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The Dougherty model Fokker–Planck operator is extended to describe nonlinear full-f
( f is the distribution function) collisions between multiple species in plasmas. Simple
relations for cross-species primitive moments are developed which obey conservation
laws, and reproduce familiar velocity and temperature relaxation rates. This treatment
of multispecies Dougherty collisions, valid for arbitrary mass ratios, avoids unphysical
temperatures and satisfies the H-theorem (H is related to the entropy) unlike an analogous
Bhatnagar–Gross–Krook operator. Formulas for both a Cartesian velocity space and
a gyroaveraged operator are provided for use in Vlasov as well as long-wavelength
gyrokinetic models. We present an algorithm for the discontinuous Galerkin discretization
of this operator, and provide results from relaxation and Landau damping benchmarks.
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1. Introduction

Collisions play an important role in many laboratory and astrophysical plasma
processes of interest. They offer a velocity-space dissipative channel in kinetic turbulence
and modify transport in fusion devices, to mention a couple. In continuum kinetic models
for plasmas, where small-angle collisions prevail, the effect of collisions is incorporated
by the Fokker–Planck operator (FPO) (Rosenbluth, MacDonald & Judd 1957). The
gyrokinetic form of this operator also exists (Li & Ernst 2011; Hirvijoki, Brizard &
Pfefferlé 2017; Jorge et al. 2019; Pan & Ernst 2019) and has been shown to agree closely
with ‘model’ operators in some parameter ranges (Pan, Ernst & Crandall 2020), but
it can also produce significantly different results in others, particularly for instabilities
and turbulence driven by the electron temperature gradient (Pan, Ernst & Hatch 2021).
Nevertheless, exact FPOs often prove to be analytically and numerically challenging for
certain applications. Thus, there is still great interest in using simpler ‘model’ collision
operators, several of which have arisen in the last several years (Abel et al. 2008; Sugama,
Watanabe & Nunami 2009; Estève et al. 2015; Sugama et al. 2019; Frei et al. 2021). These
model operators compromise accurate physics for tractability of calculations. Yet, these
approaches may still have sufficient complexity to deter their use, and mostly exist in
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linearized form for use in δf studies, f is the distribution function (e.g. Kolesnikov, Wang
& Hinton 2010).

The FPO’s drag and diffusion terms appear in terms of per unit time increments
〈�vi〉s and 〈�vi�vj〉s. A particularly convenient choice is 〈�vi〉s = −∑r νsr(vi − usr,i)
and 〈�vi�vj〉s = 2

∑
r νsrv

2
t,srδij, νsr being a suitably chosen collision frequency (i =

{1, . . . , dv} labels the velocity component in dv-dimensional velocity space). This
approximation leads to the simple model FPO(

dfs

dt

)
c

=
∑

r

νsr∇v · [(v − usr) fs + v2
t,sr∇vfs

]
. (1.1)

For self-species collisions usr = us and v2
t,sr = v2

t,s = Ts/ms are the flow velocity and the
squared thermal speed of species s, defined in terms of the velocity moments of the
distribution function (M0,s,M1i,s,M2,s) as

us,iM0,s = M1i,s,

us,iM1i,s + dvv2
t,sM0,s = M2,s,

(1.2)

with such moments given by

M0,s =
∫ ∞

−∞
fs ddv v,

M1i,s =
∫ ∞

−∞
vifs ddv v,

M2,s =
∫ ∞

−∞
v2 fs ddv v.

(1.3)

This frequently used model goes by the various appellations of the Kirkwood,
Lenard–Bernstein or Dougherty operator. We refer to it as the LBO for simplicity. Its
nonlinearity is implicit, since the primitive moments usr,i and v2

t,sr are themselves functions
of the moments of fs,r. We also restrict ourselves to the case of velocity independent
collisionality; improvements that retain this additional complexity will be explored in the
future. The result is then a tractable operator which, owing to its simplicity, conservative
properties, and similarity to the full FPO, is used in numerous kinetic plasma models and,
with appropriate modifications, virtually every gyrokinetic model.

These attributes also make it an attractive choice for multispecies collisions. Analytic
and computational studies have used Dougherty electron–ion collisions for several decades
to the present day (Ong & Yu 1970; Pan et al. 2018; Shi et al. 2019). This trend, however,
has not established the most appropriate choice of cross-velocities and thermal speed, usr,i
and vt,sr. A study of the universal instability, for example, used usr,i = [mrnr/(msns)]ur,i
and vt,sr = vt,s, where ns is the number density of species s (Ong & Yu 1970), while a
separate analysis of ion-acoustic and drift waves later employed usr,i = [νrsmr/(νsrms)]us,i
(Ong & Yu 1973). Dougherty & Watson (1967) had proposed a linearized multispecies
version of the eponymous operator with usr,i = ur,i and v2

t,sr = [mr/(ms + mr)](v2
t,s + v2

t,r).
More recently Jorge, Ricci & Loureiro (2018) chose usr,i = us,i and vt,sr = vt,s for exploring
drift waves at arbitrary collisionality. Adding to the variance of choices, uei = ui and
v2

t,ei = v2
t,e + (ui − ue)

2/3 were assumed in GENE and Gkeyll full-f gyrokinetic simulations
of LArge Plasma Device (LAPD) and National Spherical Torus Experiment (NSTX) (Pan
et al. 2018; Shi et al. 2019). Furthermore, the choice of usr and vt,sr is related to the
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Improved multispecies Dougherty collisions 3

adoption of a particular collision frequency νsr, which Dougherty (1964) and other works
left unspecified, although Dougherty & Watson (1967) show one possible choice for the
linearized operator.

