

OBD-Data-Assisted Cost-based Map-matching Algorithm for Low-Sampled Telematics Data in Urban Environments

Patrick Alrassy, *Member, IEEE*, Jinwoo Jang, *Member, IEEE*, and Andrew W. Smyth, *Member, IEEE*

1 **Abstract**—A myriad of connected vehicles collects large-
2 scale telematics data throughout cities, enabling data-
3 based infrastructure planning. To truly benefit from this
4 emerging technology, it is important to integrate pervasive
5 telematics data with map data to produce more tractable
6 and readable information for traffic flows and safety.
7 Map-matching algorithms enable the projection of noisy
8 trajectory data onto map data as a means of integrating
9 telematics data. However, map-matching poses challenges
10 due to higher levels of positioning errors and complex
11 road networks. The authors propose a novel map-matching
12 algorithm that can fuse in-vehicle data with trajectory data
13 to improve the efficiency and accuracy of the algorithm.
14 The proposed algorithm combines the probabilistic and
15 weight-based map-matching frameworks. The novelty of
16 the proposed algorithm includes (i) an adaptive segment
17 candidate search mechanism based on in-vehicle speed
18 information, (ii) adaptive matching parameters to reflect
19 the variations in the Global Positioning System (GPS)
20 noise levels, (iii) a novel transition probability that uses
21 in-vehicle speed data, and (iv) a backend data query
22 system for the shortest routes. Map-matching results were
23 validated based on ground-truth data collected using an
24 in-vehicle sensing device developed by the authors, as well
25 as comparing with a commonly-used off-the-shelf map-
26 matching platform. The proposed algorithm is proven to
27 be robust, with an accuracy of 97.45%, particularly where
28 map data are denser and GPS noise is high.

29 **Index Terms**—Map-matching, Telematics, Trajectory
30 data, Connected Vehicle, Smart Cities.

I. INTRODUCTION

32 **O**NE of the novel technologies for emerging smart
33 cities, particularly those cities dealing with traffic
34 congestion and public safety, is connected-vehicle tech-
35 nology [1], [2]. Connected vehicle technology enables
36 sharing information among vehicles, the infrastructure,
37 and personal communication devices through safe and
38 interoperable networked wireless communications. De-
39 tailed overviews of the concept, connectivity, and ar-

P. Alrassy and A. W. Smyth are with the Department of Civil Engineering and Engineering Mechanics, Columbia University, New York, NY, 10027 USA, (e-mail: pa2492@columbia.edu; smyth@civil.columbia.edu).

J. Jang is with the Department of Civil, Environmental and Geomatics Engineering, Florida Atlantic University, FL, 33431, (e-mail: jangj@fau.edu).

chitecture of connected vehicles can be found in the literature [3]–[9].

Connected-vehicle technologies can be grouped into three categories based on inter-vehicle communications: Vehicle-to-Vehicle (V2V), Vehicle-to-Roadside Infrastructure (V2I), and Vehicle-to-Broadband Cloud (V2B). Examples of connected-vehicle applications include traffic management systems [10], [11], parking spot locator systems [12], lane marking localization systems [13], collision warning systems [14]–[17], road surface monitoring systems [18]–[20], and driver volatility estimation [21], [22]. The applications of V2V communications, in general, focus more on exchanging useful information between vehicles that are traveling along the same road. The V2I applications aim to provide the right information at the right time, such as road surface conditions. The V2B communications aim to create a large-scale monitoring data center, which opens a new door for many data-intensive applications [23]. In particular, large-scale connected vehicles will enable data-based infrastructure planning and management. For example, a large number of taxis, public transport, utility vehicles, and private vehicles are collecting big trajectory data across cities with valuable traffic information about real-time and network-wide traffic conditions. These data sets will significantly contribute to the improvement of transportation systems and mobility.

The main component of telematics vehicle data is the trajectory consisting of recorded data of the vehicle's position over time. Different types of localization sensors are currently being used to estimate the vehicle position with respect to time, such as the Global Navigation Satellite System (GNSS) [24], Wi-Fi [25], and cellular tower networks [26]. The GNSS trajectory data can estimate travel time and vehicle speed, supporting traffic operations monitoring, incident detection, and route guidance.

However, it is widely known that the quality of GNSS data is significantly affected by measurement noise. GNSS positioning error is primarily due to the multipath problem associated with buildings and infrastructure, which interferes with the direct path between

82 GNSS receiver and the constellation of satellites in the
83 sky [27]. Since the global positioning system operates
84 on the trilateration concept, a GNSS receiver must
85 communicate with a minimum of four visible satellite
86 clocks before determining its true position [28]. It is
87 noteworthy that GNSS positioning errors can propagate
88 to the estimation of the speed and heading of vehicles
89 when GNSS sensors are primary used to obtain speed
90 and orientation data. Furthermore, the level of GNSS
91 measurement noise, in general, significantly increases in
92 urban environments, posing challenges for various V2B
93 applications in metropolitan areas. Therefore, the imple-
94 mentation of novel algorithms that can deal with GNSS
95 measurement noise is a vital component in leading to
96 the success of V2B applications.

97 Moreover, telematics data include important vehicle-
98 centric data, collected from extra sensor modules (e.g.,
99 On-Board Diagnostics (OBD-II) scanners, inertial mea-
100 surement unit (IMU) sensors, Carbon Dioxide sensors,
101 etc.). Vehicle-centric information can be collected from
102 the Controller Area Network (CAN bus) [29]–[33] and
103 augmented sensor hardware. A portion of CAN bus data
104 has standardized protocols and can be accessed through
105 OBD ports [34]. Examples of OBD data include engine
106 RPM, vehicle speed, and fuel system status. By com-
107 bining OBD data with data from extra sensor modules
108 attached to in-vehicle sensor networks, data availability
109 can be easily customized to meet the requirement of
110 various applications. Augmented sensor modulus en-
111 able various large-scale connected vehicle applications,
112 such as environmental monitoring systems [35]–[37],
113 street-asset data collection systems [38]–[41], and public
114 safety [42], [43].

115 It is important that telematics data must be translated
116 into more tractable and readable formats. Telematics data
117 include spatio-temporal data (e.g., trajectory data) and
118 non-spatial data (e.g., OBD data). Importantly, trajectory
119 data are represented in a coordinate system (typically,
120 in a geographic coordinate system) and are used to
121 associate non-spatial data with the correct streets of
122 road networks. In addition, large-scale connected vehicle
123 applications require to summarize valuable information
124 based on map data. For example, it is more intuitive to
125 know traffic information, vehicle speed, and street asset
126 conditions by street. In other words, trajectory data do
127 not directly indicate the locations of vehicle-centric data
128 to the street without proper data integration schemes.
129 Therefore, data integration is critically important for
130 large-scale V2B applications.

131 Map-matching techniques are promising approaches
132 to deal with both GNSS positioning errors and map-
133 based data integration. The following section provides
134 an overview of map-matching algorithms. Map-matching
135 algorithms aim to match a set of observed noisy vehi-

136 cle position data with the sequence of road segments,
137 summarizing meaningful traffic flow and safety metrics
138 based on map data. Map-matching applications in urban
139 environments become more challenging due to denser
140 road segments and relatively-higher level of GNSS error.
141 The performance of map-matching algorithms can vary
142 based on the accuracy of GPS positioning data, the qual-
143 ity of the map data, and the tuning of the parameters [44].

144 This paper presents a novel map-matching technique
145 to perform the data fusion of in-vehicle sensor network
146 data, map data, and trajectory data. In particular, the ve-
147 hicle speed, which is directly measured from the vehicle
148 itself, is used to improve the accuracy and efficiency of
149 the map-matching. The authors challenge complex V2B
150 applications that have low-sampled telematics data and
151 denser road networks. The authors collected real-world
152 telematics data sets to validate the performance of the
153 algorithm using their own telematics device.

154 The map-matching problem addressed in this study
155 is more challenging as it is tested in New York City
156 (NYC) dense road network with the relatively high
157 level of positioning error caused in its urban canyons.
158 Thus, the addressed application represents a prototype
159 for the future of map-matching in smart cities. As
160 smart cities are often envisioned to have denser road
161 networks, with streets populated with tall buildings, the
162 proposed algorithm balances simplicity, accuracy and
163 performance through fusing GPS with in-vehicle speed
164 data, and vertically scaling the algorithm as explained
165 in Section IV-H, unlike sophisticated algorithms that use
166 advanced sensor data that often are not available, trading
167 high accuracy with low performance and utilization. The
168 performance of the proposed map-matching algorithm is
169 compared to a commonly-used map-matching algorithm:
170 BMW car IT Barefoot [45].

171 The remainder of this paper is structured as follows:
172 Section II provides an overview of the current map-
173 matching algorithms. Section III defines a map-matching
174 problem. Section IV-A-F describes the proposed map-
175 matching algorithm. Section IV-G discusses database
176 management, graph partitioning, and query-optimization
177 techniques that support the implementation of our map-
178 matching algorithm. Section IV-H documents a scalable
179 map-matching system architecture. Section V includes
180 validation results. Finally, future research directions and
181 conclusions are provided in Section VI.

II. OVERVIEW OF MAP-MATCHING 182 ALGORITHMS 183

184 Map-matching algorithms follow either (i) a proba-
185 bilistic approach, (ii) a weight-based, or (iii) a machine
186 learning approach. The latter includes Kalman filter and
187 artificial neural network techniques which require more

188 input data, learning, and computational effort, compared
189 to the first two approaches [46].

190 Recent map-matching algorithms harness various
191 sensing data obtained from multiple sensors to improve
192 their map matching accuracy. However, those additional
193 sensing data might not be available in many applications
194 that deal with typical vehicles that are not autonomous.
195 Furthermore, most of the recent algorithms rely on
196 machine learning techniques, which require parameter
197 learning processes. Toledo-Moreo et al. [47] creates a
198 particle-filter-based algorithm that hybridizes measure-
199 ments from a GNSS receiver, a gyroscope and an odome-
200 ter to solve the map-matching problem at the lane-level.
201 Similarly, Szottka et al. [48] presents a particle-filter-
202 based algorithm that incorporates camera detections data
203 of the lane markings along with commercial map data.
204 Tao et al. [49] build a localization solver, based on
205 Kalman filtering, that leverages GPS data, vehicle data
206 and observations from a video camera along with lane
207 markings embedded in digital navigation maps. Gu et
208 al. [50] integrates multiple sensor measurements and
209 a 3-dimensional (3D) map to build a robust localiza-
210 tion system in urban canyons. The 3D map is used
211 to perform a signal ray tracing process to rectify the
212 vehicle positioning. Shunsuke et al. [51] developed a
213 particle filtering vehicle localization system at the lane-
214 level for autonomous driving that integrates GNSS data,
215 Inertial Navigation system (INS) and camera observa-
216 tions. Kuhnt et al [46] and Rabe et al. [52] introduce
217 an approach on self-vehicle localization using sensors
218 to detect the object positions in the neighborhood of the
219 vehicle. The object's position and direction of movement
220 along with an odometer sensor are used to localize the
221 vehicle on a digital map. Zheng et al. [53] proposes a
222 machine learning segmentation and classification algo-
223 rithm for lane-change detection using steering angle and
224 vehicle speed data extracted from CAN-buses.

