ∪
ΘN chooses action am if sj,m−1(λ0) 6= sj,m(λ0) and it observes a signal realization s ∈

48Note that λ maximally accessible in (Θ∗, π∗) does not imply that it is maximally accessible in (Θ, π),
as the strict maximal R-order can have one weak inequality.
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(sj,m−1(λ0), sj,m(λ0)], with a closed interval if si,m−1(λ0) = 0.49 Note that θ∗j ∈ Θ∗A ∪Θ∗N has
the same signal cutoffs as θj, i.e. s∗j,m = sj,m for m = 1, ...,M , since ΘA ∪ ΘN = Θ∗A ∪ Θ∗N
by definition of structurally equivalent. At any belief λ ∈ {0,∞}k, social type θj ∈ ΘS has
a unique optimal action that it plays for all signal realizations, independent of its model of
inference (F̂L

j , F̂
R
j , π̂j). Let αj(λ) denote this optimal action. Note that θ∗j ∈ Θ∗S has the

same optimal action, α∗j (λ)=αj(λ), since it has the same preferences as θj by definition of
structurally equivalent. Social type θi ∈ ΘS believes autarkic or noise type θj ∈ ΘA ∪ ΘN

chooses action am with probability F̂ ω
i (sj,m(λ0))−F̂ ω

i (sj,m−1(λ0)). It believes θj ∈ ΘS chooses

αj(λ) with probability one independent of its model of inference (F̂L
i , F̂

R
i , π̂i). Therefore, for

any λ ∈ {0,∞}k, type θi believes am is chosen with probability

ψ̂i(am|ω,λ) =
∑

θj∈ΘA∪ΘN

π̂i(θj)(F̂
ω
i (sj,m(λ0))− F̂ ω

i (sj,m−1(λ0))) +
∑
θj∈ΘS

π̂i(θj)1αj(λ)=am . (18)

This is continuous in π̂i and F̂ ω
i under the total variation norm, and it is independent of

(F̂L
j , F̂

R
j , π̂j) for θj ∈ ΘS \ {θi}. Similarly, for any λ ∈ {0,∞}k, the true probability of am is

ψ(am|ω,λ) =
∑

θj∈ΘA∪ΘN

π(θj)(F
ω(sj,m(λ0))− F ω(sj,m−1(λ0))) +

∑
θj∈ΘS

π(θj)1αj(λ)=am

=
∑

θ∗j∈Θ∗A∪Θ
∗
N

π∗(θ∗j )(F
ω(s∗j,m(λ0))− F ω(s∗j,m−1(λ0))) +

∑
θ∗j∈Θ∗S

π∗(θ∗j )1α∗j (λ)=am

= ψ∗(am|ω,λ) (19)

where the second equality follows from ΘA∪ΘN = Θ∗A∪Θ∗N and π(θj) = π∗(θ∗j ) by definition
of structurally equivalent, αj(λ) = α∗j (λ) for j = 1, ..., k as shown above, and sj,m = s∗j,m for
m = 1, ...,M and j = k + 1, ..., n as shown above.

From Eq. (18) continuous in (π̂i, F̂
ω
i ) and Eq. (19), it follows that for any ε > 0, there

exists a δ(ε) > 0 such that any environment (Θ, π) with ||π̂i − π|| < δ(ε), ||F̂L
i − FL|| <

δ(ε) and ||F̂R
i − FR|| < δ(ε) for all θi ∈ ΘS satisfies ||ψ∗(·|L,λ) − ψ̂i(·|L,λ)|| < ε and

||ψ∗(·|R,λ) − ψ̂i(·|R,λ)|| < ε for all λ ∈ {0,∞}k and i = 1, ..., k. Further, from Eq. (19),
||ψ∗(·|ω,λ) − ψ(·|ω,λ)|| = 0 for all λ ∈ {0,∞}k and ω ∈ {L,R} in any such model. Given
this, by Theorem 5, choosing ε small enough establishes that any such learning environment
has the same set of long-run learning outcomes as (Θ∗, π∗) in both states. Since learning is
complete in both states in (Θ∗, π∗), this establishes that learning is complete in both states
in any learning environment with ||π̂i − π||, ||F̂L

i − FL|| and ||F̂R
i − FR|| sufficiently small

for all social types. �

49This proof maintains our convention for breaking indifference outlined in Lemma 1, i.e. the agent
chooses the optimal action with the lowest index. Our robustness result holds across all equilibria, i.e. it
also holds for each of the finite other possible ways to resolve indifference. We omit this analysis, as it
requires cumbersome notation without added conceptual insight.

52



Learning with Heterogeneous Misspecified Models:
Characterization and Robustness

Online Appendix

J. Aislinn Bohren Daniel N. Hauser

July 29, 2021
First version: May 15, 2017

B Derivation of Examples from Section 3

B.1 Example 1: Partisan Bias

Signals and preferences are aligned (Assumptions 1 and 2) since both types have the same
subjective signal distributions and preferences. The autarkic type θ2 plays both actions with
positive probability and the social type θ1 places positive probability on θ2, which establishes
that Assumption 3 holds. Assumption 4 is redundant in a binary action decision problem,
since Assumption 3 guarantees that the social type believes that the autarkic type plays
both actions with positive probability. For technical convenience, we assume that the signal
distributions are continuous and symmetric, FR(s) = 1− FL(1− s).

From the action probabilities derived in Section 3.1, at likelihood ratio λ1, type θ1 believes
action L occurs with probability ψ̂1(L|ω, λ1) = π(θ1)F

ω(1/(1 + λ1)) + π(θ2)F
ω(.5), whereas

the true probability of action L is ψ(L|ω, λ1) = π(θ1)F
ω((1/(1+λ1))

1/ν)+π(θ2)F
ω(.51/ν). The

construction of γ1(L, 0) in Section 3.3 follows from evaluating these expressions at λ1 = 0.
Similarly, the construction of γ1(L,∞) follows from evaluating these expressions at λ1 =∞,

π(θ2)F
L(.51/ν) log

FR(.5)

FL(.5)
+ (π(θ1) + π(θ2)(1− FL(.51/ν))) log

π(θ1) + π(θ2)(1− FR(.5))

π(θ1) + π(θ2)(1− FL(.5))
.

We next characterize how Λ(ω) depends on ν. We write γ1(ω,λ; ν) and Λ(ω; ν) to make
this dependence on ν explicit. To simplify notation, define αν ≡ FL(.51/ν) as the probability
that type θ2 chooses an L action in state L and πA ≡ π(θ2) as the probability of the autarkic
type. By symmetry, FR(.5) = 1−FL(.5) = 1−α1 and by definition of a probability measure,
π(θ1) = 1 − πA. Also note that FL strictly increasing implies that αν is strictly increasing
in ν, symmetry implies that α1 > 1/2, and FL continuous implies αν is continuous in ν.

First consider ω = L. To determine whether incorrect learning arises, i.e. whether
∞ ∈ Λ(L; ν), we need to determine the sign of

γ1(L,∞; ν) = πAαν log
1− α1

α1

+ (1− πAαν) log
1− πA(1− α1)

1− πAα1

.
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Since α1 > 1/2, the update from an L action is negative, log 1−α1

α1
< 0 and the update from

an R action is positive, log 1−πA(1−α1)
1−πAα1

> 0. Note both terms are independent of ν. Since αν
is strictly increasing in ν, the probability of an L action, πAαν , is strictly increasing in ν and
the probability of an R action, 1 − πAαν , is strictly decreasing in ν. Therefore, γ1(L,∞; ν)
is strictly decreasing in ν. At ν = 1, γ1(L,∞; 1) < 0 by the concavity of the log operator.

At ν = 0, α0 = 0 and therefore γ1(L,∞; 0) = log 1−πA(1−α1)
1−πAα1

> 0. Given γ1(L,∞; ν) is
continuous in ν, there exists a cutoff ν1 ∈ (0, 1) such that for ν < ν1, γ1(L,∞; ν) > 0 and
∞ ∈ Λ(L; ν) and for ν > ν1, γ1(L,∞; ν) < 0 and ∞ 6∈ Λ(L; ν).

To determine whether correct learning arises, i.e. whether 0 ∈ Λ(L; ν), we need to
determine the sign of

γ1(L, 0; ν) = (1− πA(1− αν)) log
1− πAα1

1− πA(1− α1)
+ πA(1− αν) log

α1

1− α1

.

As in the previous case, the update from an L action is negative and the probability of
an L action is strictly increasing in ν, while the update from an R action is positive and
the probability of an R action is strictly decreasing in ν. Therefore, γ1(L, 0; ν) is strictly
decreasing in ν. At ν = 1, γ1(L, 0; 1) < 0 by the concavity of the log operator. At ν = 0,
α0 = 0 and therefore,

γ1(L, 0; 0) = (1− πA) log
1− πAα1

1− πA(1− α1)
+ πA log

α1

1− α1

≥ (1− πAα1) log
1− πAα1

1− πA(1− α1)
+ πAα1 log

α1

1− α1

= γ1(R, 0; 1) > 0.

Given γ1(L, 0; ν) is continuous in ν, there exists a cutoff ν2 ∈ (0, 1) such that for ν < ν2,
γ1(L, 0; ν) > 0 and 0 6∈ Λ(L; ν) and for ν > ν2, γ1(L, 0; ν) < 0 and 0 ∈ Λ(L; ν).

Finally we show that ν1 < ν2. Note

γ1(L,∞; ν)− γ1(L,∞; 1) = πA(αν − α1)

(
log

1− α1

α1

− log
1− πA + πAα1

1− πAα1

)
and by the symmetry of the signal distributions, γ1(L, 0; ν) − γ1(L, 0; 1) = γ1(L,∞; ν) −
γ1(L,∞; 1). Moreover γ1(L, 0; 1)− γ1(L,∞; 1) is zero at πA = 0 and πA = 1, and concave in
πA since the second derivative is

(1− 2α1)πA
(πA(1− α1) + (1− πA))2(πAα1 + 1− πA)2

≤ 0.

Therefore, 0 6∈ Λ(ω; ν) before ∞ ∈ Λ(ω; ν). This implies that Λ(L; ν) = {∞} for ν ∈ (0, ν1),
Λ(L; ν) = ∅ for ν ∈ (ν1, ν2), and Λ(L; ν) = {0} for ν ∈ (ν2, 1].

Next consider ω = R. Then γ(R,∞; 1) > 0 and γ(R, 0; 1) > 0, since only correct
learning can occur at ν = 1. The only change in the above expressions is that now the true
probabilities of each action are taken with respect to state R rather than state L. Therefore,
the comparative statics are similar to the comparative statics in state L: γ1(R, 0; ν) and
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γ1(R,∞; ν) are decreasing in ν. Therefore, γ1(R, 0; ν) > 0 implies 0 6∈ Λ(R; ν) for all
ν ∈ (0, 1]. Similarly, γ1(R,∞; ν) > 0 implies ∞ ∈ Λ(R; ν) for all ν ∈ (0, 1]. Therefore,
Λ(R; ν) = {∞} for all ν ∈ (0, 1].

When there is a single social type, mixed learning and disagreement are trivially not possi-
ble. By Theorem 4, the characterization of the locally stable set fully determines asymptotic
learning outcomes. This leads to the following proposition, the proof of which follows from
the construction of Λ(ω; ν) above.

Proposition 5 (Partisan Bias). When ω = L, there exist unique cutoffs 0 < ν1 < ν2 < 1
such that (i) if ν ∈ (ν2, 1], then almost surely learning is correct; (ii) if ν ∈ (ν1, ν2), then
almost surely learning is cyclical; (iii) if ν ∈ (0, ν1), then almost surely learning is incorrect.
When ω = R, almost surely learning is correct.

