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Abstract—A myriad of connected vehicles collects large-1

scale telematics data throughout cities, enabling data-2

based infrastructure planning. To truly benefit from this3

emerging technology, it is important to integrate pervasive4

telematics data with map data to produce more tractable5

and readable information for traffic flows and safety.6

Map-matching algorithms enable the projection of noisy7

trajectory data onto map data as a means of integrating8

telematics data. However, map-matching poses challenges9

due to higher levels of positioning errors and complex10

road networks. The authors propose a novel map-matching11

algorithm that can fuse in-vehicle data with trajectory data12

to improve the efficiency and accuracy of the algorithm.13

The proposed algorithm combines the probabilistic and14

weight-based map-matching frameworks. The novelty of15

the proposed algorithm includes (i) an adaptive segment16

candidate search mechanism based on in-vehicle speed17

information, (ii) adaptive matching parameters to reflect18

the variations in the Global Positioning System (GPS)19

noise levels, (iii) a novel transition probability that uses20

in-vehicle speed data, and (iv) a backend data query21

system for the shortest routes. Map-matching results were22

validated based on ground-truth data collected using an23

in-vehicle sensing device developed by the authors, as well24

as comparing with a commonly-used off-the-shelf map-25

matching platform. The proposed algorithm is proven to26

be robust, with an accuracy of 97.45%, particularly where27

map data are denser and GPS noise is high.28

Index Terms—Map-matching, Telematics, Trajectory29

data, Connected Vehicle, Smart Cities.30

I. INTRODUCTION31

ONE of the novel technologies for emerging smart32

cities, particularly those cities dealing with traffic33

congestion and public safety, is connected-vehicle tech-34

nology [1], [2]. Connected vehicle technology enables35

sharing information among vehicles, the infrastructure,36

and personal communication devices through safe and37

interoperable networked wireless communications. De-38

tailed overviews of the concept, connectivity, and ar-39
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chitecture of connected vehicles can be found in the 40

