© ©® N o A~ W N =

31

32

33

34

35

36

37

38

39

OBD-Data-Assisted Cost-based Map-matching
Algorithm for Low-Sampled Telematics Data
in Urban Environments

Patrick Alrassy, Member, IEEE, Jinwoo Jang, Member, IEEE, and Andrew W. Smyth, Member, IEEE

Abstract—A myriad of connected vehicles collects large-
scale telematics data throughout cities, enabling data-
based infrastructure planning. To truly benefit from this
emerging technology, it is important to integrate pervasive
telematics data with map data to produce more tractable
and readable information for traffic flows and safety.
Map-matching algorithms enable the projection of noisy
trajectory data onto map data as a means of integrating
telematics data. However, map-matching poses challenges
due to higher levels of positioning errors and complex
road networks. The authors propose a novel map-matching
algorithm that can fuse in-vehicle data with trajectory data
to improve the efficiency and accuracy of the algorithm.
The proposed algorithm combines the probabilistic and
weight-based map-matching frameworks. The novelty of
the proposed algorithm includes (i) an adaptive segment
candidate search mechanism based on in-vehicle speed
information, (ii) adaptive matching parameters to reflect
the variations in the Global Positioning System (GPS)
noise levels, (iii) a novel transition probability that uses
in-vehicle speed data, and (iv) a backend data query
system for the shortest routes. Map-matching results were
validated based on ground-truth data collected using an
in-vehicle sensing device developed by the authors, as well
as comparing with a commonly-used off-the-shelf map-
matching platform. The proposed algorithm is proven to
be robust, with an accuracy of 97.45%, particularly where
map data are denser and GPS noise is high.

Index Terms—Map-matching, Telematics,
data, Connected Vehicle, Smart Cities.

Trajectory

I. INTRODUCTION

NE of the novel technologies for emerging smart
O cities, particularly those cities dealing with traffic
congestion and public safety, is connected-vehicle tech-
nology [1], [2]. Connected vehicle technology enables
sharing information among vehicles, the infrastructure,
and personal communication devices through safe and
interoperable networked wireless communications. De-
tailed overviews of the concept, connectivity, and ar-

P. Alrassy and A. W. Smyth are with the Department of
Civil Engineering and Engineering Mechanics, Columbia Univer-
sity, New York, NY, 10027 USA, (e-mail: pa2492@columbia.edu;
smyth@civil.columbia.edu).

J. Jang is with the Department of Civil, Environmental and Geo-
matics Engineering, Florida Atlantic University, FL, 33431, (e-mail:
jangj@fau.edu).

chitecture of connected vehicles can be found in the
literature [3]-[9].

Connected-vehicle technologies can be grouped into
three categories based on inter-vehicle communications:
Vehicle-to-Vehicle (V2V), Vehicle-to-Roadside Infras-
tructure (V2I), and Vehicle-to-Broadband Cloud (V2B).
Examples of connected-vehicle applications include traf-
fic management systems [10], [11], parking spot locator
systems [12], lane marking localization systems [13],
collision warning systems [14]—-[17], road surface mon-
itoring systems [18]-[20], and driver volatility estima-
tion [21], [22]. The applications of V2V communi-
cations, in general, focus more on exchanging useful
information between vehicles that are traveling along
the same road. The V2I applications aim to provide
the right information at the right time, such as road
surface conditions. The V2B communications aim to
create a large-scale monitoring data center, which opens
a new door for many data-intensive applications [23].
In particular, large-scale connected vehicles will enable
data-based infrastructure planning and management. For
example, a large number of taxis, public transport, utility
vehicles, and private vehicles are collecting big trajectory
data across cities with valuable traffic information about
real-time and network-wide traffic conditions. These data
sets will significantly contribute to the improvement of
transportation systems and mobility.

The main component of telematics vehicle data is the
trajectory consisting of recorded data of the vehicle’s
position over time. Different types of localization sensors
are currently being used to estimate the vehicle position
with respect to time, such as the Global Navigation
Satellite System (GNSS) [24], Wi-Fi [25], and cellular
tower networks [26]. The GNSS trajectory data can
estimate travel time and vehicle speed, supporting traf-
fic operations monitoring, incident detection, and route
guidance applications.

However, it is widely known that the quality of
GNSS data is significantly affected by measurement
noise. GNSS positioning error is primarily due to the
multipath problem associated with buildings and infras-
tructure, which interferes with the direct path between

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

920

91

92

93

9

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

11

112

113

114

115

116

17

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

GNSS receiver and the constellation of satellites in the
sky [27]. Since the global positioning system operates
on the trilateration concept, a GNSS receiver must
communicate with a minimum of four visible satellite
clocks before determining its true position [28]. It is
noteworthy that GNSS positioning errors can propagate
to the estimation of the speed and heading of vehicles
when GNSS sensors are primary used to obtain speed
and orientation data. Furthermore, the level of GNSS
measurement noise, in general, significantly increases in
urban environments, posing challenges for various V2B
applications in metropolitan areas. Therefore, the imple-
mentation of novel algorithms that can deal with GNSS
measurement noise is a vital component in leading to
the success of V2B applications.

Moreover, telematics data include important vehicle-
centric data, collected from extra sensor modules (e.g.,
On-Board Diagnostics (OBD-II) scanners, inertial mea-
surement unit (IMU) sensors, Carbon Dioxide sensors,
etc.). Vehicle-centric information can be collected from
the Controller Area Network (CAN bus) [29]-[33] and
augmented sensor hardware. A portion of CAN bus data
has standardized protocols and can be accessed through
OBD ports [34]. Examples of OBD data include engine
RPM, vehicle speed, and fuel system status. By com-
bining OBD data with data from extra sensor modules
attached to in-vehicle sensor networks, data availability
can be easily customized to meet the requirement of
various applications. Augmented sensor modulus en-
able various large-scale connected vehicle applications,
such as environmental monitoring systems [35]-[37],
street-asset data collection systems [38]—[41], and public
safety [42], [43].

It is important that telematics data must be translated
into more tractable and readable formats. Telematics data
include spatio-temporal data (e.g., trajectory data) and
non-spatial data (e.g., OBD data). Importantly, trajectory
data are represented in a coordinate system (typically,
in a geographic coordinate system) and are used to
associate non-spatial data with the correct streets of
road networks. In addition, large-scale connected vehicle
applications require to summarize valuable information
based on map data. For example, it is more intuitive to
know traffic information, vehicle speed, and street asset
conditions by street. In other words, trajectory data do
not directly indicate the locations of vehicle-centric data
to the street without proper data integration schemes.
Therefore, data integration is critically important for
large-scale V2B applications.

Map-matching techniques are promising approaches
to deal with both GNSS positioning errors and map-
based data integration. The following section provides
an overview of map-matching algorithms. Map-matching
algorithms aim to match a set of observed noisy vehi-

cle position data with the sequence of road segments,
summarizing meaningful traffic flow and safety metrics
based on map data. Map-matching applications in urban
environments become more challenging due to denser
road segments and relatively-higher level of GNSS error.
The performance of map-matching algorithms can vary
based on the accuracy of GPS positioning data, the qual-
ity of the map data, and the tuning of the parameters [44].

This paper presents a novel map-matching technique
to perform the data fusion of in-vehicle sensor network
data, map data, and trajectory data. In particular, the ve-
hicle speed, which is directly measured from the vehicle
itself, is used to improve the accuracy and efficiency of
the map-matching. The authors challenge complex V2B
applications that have low-sampled telematics data and
denser road networks. The authors collected real-world
telematics data sets to validate the performance of the
algorithm using their own telematics device.

The map-matching problem addressed in this study
is more challenging as it is tested in New York City
(NYC) dense road network with the relatively high
level of positioning error caused in its urban canyons.
Thus, the addressed application represents a prototype
for the future of map-matching in smart cities. As
smart cities are often envisioned to have denser road
networks, with streets populated with tall buildings, the
proposed algorithm balances simplicity, accuracy and
performance through fusing GPS with in-vehicle speed
data, and vertically scaling the algorithm as explained
in Section IV-H, unlike sophisticated algorithms that use
advanced sensor data that often are not available, trading
high accuracy with low performance and utilization. The
performance of the proposed map-matching algorithm is
compared to a commonly-used map-matching algorithm:
BMW car IT Barefoot [45].

The remainder of this paper is structured as follows:
Section II provides an overview of the current map-
matching algorithms. Section III defines a map-matching
problem. Section IV-A-F describes the proposed map-
matching algorithm. Section IV-G discusses database
management, graph partitioning, and query-optimization
techniques that support the implementation of our map-
matching algorithm. Section IV-H documents a scalable
map-matching system architecture. Section V includes
validation results. Finally, future research directions and
conclusions are provided in Section VI.

II. OVERVIEW OF MAP-MATCHING
ALGORITHMS

Map-matching algorithms follow either (i) a proba-
bilistic approach, (ii) a weight-based, or (iii) a machine
learning approach. The latter includes Kalman filter and
artificial neural network techniques which require more

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

178

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

input data, learning, and computational effort, compared
to the first two approaches [46].

