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OBD-Data-Assisted Cost-based Map-matching
Algorithm for Low-Sampled Telematics Data
in Urban Environments
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Abstract—A myriad of connected vehicles collects large-
scale telematics data throughout cities, enabling data-
based infrastructure planning. To truly benefit from this
emerging technology, it is important to integrate pervasive
telematics data with map data to produce more tractable
and readable information for traffic flows and safety.
Map-matching algorithms enable the projection of noisy
trajectory data onto map data as a means of integrating
telematics data. However, map-matching poses challenges
due to higher levels of positioning errors and complex
road networks. The authors propose a novel map-matching
algorithm that can fuse in-vehicle data with trajectory data
to improve the efficiency and accuracy of the algorithm.
The proposed algorithm combines the probabilistic and
weight-based map-matching frameworks. The novelty of
the proposed algorithm includes (i) an adaptive segment
candidate search mechanism based on in-vehicle speed
information, (ii) adaptive matching parameters to reflect
the variations in the Global Positioning System (GPS)
noise levels, (iii) a novel transition probability that uses
in-vehicle speed data, and (iv) a backend data query
system for the shortest routes. Map-matching results were
validated based on ground-truth data collected using an
in-vehicle sensing device developed by the authors, as well
as comparing with a commonly-used off-the-shelf map-
matching platform. The proposed algorithm is proven to
be robust, with an accuracy of 97.45%, particularly where
map data are denser and GPS noise is high.

Index Terms—Map-matching, Telematics,
data, Connected Vehicle, Smart Cities.

Trajectory

I. INTRODUCTION

NE of the novel technologies for emerging smart
O cities, particularly those cities dealing with traffic
congestion and public safety, is connected-vehicle tech-
nology [1], [2]. Connected vehicle technology enables
sharing information among vehicles, the infrastructure,
and personal communication devices through safe and
interoperable networked wireless communications. De-
tailed overviews of the concept, connectivity, and ar-
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chitecture of connected vehicles can be found in the
literature [3]-[9].

Connected-vehicle technologies can be grouped into
three categories based on inter-vehicle communications:
Vehicle-to-Vehicle (V2V), Vehicle-to-Roadside Infras-
tructure (V2I), and Vehicle-to-Broadband Cloud (V2B).
Examples of connected-vehicle applications include traf-
fic management systems [10], [11], parking spot locator
systems [12], lane marking localization systems [13],
collision warning systems [14]—-[17], road surface mon-
itoring systems [18]-[20], and driver volatility estima-
tion [21], [22]. The applications of V2V communi-
cations, in general, focus more on exchanging useful
information between vehicles that are traveling along
the same road. The V2I applications aim to provide
the right information at the right time, such as road
surface conditions. The V2B communications aim to
create a large-scale monitoring data center, which opens
a new door for many data-intensive applications [23].
In particular, large-scale connected vehicles will enable
data-based infrastructure planning and management. For
example, a large number of taxis, public transport, utility
vehicles, and private vehicles are collecting big trajectory
data across cities with valuable traffic information about
real-time and network-wide traffic conditions. These data
sets will significantly contribute to the improvement of
transportation systems and mobility.

The main component of telematics vehicle data is the
trajectory consisting of recorded data of the vehicle’s
position over time. Different types of localization sensors
are currently being used to estimate the vehicle position
with respect to time, such as the Global Navigation
Satellite System (GNSS) [24], Wi-Fi [25], and cellular
tower networks [26]. The GNSS trajectory data can
estimate travel time and vehicle speed, supporting traf-
fic operations monitoring, incident detection, and route
guidance applications.

However, it is widely known that the quality of
GNSS data is significantly affected by measurement
noise. GNSS positioning error is primarily due to the
multipath problem associated with buildings and infras-
tructure, which interferes with the direct path between
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GNSS receiver and the constellation of satellites in the
sky [27]. Since the global positioning system operates
on the trilateration concept, a GNSS receiver must
communicate with a minimum of four visible satellite
clocks before determining its true position [28]. It is
noteworthy that GNSS positioning errors can propagate
to the estimation of the speed and heading of vehicles
when GNSS sensors are primary used to obtain speed
and orientation data. Furthermore, the level of GNSS
measurement noise, in general, significantly increases in
urban environments, posing challenges for various V2B
applications in metropolitan areas. Therefore, the imple-
mentation of novel algorithms that can deal with GNSS
measurement noise is a vital component in leading to
the success of V2B applications.

Moreover, telematics data include important vehicle-
centric data, collected from extra sensor modules (e.g.,
On-Board Diagnostics (OBD-II) scanners, inertial mea-
surement unit (IMU) sensors, Carbon Dioxide sensors,
etc.). Vehicle-centric information can be collected from
the Controller Area Network (CAN bus) [29]-[33] and
augmented sensor hardware. A portion of CAN bus data
has standardized protocols and can be accessed through
OBD ports [34]. Examples of OBD data include engine
RPM, vehicle speed, and fuel system status. By com-
bining OBD data with data from extra sensor modules
attached to in-vehicle sensor networks, data availability
can be easily customized to meet the requirement of
various applications. Augmented sensor modulus en-
able various large-scale connected vehicle applications,
such as environmental monitoring systems [35]-[37],
street-asset data collection systems [38]—[41], and public
safety [42], [43].

It is important that telematics data must be translated
into more tractable and readable formats. Telematics data
include spatio-temporal data (e.g., trajectory data) and
non-spatial data (e.g., OBD data). Importantly, trajectory
data are represented in a coordinate system (typically,
in a geographic coordinate system) and are used to
associate non-spatial data with the correct streets of
road networks. In addition, large-scale connected vehicle
applications require to summarize valuable information
based on map data. For example, it is more intuitive to
know traffic information, vehicle speed, and street asset
conditions by street. In other words, trajectory data do
not directly indicate the locations of vehicle-centric data
to the street without proper data integration schemes.
Therefore, data integration is critically important for
large-scale V2B applications.

Map-matching techniques are promising approaches
to deal with both GNSS positioning errors and map-
based data integration. The following section provides
an overview of map-matching algorithms. Map-matching
algorithms aim to match a set of observed noisy vehi-

cle position data with the sequence of road segments,
summarizing meaningful traffic flow and safety metrics
based on map data. Map-matching applications in urban
environments become more challenging due to denser
road segments and relatively-higher level of GNSS error.
The performance of map-matching algorithms can vary
based on the accuracy of GPS positioning data, the qual-
ity of the map data, and the tuning of the parameters [44].