There has thus been a prolonged, non-systematic spread in the choice of cross-species
primitive moments, usr,i and vt,sr, for multispecies collisions with the Dougherty operator.
While some of the choices listed above are intuitive and appropriate in some limits,
the goal of this manuscript is to more rigorously determine such cross-species primitive
moments. Greene (1973), for example, imposed momentum and energy conservation in
electron–ion collisions with a Bhatnagar–Gross–Krook (BGK) operator (Bhatnagar, Gross
& Krook 1954), and required that the cross-species velocity and temperature relaxation
rates match those given by the Boltzmann collision integral for Maxwellian distributions:
the Morse relaxation rates (Morse 1963). This procedure yields relations for the usr,i
and vt,sr needed by the multispecies BGK model. Unfortunately, for unequal masses the
resulting formulas can prescribe a negative v2

t,sr as the relative drift |us,i − ur,i| increases.
It has also been pointed out that, although conservative, this multispecies BGK operator
cannot be proven to have (or not have) an H-theorem (Haack, Hauck & Murillo 2017).

In what follows we present three different approaches to determining the Dougherty
cross-species primitive moments usr and vt,sr, drawing from the ideas of Greene (1973)
and Haack et al. (2017) employed for the BGK operator. We begin with the presentation
of these approaches in the context of Vlasov–Maxwell models (§ 2). The proposed
multispecies full-f nonlinear Dougherty operator is also shown to not decrease the entropy.
Entropy production stands as a challenging constraint in some other collision models. For
example, a modern linear δf formulation of multispecies collisions only has an H-theorem
when temperatures are equal (Sugama et al. 2019). Furthermore, there is little work on
full-f collision models; one such operator presented by Estève et al. (2015) has been
linearized and is also only able to satisfy the H-theorem for equal temperatures. Section 2
ends with a provision of equivalent formulas for the gyroaveraged Dougherty operator
which is frequently used in long-wavelength gyrokinetic simulations (Francisquez et al.
2020). These formulas are then implemented in the discontinuous Galerkin code Gkeyll
(2020) using an algorithm described in § 3. Then, § 4 provides a series of Vlasov and
gyrokinetic benchmarks illustrating the conservative properties of the algorithm and the
differences between the three different strategies for selecting multispecies primitive
moments. We also provide a benchmark comparing the Landau damping rate of electron
Langmuir waves with the multispecies Dougherty operator against the results using a FPO.
Concluding remarks are provided in § 5.

2. Multispecies Dougherty operators

In this section we provide three different sets of formulas for the cross-species primitive
moments in the LBO. The first is analogous to Greene’s treatment of the BGK operator
(Greene 1973) and we therefore name it the LBO-G. It introduces a free parameter
that is insufficiently constrained at present. We thus complement that approach with
the ideas of Haack et al. (2017), where two different BGK operators were proposed
which independently attempt to match the FPO’s momentum and thermal relaxation rates.
These are the LBO-EM and LBO-ET, respectively (these operators were also recently
implemented in the GENE-X code Ulbl, Michels & Jenko 2021). We conclude this section
with similar formulas for a gyroaveraged multispecies Dougherty operator.

2.1. LBO-G
In the same vein as was done for the BGK in Greene (1973), one may enforce exact
momentum and energy conservation, and use Boltzmann relaxation rates (Morse 1963)
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to obtain the cross-species primitive moments appropriate for Dougherty electron–ion
collisions. Conservation of momentum and energy in cross-species collisions∫ ∞

−∞
vi

∑
s

msC[ fs] ddv v = 0, (2.1)

∫ ∞

−∞

1
2
v2
∑

s

msC[ fs] ddv v = 0 (2.2)

(C[ fs] the right-hand side of (1.1) with r �= s) is obeyed pairwise and yields the relations∑
s

msnsνsr�usr,i = 0,

∑
s

msnsνsr
(
dv�v2

t,sr + us ·�usr
) = 0,

(2.3)

with the sum running only over two species (r labels the species other than s), �usr =
us − usr and �v2

t,sr = v2
t,s − v2

t,sr. This system of 2(dv + 1) unknowns can be closed in a
number of ways; a particularly simple way is by employing the momentum and thermal
relaxation rates of the full Coulomb collision operator (see (15) and (16) in Morse 1963).
For small-angle collisions these rates are

∂

∂t
msnsus,i

∣∣∣
FPO

= αE

2
(ms + mr)

(
ur,i − us,i

)
,

∂

∂t
dv
2

msnsv
2
t,s

∣∣∣
FPO

= αE

2

[
dv
(
mrv

2
t,r − msv

2
t,s

)+ mr (ur − us)
2] . (2.4)

The parameter αE is inversely proportional to the energy and momentum relaxation times

αE = 2nsnr(qsqr)
2 logΛsr

3(2π)3/2ε2
0msmr(v2

t,s + v2
t,r)

3/2
. (2.5)

The right-hand side of (2.4) originates from the Boltzmann collision integral for Coulomb
interactions, truncated at the Debye length, under the premise that fs are close to
Maxwellian. The validity of the relations given below in systems where the plasma may
significantly differ from Maxwellian is thus limited.