Recent map-matching algorithms harness various
sensing data obtained from multiple sensors to improve
their map matching accuracy. However, those additional
sensing data might not be available in many applications
that deal with typical vehicles that are not autonomous.
Furthermore, most of the recent algorithms rely on
machine learning techniques, which require parameter
learning processes. Toledo-Moreo et al. [47] creates a
particle-filter-based algorithm that hybridizes measure-
ments from a GNSS receiver, a gyroscope and an odome-
ter to solve the map-matching problem at the lane-level.
Similarly, Szottka et al. [48] presents a particle-filter-
based algorithm that incorporates camera detections data
of the lane markings along with commercial map data.
Tao et al. [49] build a localization solver, based on
Kalman filtering, that leverages GPS data, vehicle data
and observations from a video camera along with lane
markings embedded in digital navigation maps. Gu et
al. [50] integrates multiple sensor measurements and
a 3-dimensional (3D) map to build a robust localiza-
tion system in urban canyons. The 3D map is used
to perform a signal ray tracing process to rectify the
vehicle positioning. Shunsuke et al. [51] developed a
particle filtering vehicle localization system at the lane-
level for autonomous driving that integrates GNSS data,
Inertial Navigation system (INS) and camera observa-
tions. Kuhnt et al [46] and Rabe et al. [52] introduce
an approach on self-vehicle localization using sensors
to detect the object positions in the neighborhood of the
vehicle. The object’s position and direction of movement
along with an odometer sensor are used to localize the
vehicle on a digital map. Zheng et al. [53] proposes a
machine learning segmentation and classification algo-
rithm for lane-change detection using steering angle and
vehicle speed data extracted from CAN-buses.

The probabilistic map-matching approach, in general,
exploits the Hidden Markov Model (HMM) to find the
most probable path because of its power in assessing
different combinations of roads which the vehicle could
have taken for the purpose of finding the most probable
path [54]-[56]. The sequence of projected points are
the hidden states in the Markov model. The raw GPS
data points are the emitted observed elements. Differ-
ent algorithms propose different transition probability
distributions to determine the likelihood of traversing a
certain candidate road segment given that the vehicle
has already passed on a road segment. Most algorithms
use the Gaussian distribution to describe the emission
probability, the probability of emitting the noisy data
point given that the true match is a certain candidate
point. HMM-based map-matching leverages the Viterbi
algorithm defined in [57] to find the matched sequence

of roads. In contrast, the work of Knapen et. al. [58]
adopts the probabilistic approach but from a different
angle. In fact, they use the GNSS trace to minimize
the unlikelihood of existing candidates using only the
spatiotemporal information contained in the input data
without any added additional assumption related to the
shortest path which is the basis of most HMM transition
probability equations.

Unlike the probabilistic approach, a weighted map-
matching approach assigns a cost to different candidate
paths and uses different selection methods to find the
surviving path [59]. Lin et al. [60] present a Dijkstra-
based selection map-matching algorithm to estimate the
correct sequence of roads. They define a virtual directed
graph based on a physical graph (e.g., map data), whose
nodes include a set of candidate points (e.g., map-
projected GPS data points) and edges denote the tran-
sition probability from one candidate point to another.
For clarity, each edge of a virtual graph may include
multiple edges of a physical graph. The edges of a virtual
graph are assigned with a cost; and then the shortest path
problem is solved to find the least-cost path. However,
the cost function for the edges is only a function of
the shortest path from a candidate point associated with
previous GPS data points to one corresponding to the
current GPS point, without any consideration of how
proximate candidates points are to GPS data points.

Moreover, there was a notable effort to improve the
run—time performance for HMM-based map-matching in
the literature. Koller et al. [61] combine the probabilistic
and weighted approaches to leverage HMM-based map-
matching, but replace the Viterbi algorithm with Dijkstra.
This is achievable by converting total probabilities at the
last stage of the HMM to costs. The blended approach
improves the run-time of HMM-based map-matching by
decreasing the computational overhead of the unneces-
sary transition probability calculations [61].

Most map-matching algorithms that were developed
in a programming language and released to the com-
munity rely in their backend on one of the commercial
routers. These routers perform the route calculations
using shortest path algorithms on a certain road net-
work that is saved in a relational database (SQL) or
graphical database (NoSQL) [62]. Some are limited to
a specific type of map data structure such as Open
Source Routing Machine (OSRM). The others, such
as pgRouting (pgRouting Contributors), perform the
shortest path calculations live and may have significant
overhead when copying the network database into RAM
at each route execution [63]. Google Snap to Road,
a map-matching API, has a 300-meter limit between
two GPS data points to maintain accuracy and avoid
false snapping [64], which could be problematic at low
sampling-rates. It also works only on Google maps.

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

Similarly, TrackMatching [65], a commercially available,
cloud-based web map-matching software service, per-
forms the map-matching based only on OpenStreet maps
(OSM). However, city planners support their own map
data for their road network studies.

III. MAP-MATCHING PROBLEM STATEMENT
A. Data Structure

This section summarizes the data structure and map-
matching problem that is considered in this study. A raw
GPS trajectory is the given sequence of N noisy data
points P = (p;[i =1, ..., N) ordered by timestamps.
The time interval between two consecutive points does
not exceed a certain threshold At , which is the sampling
rate. The sampling rate of the NYC data considered
in this study is 30 seconds. It is noteworthy that a
time difference between two consecutive data points
can be bigger than the sampling time interval because
it may take more than 30 seconds to obtain the next
available positioning data due to a weak communication
with the satellites. Each data point p; has the following
parameters: (i) longitude, latitude and altitude values,
(i) timestamp, (iii) the number of satellites that are
visible at the location of the sampled point, and (iv)
OBD-II speed information. The speed data represent the
maximum speed value between the previous data point
and the current data point (typically over 30 second
time intervals). Also, the data collected by the authors
for the evaluation purpose, contain the average OBD-
II traveled speed. The illustration of the GPS trajectory
data structure is shown in Figure 1.

Timestamp, Latitude, Longitude, Altitude, Max-speed, Mean-speed, N_satellites
Py 2016/01/01 13:12:00, 42.7128, -74.0000, 33.1253, 15 mph, 2 mph ,7
Py 2016/01/01 13:12:30, 42.7138, -74.0220, 33.1293,23 mph, 14 mph 4
P,:2016/01/01 15:17:45, 42.7138, -74.0345, 33.1323,27 mph, 11 mph .3

P Py
’\' s

P>

Fig. 1: Raw trajectory data formed of N noisy GPS points
P =(pJi=1, ..., N) ordered by a timestamp field,
along with the number of satellites and the OBD-II speed
information.

A digital road network (map data) is a directed graph
G(V, E), where the road edges (road segments) E are
connected by a set of nodes V. The map data used in this
study have 102,489 nodes and 159,253 road segments,
covering the NYC road network. Every edge has the
following parameters: (i) the length of the road segment,
(ii) the traffic direction (one-way or two-way), (ii) other

topological constraints such as road level information
to keep track of the edges and nodes that may be
overlapping in the 2D map so that they will be separated
prior to the map-matching problem, (iv) the node from,
(v) the node to, (vi) the road segment index, (vii) the
speed limits, (viii) a list of intermediate points that
describes a road segment as a polyline and ix) the street
names. New York’s road network is characterized by a
high road density, concentrated in Manhattan, the Bronx,
and Queens [66]. The average road width is 8.88 meter;
the density of arterial roads is 0.74 km/km?; and the
average block size is 0.067 km? [67]. The typical length
of a north-south road segment in Manhattan runs ap-
proximately 80 meters and the typical distance between
avenues is roughly 230 meters. The density of roads
results in considering an average of 20-40 projected
points on neighboring road segments per GPS point.

B. Problem Statement

A candidate point cf is defined as the projected point
of the GPS data point p; onto a neighboring road
segment j as depicted in Figure 2. Each data point p;
can have more than one corresponding candidate point
¢! (j =1,...,n;). The number of the candidate points
n; can vary based on the density of neighboring road
segments, the search radius, and the location of p;.
Among the candidate points, only one candidate point is
selected and used to represent the projected data point of
point p; on the road network. Therefore, the outcome of
the map-matching algorithm is a sequence of projected
data points (selected candidate points), representing a
reconstructed path that the driver could have taken in
a chronological order. The intermediate path between
every pair (cF ;,c]) is labeled as P(cF ;,c¢!) when
reconstructing the full path of the vehicle.

Fig. 2: Projection of the raw GPS points (p;_1,p;) onto
the neighboring segments of the digital map, resulting
in a set of candidate points: ¥ (k=1,...,n;_1) and

IV. PROPOSED OBD-DATA-FUSED

MAP-MATCHING ALGORITHM

Most map-matching algorithms in the literature are
designed to be used with high GPS sampling rate

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

407

408

409

410

411

412

413

414

415

416

417

418

419

420

422

423

applications which are essential for most GPS-based
services (navigation and road guidance, and distance-
based road pricing) [68]. However, many real-time ap-
plications require data collection at a low sampling
rate. Such practice is often adopted in order to reduce
power consumption as well as communication costs [69].
Most algorithms use road connectivity and heading
restrictions [59]. These two pieces of information are
misleading in low sampling rate data because within a
30-second interval multiple heading changes occur and
the arc-skipping problem exists [70].