225 The probabilistic map-matching approach, in general,
226 exploits the Hidden Markov Model (HMM) to find the
227 most probable path because of its power in assessing
228 different combinations of roads which the vehicle could
229 have taken for the purpose of finding the most probable
230 path [54]–[56]. The sequence of projected points are
231 the hidden states in the Markov model. The raw GPS
232 data points are the emitted observed elements. Different
233 algorithms propose different transition probability
234 distributions to determine the likelihood of traversing a
235 certain candidate road segment given that the vehicle
236 has already passed on a road segment. Most algorithms
237 use the Gaussian distribution to describe the emission
238 probability, the probability of emitting the noisy data
239 point given that the true match is a certain candidate
240 point. HMM-based map-matching leverages the Viterbi
241 algorithm defined in [57] to find the matched sequence

242 of roads. In contrast, the work of Knapen et. al. [58]
243 adopts the probabilistic approach but from a different
244 angle. In fact, they use the GNSS trace to minimize
245 the unlikelihood of existing candidates using only the
246 spatiotemporal information contained in the input data
247 without any added additional assumption related to the
248 shortest path which is the basis of most HMM transition
249 probability equations.

250 Unlike the probabilistic approach, a weighted map-
251 matching approach assigns a cost to different candidate
252 paths and uses different selection methods to find the
253 surviving path [59]. Lin et al. [60] present a Dijkstra-
254 based selection map-matching algorithm to estimate the
255 correct sequence of roads. They define a virtual directed
256 graph based on a physical graph (e.g., map data), whose
257 nodes include a set of candidate points (e.g., map-
258 projected GPS data points) and edges denote the transi-
259 tion probability from one candidate point to another.
260 For clarity, each edge of a virtual graph may include
261 multiple edges of a physical graph. The edges of a virtual
262 graph are assigned with a cost; and then the shortest path
263 problem is solved to find the least-cost path. However,
264 the cost function for the edges is only a function of
265 the shortest path from a candidate point associated with
266 previous GPS data points to one corresponding to the
267 current GPS point, without any consideration of how
268 proximate candidates points are to GPS data points.

269 Moreover, there was a notable effort to improve the
270 run-time performance for HMM-based map-matching in
271 the literature. Koller et al. [61] combine the probabilistic
272 and weighted approaches to leverage HMM-based map-
273 matching, but replace the Viterbi algorithm with Dijkstra.
274 This is achievable by converting total probabilities at the
275 last stage of the HMM to costs. The blended approach
276 improves the run-time of HMM-based map-matching by
277 decreasing the computational overhead of the unneces-
278 sary transition probability calculations [61].

279 Most map-matching algorithms that were developed
280 in a programming language and released to the com-
281 munity rely in their backend on one of the commercial
282 routers. These routers perform the route calculations
283 using shortest path algorithms on a certain road net-
284 work that is saved in a relational database (SQL) or
285 graphical database (NoSQL) [62]. Some are limited to
286 a specific type of map data structure such as Open
287 Source Routing Machine (OSRM). The others, such
288 as pgRouting (pgRouting Contributors), perform the
289 shortest path calculations live and may have significant
290 overhead when copying the network database into RAM
291 at each route execution [63]. Google Snap to Road,
292 a map-matching API, has a 300-meter limit between
293 two GPS data points to maintain accuracy and avoid
294 false snapping [64], which could be problematic at low
295 sampling-rates. It also works only on Google maps.

296 Similarly, TrackMatching [65], a commercially available,
 297 cloud-based web map-matching software service, per-
 298 forms the map-matching based only on OpenStreet maps
 299 (OSM). However, city planners support their own map
 300 data for their road network studies.

301 III. MAP-MATCHING PROBLEM STATEMENT

302 A. Data Structure

303 This section summarizes the data structure and map-
 304 matching problem that is considered in this study. A raw
 305 GPS trajectory is the given sequence of N noisy data
 306 points $P = (p_i | i = 1, \dots, N)$ ordered by timestamps.
 307 The time interval between two consecutive points does
 308 not exceed a certain threshold Δt , which is the sampling
 309 rate. The sampling rate of the NYC data considered
 310 in this study is 30 seconds. It is noteworthy that a
 311 time difference between two consecutive data points
 312 can be bigger than the sampling time interval because
 313 it may take more than 30 seconds to obtain the next
 314 available positioning data due to a weak communication
 315 with the satellites. Each data point p_i has the following
 316 parameters: (i) longitude, latitude and altitude values,
 317 (ii) timestamp, (iii) the number of satellites that are
 318 visible at the location of the sampled point, and (iv)
 319 OBD-II speed information. The speed data represent the
 320 maximum speed value between the previous data point
 321 and the current data point (typically over 30 second
 322 time intervals). Also, the data collected by the authors
 323 for the evaluation purpose, contain the average OBD-
 324 II traveled speed. The illustration of the GPS trajectory
 325 data structure is shown in Figure 1.

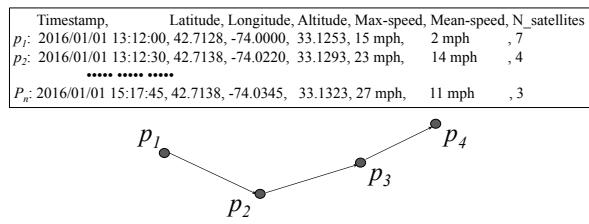


Fig. 1: Raw trajectory data formed of N noisy GPS points $P = (p_i | i = 1, \dots, N)$ ordered by a timestamp field, along with the number of satellites and the OBD-II speed information.

326 A digital road network (map data) is a directed graph
 327 $G(V, E)$, where the road edges (road segments) E are
 328 connected by a set of nodes V . The map data used in this
 329 study have 102,489 nodes and 159,253 road segments,
 330 covering the NYC road network. Every edge has the
 331 following parameters: (i) the length of the road segment,
 332 (ii) the traffic direction (one-way or two-way), (ii) other

333 topological constraints such as road level information
 334 to keep track of the edges and nodes that may be
 335 overlapping in the 2D map so that they will be separated
 336 prior to the map-matching problem, (iv) the node from,
 337 (v) the node to, (vi) the road segment index, (vii) the
 338 speed limits, (viii) a list of intermediate points that
 339 describes a road segment as a polyline and ix) the street
 340 names. New York's road network is characterized by a
 341 high road density, concentrated in Manhattan, the Bronx,
 342 and Queens [66]. The average road width is 8.88 meter;
 343 the density of arterial roads is 0.74 km/km^2 ; and the
 344 average block size is 0.067 km^2 [67]. The typical length
 345 of a north-south road segment in Manhattan runs ap-
 346 proximately 80 meters and the typical distance between
 347 avenues is roughly 230 meters. The density of roads
 348 results in considering an average of 20-40 projected
 349 points on neighboring road segments per GPS point.

350 B. Problem Statement

351 A candidate point c_i^j is defined as the projected point
 352 of the GPS data point p_i onto a neighboring road
 353 segment j as depicted in Figure 2. Each data point p_i
 354 can have more than one corresponding candidate point
 355 c_i^j ($j = 1, \dots, n_i$). The number of the candidate points
 356 n_i can vary based on the density of neighboring road
 357 segments, the search radius, and the location of p_i .
 358 Among the candidate points, only one candidate point is
 359 selected and used to represent the projected data point of
 360 point p_i on the road network. Therefore, the outcome of
 361 the map-matching algorithm is a sequence of projected
 362 data points (selected candidate points), representing a
 363 reconstructed path that the driver could have taken in
 364 a chronological order. The intermediate path between
 365 every pair (c_{i-1}^k, c_i^j) is labeled as $P(c_{i-1}^k, c_i^j)$ when
 366 reconstructing the full path of the vehicle.

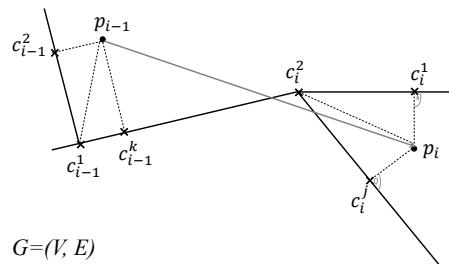


Fig. 2: Projection of the raw GPS points (p_{i-1}, p_i) onto the neighboring segments of the digital map, resulting in a set of candidate points: c_{i-1}^k ($k = 1, \dots, n_{i-1}$) and c_i^j ($j = 1, \dots, n_i$)

367 IV. PROPOSED OBD-DATA-FUSED 368 MAP-MATCHING ALGORITHM

369 Most map-matching algorithms in the literature are
 370 designed to be used with high GPS sampling rate

371 applications which are essential for most GPS-based
 372 services (navigation and road guidance, and distance-
 373 based road pricing) [68]. However, many real-time ap-
 374 plications require data collection at a low sampling
 375 rate. Such practice is often adopted in order to reduce
 376 power consumption as well as communication costs [69].
 377 Most algorithms use road connectivity and heading
 378 restrictions [59]. These two pieces of information are
 379 misleading in low sampling rate data because within a
 380 30-second interval multiple heading changes occur and
 381 the arc-skipping problem exists [70].

382 Therefore, the authors propose an offline map-
 383 matching algorithm that processes a set of trajectory
 384 data to compute the most probable sequence of roads.
 385 It produces more accurate map-matching results for
 386 trajectory data with a low sampling rate and can handle
 387 the scalability of map-matching systems with an efficient
 388 router system. Improved map-matching is achieved by
 389 the following unique features:

- 390 1) The proposed transition probability fuses trajectory
 391 data with OBD data to improve the map-matching
 392 accuracy, especially when high GPS noise, denser
 393 road networks, and low GPS sampling rates are
 394 present. The transition probability function
 395 harnesses an actual travel distance between two GPS
 396 points, calculated based on OBD speed data. The
 397 inclusion of an actual travel distance in the trans-
 398 ition probability improves the estimation of a
 399 sequence of road segments based on given trajec-
 400 tory points. Furthermore, the transition probability
 401 is non-parametric; therefore, it does not require
 402 any pre-learning of parameters from the map and
 403 trajectory data.
- 404 2) An adaptive local search algorithm is designed to
 405 improve the performance of the candidate road
 406 segment selection process and trust-region filter-
 407 ing. This algorithm utilizes additional sensor in-
 408 formation to indicate the level of GPS accuracy
 409 and adjust based on the local searching grid.
 410 This feature overcomes one of the notable chal-
 411 lenges in map-matching mentioned by Hashemi
 412 and Karimi [71]: “narrowing the entire road net-
 413 work to a limited number of road segments.”
- 414 3) The usage of connected sliding windows in the
 415 cost-based selection of the most probable path is
 416 developed to mitigate a challenging map-matching
 417 problem, where priority roads have parallel service
 418 roads.
- 419 4) This work proposes an efficient shortest path
 420 query system that can minimize repeated shortest
 421 path calculations for map-matching problems, and
 422 stores a robust subset of pre-calculated shortest
 423 paths determined based on GPS data.