B.2 Example 2: Partisan Bias and Unawareness

We construct this variation by adding two types to the setting considered in Example 1.
Types θ1 and θ2 are partisan types with the same signal misspecification and preferences
as in Example 1. Types θ3 and θ4 are non-partisan types that correctly interpret signals,
F̂ ω
3 (s) = F̂ ω

4 (s) = F ω(s); θ3 is a social type while θ4 is an autarkic type.1 Both types have
the same preferences as θ1 and θ2, i.e. ui(a, ω) = 1a=ω. Assume that an equal and positive
share of partisan and nonpartisan types are autarkic, π(θ2)/(π(θ1)+π(θ2)) = π(θ4)/(π(θ3)+
π(θ4)) ∈ (0, 1). Both social types have correct beliefs about the share of autarkic types, but
partisan θ1 believes all agents are partisan, π̂1(θ1) = π(θ1)+π(θ3) and π̂1(θ2) = π(θ2)+π(θ4),
and analogously, non-partisan θ3 believes that all agents are non-partisan. Let q ≡ π(θ3) +
π(θ4) denote the share of non-partisan types and πA ≡ π(θ2) + π(θ4) denote the share of
autarkic types. To close the model, assume that the signal distributions are continuous and
symmetric, FR(s) = 1−FL(1−s) with support S = [0, 1], and p0 = 1/2. Signals are aligned
since partisan types order signal realizations in the same way as nonpartisan types, i.e. sν

is increasing in s (Assumption 1).
The true action probabilities for partisan types θ1 and θ2 are identical to those derived

in Section 3.1 for Example 1, as are θ1’s subjective action probabilities for each type. A
non-partisan type θi ∈ {θ3, θ4} who has likelihood ratio λ and observes signal realization s

updates to belief pi(λ,s)
1−pi(λ,s) = λ

(
s

1−s

)
. It chooses action L if this belief is less than one, which

is equivalent to s < 1/(1 + λ) = si,1(λ). At likelihood ratio λ3, type θ3 chooses L with
probability F ω(1/(1 + λ3)). Type θ4 is autarkic. Therefore, its likelihood ratio is constant
at λ4 = 1 and it chooses action L with probability F ω(.5). Type θ3 has correct beliefs about
the probability that θ3 and θ4 choose action L.

We use these subjective and true action probabilities for each type to construct ψ̂1, ψ̂3

and ψ. Partisan type θ1 is now also misspecified about the type distribution, since it does not
account for the nonpartisan types. It believes action L occurs with probability ψ̂1(L|ω,λ) =
(1−πA)F ω(1/(1+λ1))+πAF

ω(.5). This misspecification about the type distribution leads the
partisan type to underestimate the range of signal realizations for which other agents choose
action L, while its signal misspecification causes it to overestimate the probability of these
signal realizations. The latter effect dominates, and θ1 overestimates the frequency of action

1In a slight abuse of our previous notation, we maintain θ2 as the partisan autarkic type for consistency
with Example 1, which violates our convention that the first k types are the social types.
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L. Nonpartisan type θ3 has a correctly specified model of the signal distribution and believes
that other agents do as well, since it does not account for the partisan types. It believes
action L occurs with probability ψ̂3(L|ω,λ) = (1−πA)F ω(1/(1 +λ3)) +πAF

ω(.5). This type
misspecification leads the nonpartisan type to believe that other agents are choosing L for
a larger range of signal realizations than is actually the case, which leads it to overestimate
the frequency of L actions. The true probability of action L is

ψ(L|ω,λ) = (1− q)((1− πA)F ω((1/(1 + λ1))
1/ν) + πAF

ω(.51/ν))

+ q((1− πA)F ω(1/(1 + λ3)) + πAF
ω(.5)).

Although the partisan and nonpartisan social types have different models of the world,
their models collapse to the same subjective probability of each action when they have the
same current belief: for any λ with λ1 = λ3, ψ̂1(L|ω,λ) = ψ̂3(L|ω,λ). Therefore, these
types update their likelihood ratios in the same way following each action. For different
reasons, their beliefs both move too much towards state R following R actions and too little
towards state L following L actions. This implies that when there is a common prior, after
any history ht, beliefs are equal, λ1,t = λ3,t.

2

Given that the two likelihood ratios move in unison, we can consider the partisan and
nonpartisan social types as a single type to characterize asymptotic learning outcomes. Dis-
agreement and mixed learning do not arise, since it is not possible to separate beliefs. Global
stability immediately follows from local stability for the two agreement outcomes. Therefore,
determining the set of parameters (ν, q) for which each agreement outcome is locally stable
fully characterizes asymptotic learning outcomes. This leads to the following proposition.

Proposition 6 (Partisan Bias). When ω = L, there exist unique cutoffs q1 ∈ (0, 1) and
q2 ∈ (q1, 1) such that:

(i) For q < q1, there exist unique cutoffs 0 < ν1(q) < ν2(q) < 1 such that if ν > ν2(q),
then almost surely learning is correct, if ν ∈ (ν1(q), ν2(q)), then almost surely learning
is cyclical and if ν < ν1(q), then almost surely learning is incorrect.

(ii) For q ∈ (q1, q2), there exists a unique cutoff 0 < ν2(q) < 1 such that if ν > ν2(q),
then almost surely learning is correct and if ν < ν2(q), then almost surely learning is
cyclical.

(iii) For q > q2, almost surely learning is correct.

When ω = R, almost surely learning is correct.

Proof. The construction of the locally stable set is similar to Example 1. To simplify nota-
tion, define αν ≡ FL(.51/ν) as the probability that type θ2 chooses action L in state L. Given
this notation, type θ4 chooses action L in state L with probability α1. As in Example 1,
FR(.5) = 1− FL(.5) = 1− α1, αν is strictly increasing in ν and α1 > 1/2. We characterize
how Λ(ω) depends on ν and q. We write γ1(ω,λ; ν, q), γ3(ω,λ; ν, q), and Λ(ω; ν, q) to make
this dependence explicit. Since beliefs move in unison, γ3(ω,λ; ν, q) = γ1(ω,λ; ν, q), and
therefore, we can focus on characterizing γ1(ω,λ; ν, q) at (0, 0) and (∞,∞).

2Partisan and nonpartisan types with the same likelihood ratio may choose different actions following a
given signal realization s, as they have different signal cutoffs.
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To determine whether (∞,∞) ∈ Λ(L; ν, q), we need to determine the sign of

γ1(L, (∞,∞); ν, q) = ψ(L|L, (∞,∞); ν, q) log
1− α1

α1

+ ψ(R|L, (∞,∞); ν, q) log
1− πA(1− α1)

1− πAα1

,

where ψ(L|L, (∞,∞); ν, q) ≡ πA((1− q)αν + qα1) and ψ(R|L, (∞,∞); ν, q) ≡ πA((1− q)(1−
αν)+q(1−α1))+1−πA. Since α1 > 1/2, the update from an L action is negative, log 1−α1

α1
< 0

and the update from an R action is positive, log 1−πA(1−α1)
1−πAα1

> 0. Note both terms are
independent of ν and q. Since αν is strictly increasing in ν, the probability of an L ac-
tion, ψ(L|L, (∞,∞); ν, q), is strictly increasing in ν and q, and the probability of an R
action, ψ(R|L, (∞,∞); ν, q), is strictly decreasing in ν and q. Therefore, γ1(L, (∞,∞); ν, q)
is strictly decreasing in ν and q. At ν = 1, both partisan and nonpartisan types are identical,
so ψ(L|L, (∞,∞); 1, q) = πAα1 and ψ(R|L, (∞,∞); 1, q) = πA(1− α1) + 1− πA. Therefore,
for any q ∈ [0, 1], γ1(L, (∞,∞); 1, q) < 0 by the concavity of the log operator. Similarly,
at q = 1, for any ν ∈ [0, 1], γ1(L, (∞,∞); ν, 1) < 0 by the concavity of the log operator.
At ν = 0, θ2 chooses action R for all signal realizations, i.e. α0 = 0. Therefore, at q = 0,
ψ(L|L, (∞,∞); 0, 0) = 0 and γ1(L, (∞,∞); 0, 0) = log 1−πA(1−α1)

1−πAα1
> 0. This establishes that

there exists a cutoff q1 ∈ (0, 1) such that for q < q1, there exists a cutoff ν1(q) ∈ (0, 1)
such that for ν < ν1(q), γ1(L, (∞,∞); ν, q) > 0 and (∞,∞) ∈ Λ(L; ν, q) and for ν > ν1(q),
γ1(L, (∞,∞); ν, q) < 0 and (∞,∞) 6∈ Λ(L; ν, q). For q > q1, γ1(L, (∞,∞); ν, q) < 0 and
(∞,∞) 6∈ Λ(L; ν, q).

To determine whether (0, 0) ∈ Λ(L; ν, q), we need to determine the sign of

γ1(L, (0, 0); ν, q) = ψ(L|L, (0, 0); ν, q) log
1− πAα1

πAα1 + 1− πA
+ ψ(R|L, (0, 0); ν, q) log

α1

1− α1

,

where ψ(L|L, (0, 0); ν, q) ≡ πA((1 − q)αν + qα1) + 1 − πA and ψ(R|L, (0, 0); ν, q) ≡ πA((1 −
q)(1−αν)+q(1−α1)). As in the previous case, the update from an L action is negative and the
probability of an L action is strictly increasing in ν and q, while the update from an R action
is positive and the probability of an R action is strictly decreasing in ν and q. Therefore,
γ1(L, (0, 0); ν, q) is strictly decreasing in ν and q. By similar reasoning to the case of (∞,∞),
at ν = 1, γ1(L, (0, 0); 1, q) < 0 for all q ∈ [0, 1] and at q = 1, γ1(L, (0, 0); ν, 1) < 0 for all
ν ∈ [0, 1] by the concavity of the log operator. At ν = 0 and q = 0, ψ(L|L, (0, 0); 0, 0) = 1−πA
since α0 = 0. As in Example 1, γ1(L, (0, 0); 0, 0) > 0. This establishes that there exists a
cutoff q2 ∈ (0, 1) such that for q < q2, there exists a cutoff ν2(q) such that for ν < ν2(q),
γ1(L, (0, 0); ν, q) > 0 and (0, 0) 6∈ Λ(L; ν, q), and for ν > ν2(q), γ1(L, (0, 0); ν, q) < 0 and
(0, 0) ∈ Λ(L; ν, q). For q > q2, γ1(L, (0, 0); ν, q) < 0 and (0, 0) ∈ Λ(L; ν, q).

To show that q1 < q2 and ν1(q) < ν2(q) for all q < q1, note γ1(L, (∞,∞); ν, q) −
γ1(L, (∞,∞); 1, q) is equal to

πA(1− q)(αν − α1)

(
log

1− πAα1

πAα1 + 1− πA
− log

α1

1− α1

)
and by the symmetry of the signal distributions, γ1(L, (0, 0); ν, q) − γ1(L, (0, 0); 1, q) =
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γ1(L, (∞,∞); ν, q) − γ1(L, (∞,∞); 1, q). Moreover, γ1(L, (0, 0); 1, q) − γ1(L, (∞,∞); 1, q) is
0 at πA = 0, 0 at πA = 1, and concave in πA since the second derivative is

πA(1− 4q + 4q2)(2− 2α1 − 1)

(πA(1− α1) + 1− πA)2(πAα1 + 1− πA)2
≤ 0.