Therefore, the authors propose an offline map-
matching algorithm that processes a set of trajectory
data to compute the most probable sequence of roads.
It produces more accurate map-matching results for
trajectory data with a low sampling rate and can handle
the scalability of map-matching systems with an efficient
router system. Improved map-matching is achieved by
the following unique features:

1) The proposed transition probability fuses trajectory
data with OBD data to improve the map-matching
accuracy, especially when high GPS noise, denser
road networks, and low GPS sampling rates are
present. The transition probability function har-
nesses an actual travel distance between two GPS
points, calculated based on OBD speed data. The
inclusion of an actual travel distance in the tran-
sition probability improves the estimation of a
sequence of road segments based on given trajec-
tory points. Furthermore, the transition probability
is non-parametric; therefore, it does not require
any pre-learning of parameters from the map and
trajectory data.

2) An adaptive local search algorithm is designed to
improve the performance of the candidate road
segment selection process and trust-region filter-
ing. This algorithm utilizes additional sensor in-
formation to indicate the level of GPS accuracy
and adjust based on the local searching grid.
This feature overcomes one of the notable chal-
lenges in map-matching mentioned by Hashemi
and Karimi [71]: “narrowing the entire road net-
work to a limited number of road segments.”

3) The usage of connected sliding windows in the
cost-based selection of the most probable path is
developed to mitigate a challenging map-matching
problem, where priority roads have parallel service
roads.

4) This work proposes an efficient shortest path
query system that can minimize repeated shortest
path calculations for map-matching problems, and
stores a robust subset of pre-calculated shortest
paths determined based on GPS data.

A. Basic Flow of the Algorithm

The map-matching system described in this paper
adopts the blended map-matching approach that is based
on HMM-techniques, but leverages the Dijkstra algo-
rithm described in the work of Dreyfus [72] for matching
a GPS trajectory to a path for the above mentioned bene-
fits. It consists of two sub-algorithms. Algorithm 1: Can-
didate road segments selection and Candidate Graph,
responsible for choosing the set of candidate paths
between two GPS data points and assignment of a cost
for each path ; Algorithm 2: Dijsktra least—cost Path
Map-Matching, takes Algorithm 1 as an input and runs
the Dijkstra algorithm to determine the most probable
path of the vehicle.

Candidate road segments selection: Having the digital
road network with directionality information, topology
and connectivity, a set of candidate road segments are
selected for each GPS data point. The selection proce-
dure takes into account a trust region that is built based
on the OBD-II maximum speed information and filter
out candidate points that fall outside the trust-region.

Candidate Graph: Each pair of candidate points that
belong to two consecutive GPS data points constitute a
path. We compute the emission and transition probability
of the Hidden-Markov-Model and we assign a cost value
for taking that path. We then construct a virtual graph
where the candidate points of the GPS raw points are
the nodes and the intermediate path for every pair of
candidate points are the edges with the calculated cost.

Dijsktra Least-Cost Path Map-Matching: After
building the candidate graph, we run a Dijkstra shortest
path algorithm and save the sequence of candidate points
of the most likely path.

The pseudocode of the proposed OBD-data-fused
map-matching algorithm is formulated as follows. Al-
gorithm 1 processes the trajectory points (P : p;, i =
1, ..., N) in parallel, as separate tasks for each central
processing unit (CPU) available and returns the HMM
calculations, which are the input for Algorithm 2. As
soon as Algorithm 1 executes, Algorithm 2 outputs
the matched path by creating a virtual directed graph
Gy (Ny,Ey) and running the shortest path Dijkstra
algorithm. Ny includes a set of candidate points for
each GPS data point; and Ey includes a set of edges
that connect two neighboring candidate points.

B. Candidate Road Segment Selection

As our algorithm is based on the HMM approach [54],
[55], the first step is to form a set of candidate road
segments e/ (j = 1, ..., n;) and the corresponding
candidate projected data points ¢! (j = 1, ..., n;)
around each data point p; within a given radius r;. An

example is shown in Figure 3. n; is the number of

424

425

426

427

428

429

430

431

432

433

434

435

436

437

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

459

460

461

462

464

465

466

467

468

470

471

472

473

474

475

476

478

479

480

481

482

483

484

Algorithm 1: Candidate road segment selection
and candidate graph generation.

Input: 1) Raw GPS trajectory as sequence of

N noisy data points,
P=(pi=1, ..., N).2) Digital
directed road network (map data),
G(V, E), where the road segments F
are connected by a set of nodes V.

Output: returns the Dijkstra cost Cik 7 for each
pair of candidate points (c¥_,,p;) at
each consecutive pair of GPS points

(Pi-1,p;)

foreach p; € P do
Execute Adaptive Trust-region Search

Obtain a set of candidate road segments eg
for j € ¢! do
Obtain the candidate point ¢ for each
segment
Compute the emission probability
p(pile;) ‘ ,
Add a virtual node ¢] in Gy, c] € Ny
foreach pair of c] and cf_| do
Compute the transition probability p(c!|cF)
Create a virtual edge connecting c¥ | — cg
Assign p(c!|cF) to a virtual edge ¥ | — ¢/

Algorithm 2: Dijkstra least-cost map-matching.
Input: Gy (Nv, Ev), ¢] € Ny; p(c]|cF_));

p(pilel)
Output: return the most likely path

foreach set of 20 GPS points
P=(pli=1, ..., 20) do
Run Dijkstra shortest path algorithm
Save the resulting sequence of candidate
points of the most likely path
Set C’f] = 0 for the last five matched edges
and set 1 =1 — 5.

candidate road segments associated with the data point
p;. It is noteworthy that the number of candidate road
segments n; can vary based on the density of the digital
map around the point p; and the candidate search radius
r;. In order to find the n; candidate road segments for
each GPS data point, two things need to be defined: the
distance measure between the data point p; and a set of
neighboring road segments; and an efficient candidate
search radius r;.

-
Segment 4}

c? Segment 5,

@

B
T

-

K

B

2
Segment 2

Fig. 3: Candidate projected points on neighboring road
segments and Search Radius.

The GPS data points are projected onto road segments
in such a way that the distance between the GPS points
p; and the candidate point cf on the edge eg s minimized.
Therefqre, each road segment ef has one candidate data
point ¢] calculated as follows:
¢] = arg min dist(p;, ¢}) Vel € él. (1)

K3

Figure 3 shows an example of a candidate search. The
search radius r; should reflect the level of GPS position
error changes. Typically, GPS positioning is accurate to
about 15 meters; and the accuracy depends on many
factors such as the number and position of the satellites
and the design of the receiver [73]. In the work of Lou
et. al. [55], the GPS positioning error is assumed as a
Gaussian distribution, and its standard deviation is set to
be 20 meters.

Unlike other methods that use a fixed radius search
mechanism, the novelty of the proposed map-matching
algorithm is that the selection of candidate road segments
can adaptively adjust to the level of GPS positioning
error. Our method uses two data sources that can be
indicative of the level of the positioning error: the
number of satellites visible at the data point p;; and the
altitude value. We expect that when a GPS sensor has
a limited number of visibile satellites, the accuracy of
the positioning data is low. Furthermore, the positioning
error can propagate into positioning data in all directions,
not limited to the latitude and longitude. Therefore, the
unrealistic value of the altitude can be an indicator of
poor accuracy of the positioning data.

Data analytics on raw trajectory points reveal that
unrealistic altitude values mostly occur in dense regions
with no clear open sky. Unrealistic altitude value from a
GPS sensor can be detected when it significantly differs
from the known elevation at a point on the map. In fact,
since the road network is in New York City, which is a
relatively flat area, one is able to easily judge whether the
GPS receiver returns a false altitude value. We define a
false altitude value for New York City area for every

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

Tal trees

Fig. 4: Density of data points with unreasonable altitude
value.

value above 100 meter, a value close to the highest
natural point in the five boroughs of New York City.
Hence, if it fails in determining a reasonable vehicle
altitude, it probably provides erroneous longitude and
latitude estimates. Figure 4 shows the density distribution
of the erroneous altitude value of the sampled points and
thus, it supports the previous assumption. We can clearly
tell that false altitude values are concentrated around
Manhattan midtown and downtown towers, as well as
around elevated subway and roadway structures, where
GPS reflections are high.

In this study, the baseline of the candidate search
radius is set to be 30 meters, which is double the typical
GPS positioning error found in the literature. In other
places, the search radius can reach 210 meters. This
is because the map-matching problem addressed in this
study can be more challenging due to the denser road
network and the relatively high level of positioning error
caused in New York City’s urban canyons. The search
radius for candidate points is calculated as:

r, = k‘l X 0;)

where the scaling coefficient k; controls the envelop
of confidence interval; and o; represents the assumed
standard deviation of the GPS positioning error. In this
study, the values of the scaling coefficient k; and the
standard deviation are intuitively defined as follows:

30 meters, if Ngy; > 6
o = N 3)
70 meters, otherwise
h = 2, if Altit.ude(pi) < 100 meters @
3, otherwise,

where N, ; is the number of visible satellites at the data
point p;. The rationale behind determining these values
is that the positioning errors of around 60 meters are
frequently observed within the trajectory data set; and the
data point p; with relatively-poor GPS communication

(i.e., Ng < 5) can have GPS positioning errors up to
140 meters. Then, we define the two ranges as a 95%
confidence interval (i.e., 20; = 60 or 140 meters based
on the number of visible satellites.) Furthermore, if the
altitude of the data point p; becomes unrealistic, the
99.7% interval (i.e., 30;) is used for a local candidate
search.