This paper presents a novel map-matching technique
to perform the data fusion of in-vehicle sensor network
data, map data, and trajectory data. In particular, the ve-
hicle speed, which is directly measured from the vehicle
itself, is used to improve the accuracy and efficiency of
the map-matching. The authors challenge complex V2B
applications that have low-sampled telematics data and
denser road networks. The authors collected real-world
telematics data sets to validate the performance of the
algorithm using their own telematics device.

The map-matching problem addressed in this study
is more challenging as it is tested in New York City
(NYC) dense road network with the relatively high
level of positioning error caused in its urban canyons.
Thus, the addressed application represents a prototype
for the future of map-matching in smart cities. As
smart cities are often envisioned to have denser road
networks, with streets populated with tall buildings, the
proposed algorithm balances simplicity, accuracy and
performance through fusing GPS with in-vehicle speed
data, and vertically scaling the algorithm as explained
in Section IV-H, unlike sophisticated algorithms that use
advanced sensor data that often are not available, trading
high accuracy with low performance and utilization. The
performance of the proposed map-matching algorithm is
compared to a commonly-used map-matching algorithm:
BMW car IT Barefoot [45].

The remainder of this paper is structured as follows:
Section II provides an overview of the current map-
matching algorithms. Section III defines a map-matching
problem. Section IV-A-F describes the proposed map-
matching algorithm. Section IV-G discusses database
management, graph partitioning, and query-optimization
techniques that support the implementation of our map-
matching algorithm. Section IV-H documents a scalable
map-matching system architecture. Section V includes
validation results. Finally, future research directions and
conclusions are provided in Section VI.

II. OVERVIEW OF MAP-MATCHING
ALGORITHMS

Map-matching algorithms follow either (i) a proba-
bilistic approach, (ii) a weight-based, or (iii) a machine
learning approach. The latter includes Kalman filter and
artificial neural network techniques which require more
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input data, learning, and computational effort, compared
to the first two approaches [46].

Recent map-matching algorithms harness various
sensing data obtained from multiple sensors to improve
their map matching accuracy. However, those additional
sensing data might not be available in many applications
that deal with typical vehicles that are not autonomous.
Furthermore, most of the recent algorithms rely on
machine learning techniques, which require parameter
learning processes. Toledo-Moreo et al. [47] creates a
particle-filter-based algorithm that hybridizes measure-
ments from a GNSS receiver, a gyroscope and an odome-
ter to solve the map-matching problem at the lane-level.
Similarly, Szottka et al. [48] presents a particle-filter-
based algorithm that incorporates camera detections data
of the lane markings along with commercial map data.
Tao et al. [49] build a localization solver, based on
Kalman filtering, that leverages GPS data, vehicle data
and observations from a video camera along with lane
markings embedded in digital navigation maps. Gu et
al. [50] integrates multiple sensor measurements and
a 3-dimensional (3D) map to build a robust localiza-
tion system in urban canyons. The 3D map is used
to perform a signal ray tracing process to rectify the
vehicle positioning. Shunsuke et al. [51] developed a
particle filtering vehicle localization system at the lane-
level for autonomous driving that integrates GNSS data,
Inertial Navigation system (INS) and camera observa-
tions. Kuhnt et al [46] and Rabe et al. [52] introduce
an approach on self-vehicle localization using sensors
to detect the object positions in the neighborhood of the
vehicle. The object’s position and direction of movement
along with an odometer sensor are used to localize the
vehicle on a digital map. Zheng et al. [53] proposes a
machine learning segmentation and classification algo-
rithm for lane-change detection using steering angle and
vehicle speed data extracted from CAN-buses.

The probabilistic map-matching approach, in general,
exploits the Hidden Markov Model (HMM) to find the
most probable path because of its power in assessing
different combinations of roads which the vehicle could
have taken for the purpose of finding the most probable
path [54]-[56]. The sequence of projected points are
the hidden states in the Markov model. The raw GPS
data points are the emitted observed elements. Differ-
ent algorithms propose different transition probability
distributions to determine the likelihood of traversing a
certain candidate road segment given that the vehicle
has already passed on a road segment. Most algorithms
use the Gaussian distribution to describe the emission
probability, the probability of emitting the noisy data
point given that the true match is a certain candidate
point. HMM-based map-matching leverages the Viterbi
algorithm defined in [57] to find the matched sequence

of roads. In contrast, the work of Knapen et. al. [58]
adopts the probabilistic approach but from a different
angle. In fact, they use the GNSS trace to minimize
the unlikelihood of existing candidates using only the
spatiotemporal information contained in the input data
without any added additional assumption related to the
shortest path which is the basis of most HMM transition
probability equations.

Unlike the probabilistic approach, a weighted map-
matching approach assigns a cost to different candidate
paths and uses different selection methods to find the
surviving path [59]. Lin et al. [60] present a Dijkstra-
based selection map-matching algorithm to estimate the
correct sequence of roads. They define a virtual directed
graph based on a physical graph (e.g., map data), whose
nodes include a set of candidate points (e.g., map-
projected GPS data points) and edges denote the tran-
sition probability from one candidate point to another.
For clarity, each edge of a virtual graph may include
multiple edges of a physical graph. The edges of a virtual
graph are assigned with a cost; and then the shortest path
problem is solved to find the least-cost path. However,
the cost function for the edges is only a function of
the shortest path from a candidate point associated with
previous GPS data points to one corresponding to the
current GPS point, without any consideration of how
proximate candidates points are to GPS data points.

Moreover, there was a notable effort to improve the
run—time performance for HMM-based map-matching in
the literature. Koller et al. [61] combine the probabilistic
and weighted approaches to leverage HMM-based map-
matching, but replace the Viterbi algorithm with Dijkstra.
This is achievable by converting total probabilities at the
last stage of the HMM to costs. The blended approach
improves the run-time of HMM-based map-matching by
decreasing the computational overhead of the unneces-
sary transition probability calculations [61].