Therefore, (0, 0) 6∈ Λ(ω; ν, q) before (∞,∞) ∈ Λ(ω; ν, q).
Next consider ω = R. Then γ(R, (∞,∞); 1, q) > 0 and γ(R, (0, 0); 1, q) > 0 for all

q ∈ [0, 1], since only correct learning can occur at ν = 1. The only change in the above
expressions is that now the true probabilities of each action are taken with respect to state R,
rather than state L. Therefore, the comparative statics are similar to the comparative statics
in state L: γ1(R, (0, 0); ν, q) and γ1(R, (∞,∞); ν, q) are decreasing in ν and q. Therefore,
γ1(R, (0, 0); ν, q) > 0 for all ν and q, which implies (0, 0) 6∈ Λ(R; ν, q) for all ν and q. Similarly,
γ1(R, (∞,∞); ν, q) > 0 for all ν and q, which implies (∞,∞) ∈ Λ(R; ν, q) for all ν and q.
Therefore, Λ(R; ν, q) = {(∞,∞)} for all ν and q and learning is almost surely correct. �

C Proofs from Section 4

C.1 Section 4.1 (Overreaction)

Proof of Observation 1. Suppose agents observe signals directly. Modify the definition of
the expected change in the log likelihood ratio to allow for an uncountable signal space (as
opposed to a finite action space):

γ̃(ω,λ; ν) ≡
∫
s∈S

log

(
s

1− s

)ν
dF ω(s).

Then γ̃(ω,λ; ν) = νγ̃(ω,λ; 1) since
∫
s∈S log

(
s

1−s

)ν
dF ω(s) = ν

∫
s∈S log

(
s

1−s

)
dF ω(s) = νγ̃(ω,λ; 1),

where γ̃(ω,λ; 1) is the expected change in the log likelihood ratio in the correctly specified
model. Therefore, γ̃(ω,λ; ν) has the same sign as γ̃(ω,λ; 1). Since correct learning obtains al-
most surely when agents have a correctly specified model, Λ(L; 1) = {0} and Λ(R; 1) = {∞}.
This implies that Λ(L; ν) = {0} and Λ(R; ν) = {∞} for all ν ∈ [1,∞). Berk (1966) shows
that beliefs converges a.s. in state L to the unique element in Λ(L). Therefore, correct
learning occurs almost surely, independent of ν. �

Proof of Proposition 1. Let x ≡ π(θ1)/π(θ2) denote the ratio of social to autarkic types.

If an agent is an autarkic type with overreaction parameter ν, then p̂∗(ν) ≡ (p∗)1/ν

(1−p∗)1/ν+(p∗)1/ν

is the signal cutoff to choose action a1. Note that this reduces to p∗ for a correctly specified
type, i.e. p̂∗(1) = p∗.

We first construct the locally stable set. We write γi(ω,λ;x, ν) and Λ(ω;x, ν) to make
these expressions’ dependence on parameters x and ν explicit. Define Γ0(x, ν) ≡ γ1(L, 0; x, ν)(x+
1) and Γ∞(x, ν) ≡ γ1(L,∞;x, ν)(x+ 1). Then from the construction of γi(ω,λ;x, ν),

Γ0(x, ν) ≡ (FL(p̂∗(ν)) + x) log
FR(p∗) + x

FL(p∗) + x
− FR(p̂∗(ν)) log

FR(p∗)

FL(p∗)

+ (FL(1/2)− FR(1/2) + FR(p̂∗(ν))− FL(p̂∗(ν))) log
FR(1/2)− FR(p∗)

FL(1/2)− FL(p∗)
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Γ∞(x, ν) ≡ −(FR(p̂∗(ν)) + x) log
FR(p∗) + x

FL(p∗) + x
+ FL(p̂∗(ν)) log

FR(p∗)

FL(p∗)

+ (FL(1/2)− FR(1/2) + FR(p̂∗(ν))− FL(p̂∗(ν))) log
FR(1/2)− FR(p∗)

FL(1/2)− FL(p∗)
.

These functions have the same sign as γ1(L, 0; x, ν) or γ1(L,∞;x, ν), respectively. Therefore,
the signs of Γ0(x, ν) and Γ∞(x, ν) can be used to characterize the locally stable set Λ(ω;x, ν).
Since there is a single social type, long-run learning is fully determined by Λ(ω;x, ν).

To show the desired cutoffs exist, we show (i) ν 7→ Γ0(x, ν) crosses zero at most once for a
fixed x, (ii) if 0 6∈ Λ(L; x, ν) for some x′, then 0 6∈ Λ(L; x, ν) for all x > x′, (iii)∞ 6∈ Λ(L; x, ν)
for all (x, ν). To show (i), note that the derivative of Γ0(x, ν) with respect to ν is

∂Γ0

∂ν
=
dp̂∗(ν)

dν
fL(p̂∗(ν))

×
(

log
FR(p∗) + x

FL(p∗) + x
− p̂∗(ν)

1− p̂∗(ν)
log

FR(p∗)

FL(p∗)
−
(

1− p̂∗(ν)

1− p̂∗(ν)

)
log

FR(1/2)− FR(p∗)

FL(1/2)− FL(p∗)

)
,

where we use the property that fR(p̂∗(ν))/fL(p̂∗(ν)) = p̂∗(ν)/(1− p̂∗(ν)) which follows from
the normalization that signal realizations are posterior beliefs. The sign of this derivative is
the same as the sign of

log
FR(p∗) + x

FL(p∗) + x
+

p̂∗(ν)

1− p̂∗(ν)

(
log

FR(1/2)− FR(p∗)

FL(1/2)− FL(p∗)
− log

FR(p∗)

FL(p∗)

)
− log

FR(1/2)− FR(p∗)

FL(1/2)− FL(p∗)
.

This expression is increasing in ν, so ν 7→ Γ0(x, ν) is either decreasing, U-shaped or increas-
ing. Given Γ0(x, 1) ≤ 0, ν 7→ Γ0(x, ν) changes signs at most once. Therefore, for a fixed x,
there exists a cutoff ν̄ > 1 such that 0 6∈ Λ(L; x, ν) for all ν > ν̄ and 0 ∈ Λ(L; x, ν) for all
ν < ν̄. For (ii), note that the derivative ∂Γ0/∂ν is strictly increasing in x. If we can show
that Γ0(x, 1) is increasing in x, then as x increases, λ = 0 becomes unstable at a lower value
of ν. The derivative of Γ0(x, 1) with respect to x is

∂Γ0

∂x
= log

FR(p∗) + x

FL(p∗) + x
+
FL(p∗)− FR(p∗)

FR(p∗) + x
.

Moreover, the second derivative is

∂2Γ0

∂x2
= − (FL(p∗)− FR(p∗))2

(FL(p∗) + x)(FR(p∗) + x)2
< 0.

So x 7→ Γ0(x, 1) is concave in x and limx→∞
∂Γ0

∂x
(x, 1) = 0. Therefore, ∂Γ0

∂x
(x, 1) ≥ 0 for all x.

Finally, Γ0(x, ν) ≥ Γ0(x
′, ν) for x > x′. Therefore, as x increases, γ1(L, 0; x, ν) crosses 0 at a

lower ν, i.e. if 0 6∈ Λ(L; x′, ν) then 0 6∈ Λ(L; x, ν). For (iii), the derivative of Γ∞(x, ν) with
respect to ν is

∂Γ∞
∂ν

=
dp̂∗(ν)

dν
fR(p̂∗(ν))
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×
(
− log

FR(p∗) + x

FL(p∗) + x
+

1− p̂∗(ν)

p̂∗(ν)
log

FR(p∗)

FL(p∗)
−
(

1− p̂∗(ν)

p̂∗(ν)
− 1

)
log

FR(1/2)− FR(p∗)

FL(1/2)− FL(p∗)

)
This derivative is maximized at x = 0 for a fixed ν since log FR(p∗)+x

FL(p∗)+x
is monotone in x. At

x = 0, ∂Γ∞
∂ν

(0, ν) < 0. Therefore, ∂Γ∞
∂ν

(x, ν) < 0 for all (x, ν) and∞ 6∈ Λ(L; x, ν) for all (x, ν).
The symmetric environment implies identical cutoffs in state R. Therefore, π̄ and ν̄ exist

and satisfy the desired properties. Finally

lim
x→∞

lim
ν→∞

Γ0(x, ν) = FR(p∗)− FL(p∗)− FR(1/2) log
FR(p∗)

FL(p∗)
> 0

by assumption. Therefore, cyclical learning occurs for some parameters. �

C.2 Section 4.2 (Naive Learning)

We first prove Proposition 3 and then Proposition 2, as the latter is based on the former.

Proof of Proposition 3. Let αL ≡ FL(1/2) be the probability an autarkic type plays
action L in state L and αR ≡ FR(1/2) be the probability an autarkic type plays action L
in state R. Note that αL ∈ (0, 1) and αR ∈ (0, 1), since private signals are informative. In a
slight abuse of notation, let π̂i denote π̂i(θA) and π denote π(θA) to abbreviate the following
expressions.

We first construct the locally stable set. We write γi(ω,λ; π̂i) and Λ(ω; π̂1, π̂2) to make
these expressions’ dependence on π̂1 and π̂2 explicit. The local stability of correct learning
is determined by the sign of

γi(L, (0, 0); π̂i) = (παL + 1− π) log

(
π̂iαR + 1− π̂i
π̂iαL + 1− π̂i

)
+ π(1− αL) log

(
1− αR
1− αL

)
.

If θi has a correctly specified model, γi(L, (0, 0); π) < 0. This expression is decreasing in
π̂i. Therefore, γi(L, (0, 0); π̂i) < 0 for all π̂i ≥ π. This implies that (0, 0) ∈ Λ(L; π̂1, π̂2)
for all π̂1, π̂2. Therefore, correct learning arises with positive probability at any level of
heterogeneity. The local stability of incorrect learning is determined by the sign of

γi(L, (∞,∞); π̂i) = παL log

(
αR
αL

)
+ (π(1− αL) + 1− π) log

(
π̂i(1− αR) + 1− π̂i
π̂i(1− αL) + 1− π̂i

)
.

This expression is increasing in π̂i and is equivalent to the representative agent model at
π̂i = π̂. Therefore, if γi(L, (∞,∞); π̂) < 0, then γ1(L, (∞,∞); π̂1) < 0 since π̂1 ≤ π̂ by
definition. This implies that if incorrect learning does not arise in the representative agent
model with bias π̂, i.e. (∞,∞) 6∈ Λ(L; π̂, π̂), then it does not arise in any corresponding
heterogeneous model with average bias π̂, i.e. (∞,∞) 6∈ Λ(L; π̂1, π̂2) for all π̂1, π̂2 such that
(π̂1 + π̂2)/2 = π̂. Further, we know from Bohren (2016) that there exists a cutoff π ∈ (π, 1]
such that for π̂i > π, γi(L, (∞,∞); π̂i) > 0, with π < 1 for small enough π. Therefore,
(∞,∞) ∈ Λ(L; π̂, π̂) for π̂ > π and (∞,∞) ∈ Λ(L; π̂1, π̂2) for π̂1 > π. The local stability of
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disagreement is determined by the sign of

γi(L, (0,∞); π̂i) = (παL + (1− π)/2) log

(
π̂iαR + 1

2
(1− π̂i)

π̂iαL + 1
2
(1− π̂i)

)
+ (π(1− αL) + (1− π)/2) log

(
π̂i(1− αR) + 1

2
(1− π̂i)

π̂i(1− αL) + 1
2
(1− π̂i)

)
= π(2αL − 1) log

(
π̂i(1− αL) + 1

2
(1− π̂i)

π̂iαL + 1
2
(1− π̂i)

)
,

where the second equality follows from symmetry, αR = 1 − αL. Given αL > 1/2, (π̂i(1 −
αL) + 1

2
(1 − π̂i))/(π̂iαL + 1

2
(1 − π̂i)) < 1 and 2αL − 1 > 0. Therefore, γi(L, (0,∞); π̂i) < 0

for any π̂i. This implies that (0,∞) almost surely does not arise, i.e. (0,∞) 6∈ Λ(L; π̂1, π̂2).
Given γi(L, (∞, 0); π̂i) = γi(L, (0,∞); π̂i), (∞, 0) almost surely does not arise. Therefore,
almost surely disagreement does not arise. The construction of Λ(R; π̂1, π̂2) is analogous.