One can compute the LBO momentum and thermal relaxation rates similar to those for
the FPO in (2.4) simply by taking velocity moments of (1.1). These rates are1

∂

∂t
msnsus,i

∣∣∣
LBO

= msnsνsr(usr,i − us,i),

∂

∂t
dv
2

msnsv
2
t,s

∣∣∣
LBO

= dvmsnsνsr(v
2
t,sr − v2

t,s).

(2.6)

Equating (2.4) and (2.6) does not fully determine usr and v2
t,sr because of the as-of-yet

arbitrary νsr. The next step in the Greene methodology is thus to adopt a relationship
between the collision frequency in the model operator and αE, which for the BGK operator

1Dougherty & Watson (1967) have an erroneous extra factor of 3 in the equivalent momentum rate of change, their
(2.6).
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Greene took to be νsr = αE(ms + mr)/[(1 + β)nsms] with the arbitrary parameter β > −1.
For the LBO-G we will instead use

νsr = αE(ms + mr)

δs(1 + β)msns
, (2.7)

with δs = 2mrnrνrs/(msnsνsr + mrnrνrs); it turns out that δs and β only appear as δs(1 + β)
so their independent values do not need to be determined separately. We picked this
relationship between αE and νsr for three reasons. First, we anticipate potential difficulties
guaranteeing positivity of v2

t,sr, although we will see shortly that such problems do not
arise with the Dougherty operator for many systems of interest. Second, the formulation
presented here avoids the assumption msnsνsr = mrnrνrs used in earlier work (Greene
1973). Lastly, this definition of νsr produces relations that more easily enforce exact
conservation in their discrete form.

Equipped with (2.7) we can equate (2.4) and (2.6), and together with (2.3) a linear
system in usr,i, v2

t,sr, urs,i and v2
t,rs ensues. The solution of this linear problem is

usr,i = us,i + δs
1 + β

2

(
ur,i − us,i

)
, (2.8)

v2
t,sr = v2

t,s + δs

2
1 + β

1 + ms

mr

[
v2

t,r − ms

mr
v2

t,s + (us − ur)
2

dv

]
. (2.9)

One attractive property of these cross-species primitive moments is that, contrary to their
BGK counterparts, they do not suffer from the pathology of negative v2

t,ie at supersonic
values of the relative drift |us − ur|. Positivity of (2.9) does require, however, that

δs

2
1 + β

1 + mr

ms

[
1 − Tr

Ts
− (us − ur)

2

dvc2
s,sr

]
< 1, (2.10)

where cs,sr = √
Ts/mr. This is true for any choice of δs and β provided δs(1 + β) < 2, even

as the relative drift increases.
Despite such improvements on previous similar multispecies operators, the unspecified

β parameter poses a clear disadvantage. Dougherty & Watson (1967) had already pointed
out that an additional condition is needed to determine all unknowns, and therefore
avoid the appearance of any free parameters. As discussed by Haack et al. (2017), this
free parameter can modify the transport coefficients in the associated fluid models. For
the BGK operator, Morse (1964) eliminated the need for β by assuming nsνsr = nrνrs
and requiring that the ratio of the relaxation rate for the momentum difference between
the two species to that of the temperature difference be the same for both the FPO
and the model operator. However, the resulting multispecies BGK operator does not satisfy
the H-theorem, discouraging us from pursuing that approach. A possible added constraint
that may do away with such parameter is the isotropization rate due to interspecies
collisions; imposing such condition is, however, beyond the scope of this manuscript.

2.2. LBO-EM and LBO-ET
Following the path charted by Haack et al. (2017) for the BGK, one could require that
usr = urs and msv

2
t,sr = mrv

2
t,rs. Then the momentum conservation constraint in (2.3) results
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in

usr,i = msnsνsrus,i + mrnrνrsur,i

msnsνsr + mrnrνrs
, (2.11)

while energy conservation assuming msv
2
t,sr = mrv

2
t,rs yields

(nsνsr + nrνrs)msv
2
t,sr = msnsνsrv

2
t,s + mrnrνrsv

2
t,r

+ msnsνsrmrnrνrs

msnsνsr + mrnrνrs

(us − ur)
2

dv
. (2.12)

The next step demands that the momentum relaxation rates are the same for both the
LBO and the FPO. Setting the momentum relaxation rates equal to each other

∂

∂t

(
msnsus,i − mrnrur,i

) ∣∣∣
FPO

= ∂

∂t

(
msnsus,i − mrnrur,i

) ∣∣∣
LBO
,

αE (ms + mr)
(
ur,i − us,i

) = msnsνsr
(
usr,i − us,i

)− mrnrνrs
(
urs,i − ur,i

)
,

(2.13)

and using (2.11) for usr one obtains the relationship

αE (ms + mr) = 2msnsνsrmrnrνrs

msnsνsr + mrnrνrs
. (2.14)

On the other hand, equivalence between thermal relaxation rates

∂

∂t
dv
2

(
msnsv

2
t,s − mrnrv

2
t,r

) ∣∣∣
FPO

= ∂

∂t
dv
2

(
msnsv

2
t,s − mrnrv

2
t,r

) ∣∣∣
LBO
,

αE

[
dv
(
mrv

2
t,r − msv

2
t,s

)+ mr − ms

2
(us − ur)

2
]

= dv
[
msnsνsr

(
v2

t,sr − v2
t,s

)
−mrnrνrs

(
v2

t,rs − v2
t,r

)]
, (2.15)

with the v2
t,sr from (2.12) implies that

αE

[
mrv

2
t,r − msv

2
t,s + mr − ms

2dv
(us − ur)