A. Basic Flow of the Algorithm

The map-matching system described in this paper
 425 adopts the blended map-matching approach that is based
 426 on HMM-techniques, but leverages the Dijkstra algo-
 427 rithm described in the work of Dreyfus [72] for matching
 428 a GPS trajectory to a path for the above mentioned ben-
 429 efits. It consists of two sub-algorithms. Algorithm 1: *Candidate road segments selection and Candidate Graph*,
 430 responsible for choosing the set of candidate paths
 431 between two GPS data points and assignment of a cost
 432 for each path ; Algorithm 2: *Dijkstra least-cost Path*
 433 *Map-Matching*, takes Algorithm 1 as an input and runs
 434 the Dijkstra algorithm to determine the most probable
 435 path of the vehicle.

Candidate road segments selection: Having the digital
 436 road network with directionality information, topology
 437 and connectivity, a set of candidate road segments are
 438 selected for each GPS data point. The selection pro-
 439 cedure takes into account a trust region that is built based
 440 on the OBD-II maximum speed information and filter
 441 out candidate points that fall outside the trust-region.

Candidate Graph: Each pair of candidate points that
 442 belong to two consecutive GPS data points constitute a
 443 path. We compute the emission and transition probability
 444 of the Hidden-Markov-Model and we assign a cost value
 445 for taking that path. We then construct a virtual graph
 446 where the candidate points of the GPS raw points are
 447 the nodes and the intermediate path for every pair of
 448 candidate points are the edges with the calculated cost.

Dijkstra Least-Cost Path Map-Matching: After
 449 building the candidate graph, we run a Dijkstra shortest
 450 path algorithm and save the sequence of candidate points
 451 of the most likely path.

The pseudocode of the proposed OBD-data-fused
 452 map-matching algorithm is formulated as follows. Al-
 453 gorithm 1 processes the trajectory points ($\mathbf{P} : p_i, i =$
 454 $1, \dots, N$) in parallel, as separate tasks for each central
 455 processing unit (CPU) available and returns the HMM
 456 calculations, which are the input for Algorithm 2. As
 457 soon as Algorithm 1 executes, Algorithm 2 outputs
 458 the matched path by creating a virtual directed graph
 459 $G_V(N_V, E_V)$ and running the shortest path Dijkstra
 460 algorithm. N_V includes a set of candidate points for
 461 each GPS data point; and E_V includes a set of edges
 462 that connect two neighboring candidate points.

B. Candidate Road Segment Selection

As our algorithm is based on the HMM approach [54],
 470 [55], the first step is to form a set of candidate road
 471 segments e_i^j ($j = 1, \dots, n_i$) and the corresponding
 472 candidate projected data points c_i^j ($j = 1, \dots, n_i$)
 473 around each data point p_i within a given radius r_i . An
 474 example is shown in Figure 3. n_i is the number of
 475

Algorithm 1: Candidate road segment selection and candidate graph generation.

Input: 1) Raw GPS trajectory as sequence of N noisy data points, $\mathbf{P} = (p_i | i = 1, \dots, N)$. 2) Digital directed road network (map data), $G(V, E)$, where the road segments E are connected by a set of nodes V .
Output: returns the Dijkstra cost C_i^{kj} for each pair of candidate points (c_{i-1}^k, p_i) at each consecutive pair of GPS points (p_{i-1}, p_i)

```

foreach  $p_i \in \mathbf{P}$  do
  Execute Adaptive Trust-region Search
  Obtain a set of candidate road segments  $e_i^j$ 
  for  $j \in e_i^j$  do
    Obtain the candidate point  $c_i^j$  for each segment
    Compute the emission probability  $p(p_i | c_i^j)$ 
    Add a virtual node  $c_i^j$  in  $G_V$ ,  $c_i^j \in N_V$ 
foreach pair of  $c_i^j$  and  $c_{i-1}^k$  do
  Compute the transition probability  $p(c_i^j | c_{i-1}^k)$ 
  Create a virtual edge connecting  $c_{i-1}^k \rightarrow c_i^j$ 
  Assign  $p(c_i^j | c_{i-1}^k)$  to a virtual edge  $c_{i-1}^k \rightarrow c_i^j$ 

```

Algorithm 2: Dijkstra least-cost map-matching.

Input: $G_V(N_V, E_V)$, $c_i^j \in N_V$; $p(c_i^j | c_{i-1}^k)$; $p(p_i | c_i^j)$
Output: return the most likely path

```

foreach set of 20 GPS points
   $P = (p_i | i = 1, \dots, 20)$  do
    Run Dijkstra shortest path algorithm
    Save the resulting sequence of candidate points of the most likely path
    Set  $C_i^{kj} = 0$  for the last five matched edges and set  $i = i - 5$ .

```

476 candidate road segments associated with the data point
477 p_i . It is noteworthy that the number of candidate road
478 segments n_i can vary based on the density of the digital
479 map around the point p_i and the candidate search radius
480 r_i . In order to find the n_i candidate road segments for
481 each GPS data point, two things need to be defined: the
482 distance measure between the data point p_i and a set of
483 neighboring road segments; and an efficient candidate
484 search radius r_i .

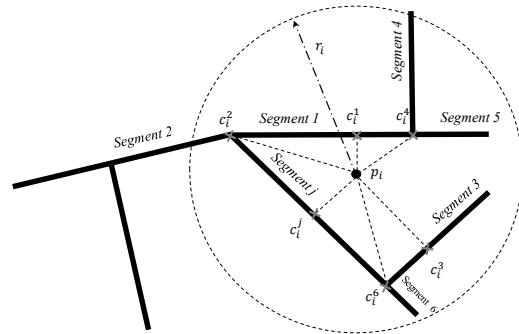


Fig. 3: Candidate projected points on neighboring road segments and Search Radius.

The GPS data points are projected onto road segments in such a way that the distance between the GPS points p_i and the candidate point c_i^j on the edge e_i^j is minimized. Therefore, each road segment e_i^j has one candidate data point c_i^j calculated as follows:

$$c_i^j = \arg \min_{c_i^j \in e_i^j} \text{dist}(p_i, c_i^j) \quad (1)$$

Figure 3 shows an example of a candidate search. The search radius r_i should reflect the level of GPS position error changes. Typically, GPS positioning is accurate to about 15 meters; and the accuracy depends on many factors such as the number and position of the satellites and the design of the receiver [73]. In the work of Lou et. al. [55], the GPS positioning error is assumed as a Gaussian distribution, and its standard deviation is set to be 20 meters.

Unlike other methods that use a fixed radius search mechanism, the novelty of the proposed map-matching algorithm is that the selection of candidate road segments can adaptively adjust to the level of GPS positioning error. Our method uses two data sources that can be indicative of the level of the positioning error: the number of satellites visible at the data point p_i ; and the altitude value. We expect that when a GPS sensor has a limited number of visible satellites, the accuracy of the positioning data is low. Furthermore, the positioning error can propagate into positioning data in all directions, not limited to the latitude and longitude. Therefore, the unrealistic value of the altitude can be an indicator of poor accuracy of the positioning data.

Data analytics on raw trajectory points reveal that unrealistic altitude values mostly occur in dense regions with no clear open sky. Unrealistic altitude value from a GPS sensor can be detected when it significantly differs from the known elevation at a point on the map. In fact, since the road network is in New York City, which is a relatively flat area, one is able to easily judge whether the GPS receiver returns a false altitude value. We define a false altitude value for New York City area for every

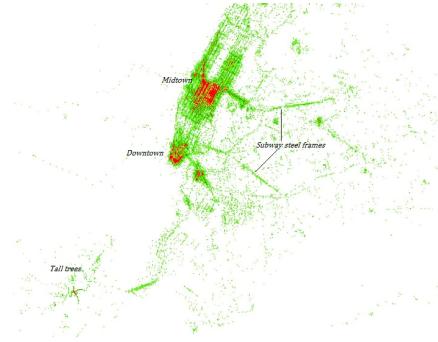


Fig. 4: Density of data points with unreasonable altitude value.

value above 100 meter, a value close to the highest natural point in the five boroughs of New York City. Hence, if it fails in determining a reasonable vehicle altitude, it probably provides erroneous longitude and latitude estimates. Figure 4 shows the density distribution of the erroneous altitude value of the sampled points and thus, it supports the previous assumption. We can clearly tell that false altitude values are concentrated around Manhattan midtown and downtown towers, as well as around elevated subway and roadway structures, where GPS reflections are high.

In this study, the baseline of the candidate search radius is set to be 30 meters, which is double the typical GPS positioning error found in the literature. In other places, the search radius can reach 210 meters. This is because the map-matching problem addressed in this study can be more challenging due to the denser road network and the relatively high level of positioning error caused in New York City's urban canyons. The search radius for candidate points is calculated as:

$$r_i = k_i \times \sigma_i \quad (2)$$

where the scaling coefficient k_i controls the envelop of confidence interval; and σ_i represents the assumed standard deviation of the GPS positioning error. In this study, the values of the scaling coefficient k_i and the standard deviation are intuitively defined as follows:

$$\sigma_i = \begin{cases} 30 \text{ meters,} & \text{if } N_{\text{sat},i} \geq 6 \\ 70 \text{ meters,} & \text{otherwise} \end{cases} \quad (3)$$

$$k_i = \begin{cases} 2, & \text{if Altitude}(p_i) \leq 100 \text{ meters} \\ 3, & \text{otherwise,} \end{cases} \quad (4)$$

where $N_{\text{sat},i}$ is the number of visible satellites at the data point p_i . The rationale behind determining these values is that the positioning errors of around 60 meters are frequently observed within the trajectory data set; and the data point p_i with relatively-poor GPS communication

(i.e., $N_{\text{sat}} \leq 5$) can have GPS positioning errors up to 140 meters. Then, we define the two ranges as a 95% confidence interval (i.e., $2\sigma_i = 60$ or 140 meters based on the number of visible satellites.) Furthermore, if the altitude of the data point p_i becomes unrealistic, the 99.7% interval (i.e., $3\sigma_i$) is used for a local candidate search.