Most map-matching algorithms that were developed
in a programming language and released to the com-
munity rely in their backend on one of the commercial
routers. These routers perform the route calculations
using shortest path algorithms on a certain road net-
work that is saved in a relational database (SQL) or
graphical database (NoSQL) [62]. Some are limited to
a specific type of map data structure such as Open
Source Routing Machine (OSRM). The others, such
as pgRouting (pgRouting Contributors), perform the
shortest path calculations live and may have significant
overhead when copying the network database into RAM
at each route execution [63]. Google Snap to Road,
a map-matching API, has a 300-meter limit between
two GPS data points to maintain accuracy and avoid
false snapping [64], which could be problematic at low
sampling-rates. It also works only on Google maps.
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Similarly, TrackMatching [65], a commercially available,
cloud-based web map-matching software service, per-
forms the map-matching based only on OpenStreet maps
(OSM). However, city planners support their own map
data for their road network studies.

III. MAP-MATCHING PROBLEM STATEMENT
A. Data Structure

This section summarizes the data structure and map-
matching problem that is considered in this study. A raw
GPS trajectory is the given sequence of N noisy data
points P = (p;[i =1, ..., N) ordered by timestamps.
The time interval between two consecutive points does
not exceed a certain threshold At , which is the sampling
rate. The sampling rate of the NYC data considered
in this study is 30 seconds. It is noteworthy that a
time difference between two consecutive data points
can be bigger than the sampling time interval because
it may take more than 30 seconds to obtain the next
available positioning data due to a weak communication
with the satellites. Each data point p; has the following
parameters: (i) longitude, latitude and altitude values,
(i) timestamp, (iii) the number of satellites that are
visible at the location of the sampled point, and (iv)
OBD-II speed information. The speed data represent the
maximum speed value between the previous data point
and the current data point (typically over 30 second
time intervals). Also, the data collected by the authors
for the evaluation purpose, contain the average OBD-
II traveled speed. The illustration of the GPS trajectory
data structure is shown in Figure 1.

Timestamp, Latitude, Longitude, Altitude, Max-speed, Mean-speed, N_satellites
Py 2016/01/01 13:12:00, 42.7128, -74.0000, 33.1253, 15 mph, 2 mph ,7
Py 2016/01/01 13:12:30, 42.7138, -74.0220, 33.1293,23 mph, 14 mph 4
P,:2016/01/01 15:17:45, 42.7138, -74.0345, 33.1323,27 mph, 11 mph .3

P Py
’\' s

P>

Fig. 1: Raw trajectory data formed of N noisy GPS points
P =(pJi=1, ..., N) ordered by a timestamp field,
along with the number of satellites and the OBD-II speed
information.

A digital road network (map data) is a directed graph
G(V, E), where the road edges (road segments) E are
connected by a set of nodes V. The map data used in this
study have 102,489 nodes and 159,253 road segments,
covering the NYC road network. Every edge has the
following parameters: (i) the length of the road segment,
(ii) the traffic direction (one-way or two-way), (ii) other

topological constraints such as road level information
to keep track of the edges and nodes that may be
overlapping in the 2D map so that they will be separated
prior to the map-matching problem, (iv) the node from,
(v) the node to, (vi) the road segment index, (vii) the
speed limits, (viii) a list of intermediate points that
describes a road segment as a polyline and ix) the street
names. New York’s road network is characterized by a
high road density, concentrated in Manhattan, the Bronx,
and Queens [66]. The average road width is 8.88 meter;
the density of arterial roads is 0.74 km/km?; and the
average block size is 0.067 km? [67]. The typical length
of a north-south road segment in Manhattan runs ap-
proximately 80 meters and the typical distance between
avenues is roughly 230 meters. The density of roads
results in considering an average of 20-40 projected
points on neighboring road segments per GPS point.

B. Problem Statement

A candidate point cf is defined as the projected point
of the GPS data point p; onto a neighboring road
segment j as depicted in Figure 2. Each data point p;
can have more than one corresponding candidate point
¢! (j =1,...,n;). The number of the candidate points
n; can vary based on the density of neighboring road
segments, the search radius, and the location of p;.
Among the candidate points, only one candidate point is
selected and used to represent the projected data point of
point p; on the road network. Therefore, the outcome of
the map-matching algorithm is a sequence of projected
data points (selected candidate points), representing a
reconstructed path that the driver could have taken in
a chronological order. The intermediate path between
every pair (cF ;,c]) is labeled as P(cF ;,c¢!) when
reconstructing the full path of the vehicle.

Fig. 2: Projection of the raw GPS points (p;_1,p;) onto
the neighboring segments of the digital map, resulting
in a set of candidate points: ¥ (k=1,...,n;_1) and

IV. PROPOSED OBD-DATA-FUSED

MAP-MATCHING ALGORITHM

Most map-matching algorithms in the literature are
designed to be used with high GPS sampling rate
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applications which are essential for most GPS-based
services (navigation and road guidance, and distance-
based road pricing) [68]. However, many real-time ap-
plications require data collection at a low sampling
rate. Such practice is often adopted in order to reduce
power consumption as well as communication costs [69].
Most algorithms use road connectivity and heading
restrictions [59]. These two pieces of information are
misleading in low sampling rate data because within a
30-second interval multiple heading changes occur and
the arc-skipping problem exists [70].

Therefore, the authors propose an offline map-
matching algorithm that processes a set of trajectory
data to compute the most probable sequence of roads.
It produces more accurate map-matching results for
trajectory data with a low sampling rate and can handle
the scalability of map-matching systems with an efficient
router system. Improved map-matching is achieved by
the following unique features:

1) The proposed transition probability fuses trajectory
data with OBD data to improve the map-matching
accuracy, especially when high GPS noise, denser
road networks, and low GPS sampling rates are
present. The transition probability function har-
nesses an actual travel distance between two GPS
points, calculated based on OBD speed data. The
inclusion of an actual travel distance in the tran-
sition probability improves the estimation of a
sequence of road segments based on given trajec-
tory points. Furthermore, the transition probability
is non-parametric; therefore, it does not require
any pre-learning of parameters from the map and
trajectory data.

2) An adaptive local search algorithm is designed to
improve the performance of the candidate road
segment selection process and trust-region filter-
ing. This algorithm utilizes additional sensor in-
formation to indicate the level of GPS accuracy
and adjust based on the local searching grid.
This feature overcomes one of the notable chal-
lenges in map-matching mentioned by Hashemi
and Karimi [71]: “narrowing the entire road net-
work to a limited number of road segments.”