literature [3]–[9]. 41

Connected-vehicle technologies can be grouped into 42

three categories based on inter-vehicle communications: 43

Vehicle-to-Vehicle (V2V), Vehicle-to-Roadside Infras- 44

tructure (V2I), and Vehicle-to-Broadband Cloud (V2B). 45

Examples of connected-vehicle applications include traf- 46

fic management systems [10], [11], parking spot locator 47

systems [12], lane marking localization systems [13], 48

collision warning systems [14]–[17], road surface mon- 49

itoring systems [18]–[20], and driver volatility estima- 50

tion [21], [22]. The applications of V2V communi- 51

cations, in general, focus more on exchanging useful 52

information between vehicles that are traveling along 53

the same road. The V2I applications aim to provide 54

the right information at the right time, such as road 55

surface conditions. The V2B communications aim to 56

create a large-scale monitoring data center, which opens 57

a new door for many data-intensive applications [23]. 58

In particular, large-scale connected vehicles will enable 59

data-based infrastructure planning and management. For 60

example, a large number of taxis, public transport, utility 61

vehicles, and private vehicles are collecting big trajectory 62

data across cities with valuable traffic information about 63

real-time and network-wide traffic conditions. These data 64

sets will significantly contribute to the improvement of 65

transportation systems and mobility. 66

The main component of telematics vehicle data is the 67

trajectory consisting of recorded data of the vehicle’s 68

position over time. Different types of localization sensors 69

are currently being used to estimate the vehicle position 70

with respect to time, such as the Global Navigation 71

Satellite System (GNSS) [24], Wi-Fi [25], and cellular 72

tower networks [26]. The GNSS trajectory data can 73

estimate travel time and vehicle speed, supporting traf- 74

fic operations monitoring, incident detection, and route 75

guidance applications. 76

However, it is widely known that the quality of 77

GNSS data is significantly affected by measurement 78

noise. GNSS positioning error is primarily due to the 79

multipath problem associated with buildings and infras- 80

tructure, which interferes with the direct path between 81



GNSS receiver and the constellation of satellites in the82

sky [27]. Since the global positioning system operates83

on the trilateration concept, a GNSS receiver must84

communicate with a minimum of four visible satellite85

clocks before determining its true position [28]. It is86

noteworthy that GNSS positioning errors can propagate87

to the estimation of the speed and heading of vehicles88

when GNSS sensors are primary used to obtain speed89

and orientation data. Furthermore, the level of GNSS90

measurement noise, in general, significantly increases in91

urban environments, posing challenges for various V2B92

applications in metropolitan areas. Therefore, the imple-93

mentation of novel algorithms that can deal with GNSS94

measurement noise is a vital component in leading to95

the success of V2B applications.96

Moreover, telematics data include important vehicle-97

centric data, collected from extra sensor modules (e.g.,98

On-Board Diagnostics (OBD-II) scanners, inertial mea-99

surement unit (IMU) sensors, Carbon Dioxide sensors,100

etc.). Vehicle-centric information can be collected from101

the Controller Area Network (CAN bus) [29]–[33] and102

augmented sensor hardware. A portion of CAN bus data103

has standardized protocols and can be accessed through104

OBD ports [34]. Examples of OBD data include engine105

RPM, vehicle speed, and fuel system status. By com-106

bining OBD data with data from extra sensor modules107

attached to in-vehicle sensor networks, data availability108

can be easily customized to meet the requirement of109

various applications. Augmented sensor modulus en-110

able various large-scale connected vehicle applications,111

such as environmental monitoring systems [35]–[37],112

street-asset data collection systems [38]–[41], and public113

safety [42], [43].114

It is important that telematics data must be translated115

into more tractable and readable formats. Telematics data116

include spatio-temporal data (e.g., trajectory data) and117

non-spatial data (e.g., OBD data). Importantly, trajectory118

data are represented in a coordinate system (typically,119

in a geographic coordinate system) and are used to120

associate non-spatial data with the correct streets of121

road networks. In addition, large-scale connected vehicle122

applications require to summarize valuable information123

based on map data. For example, it is more intuitive to124

know traffic information, vehicle speed, and street asset125

conditions by street. In other words, trajectory data do126

not directly indicate the locations of vehicle-centric data127

to the street without proper data integration schemes.128

Therefore, data integration is critically important for129

large-scale V2B applications.130

Map-matching techniques are promising approaches131

to deal with both GNSS positioning errors and map-132

based data integration. The following section provides133

an overview of map-matching algorithms. Map-matching134

algorithms aim to match a set of observed noisy vehi-135

cle position data with the sequence of road segments, 136

summarizing meaningful traffic flow and safety metrics 137

based on map data. Map-matching applications in urban 138

environments become more challenging due to denser 139

road segments and relatively-higher level of GNSS error. 140

The performance of map-matching algorithms can vary 141

based on the accuracy of GPS positioning data, the qual- 142

ity of the map data, and the tuning of the parameters [44]. 143

This paper presents a novel map-matching technique 144

to perform the data fusion of in-vehicle sensor network 145

data, map data, and trajectory data. In particular, the ve- 146

hicle speed, which is directly measured from the vehicle 147

itself, is used to improve the accuracy and efficiency of 148

the map-matching. The authors challenge complex V2B 149

applications that have low-sampled telematics data and 150

denser road networks. The authors collected real-world 151

telematics data sets to validate the performance of the 152

algorithm using their own telematics device. 153

The map-matching problem addressed in this study 154

is more challenging as it is tested in New York City 155

(NYC) dense road network with the relatively high 156

level of positioning error caused in its urban canyons. 157

Thus, the addressed application represents a prototype 158

for the future of map-matching in smart cities. As 159

smart cities are often envisioned to have denser road 160

networks, with streets populated with tall buildings, the 161

proposed algorithm balances simplicity, accuracy and 162

performance through fusing GPS with in-vehicle speed 163

data, and vertically scaling the algorithm as explained 164

in Section IV-H, unlike sophisticated algorithms that use 165

advanced sensor data that often are not available, trading 166

high accuracy with low performance and utilization. The 167

performance of the proposed map-matching algorithm is 168

compared to a commonly-used map-matching algorithm: 169

BMW car IT Barefoot [45]. 170

The remainder of this paper is structured as follows: 171

Section II provides an overview of the current map- 172

matching algorithms. Section III defines a map-matching 173

problem. Section IV-A-F describes the proposed map- 174

matching algorithm. Section IV-G discusses database 175

management, graph partitioning, and query-optimization 176

techniques that support the implementation of our map- 177

matching algorithm. Section IV-H documents a scalable 178

map-matching system architecture. Section V includes 179

validation results. Finally, future research directions and 180

conclusions are provided in Section VI. 181

II. OVERVIEW OF MAP-MATCHING 182

ALGORITHMS 183

Map-matching algorithms follow either (i) a proba- 184

bilistic approach, (ii) a weight-based, or (iii) a machine 185

learning approach. The latter includes Kalman filter and 186

artificial neural network techniques which require more 187



input data, learning, and computational effort, compared188

to the first two approaches [46].189

Recent map-matching algorithms harness various190

sensing data obtained from multiple sensors to improve191

their map matching accuracy. However, those additional192

sensing data might not be available in many applications193

that deal with typical vehicles that are not autonomous.194

Furthermore, most of the recent algorithms rely on195

machine learning techniques, which require parameter196

learning processes. Toledo-Moreo et al. [47] creates a197

particle-filter-based algorithm that hybridizes measure-198

ments from a GNSS receiver, a gyroscope and an odome-199

ter to solve the map-matching problem at the lane-level.200

Similarly, Szottka et al. [48] presents a particle-filter-201

based algorithm that incorporates camera detections data202

of the lane markings along with commercial map data.203

Tao et al. [49] build a localization solver, based on204

Kalman filtering, that leverages GPS data, vehicle data205

and observations from a video camera along with lane206

markings embedded in digital navigation maps. Gu et207

al. [50] integrates multiple sensor measurements and208

a 3-dimensional (3D) map to build a robust localiza-209

tion system in urban canyons. The 3D map is used210

to perform a signal ray tracing process to rectify the211