C. Trust-Region Candidate Filtering Based on The OBD-II Speed Information

An adaptive trust-region search is applied to each data point p_i . This adaptive trust-region filters out some of the candidate segments selected in Part B, that could not be reached by a vehicle due to its low speed during congestion. It efficiently adjusts a search radius based on directly measured in-vehicle speed data. Between two consecutive GPS data points p_{i-1} and p_i , the maximum vehicle speed is obtained from an OBD-II connection. The vehicle speed data point $v_{\text{max},i}$ is the maximum vehicle speed when a vehicle travels from the current point p_{i-1} to the next data point p_i . Since the maximum vehicle speed $v_{\text{max},i}$ and time interval $\Delta t_i = t_i - t_{i-1}$ between two points are given, it is possible to define a more reliable search radius R_{max} , as shown in Figure 5, for the selection of neighboring road segment candidates. R_{max} would vary based on the actual vehicle speed from the OBD connection $v_{\text{max},i}$, and is defined as follows:

$$R_{\text{max}} = v_{\text{max},i} \times \Delta t_i \times s \quad (5)$$

When a vehicle is stuck in traffic or moves slowly, the adaptive search radius is relatively small. In the example shown in Figure 5, r_i will be equal to 2×70 meters = 140 meters, however, $R_{\text{max}} = 2 \text{ mph} \times 0.447 \text{ (m/s)/(mph)} \times 30 \text{ sec} \times 1.2 = 32$ meters. Therefore, only candidate segments that fall within R_{max} will be considered.

When the vehicle speed increases, the adaptive search radius becomes large enough to cover possibly-visited road segments. The slack variable s provides an extra margin for a search radius to accommodate GPS positioning error. In this study, the value of the slack variable s is defined as 1.2, which means the adaptive search radius is increased by 20%.

D. Emission Probability

Each of the candidate projected points is considered to be a hidden state in the Markov model and has an emission probability $p(p_i|c_i^j)$, which is the likelihood of emitting the noisy data point p_i given that the true match is c_i^j . Instinctively, we favor candidates that are closer to p_i . It has generally been adopted in the literature that GPS errors have a zero-mean Gaussian behavior.

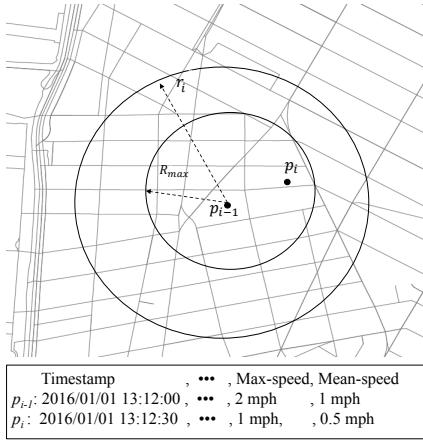


Fig. 5: Case when the adaptive trust-region R_{\max} less than the default search radius r_i .

Therefore, in our algorithm we define the emission probability as follows:

$$p(p_i|c_i^j) = p(d_j) = \frac{1}{\sqrt{2\pi\sigma_i^2}} \exp\left(\frac{-d_j^2}{2\sigma_i^2}\right), \quad (6)$$

where $d_j = \|p_i c_i^j\|$ is the distance between p_i and c_i^j , and σ_i is the assumed standard deviation of GPS positioning error. It is noteworthy that σ_i used in the emission probability (Eq. 6) is the same as the one used in the adaptive candidate search radius r_i (Eq. 2). The emission probability only uses the geometric information of a road network. Therefore, it fails to consider the GPS point's location context within an entire trajectory [55].

591 E. Transition probability

The transition probability $p(c_i^j|c_{i-1}^k)$ uses the topological information of the road network and evaluates the probability that a vehicle travels from the projected point c_{i-1}^k to c_i^j when it moves from data point p_{i-1} to p_i . The estimation of the transition probability can be assumed based on map data and GPS data points.

In the work of Koller et al. [61], which adopts the Dijkstra-based map-matching technique described in Section II, each transition path (c_{i-1}^k, c_i^j) is given a cost rather than a probability. (i.e., the higher the cost, the lower the transition probability is). The cost C_i^{kj} is estimated based on the route distance, calculated by the shortest path algorithms, and the distance between two GPS data points. The cost function is defined as follow:

$$C_i^{kj} = \beta * \frac{w(c_{i-1}^k, c_i^j)}{d(p_{i-1}, p_i)}, \quad (7)$$

where β is a pre-learning parameter for each road network, which in most applications may be impossible to determine, when ground truth trajectory data

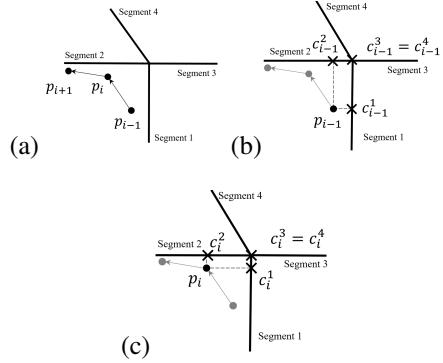


Fig. 6: Map-matching problem at road intersections.

is unavailable. $w(c_{i-1}^k, c_i^j)$ is the route distance and $d(p_{i-1}, p_i)$ is the distance between the consecutive data points. This transition probability function may lead to incorrect matching at road intersections as demonstrated in Figure 6. Figure 6(a) shows a sequence of trajectory points for a vehicle approaching an intersection from South to West. Figures 6(b) and 6(c) depict respectively the candidate projected points of p_{i-1} and p_i . Eq. 7 tends to favor a pair of c_{i-1}^3 and c_i^3 with zero cost $C_{i-1}^3 = 0$. The real matching pair (c_{i-1}^1, c_i^2) with $C_i^{12} > 0$ will never be chosen by Dijkstra when a different candidate pair with zero cost exists.

Similarly, Lou et al. [55] uses the transition probability, defined as follows:

$$p(c_i^j|c_{i-1}^k) = V(c_{i-1}^k, c_i^j) = \frac{d(p_{i-1}, p_i)}{w(c_{i-1}^k, c_i^j)}, \quad (8)$$

which might lead to the similar matching problem at an intersection since the shortest path $w(c_{i-1}^3, c_i^3)$ equals to zero and $V(c_{i-1}^3, c_i^3) = \infty$. It is noteworthy that the above-mentioned transition probability functions are reasonable enough to visualize the matched path of a vehicle, if the user is only interested in knowing the correct trajectory of a vehicle or minimizing GPS positioning errors. However, when it is important to link GPS data points with the correct road segments (e.g., probe-vehicle based traffic condition analysis and street-asset information collection), it is critical to find correctly-matched road segments, in addition to minimizing GPS positioning error and estimating matched trajectories.

Therefore, we propose a novel transition probability that can improve the accuracy of finding correct road segments, defined as follows:

$$p(c_i^j|c_{i-1}^k) = \frac{1}{d_d} \quad (9)$$

where d_d is the distance discrepancy estimation for each pair of from-to road segments. It represents the absolute difference between the shortest route from c_{i-1}^k to c_i^j and

the distance between p_{i-1} and p_i , which is calculated as follows:

$$d_d = \left| w(c_{i-1}^k, c_i^j) - d(p_{i-1}, p_i) \right| \quad (10)$$

where $w(c_{i-1}^k, c_i^j)$ is the length of the shortest path between the projected points c_{i-1}^k and c_i^j ; and $d(p_{i-1}, p_i)$ is the distance $\|p_{i-1}p_i\|$ between data points p_{i-1} and p_i . It was proven in the work of Newson and Krumm [74] that these two distances are highly correlated. In this paper, we propose in Eq. 11 using the OBD-II vehicle average speed between p_{i-1} and p_i to estimate $d(p_{i-1}, p_i)$, in an attempt to minimize the distance discrepancy d_d and thus accurately evaluate each pair of from-to road segments.

$$d_d = \min \left\{ \begin{array}{l} \left| w(c_{i-1}^k, c_i^j) - v_{\text{mean},i} \times \Delta t_i \right| \\ \left| w(c_{i-1}^k, c_i^j) - \|p_{i-1}p_i\| \right| \end{array} \right\} \quad (11)$$

634 The OBD-II average speed better represents the actual
635 traveled distance especially at intersections and low-
636 speed areas where the GPS noise is high. The proposed
637 transition probability becomes more robust for finding
638 the correct sequence of road segments at an intersection.
639 For example, in Figures 6(b) and 6(c), the real matching
640 pair (c_{i-1}^1, c_i^2) is better weighted when comparing the
641 shortest path $w(c_{i-1}^1, c_i^2)$ with $v_{\text{mean},i} \times \Delta t_i$ rather than
642 $\|p_{i-1}p_i\|$. Also, the transition probability that a vehicle
643 switches from segment 3 to segment 3, $p(c_i^3|c_{i-1}^3)$,
644 becomes low since $w(c_{i-1}^3, c_i^3)$ is zero; and therefore the
645 discrepancy d_d is high. Unlike the transition probability
646 that requires parameter tuning [61], [74], the proposed
647 transition probability does not require any parameter
648 learning process. Due to the simplicity of the computa-
649 tion, the transition probability of Eq. 9 is not normalized
650 to the total probability $\sum_{j=1}^{n_j} p(c_i^j|c_{i-1}^k)$, as the authors
651 noticed that the omission of the normalization does not
652 affect the algorithms' performance in Section V.

653 Due to the GPS measurement noise, a certain GPS
654 data point p_i can fall behind a previous data point p_{i-1} .
655 This loop-creation phenomenon, which is a common
656 problem in map-matching, is frequently observed in
657 metropolitan cities, in particular low-speed, congested
658 regions with high GPS noise. Examples are shown in
659 Figure 7. In Figure 7(b), the algorithm will disregard the
660 candidates c_1^j and c_2^j by comparing the direction of $\vec{c}_1^j \vec{c}_2^j$
661 to the traffic direction of segment j which is in this case
662 in the direction $V_j^1 V_j^2$, and thus having $\vec{c}_1^j \vec{c}_2^j \cdot \vec{V}_j^1 \vec{V}_j^2 < 0$,
663 $w(c_{i-1}^1, c_i^2)$ is set to ∞ .

664 The suggested transition probability in Eq. 9 is robust
665 to extreme noise in dense urban environments like Man-
666 hattan, since computing the inverse of the difference of
667 two distances returns a large number. This makes the
668 weights of each candidate pair (c_{i-1}^k, c_i^j) differ greatly

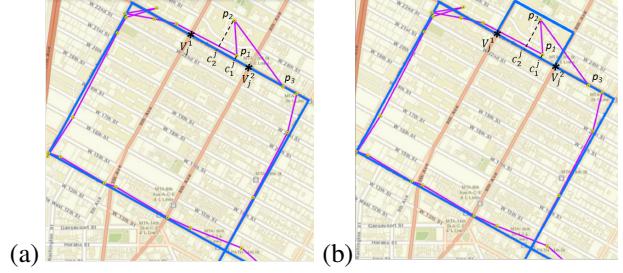


Fig. 7: (a) map-matching at closely spaced points (b) map-matching at closely spaced points with loop formation.