2
]

= 2nsνsrnrνrs

nsνsr + nrνrs

(
mrv

2
t,r − msv

2
t,s

)+ nsνsr − nrνrs

nsνsr + nrνrs

msnsνsrmrnrνrs

msnsνsr + mrnrνrs

(us − ur)
2

dv
. (2.16)

Although they may look strongly nonlinear, one can solve (2.14) and (2.16) in order to
obtain an expression for νsr.2 The result is

νsr = αE (ms + mr)

nsms
·

ms − mr

2msmr
dv
(
mrv

2
t,r − msv

2
t,s

)+ (us − ur)
2

1
mr

dv
(
mrv2

t,r − msv2
t,s

)+ (us − ur)
2

, (2.17)

but we can immediately notice that this can lead to negative collision frequencies in some
parameter regimes; for example, the electron–ionfrequency νei with zero relative drift.

2Haack et al. (2017) state that the equivalent equations for the BGK operator are nonlinear and without a simple
formula for a solution. But one can obtain such solution by casting (2.14) in terms of τrs = 1/νrs, solving for τrs and
substituting that into (56) of Haack et al. (2017) (the equivalent of our (2.16)). The result is a quadratic equation for nsνsr ,
which can be solved.
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This indicates that enforcing the equality of momentum and thermal relaxation rates while
using the assumptions usr,i = urs,i and msv

2
t,sr = mrv

2
t,rs leads to unphysical behaviour. We

nevertheless present two slight variations in the following subsections, as was also recently
done by Ulbl et al. (2021), in order to provide a point of reference for the LBO-G and
comparing against Haack et al. (2017).

2.2.1. LBO-EM
Instead of trying to match both the momentum and thermal relaxation rates, we could

satisfy ourselves with only attaining the same momentum relaxation rate. We can do this
by employing (2.14), which we obtained from setting LBO and FPO momentum relaxation
rates equal to each other, and further assuming that

msnsνsr = mrnrνrs. (2.18)

These two equations together set the collision frequency in our model to

νM
sr = αE

ms + mr

msns
= 2 (ms + mr) (qsqr)

2nr logΛsr

3(2π)3/2ε2
0m2

s mr
(
v2

t,s + v2
t,r

)3/2 . (2.19)

This choice of collision frequency reduces the cross-primitive moments to

usr,i = us,i + ur,i

2
,

v2
t,sr = 1

1 + ms

mr

[
v2

t,s + v2
t,r + (us − ur)

2

2dv

]
.

(2.20)

We call (1.1) with collision frequency and cross-primitive moments in (2.19)–(2.20) the
LBO-EM. Compared with the equations that led to LBO-G, (2.19) suggests that LBO-EM
is LBO-G in the limit of β = 0 and δs = 1. In this case the cross-species flow velocity
in LBO-G (2.8) does reduce to that in LBO-EM, but the LBO-G cross-species thermal
velocity in this limit does not equal that in (2.20). Interestingly, for vanishing relative
drifts, β = 1 leads to an agreement between v2

t,sr for LBO-G and LBO-EM, but leads to
usr,i = ur,i, which disagrees with LBO-EM’s usr,i. Therefore, as with BGK, LBO-EM is
not a special case of LBO-G.

2.2.2. LBO-ET
Alternatively, we could choose to approximately match the thermal relaxation rate of

the FPO. Focusing on the temperature difference term in (2.4), we see that the relaxation
rate due to temperature differences alone is the same for both species. We could choose to
mimic this behaviour, and examining (2.6) the conclusion would be that we have to require

nsνsr = nrνrs. (2.21)

This assumption renders (2.11)–(2.12) into

usr,i = msus,i + mrur,i

ms + mr
, (2.22)

v2
t,sr = 1

2

[
v2

t,s + mr

ms
v2

t,r + mr

ms + mr

(us − ur)
2

dv

]
. (2.23)

Although we took up relation (2.21) we have not specified the collision frequency
precisely yet. We can do so by returning to the thermal relaxation rate equivalence (2.15)
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8 M. Francisquez, J. Juno, A. Hakim, G.W. Hammett and D.R. Ernst

and inserting the cross-species temperature in (2.23). The result is3

αE

[
dv
(
mrv

2
t,r − msv

2
t,s

)+ mr − ms

2
(us − ur)

2
]

= dv

[
nsνsr

2

(
mrv

2
t,r − msv

2
t,s + msmr

ms + mr

(us − ur)
2

dv

)

−nrνrs

2

(
msv

2
t,s − mrv

2
t,r + msmr

ms + mr

(us − ur)
2

dv

)]
,

αE

[(
mrv

2
t,r − msv

2
t,s

)+ mr − ms

2
(us − ur)

2

dv

]

= nsνsr + nrνrs

2

(
mrv

2
t,r − msv

2
t,s

)+ 1
2

msmr

ms + mr
(nsνsr − nrνrs)

(us − ur)
2

dv
.