C. Trust-Region Candidate Filtering Based on The
OBD-II Speed Information

An adaptive trust-region search is applied to each data
point p;. This adaptive trust-region filters out some of
the candidate segments selected in Part B, that could
not be reached by a vehicle due to its low speed during
congestion. It efficiently adjusts a search radius based
on directly measured in-vehicle speed data. Between two
consecutive GPS data points p;_; and p;, the maximum
vehicle speed is obtained from an OBD-II connection.
The vehicle speed data point vy.; is the maximum
vehicle speed when a vehicle travels from the current
point p;_; to the next data point p;. Since the maximum
vehicle speed v and time interval At; = ¢, — t;_1
between two points are given, it is possible to define a
more reliable search radius Rp,x, as shown in Figure 5,
for the selection of neighboring road segment candidates.
Ryax would vary based on the actual vehicle speed from
the OBD connection vy i, and is defined as follows:

Roax = Umax,i X At; X s)

When a vehicle is stuck in traffic or moves slowly, the
adaptive search radius is relatively small. In the example
shown in Figure 5, r; will be equal to 2 x 70 meters =
140 meters, however, R« =2 mph x 0.447 (m/s)/(mph)
x 30 sec x 1.2 = 32 meters. Therefore, only candidate
segments that fall within Ry,,, will be considered.

When the vehicle speed increases, the adaptive search
radius becomes large enough to cover possibly-visited
road segments. The slack variable s provides an extra
margin for a search radius to accommodate GPS posi-
tioning error. In this study, the value of the slack variable
s is defined as 1.2, which means the adaptive search
radius is increased by 20%.

D. Emission Probability

Each of the candidate projected points is considered
to be a hidden state in the Markov model and has an
emission probability p(p;|c]), which is the likelihood of
emitting the noisy data point p; given that the true match
is CZ Instinctively, we favor candidates that are closer
to p;. It has generally been adopted in the literature
that GPS errors have a zero-mean Gaussian behavior.

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

V.

Timestamp , **+ , Max-speed, Mean-speed
P 2016/01/01 13:12:00, e+« , 2 mph , 1 mph
;i 2016/01/01 13:12:30 , == , 1 mph, , 0.5 mph

Fig. 5: Case when the adaptive trust-region R, less
than the default search radius r;.

Therefore, in our algorithm we define the emission
probability as follows:

g 1 —d;
p(pile;) = p(dj) = TU?QXP 202 | (6)
where d; = ||plcl7\| is the distance between p; and

¢!, and o; is the assumed standard deviation of GPS
positioning error. It is noteworthy that o; used in the
emission probability (Eq. 6) is the same as the one used
in the adaptive candidate search radius r; (Eq. 2). The
emission probability only uses the geometric information
of a road network. Therefore, it fails to consider the GPS
point’s location context within an entire trajectory [55].

E. Transition probability

The transition probability p(c! |¢¥_,) uses the topolog-
ical information of the road network and evaluates the
probability that a vehicle travels from the projected point
c¥ | to ¢! when it moves from data point p;_; to p;. The
estimation of the transition probability can be assumed
based on map data and GPS data points.

In the work of Koller et al. [61], which adopts
the Dijkstra-based map-matching technique described in
Section II, each transition path (c}_,,¢]) is given a cost
rather than a probability. (i.e., the higher the cost, the
lower the transition probability is). The cost C’f 7 s
estimated based on the route distance, calculated by the
shortest path algorithms, and the distance between two
GPS data points. The cost function is defined as follow:

w(ei_y,)
d(pi—1,pi)’
where [is a pre-learning parameter for each road
network, which in most applications may be impos-
sible to determine, when ground truth trajectory data

C’fj:ﬂ*

(7

(C) Segment |

Fig. 6: Map-matching problem at road intersections.

is unavailable. w(c¥ |, ¢!) is the route distance and
d(p;—1,p;) is the distance between the consecutive data
points. This transition probability function may lead to
incorrect matching at road intersections as demonstrated
in Figure 6. Figure 6(a) shows a sequence of trajectory
points for a vehicle approaching an intersection from
South to West. Figures 6(b) and 6(c) depict respectively
the candidate projected points of p;_; and p;. Eq. 7 tends
to favor a pair of ¢}_; and ¢ with zero cost C33 = 0.
The real matching pair (c;_;,c?) with C}? > 0 will
never be chosen by Dijkstra when a different candidate
pair with zero cost exists.

Similarly, Lou et al. [55] uses the transition probabil-

ity, defined as follows:

Pl) = Viek) = DPmnP) g

i—15C ,
T w(eky)

which might lead to the similar matching problem at an
intersection since the shortest path w(c3_,c}) equals
to zero and V(c}_,c3) = oo. It is noteworthy that
the above-mentioned transition probability functions are
reasonable enough to visualize the matched path of a
vehicle, if the user is only interested in knowing the
correct trajectory of a vehicle or minimizing GPS posi-
tioning errors. However, when it is important to link GPS
data points with the correct road segments (e.g., probe-
vehicle based traffic condition analysis and street-asset
information collection), it is critical to find correctly-
matched road segments, in addition to minimizing GPS
positioning error and estimating matched trajectories.

Therefore, we propose a novel transition probability
that can improve the accuracy of finding correct road
segments, defined as follows:

; 1
k
plcileisy) = o €))
d
where d is the distance discrepancy estimation for each
pair of from-to road segments. It represents the absolute
difference between the shortest route from cf_; to ¢/ and

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

the distance between p;_1 and p;, which is calculated as
follows:

dg = [w(ct_y,cl) = d(pi_1,pi) (10)

where w(c¥ |, ¢!) is the length of the shortest path be-
tween the projected points ¢ ; and c{ ; and d(pi—1,pi)
is the distance ||p;—1p;|| between data points p;_; and p;.
It was proven in the work of Newson and Krumm [74]
that these two distances are highly correlated. In this
paper, we propose in Eq. 11 using the OBD-II vehicle av-
erage speed between p;_; and p; to estimate d(p;—1,p;),
in an attempt to minimize the distance discrepancy dg
and thus accurately evaluate each pair of from-to road
segments.

(C 1 C’,Z) - vmean,i X Atz

(1)

k
—
k
—

w
dq = min ;
w(eiy,¢;) — pi—1pill

—~
Q

The OBD-II average speed better represents the actual
traveled distance especially at intersections and low-
speed areas where the GPS noise is high. The proposed
transition probability becomes more robust for finding
the correct sequence of road segments at an intersection.
For example, in Figures 6(b) and 6(c), the real matching
pair (c!_;,c?) is better weighted when comparing the
shortest path w(cl 1, c?) with Uyeu ; X At; rather than
|lpi—1p:||- Also, the transition probability that a vehicle
switches from segment 3 to segment 3, p(c}|c? ;),
becomes low since w(cs_,,c}) is zero; and therefore the
discrepancy dg is high. Unlike the transition probability
that requires parameter tuning [61], [74], the proposed
transition probability does not require any parameter
learning process. Due to the simplicity of the computa-
tion, the transition probability of Eq. 9 is not normalized
to the total probability Y 77, p(c]|c};), as the authors
noticed that the omission of the normalization does not
affect the algorithms’ performance in Section V.

Due to the GPS measurement noise, a certain GPS
data point p; can fall behind a previous data point p;_1.
This loop-creation phenomenon, which is a common
problem in map-matching, is frequently observed in
metropolitan cities, in particular low-speed, congested
regions with high GPS noise. Examples are shown in
Figure 7. In Figure 7(b), the algorithm will disregard the

candidates c{ and cg by comparing the direction of c{c%

to the traffic direction of segment j which is in this case
—_— - —>

in the direction V}l Vj2, and thus having ¢} ¢} - le Vj2 <0,

w(cl_q,c?) is set to oco.

The suggested transition probability in Eq. 9 is robust
to extreme noise in dense urban environments like Man-
hattan, since computing the inverse of the difference of
two distances returns a large number. This makes the

weights of each candidate pair (cf |, ¢!) differ greatly

1—17 %

(b)
Fig. 7: (a) map-matching at closely spaced points (b)
map-matching at closely spaced points with loop forma-
tion.

Fig. 8: Map-matching in an extremely noisy region: The
green path is chosen by the map-matching algorithm over
the blue path.

from each other. Figure 8 shows an example of a
vehicle driving on 5th Avenue in Manhattan. One can
clearly see how, despite the fact that the candidate pair
(c2_,,c?) is far in distance from ||p;_1p;|, (¢?_1,c?)
was successfully chosen by our map-matching algorithm
over (ci_,,cl) since dgo = |w(c?_;,c2)—d(pi—1,pi)| is
less than dg 1 = |w(c}_q,c})—d(pi—1,pi)| and therefore
p(cilei_1) > p(cilei_y).

E. Most likely Path Selection

Following the Markov assumption, a model state cZ
depends only on the previous state c¥ ;. And the like-
lihood of emitting p; depends only on the current state.
Using Bayes’ theorem and the Markov chain assumption,
the probability p(c;|po.;) of matching the data point p;
to candidate ¢/, given the position history of the data
points pg.; can be expressed as:

p(CZ |Po:i) o p(pz|CZ)p(CZ |Po:i)

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

77

718

719

720

721

722

723

724

725

726

N
pz|C chﬂcv 1/)P 1—1|P0:i) (12)

where p(pi|c!) and p(c!|cF_,) are respectively, the emis-
sion and transition probabilities and can be calculated
from Eqs. 6 and 9, respectively; and the term p(c¥_; |po.;)
represents a recursive element. To initialize the probabil-
ity p(cf_;|po.;), this algorithm needs to obtain the first
two points pg.1.