3) The usage of connected sliding windows in the
cost-based selection of the most probable path is
developed to mitigate a challenging map-matching
problem, where priority roads have parallel service
roads.

4) This work proposes an efficient shortest path
query system that can minimize repeated shortest
path calculations for map-matching problems, and
stores a robust subset of pre-calculated shortest
paths determined based on GPS data.

A. Basic Flow of the Algorithm

The map-matching system described in this paper
adopts the blended map-matching approach that is based
on HMM-techniques, but leverages the Dijkstra algo-
rithm described in the work of Dreyfus [72] for matching
a GPS trajectory to a path for the above mentioned bene-
fits. It consists of two sub-algorithms. Algorithm 1: Can-
didate road segments selection and Candidate Graph,
responsible for choosing the set of candidate paths
between two GPS data points and assignment of a cost
for each path ; Algorithm 2: Dijsktra least—cost Path
Map-Matching, takes Algorithm 1 as an input and runs
the Dijkstra algorithm to determine the most probable
path of the vehicle.

Candidate road segments selection: Having the digital
road network with directionality information, topology
and connectivity, a set of candidate road segments are
selected for each GPS data point. The selection proce-
dure takes into account a trust region that is built based
on the OBD-II maximum speed information and filter
out candidate points that fall outside the trust-region.

Candidate Graph: Each pair of candidate points that
belong to two consecutive GPS data points constitute a
path. We compute the emission and transition probability
of the Hidden-Markov-Model and we assign a cost value
for taking that path. We then construct a virtual graph
where the candidate points of the GPS raw points are
the nodes and the intermediate path for every pair of
candidate points are the edges with the calculated cost.

Dijsktra Least-Cost Path Map-Matching: After
building the candidate graph, we run a Dijkstra shortest
path algorithm and save the sequence of candidate points
of the most likely path.

The pseudocode of the proposed OBD-data-fused
map-matching algorithm is formulated as follows. Al-
gorithm 1 processes the trajectory points (P : p;, i =
1, ..., N) in parallel, as separate tasks for each central
processing unit (CPU) available and returns the HMM
calculations, which are the input for Algorithm 2. As
soon as Algorithm 1 executes, Algorithm 2 outputs
the matched path by creating a virtual directed graph
Gy (Ny,Ey) and running the shortest path Dijkstra
algorithm. Ny includes a set of candidate points for
each GPS data point; and Ey includes a set of edges
that connect two neighboring candidate points.

B. Candidate Road Segment Selection

As our algorithm is based on the HMM approach [54],
[55], the first step is to form a set of candidate road
segments e/ (j = 1, ..., n;) and the corresponding
candidate projected data points ¢! (j = 1, ..., n;)
around each data point p; within a given radius r;. An

example is shown in Figure 3. n; is the number of
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Algorithm 1: Candidate road segment selection
and candidate graph generation.

Input: 1) Raw GPS trajectory as sequence of

N noisy data points,
P=(pi=1, ..., N).2) Digital
directed road network (map data),
G(V, E), where the road segments F
are connected by a set of nodes V.

Output: returns the Dijkstra cost Cik 7 for each
pair of candidate points (c¥_,,p;) at
each consecutive pair of GPS points

(Pi-1,p;)

foreach p; € P do
Execute Adaptive Trust-region Search

Obtain a set of candidate road segments eg
for j € ¢! do
Obtain the candidate point ¢ for each
segment
Compute the emission probability
p(pile;) ‘ ,
Add a virtual node ¢] in Gy, c] € Ny
foreach pair of c] and cf_| do
Compute the transition probability p(c!|cF )
Create a virtual edge connecting c¥ | — cg
Assign p(c!|cF ) to a virtual edge ¥ | — ¢/

Algorithm 2: Dijkstra least-cost map-matching.
Input: Gy (Nv, Ev), ¢] € Ny; p(c]|cF_));

p(pilel)
Output: return the most likely path

foreach set of 20 GPS points
P=(pli=1, ..., 20) do
Run Dijkstra shortest path algorithm
Save the resulting sequence of candidate
points of the most likely path
Set C’f] = 0 for the last five matched edges
and set 1 =1 — 5.

candidate road segments associated with the data point
p;. It is noteworthy that the number of candidate road
segments n; can vary based on the density of the digital
map around the point p; and the candidate search radius
r;. In order to find the n; candidate road segments for
each GPS data point, two things need to be defined: the
distance measure between the data point p; and a set of
neighboring road segments; and an efficient candidate
search radius r;.

-
Segment 4}

c? Segment 5,

@

B
T

-

K

B

2
Segment 2

Fig. 3: Candidate projected points on neighboring road
segments and Search Radius.

The GPS data points are projected onto road segments
in such a way that the distance between the GPS points
p; and the candidate point cf on the edge eg s minimized.
Therefqre, each road segment ef has one candidate data
point ¢] calculated as follows:
¢] = arg min dist(p;, ¢}) Vel € él. (1)

K3

Figure 3 shows an example of a candidate search. The
search radius r; should reflect the level of GPS position
error changes. Typically, GPS positioning is accurate to
about 15 meters; and the accuracy depends on many
factors such as the number and position of the satellites
and the design of the receiver [73]. In the work of Lou
et. al. [55], the GPS positioning error is assumed as a
Gaussian distribution, and its standard deviation is set to
be 20 meters.

Unlike other methods that use a fixed radius search
mechanism, the novelty of the proposed map-matching
algorithm is that the selection of candidate road segments
can adaptively adjust to the level of GPS positioning
error. Our method uses two data sources that can be
indicative of the level of the positioning error: the
number of satellites visible at the data point p;; and the
altitude value. We expect that when a GPS sensor has
a limited number of visibile satellites, the accuracy of
the positioning data is low. Furthermore, the positioning
error can propagate into positioning data in all directions,
not limited to the latitude and longitude. Therefore, the
unrealistic value of the altitude can be an indicator of
poor accuracy of the positioning data.