Next, we rule out mixed learning. Since correct learning is always locally stable, the only
candidate mixed outcomes are λ∗1 = ∞ or λ∗2 = ∞. As argued above γ1(L, (0,∞); π̂1) < 0
for any π̂1 and γ2(L, (∞, 0); π̂2) < 0 for any π̂2. This implies ΛM(L) = ∅. Therefore, mixed
learning almost surely does not arise. The construction of ΛM(R) is analogous.

Given ΛM(ω) = ∅ and Λ(ω; π̂1, π̂2) does not contain any disagreement outcomes—and
therefore, we do not need to consider maximal accessibility—by Theorem 4, Λ(ω; π̂1, π̂2)
fully characterizes the set of asymptotic learning outcomes. From the above characterization,
either Λ(ω; π̂1, π̂2) = {(0, 0)} or Λ(ω; π̂1, π̂2) = {(0, 0), (∞,∞)}. Therefore, either learning is
almost surely correct, or learning is almost surely correct or incorrect with both occurring
with positive probability. Further, if Λ(ω; π̂, π̂) = {(0, 0)}, then Λ(ω; π̂1, π̂2) = {(0, 0)} for
all π̂1, π̂2 such that (π̂1 + π̂2)/2 = π̂, and if Λ(ω; π̂1, π̂2) = {(0, 0), (∞,∞)}, then Λ(ω; π̂, π̂) =
{(0, 0), (∞,∞)} at π̂ = (π̂1 + π̂2)/2.

Proof of Proposition 2. This result follows directly from the constructions of γi(ω,λ; π̂i) in
Proposition 3. Generically, γi(ω, (0, 0); π̂i) 6= 0 and γi(ω, (∞,∞); π̂i) 6= 0 for i = 1, 2. Given
an average bias π̂, consider the case where γi(ω, (0, 0); π̂) 6= 0 and γi(ω, (∞,∞); π̂) 6= 0
for i = 1, 2. For any δ > 0, there exists an ε such that for |π̂1 − π̂| < ε/2 and |π̂2 −
π̂| < ε/2, |γi(ω,λ; π̂i) − γi(ω,λ; π̂)| < δ for λ ∈ {(0, 0), (∞,∞)} and i = 1, 2. Choosing
δ small enough ensures that γi(ω,λ; π̂i) and γi(ω,λ; π̂) have the same sign. Therefore,
Λ(ω; π̂1, π̂2) = Λ(ω; π̂, π̂) and the heterogeneous set-up has the same set of learning outcomes
as the corresponding representative agent set-up. �

C.3 Section 4.3 (Level-k)

Proof of Proposition 4. Let λ = (λ2, λ3) denote the vector of likelihood ratios for the
social types θ2 and θ3. Note λ1,t = 1 for all t. When type θi ∈ {θ1, θ2, θ3} has current
belief λi, it chooses action R iff it observes a signal realization s ≥ 1/(λi + 1). Given λ1 = 1,
type θ1 chooses action L with probability F ω(0.5) and action R with probability 1−F ω(0.5),
independent of the history. Type θ2’s subjective probability of each L action in the history is
the probability that a level-1 type chooses action L, ψ̂2(L|ω,λ) = F ω(0.5) and its subjective
probability of each R action is ψ̂2(R|ω,λ) = 1− F ω(0.5), independent of the history. Given
belief λ2, level-2 chooses an L action with probability F ω(1/(λ2 + 1)) and an R action with
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probability 1 − F ω(1/(λ2 + 1)). Type θ3’s subjective probability of each L action is the
weighted average of the probability that a level-1 type and a level-2 type choose action L,

ψ̂3(L|ω,λ) = (1− ε)F ω(1/(λ2 + 1)) + εF ω(.5),

which does depend on the history through λ2. The subjective probability of an R action is
analogous. Finally, the true probability of an L action depends on the correct distribution
over types,

ψ(L|ω,λ) = π(θ1)F
ω(.5) + π(θ2)F

ω(1/(λ2 + 1)) + π(θ3)F
ω(1/(λ3 + 1)).

To simplify the exposition, let αL ≡ FL(.5) be the probability a level-1 type plays action L
in state L and αR ≡ FR(.5) be the probability a level-1 type plays action L in state R. Note
that αL ∈ (0, 1) and αR ∈ (0, 1), since private signals are informative.

Suppose ω = L. We first consider local stability for the level-3 type. At the correct
learning outcome, (0, 0), the level-2 type chooses action L for all signal realizations. There-
fore, the level-3 type believes that L actions are approximately uninformative for small ε,
ψ̂3(L|R,(0,0))
ψ̂3(L|L,(0,0))

= 1−ε+εαR
1−ε+εαL

≈ 1 and R actions are from the level-1 type, ψ̂3(R|R,(0,0))
ψ̂3(R|L,(0,0))

= 1−αR
1−αL

. Since

only the level-1 type plays action R, the true probability of an R action is π(θ1)(1 − αL).
Therefore, for small ε, γ3(L, (0, 0)) = (π(θ1)αL + π(θ2) + π(θ3)) log 1−ε+εαR

1−ε+εαL
+ π(θ1)(1 −

αL) log 1−αR
1−αL

≈ π(θ1)(1 − αL) log 1−αR
1−αL

> 0 and correct learning is not locally stable for the
level-3 type, (0, 0) 6∈ Λ3(L). Similarly, for small ε, γ3(L, (∞,∞)) ≈ π(θ1)αL log αR

αL
< 0 and

incorrect learning is not locally stable for the level-3 type, (∞,∞) 6∈ Λ3(L). This establishes
that correct learning and incorrect learning almost surely do not occur for small ε, as neither
outcome is locally stable for level-3 types.

This leaves the disagreement outcomes as candidate learning outcomes. Consider (0,∞).
As in the case of (0, 0), the level-3 type believes that L actions are approximately un-
informative and R actions are from the level-1 type. But now, this confirms the level-3
type’s belief that the state is R, γ3(L, (0,∞)) ≈ (π(θ1)(1 − αL) + π(θ3)) log 1−αR

1−αL
> 0 and

(0,∞) ∈ Λ3(L). Similarly, γ3(L, (∞, 0)) ≈ (π(θ1)αL + π(θ3)) log αR
αL

< 0 and (∞, 0) ∈ Λ3(L).
Therefore, for small ε, both disagreement outcomes are locally stable for the level-3 type,
Λ3(L) = {(0,∞), (∞, 0)}.

Next, we determine whether the disagreement outcomes are locally stable for the level-2
type. The level-2 type believes that all actions are from level-1 types. Therefore, it interprets
L and R actions in the same way at both disagreement outcomes. At (0,∞), the true
probability of an L action is π(θ1)αL+π(θ2), while at (∞, 0), it is π(θ1)αL+π(θ3). Therefore,
γ2(L, (0,∞)) = (π(θ1)αL+π(θ2)) log αR

αL
+(π(θ1)(1−αL)+π(θ3)) log 1−αR

1−αL
and γ2(L, (∞, 0)) =

(π(θ1)αL + π(θ3)) log αR
αL

+ (π(θ1)(1 − αL) + π(θ2)) log 1−αR
1−αL

. The signs of these expressions
vary with the true distribution of types. To characterize the region of the type distribution
at which each disagreement outcome is locally stable, we use the inequalities (a) αR

αL
< 1, (b)

1−αR
1−αL

> 1 and (c) from the correctly specified model, αL log αR
αL

+ (1 − αL) log 1−αR
1−αL

< 0, as
well as the property that π 7→ γ2(L, (0,∞)) and π 7→ γ2(L, (∞, 0)) are continuous.

Case (i): As π(θ3) → 0, γ2(L, (0,∞)) → (π(θ1)αL + 1 − π(θ1)) log αR
αL

+ π(θ1)(1 −
αL) log 1−αR

1−αL
< 0 for all π(θ1), where the negative sign follows from inequalities (a) and
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(c). Therefore, there exists a cutoff c1 > 0 such that for π(θ3) < c1, (0,∞) ∈ Λ2(L) for all
π(θ1) and π(θ2).

Case (ii): As π(θ3) → 1, γ2(L, (0,∞)) → log 1−αR
1−αL

> 0 and γ2(L, (∞, 0)) → log αR
αL

< 0.
Therefore, there exists an interior cutoff c2 ∈ (0, 1) such that for π(θ3) > c2, (0,∞) 6∈ Λ2(L)
and there exists a cutoff c3 < 1 such that for π(θ3) > c3, (∞, 0) 6∈ Λ2(L) for all π(θ1)
and π(θ2), where c2 > 0 follows from part (i). Therefore, there exists an interior cutoff
π̄3 = max{c2, c3} ∈ (0, 1) such that if π(θ3) > π̄3, neither disagreement outcome is locally
stable for θ2. Combined with Λ3(L) = {(0,∞), (∞, 0)}, this implies that Λ(L) = ∅ for
π(θ3) > π̄3 and small ε.

Case (iii): As π(θ2) → 0, γ2(L, (∞, 0)) → (π(θ1)αL + 1 − π(θ1)) log αR
αL

+ π(θ1)(1 −
αL) log 1−αR

1−αL
< 0 for all π(θ1), where the negative sign follows from inequalities (a) and (c).

Therefore, there exists a cutoff c4 > 0 such that for π(θ2) < c4, (∞, 0) 6∈ Λ2(L) for all π(θ1)
and π(θ3).

Case (iv): As π(θ2) → 1, γ2(L, (0,∞)) → log αR
αL

< 0 and γ2(L, (∞, 0)) → log 1−αR
1−αL

> 0.
Therefore, there exists a cutoff c5 < 1 such that for π(θ2) > c5, (0,∞) ∈ Λ2(L) and there
exists an interior cutoff c6 ∈ (0, 1) such that for π(θ2) > c6, (∞, 0) ∈ Λ2(L) for all π(θ1) and
π(θ3), where c6 > 0 follows from case (iii). Therefore, there exists an interior cutoff π̄2 =
max{c5, c6} ∈ (0, 1) such that if π(θ2) > π̄2, both disagreement outcomes are locally stable
for θ2. Combined with Λ3(L) = {(0,∞), (∞, 0)}, this implies that Λ(L) = {(0,∞), (∞, 0)}
for π(θ2) > π̄2 and small ε.

Case (v): As π(θ1) → 1, γ2(L, (0,∞)) → αL log αR
αL

+ (1 − αL) log 1−αR
1−αL

< 0 and

γ2(L, (∞, 0)) → αL log αR
αL

+ (1− αL) log 1−αR
1−αL

< 0. Therefore, there exists an interior cutoff
c7 ∈ (0, 1) such that for π(θ1) > c7, (0,∞) ∈ Λ2(L) and there exists an interior cut-
off c8 ∈ (0, 1) such that for π(θ1) > c8, (∞, 0) 6∈ Λ2(L) for all π(θ2) and π(θ3), where
c7 > 0 and c8 > 0 follow from cases (ii) and (iv). Therefore, there exists an interior cutoff
π̄1 = max{c7, c8} ∈ (0, 1) such that if π(θ1) > π̄1, (0,∞) is locally stable for θ2 and (∞, 0)
is not. Combined with Λ3(L) = {(0,∞), (∞, 0)}, this implies that Λ(L) = {(0,∞)} for
π(θ1) > π̄1 and small ε.