Fig. 8: Map-matching in an extremely noisy region: The green path is chosen by the map-matching algorithm over the blue path.

669 from each other. Figure 8 shows an example of a
670 vehicle driving on 5th Avenue in Manhattan. One can
671 clearly see how, despite the fact that the candidate pair
672 (c_{i-1}^2, c_i^2) is far in distance from $\|p_{i-1}p_i\|$, (c_{i-1}^2, c_i^2)
673 was successfully chosen by our map-matching algorithm
674 over (c_{i-1}^1, c_i^1) since $d_{d,2} = |w(c_{i-1}^2, c_i^2) - d(p_{i-1}, p_i)|$ is
675 less than $d_{d,1} = |w(c_{i-1}^1, c_i^1) - d(p_{i-1}, p_i)|$ and therefore
676 $p(c_i^2|c_{i-1}^2) > p(c_i^1|c_{i-1}^1)$.

F. Most likely Path Selection

677 Following the Markov assumption, a model state c_i^j
678 depends only on the previous state c_{i-1}^k . And the like-
679 lihood of emitting p_i depends only on the current state.
680 Using Bayes' theorem and the Markov chain assumption,
681 the probability $p(c_i^j|p_{0:i})$ of matching the data point p_i
682 to candidate c_i^j , given the position history of the data
683 points $p_{0:i}$ can be expressed as:

$$p(c_i^j|p_{0:i}) \propto p(p_i|c_i^j) p(c_i^j|p_{0:i})$$

$$= p(p_i | c_i^j) \sum_{k=1}^N p(c_i^j | c_{i-1}^k) p(c_{i-1}^k | p_{0:i}) \quad (12)$$

685 where $p(p_i|c_i^j)$ and $p(c_i^j|c_{i-1}^k)$ are respectively, the emission
 686 and transition probabilities and can be calculated
 687 from Eqs. 6 and 9, respectively; and the term $p(c_{i-1}^k|p_{0:i})$
 688 represents a recursive element. To initialize the probability
 689 $p(c_{i-1}^k|p_{0:i})$, this algorithm needs to obtain the first
 690 two points $p_{0:1}$.

691 The most likely path link can be obtained based on the
 692 maximum a posteriori (MAP) estimation, meaning that
 693 we need to select a sequence of projected data points
 694 (matched road segments) that maximize the probability
 695 $p(c_i^j | p_{0:i})$. The most likely path is identified as follows:

$$c_i^j = \arg \max_{c_i^j} p(c_i^j | p_{0:i}), \quad (13)$$

To solve this maximization problem, one can use the Viterbi algorithm defined in Forney [57] to find the sequential combinations of road segments that maximize the probability $p(c_i^j | p_{0:i})$. However, as mentioned earlier, we are altering the problem to a Dijkstra least-cost path problem by building a virtual graph $G_V(c_i^j, C_i^{k^j})$ shown in Figure 9, where the candidate points corresponding to the GPS raw points are the nodes of G_V and the intermediate path $P(c_{i-1}^k, c_i^j)$ between every pair (c_{i-1}^k, c_i^j) are the edges. Since our algorithm relies on the Dijkstra algorithm to solve the shortest path problem, the complexity of the map-matching algorithm is $O(E \log V)$, where E and V are the total number of edges and vertices in the virtual graph, respectively. We propose the cost function below to compute $C_i^{k^j}$ for every edge (c_{i-1}^k, c_i^j) in G_V :

$$C_i^{kj} = \frac{1}{T_i^{kj}}, \quad (14)$$

where,

$$T_i^{kj} = p(p_i | c_i^j) p(c_i^j | c_{i-1}^k), \quad (15)$$

712 for every candidate pair (c_{i-1}^k, c_i^j) , with $p(p_i|c_i^j)$ and
 713 $p(c_i^j|c_{i-1}^k)$ computed from Eqs. 6 and 9, respectively.

The intuition behind our cost function in Eq. 14 is that computing the inverse of a low probability value produces a high cost; therefore, the corresponding path is not likely to be selected by the shortest path algorithm.

The network graph $G_V(c_i^j, C_i^{kj})$ is built on a 20-GPS point sliding window to avoid Dijkstra's computational overhead. However, we made the windows connected in order to have consistent matching at the first few nodes of each window. To explore this practice, Figure 10 shows three consecutive windows or in other words three Dijkstra's networks. Window 1 performs the map-matching of GPS point 1 to GPS point 20. Instead of starting Window 2 from point 21, we stepped back five

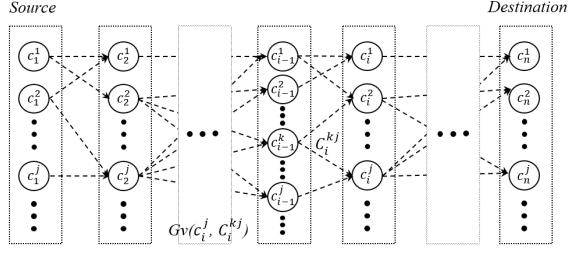


Fig. 9: $G_V(c_i^j, C_i^{kj})$ virtual graph of the Dijkstra least-cost path algorithm.

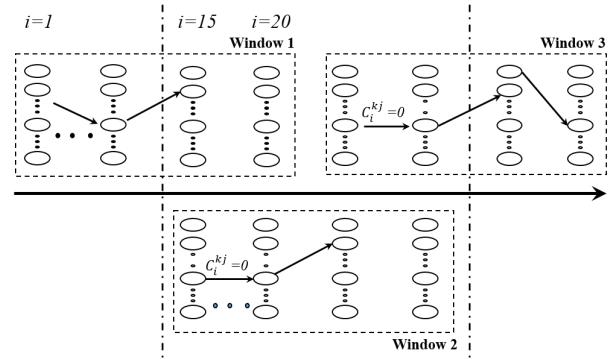


Fig. 10: Dijkstra's connected network windows.

solved GPS points and started Window 2 from point 15. We set the cost C_i^{kj} of the previously matched edges 15 to 20 from Window 1 to zero so that they will definitely be selected by the next map-matching Dijkstra's of Window 2. This connection also helps avoid incorrect mixed matching between main and parallel service roads. The second window will not switch the path of the vehicle to a service road even though the GPS data are closer to it given the edited cost of edges from the previous window.

In summary, for each pair of GPS points (p_{i-1}, p_i) , the algorithm gets the neighboring candidate points from the digital map, and sends a request to a router database in Redis [75] in order to retrieve the corresponding shortest routes to compute the parameter $w(c_{i-1}^k, c_i^j)$ of Eq. 10. The procedure depicted in Figure 10 is repeated until the graph G_V is generated.

G. Building Router

In this section, the detailed design of the router is discussed. Building the router is a one-time exercise, executed before starting to feed trajectories to the map-matching algorithm. The router can be compiled on any digital map. This makes it possible for users to map their raw data and execute the patched path in their proper digital map index scheme. Since vehicles travel on the same predetermined road network, shortest path

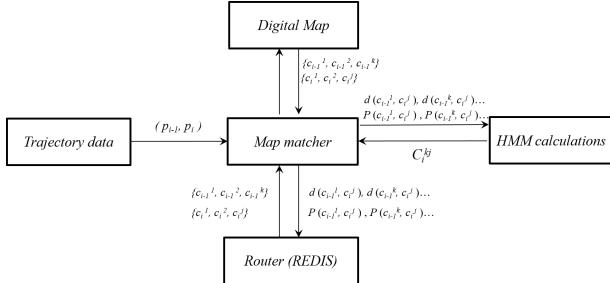


Fig. 11: Map-matching algorithm architecture.

calculations between two nodes can be precomputed and saved in a database. Dijkstra's shortest path algorithm was used as a routing tool to solve the network. In order to speed up lookup operations for the map-matching algorithm, by setting a limit on the search radius R_{router} , only routes between two nodes that are possible to visit within a 30-seconds interval (the sampling interval of the testing data) were solved and stored. For instance, there is no need to know the route of a node in lower Manhattan to a destination node in uptown Manhattan. To ensure a robust database, a limit on R_{router} was set as follows:

$$R_{\text{router}} = V_{\text{max}} \times \Delta t \times \text{SF}, \quad (16)$$

765 where $V_{\max} = 70$ mph, $\Delta t = 30$ sec and SF is a
 766 safety factor = 1.2. The calculation above results in a
 767 maximum router radius of $R_{\text{router}} = 0.7$ miles. In other
 768 words, we solve the shortest path from node i to every
 769 node that is at most 0.7 miles away. A smart indexing
 770 technique is established in this paper to support faster
 771 lookup and retrieval from the Redis routing database.
 772 This technique relies on graph partitioning of the New
 773 York City road network. Each pair of noisy points are a
 774 few seconds apart, which means that these points are a
 775 few meters away from each other. In consequence, the
 776 corresponding set of source and destination candidate
 777 points is located in the same geographical area. There-
 778 fore, it is possible to partition the graph $G = (V, E)$
 779 into smaller components with specific properties. The
 780 borough information of every node in V that is encoded
 781 in the map GIS geodatabase, is used to partition the
 782 graph network into five smaller sub-networks as shown
 783 in Figure 12, and thus store the routes in five smaller
 784 databases (one database for each borough: Manhattan,
 785 Brooklyn, the Bronx, Staten Island, and Queens). As
 786 a result, Redis can perform the lookup operations in a
 787 smaller database every time it receives a routing request.

788 H. Vertical Scalability of a Map-matching System

789 The above map-matching algorithm and the custom-
790 built router were combined in one map-matching system.

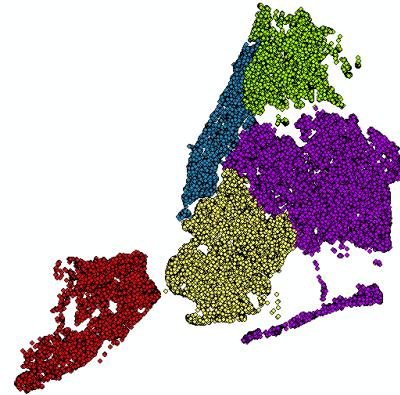


Fig. 12: The graph $G = (V, E)$ is partitioned into smaller sub-networks based on the borough information. Every node in $G = (V, E)$ is colored based on the borough it belongs to: Manhattan, Brooklyn, the Bronx, Queens and Staten Island.

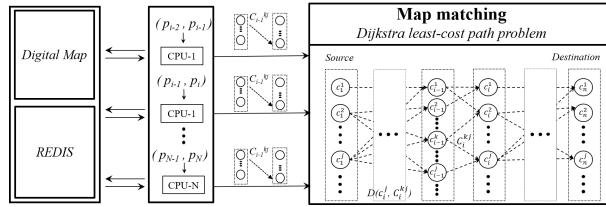


Fig. 13: Map-matching system.