The most likely path link can be obtained based on the
maximum a posteriori (MAP) estimation, meaning that
we need to select a sequence of projected data points
(matched road segments) that maximize the probability
p(c]|po.;). The most likely path is identified as follows:

c{ = arg max p(Cg |P0:7:)7 (13)

J
i

To solve this maximization problem, one can use the
Viterbi algorithm defined in Forney [57] to find the
sequential combinations of road segments that maximize
the probability p(c!|po.;). However, as mentioned earlier,
we are altering the problem to a Dijkstra least-cost
path problem by building a virtual graph Gy (¢!, C)
shown in Figure 9, where the candidate points corre-
sponding to the GPS raw points are the nodes of Gy
and the intermediate path P(c¥ |, ¢/) between every
pair (cf_,, ¢ z) are the edges. Since our algorithm relies
on the Dijkstra algorithm to solve the shortest path
problem, the complexity of the map-matching algorithm
is O(ElogV'), where E and V are the total number of
edges and vertices in the virtual graph, respectively. We
propose the cost function below to compute ij for
every edge (¢ |,c!) in Gy:

K2

. 1
kj _ -
cW = ik (14)
where, y 4 '
7,7 = p(pile])p(ci|ef-y), (15)

for every candidate pair (c_,,¢!), with p(p;|¢/) and
p(cl|ck) computed from Egs. 6 and 9, respectively.

The intuition behind our cost function in Eq. 14 is
that computing the inverse of a low probability value
produces a high cost; therefore, the corresponding path
is not likely to be selected by the shortest path algorithm.

The network graph Gy (¢!, C) is built on a 20-GPS
point sliding window to avoid Dijkstra’s computational
overhead. However, we made the windows connected in
order to have consistent matching at the first few nodes
of each window. To explore this practice, Figure 10
shows three consecutive windows or in other words
three Dijkstra’s networks. Window 1 performs the map-
matching of GPS point 1 to GPS point 20. Instead of
starting Window 2 from point 21, we stepped back five

Source Destination

58

o

D
F10
@

Gv(cl, ¢)

Fig. 9: Gv(cg, ij) virtual graph of the Dijkstra least-
cost path algorithm.

i=I Ci=I5 =20 !
S RN Windowd ... [Window 3
o o o ol o o ! O
o o ol O Co>/)3 S
I H T3 o =g - : H
oo ol ST S o
S S S Sl S S S
e T N
| e, | ”
S S

1
1
1
i
i
1
Window 2 |

Fig. 10: Dijkstra’s connected network windows.

solved GPS points and started Window 2 from point
15. We set the cost Cf] of the previously matched
edges 15 to 20 from Window 1 to zero so that they
will definitely be selected by the next map-matching
Dijkstra’s of Window 2. This connection also helps avoid
incorrect mixed matching between main and parallel
service roads. The second window will not switch the
path of the vehicle to a service road even though the
GPS data are closer to it given the edited cost of edges
from the previous window.

In summary, for each pair of GPS points (p;_1, p;), the
algorithm gets the neighboring candidate points from the
digital map, and sends a request to a router database in
Redis [75] in order to retrieve the corresponding shortest
routes to compute the parameter w(cF_;,c!) of Eq. 10.
The procedure depicted in Figure 10 is repeated until the
graph Gy is generated.

G. Building Router

In this section, the detailed design of the router is
discussed. Building the router is a one-time exercise,
executed before starting to feed trajectories to the map-
matching algorithm. The router can be compiled on any
digital map. This makes it possible for users to map
their raw data and execute the patched path in their
proper digital map index scheme. Since vehicles travel
on the same predetermined road network, shortest path

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

Digital Map

dietel)de St el)
Pleifel) Pl o).

(pipPi)

Trajectory data Map matcher HMM calculations

Tk
Cl

fewr’ e’ e} dle,ef) dlentef)...

{ei e ed} Peified), Plefiel).

Router (REDIS)

Fig. 11: Map-matching algorithm architecture.

calculations between two nodes can be precomputed and
saved in a database. Dijkstra’s shortest path algorithm
was used as a routing tool to solve the network. In order
to speed up lookup operations for the map-matching
algorithm, by setting a limit on the search radius Rjoyer,
only routes between two nodes that are possible to visit
within a 30-seconds interval (the sampling interval of
the testing data) were solved and stored. For instance,
there is no need to know the route of a node in lower
Manhattan to a destination node in uptown Manhattan.
To ensure a robust database, a limit on R,guer Was set as
follows:

Rrouter = Vmax x At x SF7 (16)

where Vix = 70 mph, At = 30 sec and SF is a
safety factor = 1.2. The calculation above results in a
maximum router radius of R ouer = 0.7 miles. In other
words, we solve the shortest path from node 7 to every
node that is at most 0.7 miles away. A smart indexing
technique is established in this paper to support faster
lookup and retrieval from the Redis routing database.
This technique relies on graph partitioning of the New
York City road network. Each pair of noisy points are
30 seconds apart, which means that these points are a
few meters away from each other. In consequence, the
corresponding set of source and destination candidate
points is located in the same geographical area. There-
fore, it is possible to partition the graph G = (V. E)
into smaller components with specific properties. The
borough information of every node in V that is encoded
in the map GIS geodatabase, is used to partition the
graph network into five smaller sub-networks as shown
in Figure 12, and thus store the routes in five smaller
databases (one database for each borough: Manhattan,
Brooklyn, the Bronx, Staten Island, and Queens). As
a result, Redis can perform the lookup operations in a
smaller database every time it receives a routing request.

H. Vertical Scalability of a Map-matching System

The above map-matching algorithm and the custom-
built router were combined in one map-matching system.

Fig. 12: The graph G = (V, E) is partitioned into smaller
sub-networks based on the borough information. Every
node in G = (V, E) is colored based on the borough
it belongs to: Manhattan, Brooklyn, the Bronx, Queens
and Staten Island.

(por)| TG Map matching
"Zi o O N 8 Dijkstra least-cost path problem
Digital Map || =—5| [crua —
(pulpy)
—
REDIS (P p)
- e |

Fig. 13: Map-matching system.

Figure 13 shows the scalable map-matching system that
is architected in Python. Scalability is the ability of a
computer application or software to continue to be fast
when it is changed in size or volume [76]. In this context,
a change in size means when the road trajectory gets
bigger.

In this paper, vertical scalability of the algorithm is
presented, which is defined as the maximum use of
the available resources on a computer as opposed to
horizontal scalability which is speeding up the algorithm
by forming a cluster of computing nodes [77]. The
time-consuming part of the map-matching system is the
generation of the virtual graph Gy. HMM parameters
calculation for each pair (p;_1,p;) at the iteration ¢ is
independent of those corresponding to (p;_o,p;—1) at
the iteration ¢ — 1. Also, when solving the least cost path
problem using Dijkstra’s algorithm, the least-cost calcu-
lations for each pair of candidate source and destination
nodes are independent. These two observations made
it possible for the algorithm to be vertically scalable.
And thus parallel computing was applied as shown in
Figure 13.

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

V. PERFORMANCE EVALUATION AND
APPLICATION

Ground Truth: The algorithm is evaluated using
ground truth trajectories that the authors collected in
New York City. Each trajectory represents 15 to 30
minutes of driving. An in-vehicle sensing hardware
package is developed and comprises a Raspberry PI 3
Model B+ microcomputer, a microSD 32GB SD card, an
OBDCheck BLE OBD-II scanner, and a GPS module.
This sensor configuration aims to collect timestamps,
GPS positioning, and instantaneous speed data. A USB
car charger was plugged into the cigarette lighter socket
of the vehicle to provide power to the sensing hardware
package. In order to evaluate the performance of the
algorithm at low-sampling rate, the data collected was
down-sampled to one sample every 30 seconds with a
position, a maximum speed value for the past 30 seconds,
and an average traveled speed value. When the maximum
OBD-II speed value is less than 2 mph within the last 30
seconds, a minimum speed value of 2 mph was adopted
in Eq. 5 to avoid very small trust-regions.

Evaluation Criteria: The map-matching algorithm is
evaluated in terms of the matching quality. The matching
quality is measured using an accuracy metric defined as
follows:

Ne

Acczi
Ni

a7

where [V, is the number of correctly matched GPS points
and N, is the number of total GPS points. Also, the
algorithm is validated using a reliable off-the-shelf map-
matching platform: BMW Car IT Barefoot library [45].
The authors would like to note that the comparison with
Barefoot is made to validate the proposed algorithm with
a commonly-used method to show the benefit of includ-
ing in-vehicle speed data into the transition probability
function, as well as computing the search trust-region us-
ing the maximum speed value. In general, a comparison
between map-matching algorithms is challenging since
map data are different and could be denser in one map
than the other. Also, the algorithm’s accuracy may vary
between cities, depending on their road networks, as well
as between data sets depending on the GPS sampling
rate. In this study, we challenged an extreme scenario
by collecting telematics data in New York City’s urban
canyons, with a GPS sampling rate of one sample per
30 seconds.
Barefoot Algorithm Background Information:

The Barefoot algorithm relies on Newson and
Krumm [74]. The latter fits a negative exponential dis-

tribution to the transition probability V' shown in Eq. 18
below:

1 —B (Cffl ’ C”Z)
3 exp 3 (18)
where [is an experimental road-network parameter and
B(ck |, c!) defined in Eq. 19 below, is the difference
between the shortest route from cF | to c{ and the
distance between p; 1 and p;.