Data analytics on raw trajectory points reveal that
unrealistic altitude values mostly occur in dense regions
with no clear open sky. Unrealistic altitude value from a
GPS sensor can be detected when it significantly differs
from the known elevation at a point on the map. In fact,
since the road network is in New York City, which is a
relatively flat area, one is able to easily judge whether the
GPS receiver returns a false altitude value. We define a
false altitude value for New York City area for every
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Fig. 4: Density of data points with unreasonable altitude
value.

value above 100 meter, a value close to the highest
natural point in the five boroughs of New York City.
Hence, if it fails in determining a reasonable vehicle
altitude, it probably provides erroneous longitude and
latitude estimates. Figure 4 shows the density distribution
of the erroneous altitude value of the sampled points and
thus, it supports the previous assumption. We can clearly
tell that false altitude values are concentrated around
Manhattan midtown and downtown towers, as well as
around elevated subway and roadway structures, where
GPS reflections are high.

In this study, the baseline of the candidate search
radius is set to be 30 meters, which is double the typical
GPS positioning error found in the literature. In other
places, the search radius can reach 210 meters. This
is because the map-matching problem addressed in this
study can be more challenging due to the denser road
network and the relatively high level of positioning error
caused in New York City’s urban canyons. The search
radius for candidate points is calculated as:

r, = k‘l X 0; )

where the scaling coefficient k; controls the envelop
of confidence interval; and o; represents the assumed
standard deviation of the GPS positioning error. In this
study, the values of the scaling coefficient k; and the
standard deviation are intuitively defined as follows:

30 meters, if Ngy; > 6
o = N 3)
70 meters, otherwise
h = 2, if Altit.ude(pi) < 100 meters @
3, otherwise,

where N, ; is the number of visible satellites at the data
point p;. The rationale behind determining these values
is that the positioning errors of around 60 meters are
frequently observed within the trajectory data set; and the
data point p; with relatively-poor GPS communication

(i.e., Ng < 5) can have GPS positioning errors up to
140 meters. Then, we define the two ranges as a 95%
confidence interval (i.e., 20; = 60 or 140 meters based
on the number of visible satellites.) Furthermore, if the
altitude of the data point p; becomes unrealistic, the
99.7% interval (i.e., 30;) is used for a local candidate
search.

C. Trust-Region Candidate Filtering Based on The
OBD-II Speed Information

An adaptive trust-region search is applied to each data
point p;. This adaptive trust-region filters out some of
the candidate segments selected in Part B, that could
not be reached by a vehicle due to its low speed during
congestion. It efficiently adjusts a search radius based
on directly measured in-vehicle speed data. Between two
consecutive GPS data points p;_; and p;, the maximum
vehicle speed is obtained from an OBD-II connection.
The vehicle speed data point vy.; is the maximum
vehicle speed when a vehicle travels from the current
point p;_; to the next data point p;. Since the maximum
vehicle speed v and time interval At; = ¢, — t;_1
between two points are given, it is possible to define a
more reliable search radius Rp,x, as shown in Figure 5,
for the selection of neighboring road segment candidates.
Ryax would vary based on the actual vehicle speed from
the OBD connection vy i, and is defined as follows:

Roax = Umax,i X At; X s )

When a vehicle is stuck in traffic or moves slowly, the
adaptive search radius is relatively small. In the example
shown in Figure 5, r; will be equal to 2 x 70 meters =
140 meters, however, R« =2 mph x 0.447 (m/s)/(mph)
x 30 sec x 1.2 = 32 meters. Therefore, only candidate
segments that fall within Ry,,, will be considered.

When the vehicle speed increases, the adaptive search
radius becomes large enough to cover possibly-visited
road segments. The slack variable s provides an extra
margin for a search radius to accommodate GPS posi-
tioning error. In this study, the value of the slack variable
s is defined as 1.2, which means the adaptive search
radius is increased by 20%.

D. Emission Probability

Each of the candidate projected points is considered
to be a hidden state in the Markov model and has an
emission probability p(p;|c]), which is the likelihood of
emitting the noisy data point p; given that the true match
is CZ Instinctively, we favor candidates that are closer
to p;. It has generally been adopted in the literature
that GPS errors have a zero-mean Gaussian behavior.
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Fig. 5: Case when the adaptive trust-region R, less
than the default search radius r;.

Therefore, in our algorithm we define the emission
probability as follows:

g 1 —d;
p(pile;) = p(dj) = TU?QXP 202 | (6)
where d; = ||plcl7\| is the distance between p; and

¢!, and o; is the assumed standard deviation of GPS
positioning error. It is noteworthy that o; used in the
emission probability (Eq. 6) is the same as the one used
in the adaptive candidate search radius r; (Eq. 2). The
emission probability only uses the geometric information
of a road network. Therefore, it fails to consider the GPS
point’s location context within an entire trajectory [55].

E. Transition probability

The transition probability p(c! |¢¥_,) uses the topolog-
ical information of the road network and evaluates the
probability that a vehicle travels from the projected point
c¥ | to ¢! when it moves from data point p;_; to p;. The
estimation of the transition probability can be assumed
based on map data and GPS data points.

In the work of Koller et al. [61], which adopts
the Dijkstra-based map-matching technique described in
Section II, each transition path (c}_,,¢]) is given a cost
rather than a probability. (i.e., the higher the cost, the
lower the transition probability is). The cost C’f 7 s
estimated based on the route distance, calculated by the
shortest path algorithms, and the distance between two
GPS data points. The cost function is defined as follow:

w(ei_y, )
d(pi—1,pi)’
where [ is a pre-learning parameter for each road
network, which in most applications may be impos-
sible to determine, when ground truth trajectory data

C’fj:ﬂ*

(7

(C) Segment |

Fig. 6: Map-matching problem at road intersections.

is unavailable. w(c¥ |, ¢!) is the route distance and
d(p;—1,p;) is the distance between the consecutive data
points. This transition probability function may lead to
incorrect matching at road intersections as demonstrated
in Figure 6. Figure 6(a) shows a sequence of trajectory
points for a vehicle approaching an intersection from
South to West. Figures 6(b) and 6(c) depict respectively
the candidate projected points of p;_; and p;. Eq. 7 tends
to favor a pair of ¢}_; and ¢ with zero cost C33 = 0.
The real matching pair (c;_;,c?) with C}? > 0 will
never be chosen by Dijkstra when a different candidate
pair with zero cost exists.