Figure 13 shows the scalable map-matching system that is architected in Python. Scalability is the ability of a computer application or software to continue to be fast when it is changed in size or volume [76]. In this context, a change in size means when the road trajectory gets bigger.

In this paper, vertical scalability of the algorithm is presented, which is defined as the maximum use of the available resources on a computer as opposed to horizontal scalability which is speeding up the algorithm by forming a cluster of computing nodes [77]. The time-consuming part of the map-matching system is the generation of the virtual graph G_V . HMM parameters calculation for each pair (p_{i-1}, p_i) at the iteration i is independent of those corresponding to (p_{i-2}, p_{i-1}) at the iteration $i-1$. Also, when solving the least cost path problem using Dijkstra's algorithm, the least-cost calculations for each pair of candidate source and destination nodes are independent. These two observations made it possible for the algorithm to be vertically scalable. And thus parallel computing was applied as shown in Figure 13.

813 V. PERFORMANCE EVALUATION AND 814 APPLICATION

815 **Ground Truth:** The algorithm is evaluated using
816 ground truth trajectories that the authors collected in
817 New York City. Each trajectory represents 15 to 30
818 minutes of driving. An in-vehicle sensing hardware
819 package is developed and comprises a Raspberry PI 3
820 Model B+ microcomputer, a microSD 32GB SD card, an
821 OBDCheck BLE OBD-II scanner, and a GPS module.
822 This sensor configuration aims to collect timestamps,
823 GPS positioning, and instantaneous speed data. A USB
824 car charger was plugged into the cigarette lighter socket
825 of the vehicle to provide power to the sensing hardware
826 package. In order to evaluate the performance of the
827 algorithm at low-sampling rate, the data collected was
828 down-sampled to one sample every 30 seconds with a
829 position, a maximum speed value for the past 30 seconds,
830 and an average traveled speed value. When the maximum
831 OBD-II speed value is less than 2 mph within the last 30
832 seconds, a minimum speed value of 2 mph was adopted
833 in Eq. 5 to avoid very small trust-regions.

834 **Evaluation Criteria:** The map-matching algorithm is
835 evaluated in terms of the matching quality. The matching
836 quality is measured using an accuracy metric defined as
837 follows:

$$838 A_{cc} = \frac{N_c}{N_t} \quad (17)$$

839 where N_c is the number of correctly matched GPS points
840 and N_t is the number of total GPS points. Also, the
841 algorithm is validated using a reliable off-the-shelf map-
842 matching platform: BMW Car IT Barefoot library [45].
843 The authors would like to note that the comparison with
844 Barefoot is made to validate the proposed algorithm with
845 a commonly-used method to show the benefit of includ-
846 ing in-vehicle speed data into the transition probability
847 function, as well as computing the search trust-region us-
848 ing the maximum speed value. In general, a comparison
849 between map-matching algorithms is challenging since
850 map data are different and could be denser in one map
851 than the other. Also, the algorithm's accuracy may vary
852 between cities, depending on their road networks, as well
853 as between data sets depending on the GPS sampling
854 rate. In this study, we challenged an extreme scenario
855 by collecting telematics data in New York City's urban
856 canyons, with a GPS sampling rate of one sample per
857 30 seconds.

858 **Barefoot Algorithm Background Information:**

859 The Barefoot algorithm relies on Newson and
860 Krumm [74]. The latter fits a negative exponential dis-

861 tribution to the transition probability V shown in Eq. 18
862 below:

$$863 V_{\text{barefoot}}(c_{i-1}^k, c_i^j) = \frac{1}{\beta} \exp \frac{-B(c_{i-1}^k, c_i^j)}{\beta} \quad (18)$$

864 where β is an experimental road-network parameter and
865 $B(c_{i-1}^k, c_i^j)$ defined in Eq. 19 below, is the difference
866 between the shortest route from c_{i-1}^k to c_i^j and the
867 distance between p_{i-1} and p_i .

$$868 B(c_{i-1}^k, c_i^j) = |w(c_{i-1}^k, c_i^j) - \|p_{i-1}, p_i\| | \quad (19)$$

869 Barefoot uses Eq. 18 for their transition probability,
870 but redefines $B(c_{i-1}^k, c_i^j)$ by using instead a time-priority
871 route cost function detailed in Eq. 20 and defines β as
872 the GPS sampling time interval (30 sec here).

$$873 B_{\text{redefined}}(c_{i-1}^k, c_i^j) = \frac{w(c_{i-1}^k, c_i^j)}{V_{\max}} \times \text{PF} \quad (20)$$

874 where V_{\max} is the road speed limit from OSM map data
875 and PF is a road type factor that favors main roads
876 over local roads. As mentioned earlier, when working
877 with Barefoot, we tuned the σ value for the emission
878 probability in the Barefoot library from the default value
879 5 meters to match the $\sigma = 70$ meters value used in our
880 algorithm.

881 **Experimental results:** Table I shows the number of
882 mismatched points out of 589 GPS data points for every
883 algorithm.

884 TABLE I: Number of mismatched points for the pro-
885 posed algorithm versus Barefoot algorithm.

	# of mismatched points	Accuracy(%)
Our Map-matching	15	97.45
Barefoot	25	95.76

886 Figure 14 shows a comparison example between
887 our map-matching (Figure 14(b)), and Barefoot (Figure
888 14(c)). The novel transition probability implemented
889 in our algorithm provides a very good balance between
890 the GPS noise and the shortest path probabilities. Figure
891 14-b shows how our map-matching is robust to GPS
892 measurement errors at (p_1, \dots, p_6) . The Barefoot time-
893 priority strategy in computing the transition probability
894 could lead to inaccurate matching at locations where
895 raw GPS positions are close to each other due to traffic
896 congestion as shown in Figure 14(c). In other words,
897 Barefoot starts creating loops. However, the proposed
898 transition probability includes the true mean speed of
899 the vehicle assisting the algorithm in detecting that the
900 vehicle cannot travel the entire loop within the 30-
901 seconds interval with a low speed.

902 The authors acknowledge that cost functions that value
903 road priority (Eq. 20), are essential in locations where
904 major roads and service roads are in parallel with close

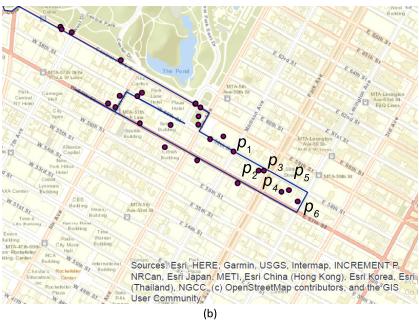


Fig. 14: Example 1: comparing our algorithm's output with Barefoot's output and ground truth data. (a) Ground truth trajectory with raw GPS points (b) our map-matching result (c) Barefoot's output.

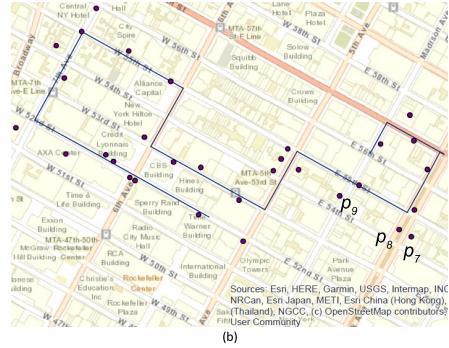


Fig. 15: Example 2: comparing our algorithm's output with Barefoot's output and ground truth data. (a) Ground truth trajectory with raw GPS points (b) our map-matching result (c) Barefoot's output.

proximity. On the other hand, taking road priority into account could cause a mismatch at other locations where roads are proximate, but are not in a parallel configuration. In Figure 15(b), between p_7 and p_9 , Barefoot went down to East 53rd St. instead of continuing on East 55th street since the former is a priority road. The proposed transition probability in Eq. 9 will assign a low probability for going down to East 53rd St., by comparing the shortest path with the average vehicle traveled distance. The road priority information is not encoded in the digital map used in our study, therefore we could not investigate the validity of including road priority information in our algorithm.

VI. CONCLUSION

As map-matching becomes critical for any traffic and driver behavior assessment relying on GPS-collected data, it is essential to have robust map-matching algorithms for urban canyons. In this paper, we described a novel OBD-data-assisted algorithm for map-matching. The algorithm is evaluated using ground truth data collected by the authors' developed telematics device. The proposed algorithm is proven to be more robust at a low sampling rate and high GPS noise with an accuracy of 97.45% when GPS noise is up to 70 meters. This scalable system executed in Python makes use of OBD-II parameters directly sampled from the vehicles, such as the maximum and mean speeds, in conjunction with GPS data to get more accurate map-matching. The map-matching algorithm uses in the backend a smart query system for the shortest routes. The map-matching algorithm can relate non-spatial safety-related driver behaviors to road networks. For example, OBD speed, hard-braking, and hard-acceleration events, do not have spatiotemporal information. However, it is practically valuable to understand these behaviors based on the road network, particularly for understanding city-scale public safety and design. Thus, the map-matching can help in creating driver behavior indexes (DBIs) for each road segment, such as vehicle speed profiles (e.g., 85th percentile speed, mean speed), and harsh driving metrics (e.g., harsh braking and acceleration rates). Road-segment-level DBIs can be further analyzed to understand their relations to crash data. The data summarization of connected vehicle data on map data can be an impactful V2B application that can potentially benefit city planners' street improvement projects and corridor safety metrics generation. As a future work, the traffic data collected by the current intelligent transportation systems (e.g., electronic toll collection systems, spot-speed radar) at selective locations, will be used to validate the accuracy of traffic flow obtained by this work from matching connected vehicle data with the road segments.

ACKNOWLEDGEMENT

We would like to thank the New York City Department of Transportation for their financial support and guidance for this study. This work was partially supported by the U.S. National Science Foundation (OAC-1948066).

REFERENCES

[1] Z. Xiong, H. Sheng, W. Rong, and D. E. Cooper, "Intelligent transportation systems for smart cities: a progress review," *Science China Information Sciences*, vol. 55, no. 12, pp. 2908–2914, 2012.

[2] S. I. Guler, M. Menendez, and L. Meier, "Using connected vehicle technology to improve the efficiency of intersections," *Transportation Research Part C: Emerging Technologies*, vol. 46, pp. 121–131, 2014.

[3] M. Gerla, E.-K. Lee, G. Pau, and U. Lee, "Internet of vehicles: From intelligent grid to autonomous cars and vehicular clouds," in *Internet of Things (WF-IoT), 2014 IEEE World Forum on*. IEEE, 2014, pp. 241–246.

[4] F. Yang, S. Wang, J. Li, Z. Liu, and Q. Sun, "An overview of internet of vehicles," *China communications*, vol. 11, no. 10, pp. 1–15, 2014.