vehicle positioning. Shunsuke et al. [51] developed a212

particle filtering vehicle localization system at the lane-213

level for autonomous driving that integrates GNSS data,214

Inertial Navigation system (INS) and camera observa-215

tions. Kuhnt et al [46] and Rabe et al. [52] introduce216

an approach on self-vehicle localization using sensors217

to detect the object positions in the neighborhood of the218

vehicle. The object’s position and direction of movement219

along with an odometer sensor are used to localize the220

vehicle on a digital map. Zheng et al. [53] proposes a221

machine learning segmentation and classification algo-222

rithm for lane-change detection using steering angle and223

vehicle speed data extracted from CAN-buses.224

The probabilistic map-matching approach, in general,225

exploits the Hidden Markov Model (HMM) to find the226

most probable path because of its power in assessing227

different combinations of roads which the vehicle could228

have taken for the purpose of finding the most probable229

path [54]–[56]. The sequence of projected points are230

the hidden states in the Markov model. The raw GPS231

data points are the emitted observed elements. Differ-232

ent algorithms propose different transition probability233

distributions to determine the likelihood of traversing a234

certain candidate road segment given that the vehicle235

has already passed on a road segment. Most algorithms236

use the Gaussian distribution to describe the emission237

probability, the probability of emitting the noisy data238

point given that the true match is a certain candidate239

point. HMM-based map-matching leverages the Viterbi240

algorithm defined in [57] to find the matched sequence241

of roads. In contrast, the work of Knapen et. al. [58] 242

adopts the probabilistic approach but from a different 243

angle. In fact, they use the GNSS trace to minimize 244

the unlikelihood of existing candidates using only the 245

spatiotemporal information contained in the input data 246

without any added additional assumption related to the 247

shortest path which is the basis of most HMM transition 248

probability equations. 249

Unlike the probabilistic approach, a weighted map- 250

matching approach assigns a cost to different candidate 251

paths and uses different selection methods to find the 252

surviving path [59]. Lin et al. [60] present a Dijkstra- 253

based selection map-matching algorithm to estimate the 254

correct sequence of roads. They define a virtual directed 255

graph based on a physical graph (e.g., map data), whose 256

nodes include a set of candidate points (e.g., map- 257

projected GPS data points) and edges denote the tran- 258

sition probability from one candidate point to another. 259

For clarity, each edge of a virtual graph may include 260

multiple edges of a physical graph. The edges of a virtual 261

graph are assigned with a cost; and then the shortest path 262

problem is solved to find the least-cost path. However, 263

the cost function for the edges is only a function of 264

the shortest path from a candidate point associated with 265

previous GPS data points to one corresponding to the 266

current GPS point, without any consideration of how 267

proximate candidates points are to GPS data points. 268

Moreover, there was a notable effort to improve the 269

run–time performance for HMM-based map-matching in 270

the literature. Koller et al. [61] combine the probabilistic 271

and weighted approaches to leverage HMM-based map- 272

matching, but replace the Viterbi algorithm with Dijkstra. 273

This is achievable by converting total probabilities at the 274

last stage of the HMM to costs. The blended approach 275

improves the run-time of HMM-based map-matching by 276

decreasing the computational overhead of the unneces- 277

sary transition probability calculations [61]. 278

Most map-matching algorithms that were developed 279

in a programming language and released to the com- 280

munity rely in their backend on one of the commercial 281

routers. These routers perform the route calculations 282

using shortest path algorithms on a certain road net- 283

work that is saved in a relational database (SQL) or 284

graphical database (NoSQL) [62]. Some are limited to 285

a specific type of map data structure such as Open 286

Source Routing Machine (OSRM). The others, such 287

as pgRouting (pgRouting Contributors), perform the 288

shortest path calculations live and may have significant 289

overhead when copying the network database into RAM 290

at each route execution [63]. Google Snap to Road, 291

a map-matching API, has a 300-meter limit between 292

two GPS data points to maintain accuracy and avoid 293

false snapping [64], which could be problematic at low 294

sampling-rates. It also works only on Google maps. 295



Similarly, TrackMatching [65], a commercially available,296

cloud-based web map-matching software service, per-297

forms the map-matching based only on OpenStreet maps298

(OSM). However, city planners support their own map299

data for their road network studies.300

III. MAP-MATCHING PROBLEM STATEMENT301

A. Data Structure302

This section summarizes the data structure and map-303

matching problem that is considered in this study. A raw304

GPS trajectory is the given sequence of N noisy data305

points P = (pi|i = 1, . . . , N) ordered by timestamps.306

The time interval between two consecutive points does307

not exceed a certain threshold ∆t , which is the sampling308

rate. The sampling rate of the NYC data considered309

in this study is 30 seconds. It is noteworthy that a310

time difference between two consecutive data points311

can be bigger than the sampling time interval because312

it may take more than 30 seconds to obtain the next313

available positioning data due to a weak communication314

with the satellites. Each data point pi has the following315

parameters: (i) longitude, latitude and altitude values,316

(ii) timestamp, (iii) the number of satellites that are317

visible at the location of the sampled point, and (iv)318

OBD-II speed information. The speed data represent the319

maximum speed value between the previous data point320

and the current data point (typically over 30 second321

time intervals). Also, the data collected by the authors322

for the evaluation purpose, contain the average OBD-323

II traveled speed. The illustration of the GPS trajectory324

data structure is shown in Figure 1.325

Timestamp, Latitude, Longitude, Altitude, Max-speed, Mean-speed, N_satellites
p1: 2016/01/01 13:12:00, 42.7128, -74.0000, 33.1253, 15 mph, 2 mph , 7
p2: 2016/01/01 13:12:30, 42.7138, -74.0220, 33.1293, 23 mph, 14 mph , 4

••••• ••••• •••••
Pn: 2016/01/01 15:17:45, 42.7138, -74.0345, 33.1323, 27 mph, 11 mph , 3

p1

p2

p3

p4

Fig. 1: Raw trajectory data formed of N noisy GPS points
P = (pi|i = 1, . . . , N) ordered by a timestamp field,
along with the number of satellites and the OBD-II speed
information.

A digital road network (map data) is a directed graph326

G(V,E), where the road edges (road segments) E are327

connected by a set of nodes V . The map data used in this328

study have 102,489 nodes and 159,253 road segments,329

covering the NYC road network. Every edge has the330

following parameters: (i) the length of the road segment,331

(ii) the traffic direction (one-way or two-way), (ii) other332

topological constraints such as road level information 333

to keep track of the edges and nodes that may be 334

overlapping in the 2D map so that they will be separated 335

prior to the map-matching problem, (iv) the node from, 336

(v) the node to, (vi) the road segment index, (vii) the 337

speed limits, (viii) a list of intermediate points that 338

describes a road segment as a polyline and ix) the street 339

names. New York’s road network is characterized by a 340

high road density, concentrated in Manhattan, the Bronx, 341

and Queens [66]. The average road width is 8.88 meter; 342

the density of arterial roads is 0.74 km/km2; and the 343

average block size is 0.067 km2 [67]. The typical length 344

of a north-south road segment in Manhattan runs ap- 345

proximately 80 meters and the typical distance between 346

avenues is roughly 230 meters. The density of roads 347

results in considering an average of 20-40 projected 348

points on neighboring road segments per GPS point. 349

B. Problem Statement 350

A candidate point cji is defined as the projected point 351

of the GPS data point pi onto a neighboring road 352

segment j as depicted in Figure 2. Each data point pi 353

can have more than one corresponding candidate point 354

cji (j = 1, . . . , ni). The number of the candidate points 355

ni can vary based on the density of neighboring road 356

segments, the search radius, and the location of pi. 357

Among the candidate points, only one candidate point is 358

selected and used to represent the projected data point of 359

point pi on the road network. Therefore, the outcome of 360

the map-matching algorithm is a sequence of projected 361

data points (selected candidate points), representing a 362

reconstructed path that the driver could have taken in 363

a chronological order. The intermediate path between 364

every pair (cki−1, c
j
i ) is labeled as P (cki−1, c

j
i ) when 365

reconstructing the full path of the vehicle. 366

𝑐𝑖−1
1 𝑐𝑖−1

𝑘

𝑐𝑖−1
2

𝑐𝑖
2

𝑐𝑖
𝑗

𝑐𝑖
1

G=(V, E)

𝑝𝑖

𝑝𝑖−1

Fig. 2: Projection of the raw GPS points (pi−1, pi) onto
the neighboring segments of the digital map, resulting
in a set of candidate points: cki−1 (k = 1, . . . , ni−1) and
cji (j = 1, . . . , ni)