Similarly, Lou et al. [55] uses the transition probabil-

ity, defined as follows:

Pl ) = Viek ) = DPmnP) g

i—15C ,
T w(eky )

which might lead to the similar matching problem at an
intersection since the shortest path w(c3_,c}) equals
to zero and V(c}_,c3) = oo. It is noteworthy that
the above-mentioned transition probability functions are
reasonable enough to visualize the matched path of a
vehicle, if the user is only interested in knowing the
correct trajectory of a vehicle or minimizing GPS posi-
tioning errors. However, when it is important to link GPS
data points with the correct road segments (e.g., probe-
vehicle based traffic condition analysis and street-asset
information collection), it is critical to find correctly-
matched road segments, in addition to minimizing GPS
positioning error and estimating matched trajectories.

Therefore, we propose a novel transition probability
that can improve the accuracy of finding correct road
segments, defined as follows:

; 1
k
plcileisy) = o €))
d
where d is the distance discrepancy estimation for each
pair of from-to road segments. It represents the absolute
difference between the shortest route from cf_; to ¢/ and
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the distance between p;_1 and p;, which is calculated as
follows:

dg = [w(ct_y,cl) = d(pi_1,pi) (10)

where w(c¥ |, ¢!) is the length of the shortest path be-
tween the projected points ¢ ; and c{ ; and d(pi—1,pi)
is the distance ||p;—1p;|| between data points p;_; and p;.
It was proven in the work of Newson and Krumm [74]
that these two distances are highly correlated. In this
paper, we propose in Eq. 11 using the OBD-II vehicle av-
erage speed between p;_; and p; to estimate d(p;—1,p;),
in an attempt to minimize the distance discrepancy dg
and thus accurately evaluate each pair of from-to road
segments.

(C 1 C’,Z) - vmean,i X Atz

(1)

k
—
k
—

w
dq = min ;
w(eiy,¢;) — pi—1pill

—~
Q

The OBD-II average speed better represents the actual
traveled distance especially at intersections and low-
speed areas where the GPS noise is high. The proposed
transition probability becomes more robust for finding
the correct sequence of road segments at an intersection.
For example, in Figures 6(b) and 6(c), the real matching
pair (c!_;,c?) is better weighted when comparing the
shortest path w(cl 1, c?) with Uyeu ; X At; rather than
|lpi—1p:||- Also, the transition probability that a vehicle
switches from segment 3 to segment 3, p(c}|c? ;),
becomes low since w(cs_,,c}) is zero; and therefore the
discrepancy dg is high. Unlike the transition probability
that requires parameter tuning [61], [74], the proposed
transition probability does not require any parameter
learning process. Due to the simplicity of the computa-
tion, the transition probability of Eq. 9 is not normalized
to the total probability Y 77, p(c]|c};), as the authors
noticed that the omission of the normalization does not
affect the algorithms’ performance in Section V.

Due to the GPS measurement noise, a certain GPS
data point p; can fall behind a previous data point p;_1.
This loop-creation phenomenon, which is a common
problem in map-matching, is frequently observed in
metropolitan cities, in particular low-speed, congested
regions with high GPS noise. Examples are shown in
Figure 7. In Figure 7(b), the algorithm will disregard the

candidates c{ and cg by comparing the direction of c{c%

to the traffic direction of segment j which is in this case
—_— - —>

in the direction V}l Vj2, and thus having ¢} ¢} - le Vj2 <0,

w(cl_q,c?) is set to oco.

The suggested transition probability in Eq. 9 is robust
to extreme noise in dense urban environments like Man-
hattan, since computing the inverse of the difference of
two distances returns a large number. This makes the

weights of each candidate pair (cf |, ¢!) differ greatly

1—17 %

(b)
Fig. 7: (a) map-matching at closely spaced points (b)
map-matching at closely spaced points with loop forma-
tion.

Fig. 8: Map-matching in an extremely noisy region: The
green path is chosen by the map-matching algorithm over
the blue path.

from each other. Figure 8 shows an example of a
vehicle driving on 5th Avenue in Manhattan. One can
clearly see how, despite the fact that the candidate pair
(c2_,,c?) is far in distance from ||p;_1p;|, (¢?_1,c?)
was successfully chosen by our map-matching algorithm
over (ci_,,cl) since dgo = |w(c?_;,c2)—d(pi—1,pi)| is
less than dg 1 = |w(c}_q,c})—d(pi—1,pi)| and therefore
p(cilei_1) > p(cilei_y).

E. Most likely Path Selection

Following the Markov assumption, a model state cZ
depends only on the previous state c¥ ;. And the like-
lihood of emitting p; depends only on the current state.
Using Bayes’ theorem and the Markov chain assumption,
the probability p(c;|po.;) of matching the data point p;
to candidate ¢/, given the position history of the data
points pg.; can be expressed as:

p(CZ |Po:i) o p(pz|CZ)p(CZ |Po:i)
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where p(pi|c!) and p(c!|cF_,) are respectively, the emis-
sion and transition probabilities and can be calculated
from Eqs. 6 and 9, respectively; and the term p(c¥_; |po.;)
represents a recursive element. To initialize the probabil-
ity p(cf_;|po.;), this algorithm needs to obtain the first
two points pg.1.

The most likely path link can be obtained based on the
maximum a posteriori (MAP) estimation, meaning that
we need to select a sequence of projected data points
(matched road segments) that maximize the probability
p(c]|po.;). The most likely path is identified as follows:

c{ = arg max p(Cg |P0:7:)7 (13)

J
i

To solve this maximization problem, one can use the
Viterbi algorithm defined in Forney [57] to find the
sequential combinations of road segments that maximize
the probability p(c!|po.;). However, as mentioned earlier,
we are altering the problem to a Dijkstra least-cost
path problem by building a virtual graph Gy (¢!, C)
shown in Figure 9, where the candidate points corre-
sponding to the GPS raw points are the nodes of Gy
and the intermediate path P(c¥ |, ¢/) between every
pair (cf_,, ¢ z) are the edges. Since our algorithm relies
on the Dijkstra algorithm to solve the shortest path
problem, the complexity of the map-matching algorithm
is O(ElogV'), where E and V are the total number of
edges and vertices in the virtual graph, respectively. We
propose the cost function below to compute ij for
every edge (¢ |,c!) in Gy:

K2

. 1
kj _ -
cW = ik (14)
where, y 4 '
7,7 = p(pile])p(ci|ef-y), (15)

for every candidate pair (c_,,¢!), with p(p;|¢/) and
p(cl|ck ) computed from Egs. 6 and 9, respectively.