Viyarefoot(ci'ip CZ) =

B(C/]ic—l’cg) = |w(ci‘€—1vcg) — [Ipi—1, pill |
Barefoot uses Eq. 18 for their transition probability,
but redefines B(cF_,,c!) by using instead a time-priority
route cost function detailed in Eq. 20 and defines /3 as
the GPS sampling time interval (30 sec here).

19)

o w(dk
Bredeﬁned(cf_h CZ) = % x PF (20)

where Vi is the road speed limit from OSM map data
and PF is a road type factor that favors main roads
over local roads. As mentioned earlier, when working
with Barefoot, we tuned the o value for the emission
probability in the Barefoot library from the default value
5 meters to match the o = 70 meters value used in our
algorithm.

Experimental results: Table 1 shows the number of
mismatched points out of 589 GPS data points for every
algorithm.

TABLE I: Number of mismatched points for the pro-
posed algorithm versus Barefoot algorithm.

of mismatched points Accuracy(%)
Our Map-matching 15 97.45
Barefoot 25 95.76

Figure 14 shows a comparison example between
our map-matching (Figure 14(b)), and Barefoot (Fig-
ure 14(c)). The novel transition probability implemented
in our algorithm provides a very good balance between
the GPS noise and the shortest path probabilities. Fig-
ure 14-b shows how our map-matching is robust to GPS
measurement errors at (pi, ..., pg). The Barefoot time-
priority strategy in computing the transition probability
could lead to inaccurate matching at locations where
raw GPS positions are close to each other due to traffic
congestion as shown in Figure 14(c). In other words,
Barefoot starts creating loops. However, the proposed
transition probability includes the true mean speed of
the vehicle assisting the algorithm in detecting that the
vehicle cannot travel the entire loop within the 30-
seconds interval with a low speed.

The authors acknowledge that cost functions that value
road priority (Eq. 20), are essential in locations where
major roads and service roads are in parallel with close

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

T,
Sa o
Sourcés: Esri, HERE, Garmin, USGS, Intermap}
INCREMENT P, NRCan, Esri Japan, METI, Esri China
(Hong Kong), Esri Korea, Esr (Thailand), NGCC, (c)
=, OpenStreetiap contributors, and the GIS User
" Community

@

Solirces?Esri HERE, Garmin, USGS, Intermap, INCREMENT P,
NRCan, Esri Japan; METI, Esri China (Hong Kong), Esri Korea, Esfi
(Thailand), NGCC, (c) OpenStreethap contributors, and the’GIS
User Community¥ 5

(b)

R

“ W
5
penStréetMap (and) contributors, GE-BY-SA

Fig. 14: Example 1: comparing our algorithm’s output
with Barefoot’s output and ground truth data. (a) Ground
truth trajectory with raw GPS points (b) our map-
matching result (c) Barefoot’s output.

proximity. On the other hand, taking road priority into
account could cause a mismatch at other locations where
roads are proximate, but are not in a parallel config-
uration. In Figure 15(b), between p; and pg, Barefoot
went down to East 53rd St. instead of continuing on
East 55th street since the former is a priority road. The
proposed transition probability in Eq. 9 will assign a
low probability for going down to East 53rd St., by
comparing the shortest path with the average vehicle
traveled distance. The road priority information is not
encoded in the digital map used in our study, therefore
we could not investigate the validity of including road
priority information in our algorithm.

Sources: Esri, HERE, Garmin, USGS, Intétmap,
y INCREMENT P, NRCan, Esi Japan, METI, EStiChina,
& T (Hong Kong), Esi Korea, E3i (Thailand), NGCC! (c)
OpenStreetMap contributors, and the GIS User
Communitv &

(a)

in °
oo [utirg/ /g Py e
‘ RN NN Py
2 ha
2 or’ S2- Buidin S
E Sources: Esti, HERE, Garmin, USGS, Intermap, INC
e oty NRCan, Esri Japan, METI, Esri China (Hong Kong),
W 9, & =ai(Thailand), NGCC, (c) OpenStréetMap contributors}
v £ & rimUser Commidinity o
(b)
1 [N % v % o ke L

59th Street "y w

Sth Avenue +4)
4 - S3rd Street p,
% b .
A W op
) 2 S 7 iy /.
Ly Y "
b /)
X = S
5 fo Bl o8
A/ St o Lexifgton
L. vE Y Rvanies
- ¥ & Opensiifetiap (and) contributorsy

(©

Fig. 15: Example 2: comparing our algorithm’s output
with Barefoot’s output and ground truth data. (a) Ground
truth trajectory with raw GPS points (b) our map-
matching result (c) Barefoot’s output.

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946
947
948
949

VI. CONCLUSION

As map-matching becomes critical for any traffic and
driver behavior assessment relying on GPS-collected
data, it is essential to have robust map-matching algo-
rithms for urban canyons. In this paper, we described
a novel OBD-data-assisted algorithm for map-matching.
The algorithm is evaluated using ground truth data
collected by the authors’ developed telematics device.
The proposed algorithm is proven to be more robust
at a low sampling rate and high GPS noise with an
accuracy of 97.45% when GPS noise is up to 70 meters.
This scalable system executed in Python makes use of
OBD-II parameters directly sampled from the vehicles,
such as the maximum and mean speeds, in conjunction
with GPS data to get more accurate map-matching.
The map-matching algorithm uses in the backend a
smart query system for the shortest routes. The map-
matching algorithm can relate non-spatial safety-related
driver behaviors to road networks. For example, OBD
speed, hard-braking, and hard-acceleration events, do
not have spatiotemporal information. However, it is
practically valuable to understand these behaviors based
on the road network, particularly for understanding city-
scale public safety and design. Thus, the map-matching
can help in creating driver behavior indexes (DBIs)
for each road segment, such as vehicle speed profiles
(e.g., 85th percentile speed, mean speed), and harsh
driving metrics (e.g., harsh braking and acceleration
rates). Road-segment-level DBIs can be further analyzed
to understand their relations to crash data. The data
summarization of connected vehicle data on map data
can be an impactful V2B application that can potentially
benefit city planners’ street improvement projects and
corridor safety metrics generation. As a future work,
the traffic data collected by the current intelligent trans-
portation systems (e.g., electronic toll collection systems,
spot-speed radar) at selective locations, will be used to
validate the accuracy of traffic flow obtained by this
work from matching connected vehicle data with the
road segments.

ACKNOWLEDGEMENT

We would like to thank the New York City Department
of Transportation for their financial support and guidance
for this study. This work was partially supported by the
U.S. National Science Foundation (OAC-1948066).

REFERENCES

[1] Z. Xiong, H. Sheng, W. Rong, and D. E. Cooper, “Intelligent
transportation systems for smart cities: a progress review,” Sci-
ence China Information Sciences, vol. 55, no. 12, pp. 2908-2914,
2012.

[2] S. I. Guler, M. Menendez, and L. Meier, “Using connected
vehicle technology to improve the efficiency of intersections,”
Transportation Research Part C: Emerging Technologies, vol. 46,
pp. 121-131, 2014.

[3] M. Gerla, E.-K. Lee, G. Pau, and U. Lee, “Internet of vehicles:
From intelligent grid to autonomous cars and vehicular clouds,”
in Internet of Things (WF-1oT), 2014 IEEE World Forum on.
IEEE, 2014, pp. 241-246.

[4] F. Yang, S. Wang, J. Li, Z. Liu, and Q. Sun, “An overview of

internet of vehicles,” China communications, vol. 11, no. 10, pp.

1-15, 2014.

N. Lu, N. Cheng, N. Zhang, X. Shen, and J. W. Mark, “Connected

vehicles: Solutions and challenges,” IEEE internet of things

Journal, vol. 1, no. 4, pp. 289-299, 2014.

[6] K. M. Alam, M. Saini, and A. El Saddik, “Toward social
internet of vehicles: Concept, architecture, and applications,”
IEEE access, vol. 3, pp. 343-357, 2015.

[71 M. Amadeo, C. Campolo, and A. Molinaro, “Information-centric
networking for connected vehicles: a survey and future perspec-
tives,” IEEE Communications Magazine, vol. 54, no. 2, pp. 98—
104, 2016.

[8] O. Kaiwartya, A. H. Abdullah, Y. Cao, A. Altameem, M. Prasad,

C.-T. Lin, and X. Liu, “Internet of vehicles: Motivation, layered

architecture, network model, challenges, and future aspects,”

IEEE Access, vol. 4, pp. 5356-5373, 2016.

F. Cunha, L. Villas, A. Boukerche, G. Maia, A. Viana, R. A. Mini,

and A. A. Loureiro, “Data communication in vanets: Protocols,

applications and challenges,” Ad Hoc Networks, vol. 44, pp. 90—

103, 2016.