[5] N. Lu, N. Cheng, N. Zhang, X. Shen, and J. W. Mark, "Connected vehicles: Solutions and challenges," *IEEE internet of things journal*, vol. 1, no. 4, pp. 289–299, 2014.

[6] K. M. Alam, M. Saini, and A. El Saddik, "Toward social internet of vehicles: Concept, architecture, and applications," *IEEE access*, vol. 3, pp. 343–357, 2015.

[7] M. Amadeo, C. Campolo, and A. Molinaro, "Information-centric networking for connected vehicles: a survey and future perspectives," *IEEE Communications Magazine*, vol. 54, no. 2, pp. 98–104, 2016.

[8] O. Kaiwartya, A. H. Abdullah, Y. Cao, A. Altameem, M. Prasad, C.-T. Lin, and X. Liu, "Internet of vehicles: Motivation, layered architecture, network model, challenges, and future aspects," *IEEE Access*, vol. 4, pp. 5356–5373, 2016.

[9] F. Cunha, L. Villas, A. Boukerche, G. Maia, A. Viana, R. A. Mini, and A. A. Loureiro, "Data communication in vanets: Protocols, applications and challenges," *Ad Hoc Networks*, vol. 44, pp. 90–103, 2016.

[10] J. Wan, J. Liu, Z. Shao, A. Vasilakos, M. Imran, and K. Zhou, "Mobile crowd sensing for traffic prediction in internet of vehicles," *Sensors*, vol. 16, no. 1, p. 88, 2016.

[11] T. T. Dandala, V. Krishnamurthy, and R. Alwan, "Internet of vehicles (iov) for traffic management," in *2017 International Conference on Computer, Communication and Signal Processing (ICCCSP)*. IEEE, 2017, pp. 1–4.

[12] F. Kuhlman, D. H. Sarma, and A. P. Harback, "Vehicle parking spot locator system and method using connected vehicles," Mar. 8 2012, uS Patent App. 13/293,761.

[13] A. Mammeri, A. Boukerche, and Z. Tang, "A real-time lane marking localization, tracking and communication system," *Computer Communications*, vol. 73, pp. 132–143, 2016.

[14] J. H. Lemelson and R. D. Pedersen, "Gps vehicle collision avoidance warning and control system and method," Nov. 9 1999, uS Patent 5,983,161.

[15] N. Kaempchen, B. Schiele, and K. Dietmayer, "Situation assessment of an autonomous emergency brake for arbitrary vehicle-to-vehicle collision scenarios," *IEEE Transactions on Intelligent Transportation Systems*, vol. 10, no. 4, pp. 678–687, 2009.

[16] X. Yang, L. Liu, N. H. Vaidya, and F. Zhao, "A vehicle-to-vehicle communication protocol for cooperative collision warning," in *The First Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services, 2004. MOBIQUITOUS 2004*. IEEE, 2004, pp. 114–123.

[17] H.-S. Tan and J. Huang, "Dgps-based vehicle-to-vehicle cooperative collision warning: Engineering feasibility viewpoints," *IEEE Transactions on Intelligent Transportation Systems*, vol. 7, no. 4, pp. 415–428, 2006.

[18] J. Eriksson, L. Girod, B. Hull, R. Newton, S. Madden, and H. Balakrishnan, "The pothole patrol: using a mobile sensor network for road surface monitoring," in *Proceedings of the 6th international conference on Mobile systems, applications, and services*. ACM, 2008, pp. 29–39.

[19] A. Ghose, P. Biswas, C. Bhaumik, M. Sharma, A. Pal, and A. Jha, "Road condition monitoring and alert application: Using in-vehicle smartphone as internet-connected sensor," in *2012 IEEE international conference on pervasive computing and communications workshops*. IEEE, 2012, pp. 489–491.

[20] E. P. Dennis, Q. Hong, R. Wallace, W. Tansil, and M. Smith, "Pavement condition monitoring with crowdsourced connected

1020 vehicle data," *Transportation Research Record*, vol. 2460, no. 1, 1090
 1021 pp. 31–38, 2014. 1091

[21] J. Liu and A. J. Khattak, "Delivering improved alerts, warnings, 1022 and control assistance using basic safety messages transmitted 1023 between connected vehicles," *Transportation research part C: 1024 emerging technologies*, vol. 68, pp. 83–100, 2016. 1025

[22] B. Wali, A. J. Khattak, H. Bozdogan, and M. Kamrani, "How 1026 is driving volatility related to intersection safety? a bayesian 1027 heterogeneity-based analysis of instrumented vehicles data," 1028 *Transportation Research Part C: Emerging Technologies*, vol. 92, 1029 pp. 504–524, 2018. 1030

[23] M. Faezipour, M. Nourani, A. Saeed, and S. Addepalli, "Progress 1031 and challenges in intelligent vehicle area networks," *Communications 1032 of the ACM*, vol. 55, no. 2, pp. 90–100, 2012. 1033

[24] M. Weber, L. Liu, K. Jones, M. J. Covington, L. Nachman, 1034 and P. Pesti, "On map matching of wireless positioning data: 1035 a selective look-ahead approach," in *Proceedings of the 18th 1036 SIGSPATIAL International Conference on Advances in Geographic 1037 Information Systems*. ACM, 2010, pp. 290–299. 1038

[25] K. Jones, L. Liu, and F. Alizadeh-Shabdz, "Improving wireless 1039 positioning with look-ahead map-matching," in *2007 Fourth 1040 Annual International Conference on Mobile and Ubiquitous 1041 Systems: Networking & Services (MobiQuitous)*. IEEE, 2007, 1042 pp. 1–8. 1043

[26] K. Perera, T. Bhattacharya, L. Kulik, and J. Bailey, "Trajectory 1044 inference for mobile devices using connected cell towers," in 1045 *Proceedings of the 23rd SIGSPATIAL International Conference 1046 on Advances in Geographic Information Systems*. ACM, 2015, 1047 p. 23. 1048

[27] A. El-Rabbany, *Introduction to GPS: the global positioning 1049 system*. Artech house, 2002. 1050

[28] M. Topo, "How GPS Works," 2019. [Online]. Available: 1051 [https://www.maptoaster.com/maptoaster-topo-nz/articles/1052 how-gps-works/how-gps-works.html](https://www.maptoaster.com/maptoaster-topo-nz/articles/how-gps-works/how-gps-works.html) 1053

[29] M. Farsi, K. Ratcliff, and M. Barbosa, "An overview of 1054 controller area network," *Computing & Control Engineering Journal*, 1055 vol. 10, no. 3, pp. 113–120, 1999. 1056

[30] K. H. Johansson, M. Törngren, and L. Nielsen, "Vehicle 1057 applications of controller area network," in *Handbook of networked 1058 and embedded control systems*. Springer, 2005, pp. 741–765. 1059

[31] M. Di Natale, H. Zeng, P. Giusto, and A. Ghosal, *Understanding 1060 and Using the Controller Area Network Communication Protocol: 1061 Using the Controller Area Network Communication Protocol: Theory 1062 and Understanding and Using the Controller Area Network 1063 Communication Protocol: Theory and Practice*. Springer, 1064 2012. 1065

[32] D. Sik, T. Balogh, P. Ekler, and L. Lengyel, "Comparing OBD 1066 and CAN sampling on the go with the SensorHUB framework," 1067 *Procedia Engineering*, vol. 168, pp. 39–42, 2016. 1068

[33] C.-M. Tseng, W. Zhou, M. Al Hashmi, C.-K. Chau, S. G. 1069 Song, and E. Wilhelm, "Data extraction from electric vehicles 1070 through OBD and application of carbon footprint evaluation," in 1071 *Proceedings of the Workshop on Electric Vehicle Systems, Data, 1072 and Applications*. ACM, 2016, p. 1. 1073

[34] Wikipedia contributors, "OBD-II PIDs," Available: 1074 [https://en.wikipedia.org/w/index.php?title=OBD-II_PIDs&1075 oldid=848566847](https://en.wikipedia.org/w/index.php?title=OBD-II_PIDs&oldid=848566847), Jul. 2018, [Accessed: 16- July- 2018]. 1076

[35] S.-C. Hu, Y.-C. Wang, C.-Y. Huang, and Y.-C. Tseng, "A 1077 vehicular wireless sensor network for CO₂ monitoring," in *Sensors, 1078 2009 IEEE*. IEEE, 2009, pp. 1498–1501. 1079

[36] S.-C. Hu, Y.-C. Wang, C.-Y. Huang, Y.-C. Tseng, L.-C. Kuo, 1080 and C.-Y. Chen, "Vehicular sensing system for CO₂ monitoring 1081 applications," in *IEEE VTS Asia pacific wireless communications 1082 symposium (APWCS'09)*, 2009, pp. 168–171. 1083

[37] W. Zeng, T. Miwa, and T. Morikawa, "Prediction of vehicle 1084 CO₂ emission and its application to eco-routing navigation," 1085 *Transportation Research Part C: Emerging Technologies*, vol. 68, 1086 pp. 194–214, 2016. 1087

[38] G. Alessandroni, A. Carini, E. Lattanzi, V. Freschi, and A. Bogliolo, "A study on the influence of speed on road roughness 1088 1089

sensing: the SmartRoadSense case," *Sensors*, vol. 17, no. 2, p. 305, 2017. 1090

[39] J. Jang, Y. Yang, A. W. Smyth, D. Cavalcanti, and R. Kumar, 1091 "Framework of data acquisition and integration for the detection 1092 of pavement distress via multiple vehicles," *Journal of Computing 1093 in Civil Engineering*, vol. 31, no. 2, p. 04016052, 2016. 1094

[40] J. Jang, A. W. Smyth, Y. Yang, and D. Cavalcanti, "Road surface 1095 condition monitoring via multiple sensor-equipped vehicles," in 1096 *Computer Communications Workshops (INFOCOM WKSHPS), 1097 2015 IEEE Conference on*. IEEE, 2015, pp. 43–44. 1098

[41] S. T. Ng, F. J. Xu, Y. Yang, and M. Lu, "A master data 1099 management solution to unlock the value of big infrastructure 1100 data for smart, sustainable and resilient city planning," *Procedia 1101 Engineering*, vol. 196, pp. 939–947, 2017. 1102

[42] A. J. Khattak and B. Wali, "Analysis of volatility in driving 1103 regimes extracted from basic safety messages transmitted 1104 between connected vehicles," *Transportation research part C: 1105 emerging technologies*, vol. 84, pp. 48–73, 2017. 1106

[43] X. Zeng, K. N. Balke, and P. Songchitruksa, "Potential connected 1107 vehicle applications to enhance mobility, safety, and environmental 1108 security," Southwest Region University Transportation Center, 1109 Texas Transportation ..., Tech. Rep., 2012. 1110