Fixing π(θ2), γ2(L, (0,∞)) is increasing in π(θ3). Given this, we next show that the type
distribution can be divided into two connected regions in the simplex such that (0,∞) ∈
Λ2(L) or (0,∞) 6∈ Λ2(L), and these regions are separated by the unique solution to γ2(L, (0,∞)) =
0. As shown above, at π(θ2) = 0 and π(θ3) = 0, γ2(L, (0,∞)) < 0 and at π(θ2) = 0
and π(θ3) = 1, γ2(L, (0,∞)) > 0. Therefore, there exists a cutoff c9 ∈ (0, 1) such that
at π(θ2) = 0 and π(θ3) = c9, γ2(L, (0,∞)) = 0. Similarly, there exists a cutoff c10 ≡
log αL

αR
/(log αL

αR
− log 1−αL

1−αR
) such that at π(θ1) = 0 and π(θ3) = c10, γ2(L, (0,∞)) = 0. Given

γ2(L, (0,∞)) is linear in π(θ2) and π(θ3), the solution to γ2(L, (0,∞)) = 0 is linear in the sim-
plex and represented by the line connecting (1−c9, 0, c9) and (0, 1−c10, c10). This establishes
the above statement.

Fixing π(θ2), γ2(L, (∞, 0)) is decreasing in π(θ3). Therefore, by similar reasoning, the
type distribution can be divided into two connected regions such that (∞, 0) ∈ Λ2(L) or
(∞, 0) 6∈ Λ2(L), and these regions are separated by the unique solution to γ2(L, (∞, 0)) = 0.
Given γ2(L, (∞, 0)) is linear in π(θ2) and π(θ3), the solution to γ2(L, (∞, 0)) = 0 is linear
in the simplex and represented by the line connecting (1 − c11, c11, 0) and (0, 1 − c12, c12),
where c11 ∈ (0, 1) is the value of π(θ2) such that γ2(L, (∞, 0)) = 0 when π(θ3) = 0, and
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c12 ≡ log 1−αL
1−αR

/(log 1−αL
1−αR

− log αL
αR

).
Given the linearity of both solutions, if c10 ≥ c12, then the solution to γ2(L, (0,∞)) = 0

lies above the solution to γ2(L, (∞, 0)) = 0. Therefore, there are three distinct regions such
that for small ε, either (i) Λ(L) = ∅, (ii) Λ(L) = {(0,∞)}, or (iii) Λ(L) = {(0,∞), (∞, 0)}.
Otherwise, if c10 ≤ c12, the solutions cross exactly once. Therefore, there are four distinct
regions such that for small ε, either (i) Λ(L) = ∅, (ii) Λ(L) = {(0,∞)}, (iii) Λ(L) = {(∞, 0)},
or (iv) Λ(L) = {(0,∞), (∞, 0)}. Note that when the signal distributions are symmetric,
c10 ≥ c12. The construction of Λ(R) is analogous.

We next show that both disagreement outcomes are maximally accessible at all type
distributions. Formally, we show that for any π ∈ ∆((θ1, θ2, θ3)) and ε ∈ (0, 1], (0,∞) and
(∞, 0) are maximally accessible. At λ = (0, 0), type θ2 perceives L actions as stronger
evidence of state L than type θ3,

ψ̂2(L|R, (0, 0))

ψ̂2(L|L, (0, 0))
=
αR
αL

<
ε+ (1− ε)αR
ε+ (1− ε)αL

=
ψ̂3(L|R, (0, 0))

ψ̂3(L|L, (0, 0))
,

and both types perceive R actions in the same way,

ψ̂2(R|R, (0, 0))

ψ̂2(R|L, (0, 0))
=
ψ̂3(R|R, (0, 0))

ψ̂3(R|L, (0, 0))
=

1− αR
1− αL

.

Therefore, θ3 �(0,0) θ2. From Definition 7, this implies that (0,∞) is maximally accessible.
At λ = (∞,∞), type θ2 perceives R actions as stronger evidence of state R than type θ3,

ψ̂2(R|R, (∞,∞))

ψ̂2(R|L, (∞,∞))
=

1− αR
1− αL

>
ε+ (1− ε)(1− αR)

ε+ (1− ε)(1− αL)
=
ψ̂3(R|R, (∞,∞))

ψ̂3(R|L, (∞,∞))
,

and both types perceive L actions in the same way,

ψ̂2(L|R, (∞,∞))

ψ̂2(L|L, (∞,∞))
=
ψ̂3(L|R, (∞,∞))

ψ̂3(L|L, (∞,∞))
=
αR
αL

.

Therefore, θ2 �(∞,∞) θ3. From Definition 7, this implies that (∞, 0) is maximally accessible.
Therefore, a disagreement outcome arises with positive probability if and only if it is in Λ(ω).

Finally, we need to rule out mixed learning outcomes. Suppose ω = L and consider
the four possible mixed outcomes. Consider (0, θ3). By the concavity of the log operator,
αL log αR

αL
+ (1 − αL) log 1−αR

1−αL
< 0. Therefore, since αR

αL
< 0, γ2(L, (0, 0)) = (π1αL + π(θ2) +

π(θ3)) log αR
αL

+ π1(1 − αL) log 1−αR
1−αL

< 0. and (0, 0) ∈ Λ2(L). By the definition of ΛM(L),
this implies that (0, θ3) 6∈ ΛM(L) and this mixed learning outcome almost surely does not
arise. Consider (∞, θ3). This outcome is in ΛM(L) if (∞,∞) 6∈ Λ2(L) and (0,∞) 6∈ Λ2(L),
which is equivalent to γ2(L, (∞,∞)) < 0 and γ2(L, (0,∞)) > 0. However, γ2(L, (λ2,∞))
is increasing in λ2, so this is not possible. Therefore, (∞, θ3) 6∈ ΛM(L) and this mixed
learning outcome almost surely does not arise. Consider (0, θ2). This outcome is in ΛM(L)
if (0, 0) 6∈ Λ3(L) and (0,∞) 6∈ Λ3(L). From the characterization of Λ(L) above, we know
that (0,∞) ∈ Λ3(L). Therefore, (0, θ2) 6∈ ΛM(L) and this mixed learning outcome almost
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surely does not arise. Consider (∞, θ2). This outcome is in ΛM(L) if (∞, 0) 6∈ Λ3(L) and
(∞,∞) 6∈ Λ3(L). From the characterization of Λ(L) above, we know that (∞, 0) ∈ Λ3(L).
Therefore, (∞, θ2) 6∈ ΛM(L) and this mixed learning outcome almost surely does not arise.
Together, this establishes ΛM(L) = ∅. Similar logic shows ΛM(R) = ∅.

Given ΛM(ω) = ∅ and both disagreement outcomes are maximally accessible, by The-
orem 4, Λ(ω) determines the set of asymptotic learning outcomes. As ε → 1, Λ(ω) ⊆
{(0,∞), (∞, 0)}. Either Λ(ω) = ∅, in which case learning is cyclical for both types, or
Λ(ω) 6= ∅, in which case beliefs almost surely converge to a limit random variable with sup-
port Λ(ω). The construction of Λ(ω) above establishes the cutoffs on the type distribution
such that Λ(ω) = ∅, Λ(ω) = {(0,∞)}, Λ(ω) = {(∞, 0)} or Λ(ω) = {(0,∞), (∞, 0)}. �

D Learning Characterization: More than Two Social Types

This section proves analogues of the global stability of disagreement, mixed learning, and
belief convergence results in Section 3 and Appendix A for any finite number of social
types. Together, this establishes a direct analogue of Theorem 4; an analogue of Corollary 2
immediately follows. These results nest the case of k ≤ 2.

D.1 Global Stability of Disagreement

We first prove an analogue of Theorem 7 to show that separability can also be used to
establish the global stability of a disagreement outcome when there are more than two social
types. We then extend the definition of maximal accessibility and prove that it implies the
separability condition, establishing an analogue of Theorem 3.

Theorem 7′ (Global Stability of Disagreement (k ≥ 2)). Consider a learning environment
that is identified at certainty and satisfies Assumptions 1 to 4. Suppose disagreement outcome
λ∗ ∈ Λ(ω) and, starting from agreement outcome λ∗1 ∈ {0k,∞k}, there exists a finite sequence
of adjacent disagreement outcomes λ∗2, ...,λ

∗
L = λ∗ such that for l = 1, ..., L − 1, either (i)

(λ∗l )i = 0, (λ∗l+1)i =∞ and λ∗l is separable at zero for θi, or (ii) (λ∗l )i =∞, (λ∗l+1)i = 0 and
λ∗l is separable at infinity for θi. Then λ∗ is globally stable in state ω.

Proof. Given κ ∈ {1, ..., k − 1}, consider disagreement outcome λ∗ = (0κ,∞k−κ). Suppose
λ∗ ∈ Λ(ω) and for each l = 1, . . . k−κ, λ∗l = (0k−l+1,∞l−1) is separable at zero for type θk−l+1.
Given λ∗l = (0k−l+1,∞l−1) is separable at zero for type θk−l+1, by Lemma 5, λ∗l+1 = (0k−l,∞l)
is adjacently accessible from λ∗l . Since this holds for each element of the sequence starting
at λ∗1 = 0k and ending at λ∗k−κ+1 = λ∗, by Lemma 6, λ∗ is accessible. Fix an initial belief
λ1 ∈ (0,∞)k and choose an ε < e−E, where E is defined in Eq. (11). By accessibility,
there exists a finite sequence ξ of N actions that occurs with positive probability, such that
following ξ, λN+1 ∈ Bε(λ

∗). Given λ∗ is locally stable, this implies Pr(λt → λ∗|h = ξ) > 0.
Given Pr(h = ξ) > 0, from any λ1 ∈ (0,∞)k, Pr(λt → λ∗) > 0. This establishes that λ∗ is
globally stable. The case in which there is a sequence of stationary beliefs that are separable
at infinity is analogous, as is the proof for other disagreement outcomes. �

We next use the maximal R-order �λ to define a sufficient condition for separability,
which we refer to as maximally separable. We use this condition to extend the definition of
maximal accessibility to the case of more than two social types.
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Definition 11 (Maximally Separable (k ≥ 2)). Belief λ∗ ∈ {0,∞}k \ ∞k is maximally
separable at zero for type θi with λ∗i = 0 if θj �λ∗ θi for all j with λ∗j =∞ and θi �λ∗ θj for
all j 6= i with λ∗j = 0. Belief λ∗ ∈ {0,∞}k \ 0k is maximally separable at infinity for type θi
with λ∗i =∞ if θj �λ∗ θi for all j 6= i with λ∗j =∞ and θi �λ∗ θj for all j with λ∗j = 0.

Definition 7′ (Maximal Accessibility (k ≥ 2)). Disagreement outcome λ∗ ∈ {0,∞}k \
{0k,∞k} is maximally accessible if, starting from agreement outcome λ∗1 ∈ {0k,∞k}, there
exists a finite sequence of adjacent disagreement outcomes λ∗2, ...,λ

∗
L = λ∗ such that for

l = 1, ..., L− 1, either (i) (λ∗l )i = 0, (λ∗l+1)i =∞ and λ∗l is maximally separable at zero for
θi, or (ii) (λ∗l )i =∞, (λ∗l+1)i = 0 and λ∗l is maximally separable at infinity for θi.

As in the case of k = 2, maximal accessibility guarantees that there exists a finite sequence
of a1 and aM actions that separates beliefs and moves them to a neighborhood of the dis-
agreement outcome. It is straightforward to verify from the primitives of the model and is
equivalent to Definition 7 when k = 2. Using Definition 7′, the statement of Theorem 3′ is
identical to Theorem 3.

Theorem 3′ (Global Stability of Disagreement (k ≥ 2)). Consider a learning environment
that satisfies Assumptions 1 to 4. If disagreement outcome λ∗ is in Λ(ω) and maximally
accessible, then λ∗ is globally stable in state ω.