J. Wan, J. Liu, Z. Shao, A. Vasilakos, M. Imran, and K. Zhou,

“Mobile crowd sensing for traffic prediction in internet of vehi-

cles,” Sensors, vol. 16, no. 1, p. 88, 2016.

T. T. Dandala, V. Krishnamurthy, and R. Alwan, “Internet of

vehicles (iov) for traffic management,” in 2017 International

Conference on Computer, Communication and Signal Processing

(ICCCSP). 1IEEE, 2017, pp. 1-4.

F. F. Kuhlman, D. H. Sarma, and A. P. Harback, “Vehicle parking

spot locator system and method using connected vehicles,” Mar. 8

2012, uS Patent App. 13/293,761.

A. Mammeri, A. Boukerche, and Z. Tang, “A real-time lane mark-

ing localization, tracking and communication system,” Computer

Communications, vol. 73, pp. 132-143, 2016.

J. H. Lemelson and R. D. Pedersen, “Gps vehicle collision

avoidance warning and control system and method,” Nov. 9 1999,

uS Patent 5,983,161.

N. Kaempchen, B. Schiele, and K. Dietmayer, “Situation assess-

ment of an autonomous emergency brake for arbitrary vehicle-

to-vehicle collision scenarios,” IEEE Transactions on Intelligent

Transportation Systems, vol. 10, no. 4, pp. 678-687, 2009.

X. Yang, L. Liu, N. H. Vaidya, and F. Zhao, “A vehicle-to-vehicle

communication protocol for cooperative collision warning,” in

The First Annual International Conference on Mobile and Ubig-

uitous Systems: Networking and Services, 2004. MOBIQUITOUS

2004. 1EEE, 2004, pp. 114-123.

H.-S. Tan and J. Huang, “Dgps-based vehicle-to-vehicle coopera-

tive collision warning: Engineering feasibility viewpoints,” IEEE

Transactions on Intelligent Transportation Systems, vol. 7, no. 4,

pp. 415428, 2006.

J. Eriksson, L. Girod, B. Hull, R. Newton, S. Madden, and

H. Balakrishnan, “The pothole patrol: using a mobile sensor

network for road surface monitoring,” in Proceedings of the 6th

international conference on Mobile systems, applications, and

services. ACM, 2008, pp. 29-39.

A. Ghose, P. Biswas, C. Bhaumik, M. Sharma, A. Pal, and A. Jha,

“Road condition monitoring and alert application: Using in-

vehicle smartphone as internet-connected sensor,” in 2012 IEEE

international conference on pervasive computing and communi-

cations workshops. 1EEE, 2012, pp. 489—491.

E. P. Dennis, Q. Hong, R. Wallace, W. Tansil, and M. Smith,

“Pavement condition monitoring with crowdsourced connected

[5

=

[9

—

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

950
951
952
953
954
955

957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1087
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089

[21]

[22]

[23]

[24]

[25]

[26]

(27

(28]

[29]

(30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

vehicle data,” Transportation Research Record, vol. 2460, no. 1,
pp. 31-38, 2014.

J. Liu and A. J. Khattak, “Delivering improved alerts, warnings,
and control assistance using basic safety messages transmitted
between connected vehicles,” Transportation research part C:
emerging technologies, vol. 68, pp. 83—100, 2016.

B. Wali, A. J. Khattak, H. Bozdogan, and M. Kamrani, “How
is driving volatility related to intersection safety? a bayesian
heterogeneity-based analysis of instrumented vehicles data,”
Transportation Research Part C: Emerging Technologies, vol. 92,
pp. 504-524, 2018.

M. Faezipour, M. Nourani, A. Saeed, and S. Addepalli, “Progress
and challenges in intelligent vehicle area networks,” Communi-
cations of the ACM, vol. 55, no. 2, pp. 90-100, 2012.

M. Weber, L. Liu, K. Jones, M. J. Covington, L. Nachman,
and P. Pesti, “On map matching of wireless positioning data:
a selective look-ahead approach,” in Proceedings of the 18th
SIGSPATIAL International Conference on Advances in Geo-
graphic Information Systems. ACM, 2010, pp. 290-299.

K. Jones, L. Liu, and F. Alizadeh-Shabdiz, “Improving wireless
positioning with look-ahead map-matching,” in 2007 Fourth
Annual International Conference on Mobile and Ubiquitous
Systems: Networking & Services (MobiQuitous). 1EEE, 2007,
pp. 1-8.

K. Perera, T. Bhattacharya, L. Kulik, and J. Bailey, “Trajectory
inference for mobile devices using connected cell towers,” in
Proceedings of the 23rd SIGSPATIAL International Conference
on Advances in Geographic Information Systems. ACM, 2015,
p. 23.

A. El-Rabbany, Introduction to GPS: the global positioning
system. Artech house, 2002.

M. Topo, “How GPS Works,” 2019. [Online]. Avail-
able: https://www.maptoaster.com/maptoaster-topo-nz/articles/
how- gps-works/how- gps-works.html

M. Farsi, K. Ratcliff, and M. Barbosa, “An overview of con-
troller area network,” Computing & Control Engineering Journal,
vol. 10, no. 3, pp. 113-120, 1999.

K. H. Johansson, M. Toérngren, and L. Nielsen, “Vehicle appli-
cations of controller area network,” in Handbook of networked
and embedded control systems. Springer, 2005, pp. 741-765.
M. Di Natale, H. Zeng, P. Giusto, and A. Ghosal, Understanding
and Using the Controller Area Network Communication Protocol
Using the Controller Area Network Communication Protocol:
Theory and Understanding and Using the Controller Area Net-
work Communication Protocol: Theory and Practice. Springer,
2012.

D. Sik, T. Balogh, P. Ekler, and L. Lengyel, “Comparing OBD
and CAN sampling on the go with the SensorHUB framework,”
Procedia Engineering, vol. 168, pp. 39-42, 2016.

C.-M. Tseng, W. Zhou, M. Al Hashmi, C.-K. Chau, S. G.
Song, and E. Wilhelm, “Data extraction from electric vehicles
through OBD and application of carbon footprint evaluation,” in
Proceedings of the Workshop on Electric Vehicle Systems, Data,
and Applications. ACM, 2016, p. 1.

Wikipedia contributors, “OBD-II PIDs,” Available:
https://en.wikipedia.org/w/index.php?title=OBD-II_PIDs&
0ldid=848566847, Jul. 2018, [Accessed: 16- July- 2018].

S.-C. Hu, Y.-C. Wang, C.-Y. Huang, and Y.-C. Tseng, “A vehic-
ular wireless sensor network for CO 2 monitoring,” in Sensors,
2009 IEEE. IEEE, 2009, pp. 1498-1501.

S.-C. Hu, Y.-C. Wang, C.-Y. Huang, Y.-C. Tseng, L.-C. Kuo,
and C.-Y. Chen, “Vehicular sensing system for CO2 monitoring
applications,” in IEEE VTS Asia pacific wireless communications
symposium (APWCS’09), 2009, pp. 168-171.

W. Zeng, T. Miwa, and T. Morikawa, “Prediction of vehicle
CO2 emission and its application to eco-routing navigation,”
Transportation Research Part C: Emerging Technologies, vol. 68,
pp. 194-214, 2016.

G. Alessandroni, A. Carini, E. Lattanzi, V. Freschi, and A. Bogli-
olo, “A study on the influence of speed on road roughness

[39]

[40]

[41]

[42]

43

[t

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

sensing: the SmartRoadSense case,” Sensors, vol. 17, no. 2, p.
305, 2017.

J. Jang, Y. Yang, A. W. Smyth, D. Cavalcanti, and R. Kumar,
“Framework of data acquisition and integration for the detection
of pavement distress via multiple vehicles,” Journal of Computing
in Civil Engineering, vol. 31, no. 2, p. 04016052, 2016.

J. Jang, A. W. Smyth, Y. Yang, and D. Cavalcanti, “Road surface
condition monitoring via multiple sensor-equipped vehicles,” in
Computer Communications Workshops (INFOCOM WKSHPS),
2015 IEEE Conference on. 1EEE, 2015, pp. 43—44.

S. T. Ng, F J. Xu, Y. Yang, and M. Lu, “A master data
management solution to unlock the value of big infrastructure
data for smart, sustainable and resilient city planning,” Procedia
Engineering, vol. 196, pp. 939-947, 2017.

A. J. Khattak and B. Wali, “Analysis of volatility in driv-
ing regimes extracted from basic safety messages transmitted
between connected vehicles,” Transportation research part C:
emerging technologies, vol. 84, pp. 48-73, 2017.

X. Zeng, K. N. Balke, and P. Songchitruksa, “Potential connected
vehicle applications to enhance mobility, safety, and environmen-
tal security,” Southwest Region University Transportation Center,
Texas Transportation ..., Tech. Rep., 2012.