IV. PROPOSED OBD-DATA-FUSED 367

MAP-MATCHING ALGORITHM 368

Most map-matching algorithms in the literature are 369

designed to be used with high GPS sampling rate 370



applications which are essential for most GPS-based371

services (navigation and road guidance, and distance-372

based road pricing) [68]. However, many real-time ap-373

plications require data collection at a low sampling374

rate. Such practice is often adopted in order to reduce375

power consumption as well as communication costs [69].376

Most algorithms use road connectivity and heading377

restrictions [59]. These two pieces of information are378

misleading in low sampling rate data because within a379

30-second interval multiple heading changes occur and380

the arc-skipping problem exists [70].381

Therefore, the authors propose an offline map-382

matching algorithm that processes a set of trajectory383

data to compute the most probable sequence of roads.384

It produces more accurate map-matching results for385

trajectory data with a low sampling rate and can handle386

the scalability of map-matching systems with an efficient387

router system. Improved map-matching is achieved by388

the following unique features:389

1) The proposed transition probability fuses trajectory390

data with OBD data to improve the map-matching391

accuracy, especially when high GPS noise, denser392

road networks, and low GPS sampling rates are393

present. The transition probability function har-394

nesses an actual travel distance between two GPS395

points, calculated based on OBD speed data. The396

inclusion of an actual travel distance in the tran-397

sition probability improves the estimation of a398

sequence of road segments based on given trajec-399

tory points. Furthermore, the transition probability400

is non-parametric; therefore, it does not require401

any pre-learning of parameters from the map and402

trajectory data.403

2) An adaptive local search algorithm is designed to404

improve the performance of the candidate road405

segment selection process and trust-region filter-406

ing. This algorithm utilizes additional sensor in-407

formation to indicate the level of GPS accuracy408

and adjust based on the local searching grid.409

This feature overcomes one of the notable chal-410

lenges in map-matching mentioned by Hashemi411

and Karimi [71]: “narrowing the entire road net-412

work to a limited number of road segments.”413

3) The usage of connected sliding windows in the414

cost-based selection of the most probable path is415

developed to mitigate a challenging map-matching416

problem, where priority roads have parallel service417

roads.418

4) This work proposes an efficient shortest path419

query system that can minimize repeated shortest420

path calculations for map-matching problems, and421

stores a robust subset of pre-calculated shortest422

paths determined based on GPS data.423

A. Basic Flow of the Algorithm 424

The map-matching system described in this paper 425

adopts the blended map-matching approach that is based 426

on HMM-techniques, but leverages the Dijkstra algo- 427

rithm described in the work of Dreyfus [72] for matching 428

a GPS trajectory to a path for the above mentioned bene- 429

fits. It consists of two sub-algorithms. Algorithm 1: Can- 430

didate road segments selection and Candidate Graph, 431

responsible for choosing the set of candidate paths 432

between two GPS data points and assignment of a cost 433

for each path ; Algorithm 2: Dijsktra least–cost Path 434

Map-Matching, takes Algorithm 1 as an input and runs 435

the Dijkstra algorithm to determine the most probable 436

path of the vehicle. 437

Candidate road segments selection: Having the digital 438

road network with directionality information, topology 439

and connectivity, a set of candidate road segments are 440

selected for each GPS data point. The selection proce- 441

dure takes into account a trust region that is built based 442

on the OBD-II maximum speed information and filter 443

out candidate points that fall outside the trust-region. 444

Candidate Graph: Each pair of candidate points that 445

belong to two consecutive GPS data points constitute a 446

path. We compute the emission and transition probability 447

of the Hidden-Markov-Model and we assign a cost value 448

for taking that path. We then construct a virtual graph 449

where the candidate points of the GPS raw points are 450

the nodes and the intermediate path for every pair of 451

candidate points are the edges with the calculated cost. 452

Dijsktra Least–Cost Path Map-Matching: After 453

building the candidate graph, we run a Dijkstra shortest 454

path algorithm and save the sequence of candidate points 455

of the most likely path. 456

The pseudocode of the proposed OBD-data-fused 457

map-matching algorithm is formulated as follows. Al- 458

gorithm 1 processes the trajectory points (P : pi, i = 459

1, . . . , N) in parallel, as separate tasks for each central 460

processing unit (CPU) available and returns the HMM 461

calculations, which are the input for Algorithm 2. As 462

soon as Algorithm 1 executes, Algorithm 2 outputs 463

the matched path by creating a virtual directed graph 464

GV (NV , EV ) and running the shortest path Dijkstra 465

algorithm. NV includes a set of candidate points for 466

each GPS data point; and EV includes a set of edges 467

that connect two neighboring candidate points. 468

B. Candidate Road Segment Selection 469

As our algorithm is based on the HMM approach [54], 470

[55], the first step is to form a set of candidate road 471

segments eji (j = 1, . . . , ni) and the corresponding 472

candidate projected data points cji (j = 1, . . . , ni) 473

around each data point pi within a given radius ri. An 474

example is shown in Figure 3. ni is the number of 475



Algorithm 1: Candidate road segment selection
and candidate graph generation.

Input: 1) Raw GPS trajectory as sequence of
N noisy data points,
P = (pi|i = 1, . . . , N). 2) Digital
directed road network (map data),
G(V,E), where the road segments E
are connected by a set of nodes V .

Output: returns the Dijkstra cost Ckj
i for each

pair of candidate points (cki−1, pi) at
each consecutive pair of GPS points
(pi−1,pi

)

foreach pi ∈ P do
Execute Adaptive Trust-region Search
Obtain a set of candidate road segments eji
for j ∈ eji do

Obtain the candidate point cji for each
segment

Compute the emission probability
p(pi|cji )

Add a virtual node cji in GV , c
j
i ∈ NV

foreach pair of cji and cki−1 do
Compute the transition probability p(cji |cki−1)

Create a virtual edge connecting cki−1 → cji
Assign p(cji |cki−1) to a virtual edge cki−1 → cji

Algorithm 2: Dijkstra least-cost map-matching.

Input: GV (NV , EV ), cji ∈ NV ; p(cji |cki−1);
p(pi|cji )

Output: return the most likely path

foreach set of 20 GPS points
P = (pi|i = 1, . . . , 20) do

Run Dijkstra shortest path algorithm
Save the resulting sequence of candidate
points of the most likely path

Set Ckj
i = 0 for the last five matched edges

and set i = i− 5.

candidate road segments associated with the data point476

pi. It is noteworthy that the number of candidate road477

segments ni can vary based on the density of the digital478

map around the point pi and the candidate search radius479

ri. In order to find the ni candidate road segments for480

each GPS data point, two things need to be defined: the481

distance measure between the data point pi and a set of482

neighboring road segments; and an efficient candidate483

search radius ri.484
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Fig. 3: Candidate projected points on neighboring road
segments and Search Radius.

The GPS data points are projected onto road segments 485

in such a way that the distance between the GPS points 486

pi and the candidate point cji on the edge eji s minimized. 487

Therefore, each road segment eji has one candidate data 488

point cji calculated as follows: 489

cji = arg min dist(pi, c
j
i ) ∀cji ∈ e

j
i . (1)

Figure 3 shows an example of a candidate search. The 490

search radius ri should reflect the level of GPS position 491

error changes. Typically, GPS positioning is accurate to 492

about 15 meters; and the accuracy depends on many 493

factors such as the number and position of the satellites 494

and the design of the receiver [73]. In the work of Lou 495

et. al. [55], the GPS positioning error is assumed as a 496

Gaussian distribution, and its standard deviation is set to 497

be 20 meters. 498

Unlike other methods that use a fixed radius search 499

mechanism, the novelty of the proposed map-matching 500

algorithm is that the selection of candidate road segments 501

can adaptively adjust to the level of GPS positioning 502

error. Our method uses two data sources that can be 503

indicative of the level of the positioning error: the 504

number of satellites visible at the data point pi; and the 505

altitude value. We expect that when a GPS sensor has 506

a limited number of visibile satellites, the accuracy of 507

the positioning data is low. Furthermore, the positioning 508

error can propagate into positioning data in all directions, 509

not limited to the latitude and longitude. Therefore, the 510

unrealistic value of the altitude can be an indicator of 511

poor accuracy of the positioning data. 512

Data analytics on raw trajectory points reveal that 513

unrealistic altitude values mostly occur in dense regions 514

with no clear open sky. Unrealistic altitude value from a 515

GPS sensor can be detected when it significantly differs 516

from the known elevation at a point on the map. In fact, 517

since the road network is in New York City, which is a 518

relatively flat area, one is able to easily judge whether the 519

GPS receiver returns a false altitude value. We define a 520

false altitude value for New York City area for every 521



Fig. 4: Density of data points with unreasonable altitude
value.