(2.24)

These thermal relaxation rates cannot agree exactly because, under the assumption nsνsr =
nrνrs, the relative drift term vanishes for this LBO, but we could at least match the response
due to the temperature difference, leading to the collision frequency for this model

νT
sr = αE

ns
= 2nr(qsqr)

2 logΛsr

3(2π)3/2ε2
0msmr

(
v2

t,s + v2
t,r

)3/2 . (2.25)

The operator (1.1) with this collision frequency and the cross-primitive moments
in (2.22)–(2.23) is referred to as the LBO-ET. As with the previous operator, setting β = 0
in the LBO-G leads to the same cross-species flow velocity usr,i, but then the thermal
speeds vt,sr do not agree. More importantly, we restate that the LBO-ET did not exactly
match the FPO thermal relaxation rate because of the difference in response to relative
drifts. For plasmas where the relative drifts are small relative to temperature differences
(not an uncommon situation), these rates agree exactly.

2.3. The H-theorem
The full FPO does not decrease entropy, i.e. it satisfies an H-theorem, and as a model
FPO it is desirable that this formulation of multispecies Dougherty collisions retains such
a property. The original paper on the multispecies Dougherty operator demonstrated a
non-decreasing entropy only to second order after linearization (Dougherty & Watson
1967), hinting at the possibility that the above full-f equivalent operator could possess
an H-theorem. It is in fact possible, however, to show that the Dougherty models for
multispecies full-f collisions presented here do have an H-theorem, even for species with
unequal temperatures. A more detailed proof of this statement is given in Appendix B, and
we give an outline of the argument here.

The total entropy S = −∑s

∫
ddv v fs ln fs can be shown to obey

Ṡ = ∂S
∂t

= −
∑

s

∫
ddv v νsr (ln fs + 1)∇v · Jsr, (2.26)

where the flux Jsr is the term in square brackets in (1.1). Using the definition of this flux
and integration by parts twice together with the fact that fs → 0 faster than powers of vi as

3We believe there is a typo in similar equations for BGK in Haack et al. (2017). In (65) of that paper the relative drift
term should be multiplied by (mi + 3mj)/(2mj).
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Improved multispecies Dougherty collisions 9

vi → ±∞ one is led to

Ṡ =
∑

s

νsr

(
−dvns + v2

t,sr

∫
ddv v∇vfs · ∇vln fs

)
. (2.27)

At this point we can perform a variational minimization of this functional in order to
determine if that minimum is below zero (indicating a violation of thermodynamic law).
For a given set of primitive moments (ns, us,i, vt,s, usr,i, vt,sr) and the virtual displacement
δfs = fs − fs0, the response of Ṡ is

δṠ =
∑

s

v2
t,sr

∫
ddv v∇vfs0 ·

[
2
δfs

∇vδfs − 1
fs0

∇vfs0

]
δfs

fs0
. (2.28)

At an extremum in Ṡ this function must vanish, and since (2.27) has no upper bound this
extremum must be a minimum. We are also interested in virtual displacements that do not
alter the moments of each distribution, that is∫

ddv v vkδfs = 0 for k ∈ {0, 1, 2}. (2.29)

Further imposing that the displacement δfs vanishes at infinity, δṠ = 0 and (2.28)–(2.29)
yield the nonlinear inhomogeneous equation for the minimizing distribution fs0

|∇vln fs0|2 + 2∇2
v ln fs0 = h2

0 + 2dvh1 + 2h0h1 · v + h2
1v

2, (2.30)

with h0, h1 and h2 undetermined linear coefficients. The solution to this equation is fs0 ∝
exp(h0,ivi + h1v

2/2). Enforcing the condition that it has the same number density ns and
primitive moments (us,i and vt,s) as the original distribution, fs, reveals that the distribution
that minimizes the rate of entropy change of this operator is a Maxwellian with ns, us,i
and vt,s. The final step is to insert this distribution back into our expression for entropy
change, (2.26), and check that the minimum entropy rate of change does not fall below
zero. Such a procedure results in

min
(
∂S
∂t

)
= dv

∑
s

nsνsr

v2
t,s

(
v2

t,sr − v2
t,s

)
, (2.31)

and since the procedure obtained a single minimum it must be the global minimum.

2.3.1. LBO-G H-theorem
Use the definition of v2

t,sr for the LBO-G model (2.9) to arrive at

min
(
∂S
∂t

)
= δsmsnsνsr

2v2
t,s

1 + β

ms + mr

[
dv
(Tr − Ts)

2

TsTr

+
(

mr

ms

1
v2

t,s

+ ms

mr

1
v2

t,r

)
(us − ur)

2
]

� 0. (2.32)

We are thus led to the conclusion that the LBO-G model of full-f multispecies collisions
does not decrease the entropy. This is in contrast to the BGK-G operator, for which the
H-theorem could not be proven or disproven (Greene 1973; Haack et al. 2017).
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2.3.2. LBO-EM and LBO-ET H-theorem
Using the relationship between collision frequencies for the LBO-EM (2.19) and the

corresponding cross-species thermal speeds one obtains

min
(
∂S
∂t

)
= dvnsνsr

ms + mr

[(
mrv

2
t,r − msv

2
t,s

)2

v2
t,smrv2

t,r

+
(

mr

v2
t,s

+ ms

mr

ms + mr

v2
t,r

)
(us − ur)

2

2dv

]
� 0.

(2.33)

Similarly, using the nsνsr = nrνrs assumption of the LBO-ET model and the definition
of v2

t,sr in (2.23) turns (2.31) into

min
(
∂S
∂t

)
= dvnsνsr

2

[
mrv

2
t,r

msv2
t,s

+ msv
2
t,s

mrv2
t,r

+
(

mr

v2
t,s

+ ms

v2
t,r

)
1

ms + mr

(us − ur)
2

dv

]
� 0.