Proof. We show that Definition 7′ implies the conditions for separability outlined in The-
orem 7′. Given κ ∈ {1, ..., k − 1}, consider λ∗ = (0κ,∞k−κ). Suppose λ∗ ∈ Λ(ω) and λ∗

is maximally accessible, with λ∗l = (0k−l+1,∞l−1) maximally separable at zero for θk−l+1

for l = 1, . . . k − κ. For each l = 1, . . . k − κ, θk−l+1 �λ∗l
θk−l implies that the submatrix

Ψ [θk−l+1, θk−l; a1, aM ](λ∗l ) defined in Eq. (14) has a positive determinant. Therefore, there
exists a c ∈ R2

+ that solves

Ψ [θk−l+1, θk−l; a1, aM ](λ∗l ) · c =

(
1
0

)
.

By continuity, there exists a perturbation of c to c̃ ∈ R2
+ such that

Ψ [θk−l+1, θk−l; a1, aM ](λ∗l ) · c̃ =

(
Gk−l+1

Gk−l

)
,

where Gk−l+1 > 0 and Gk−l < 0. Moreover, Ψ [θj; a1, aM ](λ∗l ) · c̃ > 0 for any j > k− l+ 1 and
Ψ [θj; a1, aM ](λ∗l ) · c̃ < 0 for any j < k− l, where Ψ [θj; a1, aM ](λ) is the submatrix of Eq. (13)
for type θj and actions a1 and aM . Therefore, by Definition 8, λ∗l is separable at zero for
θk−l+1, since the definition holds for vector c′ ∈ (0,∞)|A| with c′1 = c1, c

′
M = c2 and c′i = 0

otherwise. The case of maximal separability at infinity is analogous, as is the proof for the
other disagreement outcomes. �

D.2 Mixed Learning

Consider the mixed learning outcome (λ∗C , C) in which beliefs converge to λ∗C ∈ {0,∞}|C|
for some subset of social types C ⊂ ΘS with |C| ∈ {1, ..., k − 1} and beliefs do not converge
for the remaining social types N ≡ ΘS \ C, where λC denotes the likelihood ratio vector λ
restricted to a set of types C. Without loss of generality, maintain the convention that the
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first |C| types are the convergent types, i.e. C = {θ1, ..., θ|C|}, and the remaining types are
the non-convergent types i.e. N = {θ|C|+1, ..., θk} (it is always possible to relabel the type
space so that this holds).

For example, when k = 3, ((0, 0), {θ1, θ2}) denotes the mixed outcome where θ1 and θ2’s
beliefs converge to zero and θ3’s beliefs do not converge. If (0, 0, 0) ∈ Λ3(ω) or (0, 0,∞) ∈
Λ3(ω), then when 〈λ1,t, λ2,t〉 → (0, 0), with positive probability the beliefs of θ3 also con-
verge in state ω. This is a sufficient condition to establish that ((0, 0), {θ1, θ2}) almost
surely does not occur in state ω. Sufficient conditions to rule out mixed outcomes in
which the beliefs of two or more social types do not converge are more involved, as we
also need to ensure that the neighborhood of a locally stable outcome for the non-convergent
types is reached with positive probability when the beliefs of the convergent types con-
verge. For example, to rule out the mixed outcome (0, θ1) in which θ1’s beliefs converge
to zero and θ2 and θ3 have cyclical learning, in addition to (0, 0, 0) ∈ Λ2(ω) ∩ Λ3(ω), we
also need to show that from a neighborhood of the other stationary beliefs with λ1 = 0, i.e.
λ ∈ {(0,∞, 0), (0, 0,∞), (0,∞,∞)}, either (i) beliefs enter a neighborhood of (0, 0, 0) with
positive probability or (ii) λ ∈ Λ2(ω)∩Λ3(ω). The following paragraphs formalize this idea.

We first define the concept of mixed accessibility. The concept applies to pairs of station-
ary beliefs in which non-convergent types whose components differ between the two belief
vectors agree, which we refer to as agreement adjacent beliefs.

Definition 12 (Agreement Adjacent). Given a set of types N ⊂ ΘS, distinct stationary
beliefs λN ∈ {0,∞}|N | and λ′N ∈ {0,∞}|N | are agreement adjacent if λi = λj for each
θi, θj ∈ N such that λ′i 6= λi and λ′j 6= λj.

Trivially, two stationary belief vectors that differ in only one component are agreement
adjacent. Given a mixed outcome and a stationary belief for the non-convergent types,
the set of stationary beliefs that are mixed accessible from this belief depends on the local
stability of this belief for each non-convergent type.

Definition 13 (Mixed Accessible (k ≥ 2)). Given mixed outcome (λ∗C , C) with N ≡ ΘS \C,
stationary belief λ′N ∈ {0,∞}|N | is mixed accessible from distinct stationary belief λN ∈
{0,∞}|N | in state ω if λ′N and λ′N are agreement adjacent and (λ∗C ,λN) 6∈ Λi(ω) for some
θi ∈ N such that λ′i 6= λi.

As we will show in the proof of Lemma 4′, mixed accessibility is a sufficient condition to
establish that with positive probability, the likelihood ratio process either transitions between
the neighborhoods of two agreement adjacent stationary beliefs or exits a neighborhood of
the mixed outcome. We next define a graph to represent which stationary beliefs are mixed
accessible from other stationary beliefs.

Definition 14 (Mixed Accessible Graph (k ≥ 2)). Given (λ∗C , C) with N ≡ ΘS \ C, define
the mixed accessible graph G(λ∗C , C;ω) with nodes λN ∈ {0,∞}|N | as follows: there is a
directed edge from λN to λ′N if and only if λ′N is mixed accessible from λN in state ω.

We say (λ∗C , C) is reducible in state ω if G(λ∗C , C;ω) has no cycles. We refer to a node with
no edges leaving it as a terminal node—in other words, a node from which no other nodes are
mixed accessible. It follows from the definition of mixed accessibility that λN is a terminal
node in state ω if and only if (λ∗C ,λN) ∈ ∩θi∈NΛi(ω).
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We use this graph to define ΛM(ω) as the set of mixed outcomes that are not reducible,

ΛM(ω) ≡ {(λ∗C , C) a mixed outcome | (λ∗C , C) is not reducible in state ω}, (20)

where a mixed outcome corresponds to λ∗C ∈ {0,∞}|C|, C ⊂ ΘS and |C| ∈ {1, ..., k−1}. This
definition is equivalent to Eq. (5) when k = 2. Using Eq. (20), the statement of Lemma 4′

is identical to Lemma 4.

Lemma 4′ (Unstable Mixed Outcomes (k ≥ 2)). Consider a learning environment that is
identified at certainty and satisfies Assumptions 1 to 4. If mixed outcome (λ∗C , C) 6∈ ΛM(ω),
then Pr(λC,t → λ∗C and λN,t does not converge) = 0 in state ω, where N ≡ ΘS \ C.

As in the case of k = 2, if a mixed learning outcome arises with positive probability, then it
must be in ΛM(ω). Therefore, if (λ∗C , C) is reducible, then almost surely it does not arise.
Intuitively, if (λ∗C , C) is reducible, then when the beliefs of the convergent types are in a
neighborhood of λ∗C , almost surely either the beliefs of the convergent types leave this neigh-
borhood or the beliefs of the non-convergent types also converge. Reducibility is relatively
straightforward to verify and is always satisfied in some important cases. For instance, it
holds when γi(ω,λ) < 0 for all λ ∈ {0,∞}k and θi ∈ ΘS (this includes environments that
are close to a correctly specified environment).3

Proof of Lemma 4′. Fix state ω and consider mixed outcome (λ∗C , C) with corresponding
graph G(λ∗C , C;ω) and non-convergent types N ≡ ΘS \ C. Suppose (λ∗C , C) is reducible,
i.e. (λ∗C , C) 6∈ ΛM(ω). Let ε ∈ (0, e−E), where E is defined in Eq. (11), and suppose
λ1 ∈ int(Bε(λ

∗
C)) × (0,∞)|N |. Let τ ≡ min{t|λt 6∈ Bε(λ

∗
C) × (0,∞)|N |} be the first time

that 〈λt〉 leaves a neighborhood of the mixed outcome. We will establish the following claim:
almost surely, either (i) τ <∞ or (ii) 〈λt〉 converges for all social types. By the linearity of the
likelihood ratio process, this implies the same holds whenever λt ∈ int(Bε(λ

∗
C))× (0,∞)|N |,

and therefore, (λ∗C , C) almost surely does not occur.
Step 1: Show that for any terminal node λN ∈ G(λ∗C , C;ω), when 〈λt〉 is in int(Bε(λ

∗
C ,λN)),

then with probability uniformly bounded away from zero, either 〈λt〉 → (λ∗C ,λN) or τ <∞.
Given a terminal node λN ∈ G(λ∗C , C;ω), as stated above, (λ∗C ,λN) ∈ ∩θi∈NΛi(ω). If
(λ∗C ,λN) ∈ ∩θi∈CΛi(ω), then (λ∗C ,λN) is locally stable, so by Theorem 1, when beliefs are
in Bε(λ

∗
C ,λN), then 〈λt〉 → (λ∗C ,λN) with probability uniformly bounded away from zero.

Otherwise, if (λ∗C ,λN) 6∈ ∩θi∈CΛi(ω), then there exists a θi ∈ C such that when 〈λt〉 is in
int(Bε(λ

∗
C ,λN)), 〈λi,t〉 is bounded below by a process that almost surely exits Bε(λ

∗
C) (this

also follows from the proof of Theorem 1). Therefore, τ < ∞ with probability uniformly
bounded away from zero. Together this implies that, starting from the ε-neighborhood of
any terminal node λN , with probability uniformly bounded away from zero either τ <∞ or
〈λt〉 converges to (λ∗C ,λN).

Step 2: Show that for any non-terminal node λN ∈ G(λ∗C , C;ω), when 〈λt〉 is in int(Bε(λ
∗
C ,λN)),

then with probability uniformly bounded away from zero, either 〈λt〉 enters ∪λ′N∈E(λN ) int(Bε(λ
∗
C ,λ

′
N))

3To see this, consider the graph induced by any mixed outcome (λ∗C , C) with N ≡ ΘS \ C. Each node
where κ non-convergent types have belief λi = ∞ has an edge to all agreement adjacent nodes in which
κ′ < κ non-convergent types have belief λi = ∞ and does not have an edge to any other nodes. Therefore,
every path terminates at node 0|N |. For any mixed outcome (0|C|, C), this is a convergent point. For other
mixed outcomes, this is a point at which some θi ∈ C’s belief eventually exits a neighborhood of λ∗C .

16



or τ <∞, where E(λN) denotes the set of nodes that λN has edges to. Given a non-terminal
node λN ∈ G(λ∗C , C;ω), let U(λN) ⊂ N denote the set of types such that (λ∗C ,λN) 6∈ Λi(ω)
for each θi ∈ U(λN) and (λ∗C ,λN) ∈ Λi(ω) for each θi ∈ N \ U(λN). As stated above,
(λ∗C ,λN) 6∈ ∩θi∈NΛi(ω) for non-terminal nodes, so U(λN) 6= ∅.

Step 2a: We first define a space I(λN) adjacent to Bε(λN) and show that when 〈λt〉 is
in int(Bε(λ

∗
C ,λN)), then with probability uniformly bounded away from zero, either 〈λt〉

enters int(Bε(λ
∗
C) × I(λN)) or τ < ∞. Given a set of types u ∈ P(U(λN)), where P(·)

denotes the power set, let Iu,i(λN) ≡ [ε, 1/ε] if θi ∈ u and Iu,i(λN) ≡ Bε((λN)i) if θi ∈ N \u.
Define Iu(λN) ≡

∏
θi∈N Iu,i(λN) for each u ∈ P(U(λN)) and I(λN) ≡ ∪u∈P(U(λN ))\∅Iu(λN).