value above 100 meter, a value close to the highest522

natural point in the five boroughs of New York City.523

Hence, if it fails in determining a reasonable vehicle524

altitude, it probably provides erroneous longitude and525

latitude estimates. Figure 4 shows the density distribution526

of the erroneous altitude value of the sampled points and527

thus, it supports the previous assumption. We can clearly528

tell that false altitude values are concentrated around529

Manhattan midtown and downtown towers, as well as530

around elevated subway and roadway structures, where531

GPS reflections are high.532

In this study, the baseline of the candidate search
radius is set to be 30 meters, which is double the typical
GPS positioning error found in the literature. In other
places, the search radius can reach 210 meters. This
is because the map-matching problem addressed in this
study can be more challenging due to the denser road
network and the relatively high level of positioning error
caused in New York City’s urban canyons. The search
radius for candidate points is calculated as:

ri = ki × σi (2)

where the scaling coefficient ki controls the envelop533

of confidence interval; and σi represents the assumed534

standard deviation of the GPS positioning error. In this535

study, the values of the scaling coefficient ki and the536

standard deviation are intuitively defined as follows:537

σi =

{
30 meters, if Nsat,i ≥ 6

70 meters, otherwise
(3)

ki =

{
2, if Altitude(pi) ≤ 100 meters
3, otherwise,

(4)

where Nsat,i is the number of visible satellites at the data538

point pi. The rationale behind determining these values539

is that the positioning errors of around 60 meters are540

frequently observed within the trajectory data set; and the541

data point pi with relatively-poor GPS communication542

(i.e., Nsat ≤ 5) can have GPS positioning errors up to 543

140 meters. Then, we define the two ranges as a 95% 544

confidence interval (i.e., 2σi = 60 or 140 meters based 545

on the number of visible satellites.) Furthermore, if the 546

altitude of the data point pi becomes unrealistic, the 547

99.7% interval (i.e., 3σi) is used for a local candidate 548

search. 549

C. Trust-Region Candidate Filtering Based on The 550

OBD-II Speed Information 551

An adaptive trust-region search is applied to each data 552

point pi. This adaptive trust-region filters out some of 553

the candidate segments selected in Part B, that could 554

not be reached by a vehicle due to its low speed during 555

congestion. It efficiently adjusts a search radius based 556

on directly measured in-vehicle speed data. Between two 557

consecutive GPS data points pi−1 and pi, the maximum 558

vehicle speed is obtained from an OBD-II connection. 559

The vehicle speed data point vmax,i is the maximum 560

vehicle speed when a vehicle travels from the current 561

point pi−1 to the next data point pi. Since the maximum 562

vehicle speed vmax,i and time interval ∆ti = ti − ti−1 563

between two points are given, it is possible to define a 564

more reliable search radius Rmax, as shown in Figure 5, 565

for the selection of neighboring road segment candidates. 566

Rmax would vary based on the actual vehicle speed from 567

the OBD connection vmax,i, and is defined as follows: 568

Rmax = vmax,i ×∆ti × s (5)

When a vehicle is stuck in traffic or moves slowly, the 569

adaptive search radius is relatively small. In the example 570

shown in Figure 5, ri will be equal to 2× 70 meters = 571

140 meters, however, Rmax = 2 mph × 0.447 (m/s)/(mph) 572

× 30 sec × 1.2 = 32 meters. Therefore, only candidate 573

segments that fall within Rmax will be considered. 574

When the vehicle speed increases, the adaptive search 575

radius becomes large enough to cover possibly-visited 576

road segments. The slack variable s provides an extra 577

margin for a search radius to accommodate GPS posi- 578

tioning error. In this study, the value of the slack variable 579

s is defined as 1.2, which means the adaptive search 580

radius is increased by 20%. 581

D. Emission Probability 582

Each of the candidate projected points is considered
to be a hidden state in the Markov model and has an
emission probability p(pi|cji ), which is the likelihood of
emitting the noisy data point pi given that the true match
is cji . Instinctively, we favor candidates that are closer
to pi. It has generally been adopted in the literature
that GPS errors have a zero-mean Gaussian behavior.
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𝑟𝑖
𝑓
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𝑓

Timestamp , ••• , Max-speed, Mean-speed
pi-1: 2016/01/01 13:12:00 , ••• , 2 mph , 1 mph
pi : 2016/01/01 13:12:30 , ••• , 1 mph, , 0.5 mph

Fig. 5: Case when the adaptive trust-region Rmax less
than the default search radius ri.

Therefore, in our algorithm we define the emission
probability as follows:

p(pi|cji ) = p(dj) =
1√

2πσ2
i

exp

(
−d2j
2σ2

i

)
, (6)

where dj = ||picji || is the distance between pi and583

cji , and σi is the assumed standard deviation of GPS584

positioning error. It is noteworthy that σi used in the585

emission probability (Eq. 6) is the same as the one used586

in the adaptive candidate search radius ri (Eq. 2). The587

emission probability only uses the geometric information588

of a road network. Therefore, it fails to consider the GPS589

point’s location context within an entire trajectory [55].590

E. Transition probability591

The transition probability p(cji |cki−1) uses the topolog-592

ical information of the road network and evaluates the593

probability that a vehicle travels from the projected point594

cki−1 to cji when it moves from data point pi−1 to pi. The595

estimation of the transition probability can be assumed596

based on map data and GPS data points.597

In the work of Koller et al. [61], which adopts598

the Dijkstra-based map-matching technique described in599

Section II, each transition path (cki−1, c
j
i ) is given a cost600

rather than a probability. (i.e., the higher the cost, the601

lower the transition probability is). The cost Ckj
i is602

estimated based on the route distance, calculated by the603

shortest path algorithms, and the distance between two604

GPS data points. The cost function is defined as follow:605

Ckj
i = β ∗

w(cki−1, c
j
i )

d(pi−1, pi)
, (7)

where β is a pre-learning parameter for each road606

network, which in most applications may be impos-607

sible to determine, when ground truth trajectory data608

(a) (b)

(c)

Fig. 6: Map-matching problem at road intersections.