The intuition behind our cost function in Eq. 14 is
that computing the inverse of a low probability value
produces a high cost; therefore, the corresponding path
is not likely to be selected by the shortest path algorithm.

The network graph Gy (¢!, C) is built on a 20-GPS
point sliding window to avoid Dijkstra’s computational
overhead. However, we made the windows connected in
order to have consistent matching at the first few nodes
of each window. To explore this practice, Figure 10
shows three consecutive windows or in other words
three Dijkstra’s networks. Window 1 performs the map-
matching of GPS point 1 to GPS point 20. Instead of
starting Window 2 from point 21, we stepped back five

Source Destination

58

o

D
F10
@

Gv(cl, ¢)

Fig. 9: Gv(cg, ij) virtual graph of the Dijkstra least-
cost path algorithm.

i=I Ci=I5 =20 !
S RN Windowd ... [ Window 3
o o o ol o o ! O
o o ol O Co>/)3 S
I H T3 o =g - : H
oo ol ST S o
S S S Sl S S S
e T N
| e, | ”
S S

1
1
1
i
i
1
Window 2 |

Fig. 10: Dijkstra’s connected network windows.

solved GPS points and started Window 2 from point
15. We set the cost Cf] of the previously matched
edges 15 to 20 from Window 1 to zero so that they
will definitely be selected by the next map-matching
Dijkstra’s of Window 2. This connection also helps avoid
incorrect mixed matching between main and parallel
service roads. The second window will not switch the
path of the vehicle to a service road even though the
GPS data are closer to it given the edited cost of edges
from the previous window.

In summary, for each pair of GPS points (p;_1, p; ), the
algorithm gets the neighboring candidate points from the
digital map, and sends a request to a router database in
Redis [75] in order to retrieve the corresponding shortest
routes to compute the parameter w(cF_;,c!) of Eq. 10.
The procedure depicted in Figure 10 is repeated until the
graph Gy is generated.

G. Building Router

In this section, the detailed design of the router is
discussed. Building the router is a one-time exercise,
executed before starting to feed trajectories to the map-
matching algorithm. The router can be compiled on any
digital map. This makes it possible for users to map
their raw data and execute the patched path in their
proper digital map index scheme. Since vehicles travel
on the same predetermined road network, shortest path
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Fig. 11: Map-matching algorithm architecture.

calculations between two nodes can be precomputed and
saved in a database. Dijkstra’s shortest path algorithm
was used as a routing tool to solve the network. In order
to speed up lookup operations for the map-matching
algorithm, by setting a limit on the search radius Rjoyer,
only routes between two nodes that are possible to visit
within a 30-seconds interval (the sampling interval of
the testing data) were solved and stored. For instance,
there is no need to know the route of a node in lower
Manhattan to a destination node in uptown Manhattan.
To ensure a robust database, a limit on R,guer Was set as
follows:

Rrouter = Vmax x At x SF7 (16)

where Vix = 70 mph, At = 30 sec and SF is a
safety factor = 1.2. The calculation above results in a
maximum router radius of R ouer = 0.7 miles. In other
words, we solve the shortest path from node 7 to every
node that is at most 0.7 miles away. A smart indexing
technique is established in this paper to support faster
lookup and retrieval from the Redis routing database.
This technique relies on graph partitioning of the New
York City road network. Each pair of noisy points are
30 seconds apart, which means that these points are a
few meters away from each other. In consequence, the
corresponding set of source and destination candidate
points is located in the same geographical area. There-
fore, it is possible to partition the graph G = (V. E)
into smaller components with specific properties. The
borough information of every node in V that is encoded
in the map GIS geodatabase, is used to partition the
graph network into five smaller sub-networks as shown
in Figure 12, and thus store the routes in five smaller
databases (one database for each borough: Manhattan,
Brooklyn, the Bronx, Staten Island, and Queens). As
a result, Redis can perform the lookup operations in a
smaller database every time it receives a routing request.

H. Vertical Scalability of a Map-matching System

The above map-matching algorithm and the custom-
built router were combined in one map-matching system.

Fig. 12: The graph G = (V, E) is partitioned into smaller
sub-networks based on the borough information. Every
node in G = (V, E) is colored based on the borough
it belongs to: Manhattan, Brooklyn, the Bronx, Queens
and Staten Island.

(por )| TG Map matching
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- e |

Fig. 13: Map-matching system.

Figure 13 shows the scalable map-matching system that
is architected in Python. Scalability is the ability of a
computer application or software to continue to be fast
when it is changed in size or volume [76]. In this context,
a change in size means when the road trajectory gets
bigger.

In this paper, vertical scalability of the algorithm is
presented, which is defined as the maximum use of
the available resources on a computer as opposed to
horizontal scalability which is speeding up the algorithm
by forming a cluster of computing nodes [77]. The
time-consuming part of the map-matching system is the
generation of the virtual graph Gy. HMM parameters
calculation for each pair (p;_1,p;) at the iteration ¢ is
independent of those corresponding to (p;_o,p;—1) at
the iteration ¢ — 1. Also, when solving the least cost path
problem using Dijkstra’s algorithm, the least-cost calcu-
lations for each pair of candidate source and destination
nodes are independent. These two observations made
it possible for the algorithm to be vertically scalable.
And thus parallel computing was applied as shown in
Figure 13.
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V. PERFORMANCE EVALUATION AND
APPLICATION

Ground Truth: The algorithm is evaluated using
ground truth trajectories that the authors collected in
New York City. Each trajectory represents 15 to 30
minutes of driving. An in-vehicle sensing hardware
package is developed and comprises a Raspberry PI 3
Model B+ microcomputer, a microSD 32GB SD card, an
OBDCheck BLE OBD-II scanner, and a GPS module.
This sensor configuration aims to collect timestamps,
GPS positioning, and instantaneous speed data. A USB
car charger was plugged into the cigarette lighter socket
of the vehicle to provide power to the sensing hardware
package. In order to evaluate the performance of the
algorithm at low-sampling rate, the data collected was
down-sampled to one sample every 30 seconds with a
position, a maximum speed value for the past 30 seconds,
and an average traveled speed value. When the maximum
OBD-II speed value is less than 2 mph within the last 30
seconds, a minimum speed value of 2 mph was adopted
in Eq. 5 to avoid very small trust-regions.