(2.34)

Therefore, both LBO-EM and LBO-ET models satisfy the H-theorem.

2.4. Gyroaveraged multispecies Dougherty operator
This model operator is also used by modern, long-wavelength full-f gyrokinetic codes
(Pan et al. 2018; Gkeyll 2020) in its gyroaveraged form. Its form, conservative properties
and discontinuous Galerkin discretization for self-species collisions have been presented
by Francisquez et al. (2020). The operator can, however, be extended to incorporate
cross-species collisions. For that purpose, we write the gyroaveraged operator acting on
the guiding centre distribution function fs(R, v‖, μ) as

(
∂J fs

∂t

)
c

=
∑

r

νsr

{
∂

∂v‖

[(
v‖−u‖sr

)
J fs + v2

t,sr
∂J fs

∂v‖

]

+ ∂

∂μ
2μ
[
J fs + msv

2
t,sr

B
∂J fs

∂μ

]}
, (2.35)

where J represents the Jacobian of the guiding centre coordinates, R is the guiding centre
position, v‖ is the velocity along the background magnetic field and μ is the adiabatic
moment; see Francisquez et al. (2020) for more details.

In order to use this multispecies gyroaveraged operator one must then determine the
multispecies parallel flow velocities u‖sr and thermal speed vt,sr. Our proposal is to use the
same LBO-G (2.8), (2.9), LBO-EM (2.20) and LBO-ET (2.22)–(2.23) models with this
gyroaveraged operator. The only difference is that the self-species primitive moments are
defined by

u‖sM0,s = M1,s,

u‖sM1,s + dvv2
t,sM0,s = M2,s,

(2.36)
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where dv = 1 or dv = 3 depending on whether one is considering v‖- or (v‖, μ)-space,
respectively. The velocity moments in the gyroaveraged model are

M0,s = (2π/ms)

∫
J fs(R, v‖, μ) dv‖ dμ,

M1‖,s = (2π/ms)

∫
v‖J fs(R, v‖, μ) dv‖ dμ,

M2,s = (2π/ms)

∫ (
v2

‖ + 2μB/ms
)
J fs(R, v‖, μ) dv‖ dμ.

(2.37)

3. Discontinuous Galerkin discretization

In this section we present a discontinuous Galerkin (DG) scheme for the multispecies
LBO. DG algorithms offer higher-orderconvergence, data locality and flexibility in
defining numerical fluxes to preserve physical properties of the system (Cockburn & Shu
1998; Hesthaven & Warburton 2007). A DG discretization will also interface with existing
Vlasov–Maxwell (Juno et al. 2018; Hakim & Juno 2020) and gyrokinetic (Shi et al. 2019;
Mandell et al. 2020) DG solvers.

We present the algorithm below for a two-dimensional space consisting of one position
dimension (x) and one velocity dimension (v); the extension to higher velocity dimensions
is straightforward. First, introduce a mesh T that extends over the finite computational
domain Ω ≡ [−Lx/2,Lx/2] × [−Lv/2,Lv/2] and consists of quadrilateral cells Kj,k ≡
[xj−1/2, xj+1/2] × [vk−1/2, vk+1/2], with j = 1, . . . ,Nx and k = 1, . . . ,Nv labelling the cell
along x and v, respectively. In each cell define a polynomial space Vp

j,k consisting of
Nb orthonormalized monomials ψ
(x, v), which we take as basis functions in which
dynamical fields are expanded. The discretization of (1.1) proceeds from a weak or
Galerkin projection; multiply (1.1) by ψ
 and integrate over x-v in cell Kj,k

∫
Kj,k

ψ


(
dfs

dt

)
c

dx dv =
∫ xj+1/2

xj−1/2

νsr

(
ψ
Gs − ∂ψ


∂v
v2

t,sr f̂s

)∣∣∣∣
vk+1/2

vk−1/2

dx

−
∫

Kj,k

νsr

[
∂ψ


∂v
(v − usr) fs − ∂2ψ


∂v2
v2

t,sr fs

]
dx dv. (3.1)

We used integration by parts and limited ourselves to the case of two species
cross-collisions only to remove the sum in (1.1). The numerical flux Gs = (v − usr)fs +
v2

t,sr∂ f̂s/∂v consists of a drag term that is computed using upwinding based on the value
of the (v − usr) at Gauss–Legendre nodes, and f̂s is a continuous distribution recovered
across two cells (van Leer & Nomura 2005; van Leer & Lo 2007). This approach resulted
in a conservative DG scheme in the case of self-species collisions; more details can be
found in Hakim et al. (2020) and Francisquez et al. (2020). In the case of multispecies
collisions it can also lead to a conservative scheme, provided the cross-species primitive
moments are computed in a manner that incorporates the finite extent of velocity space.

In what follows we will also need the velocity moments of each species (1.3) in their
discrete form. Discrete moments are defined as expansions in a set of Nx

b position-space
polynomial basis functions ϕ
(x) belonging to the polynomial space Vp

k in the jth cell. The
discrete velocity moments are then projections of (1.3) onto the ϕ
 basis, which for dv = 1
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we represent as

Mq,s
.=
∫ vmax

vmin

vqfs dv, q ∈ {0, 1, 2}, (3.2)

where vmin = vkmin−1/2 = v1/2, vmax = vkmax+1/2 = vNv+1/2 and .= indicates weak equality
(Francisquez et al. 2020; Hakim et al. 2020). Two fields g and h are weakly equal in
the interval I = [xj−1/2, xj+1/2] if their projections onto the basis functions in this interval
are equal: g .= h ⇒ ∫

I(g − h)ϕ
 dx = 0.