is unavailable. w(cki−1, c
j
i ) is the route distance and 609

d(pi−1, pi) is the distance between the consecutive data 610

points. This transition probability function may lead to 611

incorrect matching at road intersections as demonstrated 612

in Figure 6. Figure 6(a) shows a sequence of trajectory 613

points for a vehicle approaching an intersection from 614

South to West. Figures 6(b) and 6(c) depict respectively 615

the candidate projected points of pi−1 and pi. Eq. 7 tends 616

to favor a pair of c3i−1 and c3i with zero cost C33
i = 0. 617

The real matching pair (c1i−1, c
2
i ) with C12

i > 0 will 618

never be chosen by Dijkstra when a different candidate 619

pair with zero cost exists. 620

Similarly, Lou et al. [55] uses the transition probabil-
ity, defined as follows:

p(cji |c
k
i−1) = V (cki−1, c

j
i ) =

d(pi−1, pi)

w(cki−1, c
j
i )
, (8)

which might lead to the similar matching problem at an 621

intersection since the shortest path w(c3i−1, c
3
i ) equals 622

to zero and V (c3i−1, c
3
i ) = ∞. It is noteworthy that 623

the above-mentioned transition probability functions are 624

reasonable enough to visualize the matched path of a 625

vehicle, if the user is only interested in knowing the 626

correct trajectory of a vehicle or minimizing GPS posi- 627

tioning errors. However, when it is important to link GPS 628

data points with the correct road segments (e.g., probe- 629

vehicle based traffic condition analysis and street-asset 630

information collection), it is critical to find correctly- 631

matched road segments, in addition to minimizing GPS 632

positioning error and estimating matched trajectories. 633

Therefore, we propose a novel transition probability
that can improve the accuracy of finding correct road
segments, defined as follows:

p(cji |c
k
i−1) =

1

dd
(9)

where dd is the distance discrepancy estimation for each
pair of from-to road segments. It represents the absolute
difference between the shortest route from cki−1 to cji and



the distance between pi−1 and pi, which is calculated as
follows:

dd =
∣∣∣w(cki−1, c

j
i )− d(pi−1, pi)

∣∣∣ (10)

where w(cki−1, c
j
i ) is the length of the shortest path be-

tween the projected points cki−1 and cji ; and d(pi−1, pi)
is the distance ‖pi−1pi‖ between data points pi−1 and pi.
It was proven in the work of Newson and Krumm [74]
that these two distances are highly correlated. In this
paper, we propose in Eq. 11 using the OBD-II vehicle av-
erage speed between pi−1 and pi to estimate d(pi−1, pi),
in an attempt to minimize the distance discrepancy dd
and thus accurately evaluate each pair of from-to road
segments.

dd = min


∣∣∣w(cki−1, c

j
i )− vmean,i ×∆ti

∣∣∣∣∣∣w(cki−1, c
j
i )− ‖pi−1pi‖

∣∣∣ (11)

The OBD-II average speed better represents the actual634

traveled distance especially at intersections and low-635

speed areas where the GPS noise is high. The proposed636

transition probability becomes more robust for finding637

the correct sequence of road segments at an intersection.638

For example, in Figures 6(b) and 6(c), the real matching639

pair (c1i−1, c
2
i ) is better weighted when comparing the640

shortest path w(c1i−1, c
2
i ) with vmean,i ×∆ti rather than641

‖pi−1pi‖. Also, the transition probability that a vehicle642

switches from segment 3 to segment 3, p(c3i |c3i−1),643

becomes low since w(c3i−1, c
3
i ) is zero; and therefore the644

discrepancy dd is high. Unlike the transition probability645

that requires parameter tuning [61], [74], the proposed646

transition probability does not require any parameter647

learning process. Due to the simplicity of the computa-648

tion, the transition probability of Eq. 9 is not normalized649

to the total probability
∑nj

j=1 p(c
j
i |cki−1), as the authors650

noticed that the omission of the normalization does not651

affect the algorithms’ performance in Section V.652

Due to the GPS measurement noise, a certain GPS653

data point pi can fall behind a previous data point pi−1.654

This loop-creation phenomenon, which is a common655

problem in map-matching, is frequently observed in656

metropolitan cities, in particular low-speed, congested657

regions with high GPS noise. Examples are shown in658

Figure 7. In Figure 7(b), the algorithm will disregard the659

candidates cj1 and cj2 by comparing the direction of
#     »

cj1c
j
2660

to the traffic direction of segment j which is in this case661

in the direction
#          »

V 1
j V

2
j , and thus having

#     »

cj1c
j
2 ·

#          »

V 1
j V

2
j < 0,662

w(c1i−1, c
2
i ) is set to ∞.663

The suggested transition probability in Eq. 9 is robust664

to extreme noise in dense urban environments like Man-665

hattan, since computing the inverse of the difference of666

two distances returns a large number. This makes the667

weights of each candidate pair (cki−1, c
j
i ) differ greatly668

(a) (b)

Fig. 7: (a) map-matching at closely spaced points (b)
map-matching at closely spaced points with loop forma-
tion.

Fig. 8: Map-matching in an extremely noisy region: The
green path is chosen by the map-matching algorithm over
the blue path.

from each other. Figure 8 shows an example of a 669

vehicle driving on 5th Avenue in Manhattan. One can 670

clearly see how, despite the fact that the candidate pair 671

(c2i−1, c
2
i ) is far in distance from ‖pi−1pi‖, (c2i−1, c

2
i ) 672

was successfully chosen by our map-matching algorithm 673

over (c1i−1, c
1
i ) since dd,2 = |w(c2i−1, c

2
i )−d(pi−1, pi)| is 674

less than dd,1 = |w(c1i−1, c
1
i )−d(pi−1, pi)| and therefore 675

p(c2i |c2i−1) > p(c1i |c1i−1). 676

F. Most likely Path Selection 677

Following the Markov assumption, a model state cji 678

depends only on the previous state cki−1. And the like- 679

lihood of emitting pi depends only on the current state. 680

Using Bayes’ theorem and the Markov chain assumption, 681

the probability p(ci|p0:i) of matching the data point pi 682

to candidate cji , given the position history of the data 683

points p0:i can be expressed as: 684

p(cji |p0:i) ∝ p(pi|c
j
i )p(c

j
i |p0:i)



= p(pi|cji )
N∑

k=1

p(cji |c
k
i−1)p(cki−1|p0:i) (12)

where p(pi|cji ) and p(cji |cki−1) are respectively, the emis-685

sion and transition probabilities and can be calculated686

from Eqs. 6 and 9, respectively; and the term p(cki−1|p0:i)687

represents a recursive element. To initialize the probabil-688

ity p(cki−1|p0:i), this algorithm needs to obtain the first689

two points p0:1.690

The most likely path link can be obtained based on the691

maximum a posteriori (MAP) estimation, meaning that692

we need to select a sequence of projected data points693

(matched road segments) that maximize the probability694

p(cji |p0:i). The most likely path is identified as follows:695

cji = arg max
cji

p(cji |p0:i), (13)