In other words, I(λN) is the space in which the beliefs of subsets of types in U(λN) are
in [ε, 1/ε] and the beliefs of the remaining non-convergent types are in the ε-neighborhood
of λN . By the proof of Theorem 1, when 〈λt〉 is in int(Bε(λ

∗
C ,λN)), then with probability

uniformly bounded away from zero, 〈λi,t〉 exits Bε((λ
∗
C ,λN)i) for some θi ∈ U(λN) ∪ C.

Combined with ε < e−E, which ensures that 〈λi,t〉 does not enter Bε({0,∞} \ (λN)i) in the
same period it exits Bε((λN)i) for any θi ∈ N , this implies that with probability uniformly
bounded away from zero, either 〈λt〉 enters int(Bε(λ

∗
C)× I(λN)) or τ <∞.

Step 2b: We next show that when 〈λt〉 is in int(Bε(λ
∗
C)× I(λN)), then with probability

uniformly bounded away from zero, either 〈λt〉 enters ∪λ′N∈E(λN ) int(Bε(λ
∗
C ,λ

′
N)) or τ <∞.

First consider u ∈ P(U(λN)) such that (λN)i = 0 for some θi ∈ u. Suppose 〈λt〉 is in
int(Bε(λ

∗
C) × Iu(λN)). Note Iu,i(λN) = [ε, 1/ε] for θi ∈ u and Iu,i(λN) ≡ Bε((λN)i) for

θi ∈ N \u. Let V∞(λN , u) ⊂ {0,∞}|N | denote the set of stationary beliefs for non-convergent
types in which θi ∈ u has belief ∞, θi ∈ N \ u such that (λN)i = ∞ has belief ∞, and
θi ∈ N \ u such that (λN)i = 0 has belief zero or infinity. Then there exists a finite
sequence of actions aM such that, starting from any belief in int(Bε(λ

∗
C) × Iu(λN)), 〈λN,t〉

enters ∪λ′N∈V∞(λN ,u) int(Bε(λ
′
N)).4 If 〈λC,t〉 exits Bε(λ

∗
C) during this sequence, then τ <∞;

otherwise, 〈λt〉 is in ∪λ′N∈V∞(λN ,u) int(Bε(λ
∗
C ,λ

′
N)). Each belief λ′N ∈ V∞(λN , u) is agreement

adjacent to λN , as a subset of types in N have belief 0 at λN and ∞ at λ′N , and all other
types in N have the same belief at λN and λ′N . By definition of V∞(λN , u), for each
λ′N ∈ V∞(λN , u), (λN)i 6= (λ′N)i for θi ∈ u such that (λN)i = 0. Further, (λ∗C ,λN) 6∈ Λi(ω)
for each θi ∈ u. Therefore, each λ′N ∈ V∞(λN , u) is mixed accessible from λN , which implies
V∞(λN , u) ⊂ E(λN). This establishes that, given u ∈ P(U(λN)) such that (λN)i = 0 for
some θi ∈ u, when 〈λt〉 is in int(Bε(λ

∗
C)× Iu(λN)), then with probability uniformly bounded

away from zero, either 〈λt〉 enters ∪λ′N∈E(λN ) int(Bε(λ
∗
C ,λ

′
N)) or τ < ∞. Next consider

u ∈ P(U(λN)) such that (λN)i = ∞ for some θi ∈ u. Let V0(λN , u) denote the set of
stationary beliefs for non-convergent types in which θi ∈ u has belief zero, θi ∈ N \ u such

4To see this, note that when 〈λt〉 is in int(Bε(λ
∗
C) × Iu(λN )), then 〈λi,t〉 is in [ε, 1/ε] for θi ∈ u.

Therefore we can construct a finite sequence sequence of aM actions such that following this sequence, 〈λi,t〉
is in int(Bε(∞)) for each θi ∈ u. For θi ∈ N \u such that (λN )i =∞, Iu,i(λN ) ≡ Bε(∞), and therefore, 〈λi,t〉
remains in int(Bε(∞)) following this sequence. For θi ∈ N \u such that (λN )i = 0, Iu,i(λN ) ≡ Bε(0). If 〈λi,t〉
remains in int(Bε(0)) or enters int(Bε(∞)) following this sequence for each such θi ∈ N \u, then we are done.
Otherwise, continue repeating aM until all θi ∈ N \ u with (λN )i = 0 have beliefs in int(Bε(0) ∪ Bε(∞)).
Given that there are a finite number of such types and, for any such type, a finite number of aM actions
will move its beliefs from [ε, 1/ε] to int(Bε(∞)), this will hold following a finite number of additional aM
actions. Following these additional aM actions, 〈λi,t〉 remains in int(Bε(∞)) for θi ∈ u, as does 〈λi,t〉 for
θi ∈ N \ u such that (λN )i = ∞. Therefore, following this sequence, 〈λN,t〉 is in int(Bε(λ

′
N )) for some

λ′N ∈ V∞(λN , u).
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that (λN)i = 0 has belief zero, and θi ∈ N \u such that (λN)i =∞ has belief zero or infinity.
Then substituting a1 for aM and V0(λN , u) for V∞(λN , u), by similar reasoning, when 〈λt〉
is in int(Bε(λ

∗
C)× Iu(λN)), then with probability uniformly bounded away from zero, either

〈λt〉 enters ∪λ′N∈E(λN ) int(Bε(λ
∗
C ,λ

′
N)) or τ <∞. Given that one of these two cases apply to

each u ∈ P(U(λN)) and I(λN) ≡ ∪u∈P(U(λN ))\∅Iu(λN), this establishes that when 〈λt〉 is in
int(Bε(λ

∗
C)× I(λN)), then with probability uniformly bounded away from zero, either 〈λt〉

enters ∪λ′N∈E(λN ) int(Bε(λ
∗
C ,λ

′
N)) or τ <∞.

Step 3: Show that for any non-terminal node λN ∈ G(λ∗C , C;ω), when 〈λt〉 is in int(Bε(λ
∗
C ,λN)),

then with probability uniformly bounded away from zero, either 〈λt〉 enters ∪λ′N∈T int(Bε(λ
∗
C ,λ

′
N))

or τ <∞, where T denotes the set of terminal nodes. Given ΛM(ω) is empty, (λ∗C , C) is re-
ducible and therefore, G(λ∗C , C;ω) has no cycles. Therefore, starting from any non-terminal
node λN ∈ G(λ∗C , C;ω) and iterating Step 2 a finite number of times ensures that when 〈λt〉
is in int(Bε(λ

∗
C ,λN)), then with probability uniformly bounded away from zero, either 〈λt〉

enters ∪λ′N∈T int(Bε(λ
∗
C ,λ

′
N)) or τ <∞.

Step 4: Show that when 〈λt〉 is in int(Bε(λ
∗
C)×I), where I ≡ (0,∞)|N |\∪λN∈{0,∞}|N|Bε(λN),

then almost surely, either 〈λt〉 enters int(Bε(λ
∗
C)×∪λN∈{0,∞}|N|Bε(λN)) or τ <∞. Consider

u ⊂ N . Similar to above, let Iu,i ≡ [ε, 1/ε] if θi ∈ u, Iu,i ≡ Bε(0) ∪ Bε(∞) if θi ∈ N \ u,
and Iu ≡

∏
θi∈N Iu,i. Then by similar reasoning to Footnote 4, there exists a finite se-

quence of a1 actions such that, starting from any belief in int(Bε(λ
∗
C) × Iu), 〈λN,t〉 enters

∪λN∈{0,∞}|N| int(Bε(λN)) following this sequence. If 〈λC,t〉 exits Bε(λ
∗
C) during this sequence,

then τ <∞; otherwise, 〈λt〉 is in int(Bε(λ
∗
C)×∪λN∈{0,∞}|N|Bε(λN)). Given that this sequence

is finite and occurs with probability uniformly bounded away from zero across Bε(λ
∗
C)× Iu,

and such a sequence exists for each u ⊂ N , when 〈λt〉 is in int(Bε(λ
∗
C) × I), then almost

surely 〈λt〉 enters int(Bε(λ
∗
C))× ∪λN∈{0,∞}|N| int(Bε(λN)) or τ <∞.

Taken together, Steps 2-4 establish that when 〈λt〉 is in int(Bε(λ
∗
C))×(0,∞)|N |, then with

probability uniformly bounded away from zero, either 〈λt〉 enters ∪λN∈T int(Bε(λ
∗
C ,λN)) or

τ <∞. It follows from Theorem 1 that when 〈λt〉 enters int(Bε(λ
∗
C ,λN)) for any λN 6∈ T ,

it almost surely exits Bε(λ
∗
C ,λN), and from Step 4 that when 〈λt〉 enters int(Bε(λ

∗
C) × I),

it almost surely exits Bε(λ
∗
C)× I. Therefore, when λ1 ∈ int(Bε(λ

∗
C))× (0,∞)|N |,

Pr(τ <∞ or λt ∈ ∪λN∈TBε(λ
∗
C ,λN) i.o.) = 1.

If 〈λt〉 is in ∪λN∈TBε(λ
∗
C ,λN) infinitely often, then almost surely either 〈λt〉 converges to

(λ∗C ,λN) for some λN ∈ T or τ <∞. This establishes the claim. �

D.3 Learning Characterization

To establish almost sure convergence, we define an analogous graph to Definition 14 for the
case in which all social types are non-convergent types.

Definition 15 (Accessible Graph (k ≥ 2)). Define the accessible graph G(ω) with nodes
λ ∈ {0,∞}k as follows: there is a directed edge from λ to λ′ if and only if λ′ is mixed
accessible from λ in state ω.

It follows from the definition of mixed accessibility that λ is a terminal node if and only if
λ ∈ Λ(ω). Given the definitions of ΛM(ω) and maximal accessibility for k > 2, the statement
of Lemma 7′ mirrors Lemma 7.
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Lemma 7′ (Belief Convergence (k > 2)). Consider a learning environment that is identified
at certainty and satisfies Assumptions 1 to 4. If Λ(ω) contains an agreement outcome or
maximally accessible disagreement outcome, ΛM(ω) = ∅ and G(ω) has no cycles, then for
any initial belief λ1 ∈ (0,∞)k, there exists a random variable λ∞ with supp(λ∞) = Λ(ω)
such that λt → λ∞ almost surely in state ω.5

Proof. Fix state ω. Suppose ΛM(ω) = ∅ and G(ω) has no cycles. Let ε ∈ (0, e−E), where
E is defined in Eq. (11). It follows from the definition of mixed accessibility that λ ∈
G(ω) is a terminal node if and only if λ ∈ Λ(ω). Given a terminal node λ ∈ Λ(ω), by
Theorem 1, when 〈λt〉 is in Bε(λ), then 〈λt〉 → λ with probability uniformly bounded
away from zero. By analogous reasoning to Step 2 in the proof of Lemma 4′, for any
non-terminal node λ ∈ G(ω), when 〈λt〉 is in int(Bε(λ)), then with probability uniformly
bounded away from zero, 〈λt〉 enters ∪λ′∈E(λ) int(Bε(λ

′)), where E(λ) denotes the set of
nodes that λ has edges to. Given G(ω) has no cycles, starting from any non-terminal
node λ ∈ G(ω), when 〈λt〉 is in int(Bε(λ)), then with probability uniformly bounded away
from zero, 〈λt〉 enters ∪λ′∈Λ(ω) int(Bε(λ

′)). When 〈λt〉 is in I ≡ (0,∞)k \ ∪λ∈{0,∞}kBε(λ),
then by similar reasoning to Step 4 in the proof of Lemma 4′, almost surely 〈λt〉 enters
∪λ∈{0,∞}k int(Bε(λ)). Taken together, this establishes that when 〈λt〉 is in (0,∞)k, then with
probability uniformly bounded away from zero, 〈λt〉 enters ∪λ∈Λ(ω) int(Bε(λ)). Further, it
follows from Theorem 1 that when 〈λt〉 enters int(Bε(λ)) for any λ ∈ {0,∞}k \ Λ(ω), it
almost surely exits Bε(λ). Given that 〈λt〉 also almost surely exits I, it follows that starting
from any λ1 ∈ (0,∞)k, Pr(λt ∈ ∪λ∈Λ(ω)Bε(λ) i.o.) = 1. Therefore, almost surely 〈λt〉
converges to some λ ∈ Λ(ω). �

The statement of the learning characterization for k > 2 is analogous to Theorem 4, using
the generalized definitions of maximal accessibility (Definition 7′) and ΛM(ω) (Eq. (20)).