3.1. Discrete momentum conservation
In order to formulate a momentum-conserving discretization based on (3.1), we can set
ψ
 = msv and sum over all cells along velocity space. According to (2.1) this sum has to
be equal and opposite to that of the other species it is colliding with. Therefore discrete
momentum conservation requires that

∑
k

∫ xj+1/2

xj−1/2

(
msνsr

{(
vGs − v2

t,sr f̂s

)vk+1/2

vk−1/2

−
∫ vk+1/2

vk−1/2

(v − usr) fs dv

}

+mrνrs

{(
vGr − v2

t,rs f̂r

)vk+1/2

vk−1/2

−
∫ vk+1/2

vk−1/2

(v − urs) fr dv

})
dx = 0. (3.3)

Carry out the velocity-space integrals and sum over all velocity-space cells. Use the fact
that the numerical fluxes Gs are continuous and have opposite signs on either side of a cell
boundary, and that f̂s is continuous across cell boundaries as well. Furthermore, we impose
the zero-flux boundary conditions Gs(v = vmax) = Gs(v = vmin) = 0 in order to arrive at∫ xj+1/2

xj−1/2

[
msνsr

(
v2

t,sr fs

∣∣∣vmax

vmin

+ M1,s − usrM0,s

)

+mrνrs

(
v2

t,rs fr

∣∣∣vmax

vmin

+ M1,r − ursM0,r

)]
dx = 0, (3.4)

having substituted the discrete form of the velocity moments (3.2). This relation is satisfied
if

msνsr

(
v2

t,sr fs

∣∣∣vmax

vmin

+ M1,s − usrM0,s

)
+ mrνrs

(
v2

t,rs fr

∣∣∣vmax

vmin

+ M1,r − ursM0,r

)
.= 0. (3.5)

Note that we have used the same vmax and vmin for both species for pedagogical reasons
only. In fact since (3.5) is a constraint on position-space fields only, the discrete velocity
space of each species can be completely different. For completeness we state that in the
dv-dimensional case the condition for the scheme in (3.1) to conserve momentum is that
the cross-species primitive moments usr and vt,sr must satisfy

msνsr

(
M1i,s − usr,iM0,s + v2

t,sr

∫
fs

∣∣∣vi,max

vi,min

dSi

)

+ mrνrs

(
M1i,r − urs,iM0,r + v2

t,rs

∫
fr

∣∣∣vi,max

vi,min

dSi

)
.= 0, (3.6)

using
∫

dSi as an integral over the velocity-space boundaries orthogonal to the ith velocity
dimension, and the repeated index i implies summation.
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3.2. Discrete energy conservation
Energy conservation will impose a secondary constraint on how the discrete cross-species
primitive moments must be computed. In order to obtain such condition we substitute
ψ
 = msv

2/2 in (3.1), and sum over velocity-space cells and species. This action leads to

∑
k

∫ xj+1/2

xj−1/2

(
msνsr

{(
v2

2
Gs − vv2

t,sr f̂s

)∣∣∣∣
vk+1/2

vk−1/2

−
∫ vk+1/2

vk−1/2

[
v (v − usr) fs − v2

t,sr fs
]

dv

}

+mrνrs

{(
v2

2
Gr − vv2

t,rs f̂r

)∣∣∣∣
vk+1/2

vk−1/2

−
∫ vk+1/2

vk−1/2

[
v (v − urs) fr − v2

t,rs fr
]

dv

})
dx = 0.

(3.7)

Once again, we employ continuity of Gs and f̂s and boundary conditions so that after
performing the velocity-space integrals and carrying out the sum over velocity-space cells
this relation is transformed into∫ xj+1/2

xj−1/2

(
msνsr

{
vv2

t,sr fs

∣∣∣vmax

vmin

+ (
M2,s − usrM1,s

)− v2
t,srM0,s

}

+mrνrs

{
vv2

t,rs fr

∣∣∣vmax

vmin

+ (
M2,r − ursM1,r

)− v2
t,rsM0,r

})
dx = 0. (3.8)

Therefore, we can guarantee that our DG discretization exactly conserves energy if we
enforce

msνsr

{
vv2

t,sr fs

∣∣∣vmax

vmin

+ (
M2,s − usrM1,s

)− v2
t,srM0,s

}

+ mrνrs

{
vv2

t,rs fr

∣∣∣vmax

vmin

+ (
M2,r − ursM1,r

)− v2
t,rsM0,r

}
.= 0, (3.9)

when computing usr, urs, vt,sr and vt,rs. In the case of dv velocity dimensions this constraint
becomes

msνsr

[
M2,s − usr,iM1i,s − v2

t,sr

(
dvM0,s −

∫
vifs

∣∣∣vi,max

vi,min

dSi

)]

+ mrνrs

[
M2,r − ursiM1i,r − v2

t,rs

(
dvM0,r −

∫
vifr

∣∣∣vi,max

vi,min

dSi

)]
.= 0. (3.10)

We make a final comment that the substitution ψ
 = msv
2/2 is only valid if v2 belongs to

the space spanned by the basis, which for piecewise-linear basis functions (p = 1) it does
not. In order for the algorithm to be conservative with p = 1 additional precautions must
be taken, a topic that is deferred to Appendix C.