To solve this maximization problem, one can use the696

Viterbi algorithm defined in Forney [57] to find the697

sequential combinations of road segments that maximize698

the probability p(cji |p0:i). However, as mentioned earlier,699

we are altering the problem to a Dijkstra least-cost700

path problem by building a virtual graph GV (cji , C
kj
i )701

shown in Figure 9, where the candidate points corre-702

sponding to the GPS raw points are the nodes of GV703

and the intermediate path P (cki−1, c
j
i ) between every704

pair (cki−1, c
j
i ) are the edges. Since our algorithm relies705

on the Dijkstra algorithm to solve the shortest path706

problem, the complexity of the map-matching algorithm707

is O(ElogV ), where E and V are the total number of708

edges and vertices in the virtual graph, respectively. We709

propose the cost function below to compute Ckj
i for710

every edge (cki−1, c
j
i ) in GV :711

Ckj
i =

1

T kj
i

, (14)

where,
T kj
i = p(pi|cji )p(c

j
i |c

k
i−1), (15)

for every candidate pair (cki−1, c
j
i ), with p(pi|cji ) and712

p(cji |cki−1) computed from Eqs. 6 and 9, respectively.713

The intuition behind our cost function in Eq. 14 is714

that computing the inverse of a low probability value715

produces a high cost; therefore, the corresponding path716

is not likely to be selected by the shortest path algorithm.717

The network graph GV (cji , C
kj
i ) is built on a 20-GPS718

point sliding window to avoid Dijkstra’s computational719

overhead. However, we made the windows connected in720

order to have consistent matching at the first few nodes721

of each window. To explore this practice, Figure 10722

shows three consecutive windows or in other words723

three Dijkstra’s networks. Window 1 performs the map-724

matching of GPS point 1 to GPS point 20. Instead of725

starting Window 2 from point 21, we stepped back five726

Fig. 9: GV (cji , C
kj
i ) virtual graph of the Dijkstra least-

cost path algorithm.

Fig. 10: Dijkstra’s connected network windows.

solved GPS points and started Window 2 from point 727

15. We set the cost Ckj
i of the previously matched 728

edges 15 to 20 from Window 1 to zero so that they 729

will definitely be selected by the next map-matching 730

Dijkstra’s of Window 2. This connection also helps avoid 731

incorrect mixed matching between main and parallel 732

service roads. The second window will not switch the 733

path of the vehicle to a service road even though the 734

GPS data are closer to it given the edited cost of edges 735

from the previous window. 736

In summary, for each pair of GPS points (pi−1, pi), the 737

algorithm gets the neighboring candidate points from the 738

digital map, and sends a request to a router database in 739

Redis [75] in order to retrieve the corresponding shortest 740

routes to compute the parameter w(cki−1, c
j
i ) of Eq. 10. 741

The procedure depicted in Figure 10 is repeated until the 742

graph GV is generated. 743

G. Building Router 744

In this section, the detailed design of the router is 745

discussed. Building the router is a one-time exercise, 746

executed before starting to feed trajectories to the map- 747

matching algorithm. The router can be compiled on any 748

digital map. This makes it possible for users to map 749

their raw data and execute the patched path in their 750

proper digital map index scheme. Since vehicles travel 751

on the same predetermined road network, shortest path 752



Fig. 11: Map-matching algorithm architecture.

calculations between two nodes can be precomputed and753

saved in a database. Dijkstra’s shortest path algorithm754

was used as a routing tool to solve the network. In order755

to speed up lookup operations for the map-matching756

algorithm, by setting a limit on the search radius Rrouter,757

only routes between two nodes that are possible to visit758

within a 30-seconds interval (the sampling interval of759

the testing data) were solved and stored. For instance,760

there is no need to know the route of a node in lower761

Manhattan to a destination node in uptown Manhattan.762

To ensure a robust database, a limit on Rrouter was set as763

follows:764

Rrouter = Vmax ×∆t× SF, (16)

where Vmax = 70 mph, ∆t = 30 sec and SF is a765

safety factor = 1.2. The calculation above results in a766

maximum router radius of Rrouter = 0.7 miles. In other767

words, we solve the shortest path from node i to every768

node that is at most 0.7 miles away. A smart indexing769

technique is established in this paper to support faster770

lookup and retrieval from the Redis routing database.771

This technique relies on graph partitioning of the New772

York City road network. Each pair of noisy points are773

30 seconds apart, which means that these points are a774

few meters away from each other. In consequence, the775

corresponding set of source and destination candidate776

points is located in the same geographical area. There-777

fore, it is possible to partition the graph G = (V,E)778

into smaller components with specific properties. The779

borough information of every node in V that is encoded780

in the map GIS geodatabase, is used to partition the781

graph network into five smaller sub-networks as shown782

in Figure 12, and thus store the routes in five smaller783

databases (one database for each borough: Manhattan,784

Brooklyn, the Bronx, Staten Island, and Queens). As785

a result, Redis can perform the lookup operations in a786

smaller database every time it receives a routing request.787

H. Vertical Scalability of a Map-matching System788

The above map-matching algorithm and the custom-789

built router were combined in one map-matching system.790

Fig. 12: The graph G = (V,E) is partitioned into smaller
sub-networks based on the borough information. Every
node in G = (V,E) is colored based on the borough
it belongs to: Manhattan, Brooklyn, the Bronx, Queens
and Staten Island.

Fig. 13: Map-matching system.

Figure 13 shows the scalable map-matching system that 791

is architected in Python. Scalability is the ability of a 792

computer application or software to continue to be fast 793

when it is changed in size or volume [76]. In this context, 794

a change in size means when the road trajectory gets 795

bigger. 796

In this paper, vertical scalability of the algorithm is 797

presented, which is defined as the maximum use of 798

the available resources on a computer as opposed to 799

horizontal scalability which is speeding up the algorithm 800

by forming a cluster of computing nodes [77]. The 801

time-consuming part of the map-matching system is the 802

generation of the virtual graph GV . HMM parameters 803

calculation for each pair (pi−1, pi) at the iteration i is 804

independent of those corresponding to (pi−2, pi−1) at 805

the iteration i−1. Also, when solving the least cost path 806

problem using Dijkstra’s algorithm, the least-cost calcu- 807

lations for each pair of candidate source and destination 808

nodes are independent. These two observations made 809

it possible for the algorithm to be vertically scalable. 810

And thus parallel computing was applied as shown in 811

Figure 13. 812



V. PERFORMANCE EVALUATION AND813

APPLICATION814

Ground Truth: The algorithm is evaluated using815

ground truth trajectories that the authors collected in816

New York City. Each trajectory represents 15 to 30817

minutes of driving. An in-vehicle sensing hardware818

package is developed and comprises a Raspberry PI 3819

Model B+ microcomputer, a microSD 32GB SD card, an820

OBDCheck BLE OBD-II scanner, and a GPS module.821

This sensor configuration aims to collect timestamps,822

GPS positioning, and instantaneous speed data. A USB823

car charger was plugged into the cigarette lighter socket824

of the vehicle to provide power to the sensing hardware825

package. In order to evaluate the performance of the826

algorithm at low-sampling rate, the data collected was827

down-sampled to one sample every 30 seconds with a828

position, a maximum speed value for the past 30 seconds,829

and an average traveled speed value. When the maximum830

OBD-II speed value is less than 2 mph within the last 30831

seconds, a minimum speed value of 2 mph was adopted832

in Eq. 5 to avoid very small trust-regions.833

Evaluation Criteria: The map-matching algorithm is834

evaluated in terms of the matching quality. The matching835

quality is measured using an accuracy metric defined as836

follows:837

Acc =
Nc

Nt
(17)