Evaluation Criteria: The map-matching algorithm is
evaluated in terms of the matching quality. The matching
quality is measured using an accuracy metric defined as
follows:

Ne

Acczi
Ni

a7

where [V, is the number of correctly matched GPS points
and N, is the number of total GPS points. Also, the
algorithm is validated using a reliable off-the-shelf map-
matching platform: BMW Car IT Barefoot library [45].
The authors would like to note that the comparison with
Barefoot is made to validate the proposed algorithm with
a commonly-used method to show the benefit of includ-
ing in-vehicle speed data into the transition probability
function, as well as computing the search trust-region us-
ing the maximum speed value. In general, a comparison
between map-matching algorithms is challenging since
map data are different and could be denser in one map
than the other. Also, the algorithm’s accuracy may vary
between cities, depending on their road networks, as well
as between data sets depending on the GPS sampling
rate. In this study, we challenged an extreme scenario
by collecting telematics data in New York City’s urban
canyons, with a GPS sampling rate of one sample per
30 seconds.
Barefoot Algorithm Background Information:

The Barefoot algorithm relies on Newson and
Krumm [74]. The latter fits a negative exponential dis-

tribution to the transition probability V' shown in Eq. 18
below:

1 —B (Cffl ’ C”Z )
3 exp 3 (18)
where [ is an experimental road-network parameter and
B(ck |, c!) defined in Eq. 19 below, is the difference
between the shortest route from cF | to c{ and the
distance between p; 1 and p;.

Viyarefoot(ci'ip CZ) =

B(C/]ic—l’cg) = |w(ci‘€—1vcg) — [Ipi—1, pill |
Barefoot uses Eq. 18 for their transition probability,
but redefines B(cF_,,c!) by using instead a time-priority
route cost function detailed in Eq. 20 and defines /3 as
the GPS sampling time interval (30 sec here).

19)

o w(dk
Bredeﬁned(cf_h CZ) = % x PF (20)

where Vi is the road speed limit from OSM map data
and PF is a road type factor that favors main roads
over local roads. As mentioned earlier, when working
with Barefoot, we tuned the o value for the emission
probability in the Barefoot library from the default value
5 meters to match the o = 70 meters value used in our
algorithm.

Experimental results: Table 1 shows the number of
mismatched points out of 589 GPS data points for every
algorithm.

TABLE I: Number of mismatched points for the pro-
posed algorithm versus Barefoot algorithm.

# of mismatched points  Accuracy(%)
Our Map-matching 15 97.45
Barefoot 25 95.76

Figure 14 shows a comparison example between
our map-matching (Figure 14(b)), and Barefoot (Fig-
ure 14(c)). The novel transition probability implemented
in our algorithm provides a very good balance between
the GPS noise and the shortest path probabilities. Fig-
ure 14-b shows how our map-matching is robust to GPS
measurement errors at (pi, ..., pg). The Barefoot time-
priority strategy in computing the transition probability
could lead to inaccurate matching at locations where
raw GPS positions are close to each other due to traffic
congestion as shown in Figure 14(c). In other words,
Barefoot starts creating loops. However, the proposed
transition probability includes the true mean speed of
the vehicle assisting the algorithm in detecting that the
vehicle cannot travel the entire loop within the 30-
seconds interval with a low speed.

The authors acknowledge that cost functions that value
road priority (Eq. 20), are essential in locations where
major roads and service roads are in parallel with close
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Fig. 14: Example 1: comparing our algorithm’s output
with Barefoot’s output and ground truth data. (a) Ground
truth trajectory with raw GPS points (b) our map-
matching result (c) Barefoot’s output.

proximity. On the other hand, taking road priority into
account could cause a mismatch at other locations where
roads are proximate, but are not in a parallel config-
uration. In Figure 15(b), between p; and pg, Barefoot
went down to East 53rd St. instead of continuing on
East 55th street since the former is a priority road. The
proposed transition probability in Eq. 9 will assign a
low probability for going down to East 53rd St., by
comparing the shortest path with the average vehicle
traveled distance. The road priority information is not
encoded in the digital map used in our study, therefore
we could not investigate the validity of including road
priority information in our algorithm.
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Fig. 15: Example 2: comparing our algorithm’s output
with Barefoot’s output and ground truth data. (a) Ground
truth trajectory with raw GPS points (b) our map-
matching result (c) Barefoot’s output.
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VI. CONCLUSION

As map-matching becomes critical for any traffic and
driver behavior assessment relying on GPS-collected
data, it is essential to have robust map-matching algo-
rithms for urban canyons. In this paper, we described
a novel OBD-data-assisted algorithm for map-matching.
The algorithm is evaluated using ground truth data
collected by the authors’ developed telematics device.
The proposed algorithm is proven to be more robust
at a low sampling rate and high GPS noise with an
accuracy of 97.45% when GPS noise is up to 70 meters.
This scalable system executed in Python makes use of
OBD-II parameters directly sampled from the vehicles,
such as the maximum and mean speeds, in conjunction
with GPS data to get more accurate map-matching.
The map-matching algorithm uses in the backend a
smart query system for the shortest routes. The map-
matching algorithm can relate non-spatial safety-related
driver behaviors to road networks. For example, OBD
speed, hard-braking, and hard-acceleration events, do
not have spatiotemporal information. However, it is
practically valuable to understand these behaviors based
on the road network, particularly for understanding city-
scale public safety and design. Thus, the map-matching
can help in creating driver behavior indexes (DBIs)
for each road segment, such as vehicle speed profiles
(e.g., 85th percentile speed, mean speed), and harsh
driving metrics (e.g., harsh braking and acceleration
rates). Road-segment-level DBIs can be further analyzed
to understand their relations to crash data. The data
summarization of connected vehicle data on map data
can be an impactful V2B application that can potentially
benefit city planners’ street improvement projects and
corridor safety metrics generation. As a future work,
the traffic data collected by the current intelligent trans-
portation systems (e.g., electronic toll collection systems,
spot-speed radar) at selective locations, will be used to
validate the accuracy of traffic flow obtained by this
work from matching connected vehicle data with the
road segments.
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