Theorem 4′ (Learning Characterization (k > 2)). Consider a learning environment that is
identified at certainty and satisfies Assumptions 1 to 4. When the state is L:

(i) Correct learning occurs with positive probability if and only if 0k ∈ Λ(L).

(ii) Incorrect learning occurs with positive probability if and only if ∞k ∈ Λ(L).

(iii) Entrenched Disagreement occurs with positive probability if Λ(L) contains a max-
imally accessible disagreement outcome and almost surely does not occur if Λ(L) con-
tains no disagreement outcome. Each maximally accessible disagreement outcome in
Λ(L) occurs with positive probability.

(iv) Cyclical Learning occurs almost surely for all social types if Λ(L) = ∅ and ΛM(L) =
∅, occurs almost surely for at least one social type if Λ(L) = ∅, and almost surely does
not occur if Λ(L) contains an agreement outcome or maximally accessible disagreement
outcome, ΛM(L) = ∅, and G(L) has no cycles.

An analogous result holds in state R.

5An alternative condition to G(ω) has no cycles is there exists a θi ∈ ΘS such that supλ−i∈[0,∞]k−1 γi(λi =
0,λ−i) < 0 or infλ−i∈[0,∞]k−1 γi(λi = ∞,λ−i) > 0. This follows from the observation in Lemma 4′ that
either beliefs converge or visit each mixed outcome with |C| = 1 infinitely often. If the latter occurs with
positive probability, then almost surely 〈λi,t〉 → λ∞ ⊂ {0,∞}, which contradicts ΛM (ω) = ∅.
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The proof mirrors the case of two social types: it directly follows from Lemma 3, Theorems 1
and 2, Theorem 3′, and Lemmas 4′ and 7′.

E Belief-Dependent Models of Inference

In this section, we extend our framework to allow a type’s model of inference to vary with
its belief about the state. We show that with this extension, our framework nests Rabin and
Schrag (1999) and Epstein et al. (2010).

E.1 Framework

Modify a type’s model of inference as follows. Given likelihood ratio λ ∈ [0,∞]k, type θi has
subjective private signal distribution F̂ ω

i (s;λ) in state ω and subjective type distribution
π̂i(θ;λ). An agent uses likelihood ratio λt to interpret signal s̃t or action ãt at time t.
Maintain the assumption from Section 2 that F̂L

i (·,λ) and F̂R
i (·,λ) are mutually absolutely

continuous with full support on S for each λ ∈ [0,∞]k. Further, social and autarkic types
believe that the signal is uniformly informative. When signals are aligned, this can be
written as follows: for all s ∈ [0, 1], either F̂L

i (s;λ) = F̂R
i (s;λ) = 0 for all λ ∈ [0,∞]k,

F̂L
i (s;λ) = F̂R

i (s;λ) = 1 for all λ ∈ [0,∞]k, or infλ∈[0,∞]k F̂
L
i (s;λ)− F̂R

i (s;λ) > 0, with the
final case holding for some s ∈ [0, 1].

As in Section 2, we focus on settings in which social types believe that actions are
informative. We need to modify Assumption 3 so that this holds uniformly across [0,∞]k.

Assumption 3′ (Informative Actions). For actions a ∈ {a1, aM}, there exists an autarkic
type θj ∈ ΘA with π(θj) > 0 that plays a with probability uniformly bounded away from zero
across [0,∞]k, and each social type θi ∈ ΘS believes that such an autarkic type exists with
probability uniformly bounded away from zero, infλ∈[0,∞]k π̂i(θj;λ) > 0.

For technical reasons, we also make the following continuity assumption.

Assumption 5 (Continuity). For each θi ∈ Θ, the mapping λ 7→ (F̂L
i , F̂

R
i , π̂i) is continuous

under the total variation norm except at at most a finite number of interior likelihood ratios
λ ∈ (0,∞)k and λ→ 1/(1 + dF̂L

i /dF̂
R
i (s;λ)) is continuous at λ ∈ {0,∞}k.

Substituting Assumption 3′ for Assumption 3 and adding Assumption 5, the modified
version of Eq. (1) is:

ψ̂i(am|ω,λ) ≡
n∑
j=1

π̂i(θj;λ)(F̂ ω
i (sj,m(λj;λ);λ)− F̂ ω

i (sj,m−1(λj;λ);λ)), (21)

where sj,m(λj;λ) denotes the signal cutoff for θj when it has belief λj and social types have

belief λ. Note sj,m depends on (F̂L
j , F̂

R
j ), and hence, when these distributions depend on λ,

so does sj,m. The proof of Lemma 2 continues to hold for Eq. (21) with minor modifications.6

Theorems 1 to 6 follow.

6Aside from minor changes to notion and a straightforward application of the continuity assumed in
Assumption 5, there are two main changes. To establish the uniform bound for a ∈ {a1, aM} and bounded
informativeness for a ∈ A, it is necessary to account for the subjective type and signal distributions’ depen-
dence on λ. Let θj ∈ ΘA be an autarkic type that θi ∈ ΘS believes satisfies Assumption 3′ for action a1 and
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E.2 Nesting Under- and Overreaction in Epstein et al. (2010)

Epstein et al. (2010) consider an individual learning model where an agent under- or overreact
to signals. They parameterize this bias with the following updating rule: an agent with prior
p ∈ [0, 1] who observes signal realization s ∈ S updates her posterior to

Pr(ω = R|s, p) = (1− α)

(
ps

ps+ (1− p)(1− s)

)
︸ ︷︷ ︸

correct posterior

+αp (22)

for some α ≤ 1. Underreaction corresponds to α > 0, overreaction to corresponds to α < 0,
and the correctly specified model corresponds to α = 0. This parametric form of under- and
overreaction can be represented in the individual learning version of our extended framework
as follows. Eq. (22) uniquely maps to a type in our framework that forms subjective posterior

ŝ(s, λ) =
(1− α)

(
s

sλ+(1−s)

)
+ α

(
1

1+λ

)
1 + (1− α)

(
(1−λ)s
sλ+(1−s)

)
+ α

(
1−λ
1+λ

) (23)

following signal realization s ∈ S when it has belief λ ∈ (0,∞). Eq. (22) does not map into
a unique ŝ(s, λ) at λ ∈ {0,∞}, since the prior and the posterior are the same regardless
of the signal realization. Since our learning characterization utilizes the limit of ŝ(s, λ) as
λ→ {0,∞}, we need to specify how the signal is interpreted at certainty to close the model.
At λ = 0, we use Eq. (23) evaluated at λ = 0. Eq. (23) is not well-defined at λ =∞, so we
define

ŝ(s,∞) ≡ lim
λ→∞

ŝ(s, λ) =
s

(1− α)(1− s) + (1 + α)s
.

This is the unique subjective posterior that satisfies the continuity property required by
Lemma 2.7 This set-up satisfies the properties in Lemma 2, so our learning characterization
applies.

s∗j,1 ≡ infλ∈[0,∞]k sj,1

(
p0

1−p0 ;λ
)

. Then the analogue of Eq. (6) is:

ψ̂i(a1|R,λ)

ψ̂i(a1|L,λ)
≤
π̂i(θj ;λ)F̂Ri (s∗j,1;λ) + π̂i(ΘS ∪ΘA \ {θj};λ)

π̂i(θj ;λ)F̂Li (s∗j,1;λ) + π̂i(ΘS ∪ΘA \ {θj};λ)

≤ sup
λ∈[0,∞]k

(infλ′∈[0,∞]k π̂i(θj ;λ
′))F̂Ri (s∗j,1;λ) + 1− infλ′∈[0,∞]k π̂i(θj ;λ

′)

(infλ′∈[0,∞]k π̂i(θj ;λ
′))F̂Li (s∗j,1;λ) + 1− infλ′∈[0,∞]k π̂i(θj ;λ

′)
< 1,

where the last line follows from Assumption 3′, which ensures that infλ∈[0,∞]k π̂i(θj ;λ) > 0 and the uni-

form informativeness of the subjective signal distributions, which ensures that infλ∈[0,∞]k(F̂Li (s∗j,1;λ) −
F̂Ri (s∗j,1;λ)) > 0. Similar logic establishes that ψ̂i(a|ω,λ) is uniformly bounded away from 0 for all

λ ∈ [0,∞]k, a ∈ A and ω ∈ {L,R}, and therefore, a is boundedly informative.
7In an individual learning setting, any pair of subjective signal distributions that induce the same ŝ must

satisfy ψ̂(s|R,λ)
ψ̂(s|L,λ)

= ŝ(s,λ)
1−ŝ(s,λ) , so ŝ determines the properties required by Lemma 2. A consequence of this is

that any misspecified distribution that rationalizes ŝ will lead to the same behavior. In Bohren and Hauser
(2021b) we show that there exist subjective distributions F̂L and F̂R that rationalize this ŝ and satisfy
Assumption 1, Assumption 3′ and Assumption 5.
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E.3 Nesting Confirmation Bias in Rabin and Schrag (1999)

Rabin and Schrag (1999) consider an individual learning model where an agent exhibits
confirmation bias. The agent observes a signal that takes one of two possible values, sL or sR,
where sω is more likely in state ω than state ω′. Confirmation bias takes the following form:
if the agent observes sω when she believes ω′ is more likely, then with probability q ∈ (0, 1)
she misinterprets the signal realization as sω′ . To represent this model in the individual
learning version of our extended framework, we make one additional change to allow multiple
signal realizations to induce the same posterior belief. This allows ŝ to map two signal
realizations that induce the same true posterior to different subjective posteriors. Given
this minor extension, this form of confirmation bias can be represented as follows. Suppose
S = {l1, l2, r1, r2}. Assume Pr(l1 or l2|ω = L) = Pr(r1 or r2|ω = R) = s > 1/2, conditional
on observing l1 or l2, l2 is realized with probability q, and similarly for r2. Signal realizations
l1 and l2 induce the same true posterior, as do r1 and r2. When λ > 1, the agent interprets the
signal as if ψ̂(l1|L, λ) = s, ψ̂(l1|R, λ) = 1−s, ψ̂(l2|L, λ) = ψ̂(r1|L, λ) = ψ̂(r2|L, λ) = (1−s)/3
and ψ̂(l2|R, λ) = ψ̂(r1|R, λ) = ψ̂(r2|R, λ) = s/3. Similarly if λ ≤ 1, the agent interprets the
signal as if ψ̂(r1|R, λ) = s, ψ̂(r1|L, λ) = 1 − s, ψ̂(l1|L, λ) = ψ̂(l2|L, λ) = ψ̂(r2|L, λ) = s/3
and ψ̂(l1|R, λ) = ψ̂(l2|R, λ) = ψ̂(r2|R, λ) = (1− s)/3. This set-up satisfies the properties in
Lemma 2, so our learning characterization applies.
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