[44] F. Jiménez, S. Monzón, and J. E. Naranjo, "Definition of an 1111 Enhanced Map-Matching Algorithm for Urban Environments 1112 with Poor GNSS Signal Quality," *Sensors (Basel)*, vol. 16, 1113 no. 2, Feb. 2016. [Online]. Available: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4801570/> 1114

[45] B. C. I. GmbH, "bmwcarit/barefoot: Java library," 2015. 1115 [Online]. Available: <https://github.com/bmwcarit/barefoot> 1116

[46] N. R. Velaga, M. A. Quddus, and A. L. Bristow, "Developing 1117 an enhanced weight-based topological map-matching algorithm 1118 for intelligent transport systems," *Transportation Research Part 1119 C: Emerging Technologies*, vol. 17, no. 6, pp. 672–683, Dec. 1120 2009. [Online]. Available: <http://www.sciencedirect.com/science/article/pii/S0968090X09000667> 1121

[47] R. Toledo-Moreo, D. Bétaillé, and F. Peyret, "Lane-level integrity 1122 provision for navigation and map matching with gnss, dead 1123 reckoning, and enhanced maps," *IEEE Transactions on Intelligent 1124 Transportation Systems*, vol. 11, no. 1, pp. 100–112, 2009. 1125

[48] I. Szottka, "Particle filtering for lane-level map-matching at 1126 road bifurcations," in *16th International IEEE Conference on 1127 Intelligent Transportation Systems (ITSC 2013)*. IEEE, 2013, 1128 pp. 154–159. 1129

[49] Z. Tao, P. Bonnifait, V. Fremont, and J. Ibanez-Guzman, "Lane 1130 marking aided vehicle localization," in *16th International IEEE 1131 Conference on Intelligent Transportation Systems (ITSC 2013)*. IEEE, 2013, pp. 1509–1515. 1132

[50] Y. Gu, Y. Wada, L. Hsu, and S. Kamijo, "Vehicle self-localization 1133 in urban canyon using 3d map based gps positioning and vehicle 1134 sensors," in *2014 International Conference on Connected Vehicles 1135 and Expo (ICCVE)*. IEEE, 2014, pp. 792–798. 1136

[51] K. Shunsuke, G. Yanlei, and L.-T. Hsu, "Gnss/ins/on-board 1137 camera integration for vehicle self-localization in urban canyon," 1138 in *2015 IEEE 18th International Conference on Intelligent 1139 Transportation Systems*. IEEE, 2015, pp. 2533–2538. 1140

[52] J. Rabe, M. Hübner, M. Necker, and C. Stiller, "Ego-lane 1141 estimation for downtown lane-level navigation," in *2017 IEEE 1142 Intelligent Vehicles Symposium (IV)*. IEEE, 2017, pp. 1152– 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160

[53] Y. Zheng and J. H. Hansen, "Lane-change detection from steering 1150 signal using spectral segmentation and learning-based classification," *IEEE Transactions on intelligent vehicles*, vol. 2, no. 1, pp. 14–24, 2017. 1151

[54] C. Y. Goh, J. Dauwels, N. Mitrovic, M. T. Asif, A. Oran, and P. Jaitlet, "Online map-matching based on hidden markov 1152 model for real-time traffic sensing applications," in *Intelligent 1153 Transportation Systems (ITSC), 2012 15th International IEEE 1154 Conference on*. IEEE, 2012, pp. 776–781. 1155

[55] Y. Lou, C. Zhang, Y. Zheng, X. Xie, W. Wang, and Y. Huang, 1156 "Map-matching for low-sampling-rate GPS trajectories," in *Proceedings of the 17th ACM SIGSPATIAL international conference 1157*. 1158

1161 *on advances in geographic information systems*. ACM, 2009,
1162 pp. 352–361.

1163 [56] A. Luo, S. Chen, and B. Xv, “Enhanced map-matching algorithm
1164 with a hidden markov model for mobile phone positioning,”
1165 *ISPRS International Journal of Geo-Information*, vol. 6, no. 11,
1166 p. 327, 2017.

1167 [57] G. D. Forney, “The viterbi algorithm,” *Proceedings of the IEEE*,
1168 vol. 61, no. 3, pp. 268–278, 1973.

1169 [58] L. Knapen, T. Bellemans, D. Janssens, and G. Wets, “Likelihood-
1170 based offline map matching of GPS recordings using global
1171 trace information,” *Transportation Research Part C: Emerging
1172 Technologies*, vol. 93, pp. 13–35, 2018.

1173 [59] M. Quddus and S. Washington, “Shortest path and vehicle
1174 trajectory aided map-matching for low frequency GPS data,”
1175 *Transportation Research Part C: Emerging Technologies*,
1176 vol. 55, pp. 328–339, Jun. 2015. [Online]. Available: <http://www.sciencedirect.com/science/article/pii/S0968090X15000728>

1177 [60] M. C.-H. Lin, F.-M. Huang, P.-C. Liu, Y.-H. Huang, and Y.-
1178 s. Chung, “Dijkstra-Based Selection for Parallel Multi-lanes
1179 Map-Matching and an Actual Path Tagging System,” in *Asian
1180 Conference on Intelligent Information and Database Systems*.
1181 Springer, 2016, pp. 499–508.

1182 [61] H. Koller, P. Widhalm, M. Dragaschnig, and A. Graser, “Fast
1183 hidden Markov model map-matching for sparse and noisy trajec-
1184 tories,” in *Intelligent Transportation Systems (ITSC), 2015 IEEE
1185 18th International Conference on*. IEEE, 2015, pp. 2557–2561.

1186 [62] M. Miler, D. Medak, and D. Odobasić, “The shortest path algo-
1187 rithm performance comparison in graph and relational database
1188 on a transportation network,” *Promet-Traffic&Transportation*,
1189 vol. 26, no. 1, pp. 75–82, 2014.

1190 [63] S. Mattheis, K. K. Al-Zahid, B. Engelmann, A. Hildisch,
1191 S. Holder, O. Lazarevych, D. Mohr, F. Sedlmeier, and R. Zinck,
1192 “Putting the car on the map: a scalable map matching system for
1193 the open source community,” *Informatik 2014*, 2014.

1194 [64] G. developers, “Snap to Roads | Roads API.” [Online]. Available:
1195 <https://developers.google.com/maps/documentation/roads/snap>

1196 [65] F. Marchal, “TrackMatching,” 2015. [Online]. Available: <https://mapmatching.3scale.net/>

1197 [66] G. Zhao, X. Zheng, Z. Yuan, and L. Zhang, “Spatial and temporal
1198 characteristics of road networks and urban expansion,” *Land*,
1199 vol. 6, no. 2, p. 30, 2017.

1200 [67] A. M. B. J. P. L.-H. Angel, Shlomo and N. G. Sán-chez, *Atlas
1201 of urban expansion*. New York University Urban Expansion
1202 Program; United Nations Programme for Human Settlements;
1203 Lincoln Institute of Land Policy, 2016.

1204 [68] M. A. Quddus, W. Y. Ochieng, and R. B. Noland, “Current map-
1205 matching algorithms for transport applications: State-of-the art
1206 and future research directions,” *Transportation research part c:
1207 Emerging technologies*, vol. 15, no. 5, pp. 312–328, 2007.

1208 [69] J. Yang and L. Meng, “Feature engineering for map matching
1209 of low-sampling-rate gps trajectories in road network,” *arXiv
1210 preprint arXiv:1409.0797*, 2014.

1211 [70] J. S. Greenfeld, “Matching GPS observations to locations on
1212 a digital map,” in *81th annual meeting of the transportation
1213 research board*, vol. 1, 2002, pp. 164–173.

1214 [71] M. Hashemi and H. A. Karimi, “A critical review of real-time
1215 map-matching algorithms: Current issues and future directions,”
1216 *Computers, Environment and Urban Systems*, vol. 48, pp. 153–
1217 165, 2014.

1218 [72] S. E. Dreyfus, “An appraisal of some shortest-path algorithms,”
1219 *Operations research*, vol. 17, no. 3, pp. 395–412, 1969.

1220 [73] a. T. National Coordination Office for Space-Based Positioning,
1221 Navigation, “GPS.gov: GPS Accuracy,” 2017. [Online]. Available:
1222 <https://www.gps.gov/systems/gps/performance/accuracy/>

1223 [74] P. Newson and J. Krumm, “Hidden Markov map matching
1224 through noise and sparseness,” in *Proceedings of the 17th ACM
1225 SIGSPATIAL international conference on advances in geographic
1226 information systems*. ACM, 2009, pp. 336–343.

1227 [75] S. Sanfilippo, “Redis,” 2009. [Online]. Available: <https://redis.io/>

1228 [76] A. Sivasubramaniam, A. Singla, U. Ramachandran, and
1229 H. Venkateswaran, “An approach to scalability study of shared
1230 memory parallel systems,” *ACM SIGMETRICS Performance
1231 Evaluation Review*, vol. 22, no. 1, pp. 171–180, 1994.

1232 [77] J. Pokorny, “NoSQL databases: a step to database scalability
1233 in web environment,” *International Journal of Web Information
1234 Systems*, vol. 9, no. 1, pp. 69–82, 2013.

1235 1236

1237 **Patrick Alrassy, Member, IEEE** received the B.E. degree in Civil Engineering from the
1238 American University of Beirut in 2015 and the M.Sc.degree in Civil Engineering from
1239 the University of Texas at Austin in 2016, and the Ph.D. degree in Civil and Engineering
1240 mechanics from Columbia University in the City of New York in 2020. He is now a Data
1241 Engineer at Optimus Ride Inc., a company building software for the self-driving vehicle
1242 technology.

1243 1244

1244 1245

1245 1246

1246 1247

1247 1248

1248 **Jinwoo Jang, Member, IEEE** received his
1249 bachelor degree in Civil and Environmental Engineering from Kookmin University in
1250 South Korea and the M.Sc.degree and the Ph.D. degrees from Civil Engineering and
1251 Engineering Mechanics from Columbia University in the City of New York. He is now an
1252 Assistant Professor in the Department of Civil, Environmental and Geomatics Engineering
1253 (CEGE) at Florida Atlantic University. He is also jointly appointed with the
1254 Institute for Sensing and Embedded Network Systems Engineering (I-
1255 SENSE) as a Faculty Fellow.

1256 1257

1257 1258

1258 1259

1259 1260

1260 1261

1261 **Andrew W. Smyth** received his Sc.B. and
1262 A.B. degrees at Brown University in 1992 in Civil
1263 Engineering and Architectural Studies respectively. He received his M.S. in Civil
1264 Engineering at Rice in 1994, an M.S. in
1265 Electrical Engineering (1997) and his Ph.D. in Civil Engineering (1998) at the University
1266 of Southern California. He is now the Robert
1267 A. W. and Christine S. Carleton Professor of
1268 Civil Engineering and Engineering Mechanics
1269 at Columbia University in the City of New
1270 York.

1271 1272