F. Jiménez, S. Monzén, and J. E. Naranjo, “Definition of an
Enhanced Map-Matching Algorithm for Urban Environments
with Poor GNSS Signal Quality,” Sensors (Basel), vol. 16,
no. 2, Feb. 2016. [Online]. Available: https://www.ncbi.nlm.nih.
gov/pmc/articles/PMC4801570/

B. C. I. GmbH, “bmwcarit/barefoot: Java library,” 2015.
[Online]. Available: https://github.com/bmwcarit/barefoot

N. R. Velaga, M. A. Quddus, and A. L. Bristow, “Developing
an enhanced weight-based topological map-matching algorithm
for intelligent transport systems,” Transportation Research Part
C: Emerging Technologies, vol. 17, no. 6, pp. 672-683, Dec.
2009. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0968090X09000667

R. Toledo-Moreo, D. Bétaille, and F. Peyret, “Lane-level integrity
provision for navigation and map matching with gnss, dead
reckoning, and enhanced maps,” IEEE Transactions on Intelligent
Transportation Systems, vol. 11, no. 1, pp. 100-112, 2009.

I. Szottka, “Particle filtering for lane-level map-matching at
road bifurcations,” in 16th International IEEE Conference on
Intelligent Transportation Systems (ITSC 2013). 1EEE, 2013,
pp. 154-159.

Z. Tao, P. Bonnifait, V. Fremont, and J. Ibanez-Guzman, ‘“Lane
marking aided vehicle localization,” in 16th International IEEE
Conference on Intelligent Transportation Systems (ITSC 2013).
IEEE, 2013, pp. 1509-1515.

Y. Gu, Y. Wada, L. Hsu, and S. Kamijo, “Vehicle self-localization
in urban canyon using 3d map based gps positioning and vehicle
sensors,” in 2014 International Conference on Connected Vehi-
cles and Expo (ICCVE). 1EEE, 2014, pp. 792-798.

K. Shunsuke, G. Yanlei, and L.-T. Hsu, “Gnss/ins/on-board
camera integration for vehicle self-localization in urban canyon,”
in 2015 IEEE 18th International Conference on Intelligent Trans-
portation Systems. 1EEE, 2015, pp. 2533-2538.

J. Rabe, M. Hiibner, M. Necker, and C. Stiller, “Ego-lane
estimation for downtown lane-level navigation,” in 2017 IEEE
Intelligent Vehicles Symposium (IV). IEEE, 2017, pp. 1152-
1157.

Y. Zheng and J. H. Hansen, “Lane-change detection from steering
signal using spectral segmentation and learning-based classifica-
tion,” IEEE Transactions on intelligent vehicles, vol. 2, no. 1, pp.
14-24, 2017.

C. Y. Goh, J. Dauwels, N. Mitrovic, M. T. Asif, A. Oran,
and P. Jaillet, “Online map-matching based on hidden markov
model for real-time traffic sensing applications,” in Intelligent
Transportation Systems (ITSC), 2012 15th International IEEE
Conference on. 1EEE, 2012, pp. 776-781.

Y. Lou, C. Zhang, Y. Zheng, X. Xie, W. Wang, and Y. Huang,
“Map-matching for low-sampling-rate GPS trajectories,” in Pro-
ceedings of the 17th ACM SIGSPATIAL international conference

1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160

1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
17
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231

[56]

(571

[58]

[591

[60]

[61]

[62]

[63]

[64]
[65]

[66]

[67]

[68]

[69]

(701

(711

[72]

(73]

(741

(751
[76]

on advances in geographic information systems. ~ACM, 2009,
pp. 352-361.

A. Luo, S. Chen, and B. Xv, “Enhanced map-matching algorithm
with a hidden markov model for mobile phone positioning,”
ISPRS International Journal of Geo-Information, vol. 6, no. 11,
p. 327, 2017.

G. D. Forney, “The viterbi algorithm,” Proceedings of the IEEE,
vol. 61, no. 3, pp. 268-278, 1973.

L. Knapen, T. Bellemans, D. Janssens, and G. Wets, “Likelihood-
based offline map matching of GPS recordings using global
trace information,” Transportation Research Part C: Emerging
Technologies, vol. 93, pp. 13-35, 2018.

M. Quddus and S. Washington, “Shortest path and vehicle
trajectory aided map-matching for low frequency GPS data,”
Transportation Research Part C: Emerging Technologies,
vol. 55, pp. 328-339, Jun. 2015. [Online]. Available: http:/
www.sciencedirect.com/science/article/pii/S0968090X 15000728

M. C.-H. Lin, F-M. Huang, P-C. Liu, Y.-H. Huang, and Y.-
s. Chung, “Dijkstra-Based Selection for Parallel Multi-lanes
Map-Matching and an Actual Path Tagging System,” in Asian
Conference on Intelligent Information and Database Systems.
Springer, 2016, pp. 499-508.

H. Koller, P. Widhalm, M. Dragaschnig, and A. Graser, “Fast
hidden Markov model map-matching for sparse and noisy trajec-
tories,” in Intelligent Transportation Systems (ITSC), 2015 IEEE
18th International Conference on. 1EEE, 2015, pp. 2557-2561.
M. Miler, D. Medak, and D. Odobasi¢, “The shortest path algo-
rithm performance comparison in graph and relational database
on a transportation network,” Promet-Traffic&Transportation,
vol. 26, no. 1, pp. 75-82, 2014.

S. Mattheis, K. K. Al-Zahid, B. Engelmann, A. Hildisch,
S. Holder, O. Lazarevych, D. Mohr, F. Sedlmeier, and R. Zinck,
“Putting the car on the map: a scalable map matching system for
the open source community,” Informatik 2014, 2014.

G. developers, “Snap to Roads | Roads APL” [Online]. Available:
https://developers.google.com/maps/documentation/roads/snap

F. Marchal, “TrackMatching,” 2015. [Online]. Available: https:
//mapmatching.3scale.net/

G. Zhao, X. Zheng, Z. Yuan, and L. Zhang, “Spatial and temporal
characteristics of road networks and urban expansion,” Land,
vol. 6, no. 2, p. 30, 2017.

A. M. B. J. P. P. L.-H. Angel, Shlomo and N. G. Sin-chez, Atlas
of urban expansion. New York University Urban Expansion
Program; United Nations Programme for Human Settlements;
Lincoln Institute of Land Policy, 2016.

M. A. Quddus, W. Y. Ochieng, and R. B. Noland, “Current map-
matching algorithms for transport applications: State-of-the art
and future research directions,” Transportation research part c:
Emerging technologies, vol. 15, no. 5, pp. 312-328, 2007.

J. Yang and L. Meng, “Feature engineering for map matching
of low-sampling-rate gps trajectories in road network,” arXiv
preprint arXiv:1409.0797, 2014.

J. S. Greenfeld, “Matching GPS observations to locations on
a digital map,” in 81th annual meeting of the transportation
research board, vol. 1, 2002, pp. 164-173.

M. Hashemi and H. A. Karimi, “A critical review of real-time
map-matching algorithms: Current issues and future directions,”
Computers, Environment and Urban Systems, vol. 48, pp. 153—
165, 2014.

S. E. Dreyfus, “An appraisal of some shortest-path algorithms,”
Operations research, vol. 17, no. 3, pp. 395412, 1969.

a. T. National Coordination Office for Space-Based Positioning,
Navigation, “GPS.gov: GPS Accuracy,” 2017. [Online]. Avail-
able: https://www.gps.gov/systems/gps/performance/accuracy/

P. Newson and J. Krumm, “Hidden Markov map matching
through noise and sparseness,” in Proceedings of the 17th ACM
SIGSPATIAL international conference on advances in geographic
information systems. ACM, 2009, pp. 336-343.

S. Sanfilippo, “Redis,” 2009. [Online]. Available: https://redis.io/
A. Sivasubramaniam, A. Singla, U. Ramachandran, and
H. Venkateswaran, “An approach to scalability study of shared

(771

memory parallel systems,” ACM SIGMETRICS Performance
Evaluation Review, vol. 22, no. 1, pp. 171-180, 1994.

J. Pokorny, “NoSQL databases: a step to database scalability
in web environment,” International Journal of Web Information
Systems, vol. 9, no. 1, pp. 69-82, 2013.

Patrick Alrassy, Member, IEEE received
the B.E. degree in Civil Engineering from the
American University of Beirut in 2015 and
the M.Sc.degree in Civil Engineering from
the University of Texas at Austin in 2016,
and the Ph.D. degree in Civil and Engineering
mechanics from Columbia University in the
City of New York in 2020. He is now a Data
Engineer at Optimus Ride Inc., a company
building software for the self-driving vehicle
technology.

Jinwoo Jang, Member, IEEE received his
bachelor degree in Civil and Environmen-
tal Engineering from Kookmin University in
South Korea and the M.Sc.degree and the
Ph.D. degrees from Civil Engineering and
Engineering Mechanics from Columbia Uni-
versity in the City of New York. He is now
an Assistant Professor in the Department of
Civil, Environmental and Geomatics Engi-
neering (CEGE) at Florida Atlantic Univer-
sity. He is also jointly appointed with the

Institute for Sensing and Embedded Network Systems Engineering (I-
SENSE) as a Faculty Fellow.

York.

Andrew W. Smyth received his Sc.B. and
A.B. degrees at Brown University in 1992 in
Civil Engineering and Architectural Studies
respectively. He received his M.S. in Civil
Engineering at Rice in 1994, an M.S. in
Electrical Engineering (1997) and his Ph.D.
in Civil Engineering (1998) at the University
of Southern California. He is now the Robert
A. W. and Christine S. Carleton Professor of
Civil Engineering and Engineering Mechan-
ics at Columbia University in the City of New

1232
1233
1234
1235
1236

1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247

1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260

1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272