where Nc is the number of correctly matched GPS points838

and Nt is the number of total GPS points. Also, the839

algorithm is validated using a reliable off-the-shelf map-840

matching platform: BMW Car IT Barefoot library [45].841

The authors would like to note that the comparison with842

Barefoot is made to validate the proposed algorithm with843

a commonly-used method to show the benefit of includ-844

ing in-vehicle speed data into the transition probability845

function, as well as computing the search trust-region us-846

ing the maximum speed value. In general, a comparison847

between map-matching algorithms is challenging since848

map data are different and could be denser in one map849

than the other. Also, the algorithm’s accuracy may vary850

between cities, depending on their road networks, as well851

as between data sets depending on the GPS sampling852

rate. In this study, we challenged an extreme scenario853

by collecting telematics data in New York City’s urban854

canyons, with a GPS sampling rate of one sample per855

30 seconds.856

Barefoot Algorithm Background Information:857

The Barefoot algorithm relies on Newson and
Krumm [74]. The latter fits a negative exponential dis-

tribution to the transition probability V shown in Eq. 18
below:

Vbarefoot(c
k
i−1, c

j
i ) =

1

β
exp
−B(cki−1, c

j
i )

β
(18)

where β is an experimental road-network parameter and
B(cki−1, c

j
i ) defined in Eq. 19 below, is the difference

between the shortest route from cki−1 to cji and the
distance between pi−1 and pi.

B(cki−1, c
j
i ) = |w(cki−1, c

j
i )− ‖pi−1, pi‖ | (19)

Barefoot uses Eq. 18 for their transition probability,
but redefines B(cki−1, c

j
i ) by using instead a time-priority

route cost function detailed in Eq. 20 and defines β as
the GPS sampling time interval (30 sec here).

Bredefined(cki−1, c
j
i ) =

w(cki−1, c
j
i )

Vmax
× PF (20)

where Vmax is the road speed limit from OSM map data 858

and PF is a road type factor that favors main roads 859

over local roads. As mentioned earlier, when working 860

with Barefoot, we tuned the σ value for the emission 861

probability in the Barefoot library from the default value 862

5 meters to match the σ = 70 meters value used in our 863

algorithm. 864

Experimental results: Table I shows the number of 865

mismatched points out of 589 GPS data points for every 866

algorithm. 867

TABLE I: Number of mismatched points for the pro-
posed algorithm versus Barefoot algorithm.

# of mismatched points Accuracy(%)

Our Map-matching 15 97.45
Barefoot 25 95.76

Figure 14 shows a comparison example between 868

our map-matching (Figure 14(b)), and Barefoot (Fig- 869

ure 14(c)). The novel transition probability implemented 870

in our algorithm provides a very good balance between 871

the GPS noise and the shortest path probabilities. Fig- 872

ure 14-b shows how our map-matching is robust to GPS 873

measurement errors at (p1, ..., p6). The Barefoot time- 874

priority strategy in computing the transition probability 875

could lead to inaccurate matching at locations where 876

raw GPS positions are close to each other due to traffic 877

congestion as shown in Figure 14(c). In other words, 878

Barefoot starts creating loops. However, the proposed 879

transition probability includes the true mean speed of 880

the vehicle assisting the algorithm in detecting that the 881

vehicle cannot travel the entire loop within the 30- 882

seconds interval with a low speed. 883

The authors acknowledge that cost functions that value 884

road priority (Eq. 20), are essential in locations where 885

major roads and service roads are in parallel with close 886



Fig. 14: Example 1: comparing our algorithm’s output
with Barefoot’s output and ground truth data. (a) Ground
truth trajectory with raw GPS points (b) our map-
matching result (c) Barefoot’s output.

proximity. On the other hand, taking road priority into887

account could cause a mismatch at other locations where888

roads are proximate, but are not in a parallel config-889

uration. In Figure 15(b), between p7 and p9, Barefoot890

went down to East 53rd St. instead of continuing on891

East 55th street since the former is a priority road. The892

proposed transition probability in Eq. 9 will assign a893

low probability for going down to East 53rd St., by894

comparing the shortest path with the average vehicle895

traveled distance. The road priority information is not896

encoded in the digital map used in our study, therefore897

we could not investigate the validity of including road898

priority information in our algorithm.899

Fig. 15: Example 2: comparing our algorithm’s output
with Barefoot’s output and ground truth data. (a) Ground
truth trajectory with raw GPS points (b) our map-
matching result (c) Barefoot’s output.



VI. CONCLUSION900

As map-matching becomes critical for any traffic and901

driver behavior assessment relying on GPS-collected902

data, it is essential to have robust map-matching algo-903

rithms for urban canyons. In this paper, we described904

a novel OBD-data-assisted algorithm for map-matching.905

The algorithm is evaluated using ground truth data906

collected by the authors’ developed telematics device.907

The proposed algorithm is proven to be more robust908

at a low sampling rate and high GPS noise with an909

accuracy of 97.45% when GPS noise is up to 70 meters.910

This scalable system executed in Python makes use of911

OBD-II parameters directly sampled from the vehicles,912

such as the maximum and mean speeds, in conjunction913

with GPS data to get more accurate map-matching.914

The map-matching algorithm uses in the backend a915

smart query system for the shortest routes. The map-916

matching algorithm can relate non-spatial safety-related917

driver behaviors to road networks. For example, OBD918

speed, hard-braking, and hard-acceleration events, do919

not have spatiotemporal information. However, it is920

practically valuable to understand these behaviors based921

on the road network, particularly for understanding city-922

scale public safety and design. Thus, the map-matching923

can help in creating driver behavior indexes (DBIs)924

for each road segment, such as vehicle speed profiles925

(e.g., 85th percentile speed, mean speed), and harsh926

driving metrics (e.g., harsh braking and acceleration927

rates). Road-segment-level DBIs can be further analyzed928

to understand their relations to crash data. The data929

summarization of connected vehicle data on map data930

can be an impactful V2B application that can potentially931

benefit city planners’ street improvement projects and932

corridor safety metrics generation. As a future work,933

the traffic data collected by the current intelligent trans-934

portation systems (e.g., electronic toll collection systems,935

spot-speed radar) at selective locations, will be used to936

validate the accuracy of traffic flow obtained by this937

work from matching connected vehicle data with the938

road segments.939
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