3.3. Discrete relaxation rates
Together with the relations usr,i = urs,i and msv

2
t,sr = mrv

2
t,rs, and the definitions of the

collision frequency given in §§ 2.2.1–2.2.2, (3.6) and (3.10) are all one needs to compute
the cross-primitive moments for the LBO-EM and LBO-ET. The LBO-G, however, needs
to further incorporate the equivalence between the momentum and thermal relaxation rates
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of the FPO (2.4) and those of the LBO (2.6) in the discrete sense. First, we obtain the weak
form of (2.13) by projecting it onto the ψ
 basis function

msνsr

(
M1i,s − usr,iM0,s + v2

t,sr

∫
fs

∣∣∣vi,max

vi,min

dSi

)

− mrνrs

(
M1i,r − urs,iM0,r + v2

t,rs

∫
fr

∣∣∣vi,max

vi,min

dSi

)
.= αE (ms + mr)

(
us,i − ur,i

)
, (3.11)

where we used the same series of steps that led to (3.6).
The equivalent condition on the thermal relaxation rates necessitates the discrete

thermal speed moment of the LBO. We can obtain it by substituting ψ
 = ms(v − us)
2/2

into the weak scheme in (3.1) and summing over velocity-space cells, resulting in

∑
k

∫
Kj,k

ms

2
(v − us)

2
(

dfs

dt

)
c

dx dv

=
∑

k

∫ xj+1/2

xj−1/2

msνsr

{[
1
2
(v − us)

2 Gs − (v − us) v
2
t,sr f̂s

]∣∣∣∣
vk+1/2

vk−1/2

−
∫ vk+1/2

vk−1/2

[
(v − us) (v − usr)− v2

t,sr

]
fs dv

}
dx. (3.12)

Performing the velocity-space integrals, carrying out the k-sum, accounting for the
continuity of Gs and f̂s and using the zero-flux boundary conditions on Gs ushers us to

∑
k

∫
Kj,k

(
d
(
msnsv

2
t,s/2

)
dt

)
c

dx dv

=
∫ xj+1/2

xj−1/2

msνsr

{[− (v − us) v
2
t,sr fs

] ∣∣∣vmax

vmin

− [M2,s − usM1,s + usr
(
usM0,s − M1,s

)− v2
t,srM0,s

]}
dx, (3.13)

or in the dv-dimensional velocity space

∑
k

∫
Kj,k

(
d
(
msnsv

2
t,s/2

)
dt

)
c

dx dv

=
∫ xj+1/2

xj−1/2

msνsr

{
v2

t,sr

∫ [− (vi − us,i
)

fs
] ∣∣∣vi,max

vi,min

dSi

− [
M2,s − us,iM1i,s + usr,i

(
us,iM0,s − M1i,s

)− v2
t,srdvM0,s

]}
dx, (3.14)
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where once again the repeated index i implies summation. Equipped with this formula we
can write down the discrete equivalence between thermal relaxation rates (2.15) as

msνsr

{
v2

t,sr

∫ [− (vi − us,i
)

fs
] ∣∣∣vi,max

vi,min

dSi

− [M2,s − us,iM1i,s + usr,i
(
us,iM0,s − M1i,s

)− v2
t,srdvM0,s

]}

− mrνrs

{
v2

t,rs

∫ [− (vi − ur,i
)

fr
] ∣∣∣vi,max

vi,min

dSi

− [M2,r − ur,iM1i,r + urs,i
(
ur,iM0,r − M1i,r

)− v2
t,rsdvM0,r

]}

.= αE

[
dv
(
mrv

2
t,r − msv

2
t,s

)+ mr − ms

2
(us − ur)

2
]
. (3.15)

The two discrete relaxation rate equivalences in (3.11) and 3.15 in conjunction with the
discrete momentum and energy conservation constraints (3.6) and (3.10) provide the four
equations for the calculation of the usr,i, urs,i, vt,sr, vt,rs unknowns in the LBO-G, provided a
value of β. Equations (3.11) and (3.15), however, are written in terms of the self-primitive
moments (e.g. us,i, vt,s) of each species, imbuing such equations with some ambiguity
as to whether the calculation of self-primitive moments should include the corrections
from velocity-space boundaries or not (Hakim et al. 2020; Francisquez et al. 2020). We
therefore opt to instead write those relations in terms of the velocity moments as follows:

msνsr

(
M1i,s − usr,iM0,s + v2

t,sr

∫
fs

∣∣∣vi,max

vi,min

dSi

)

− mrνrs

(
M1i,r − urs,iM0,r + v2

t,rs

∫
fr

∣∣∣vi,max

vi,min

dSi

)
.= αE (ms + mr)

M0,sM0,r

(
M0,rM1i,s − M0,sM1i,r

)
,

msνsr

{
−v2

t,sr

∫ (
vi − us,i

)
fs

∣∣∣vi,max

vi,min

dSi

− [M2,s − us,iM1i,s + usr,i
(
us,iM0,s − M1i,s

)− v2
t,srdvM0,s

]}

− mrνrs

{
−v2

t,rs

∫ (
vi − ur,i

)
fr

∣∣∣vi,max

vi,min

dSi

− [M2,r − ur,iM1i,r + urs,i
(
ur,iM0,r − M1i,r

)− v2
t,rsdvM0,r

]}

.= αE

M0,sM0,r

[
mrM0,s

(
M2,r − ur,iM1i,r

)− msM0,r
(
M2,s − us,iM1i,s

)

+mr − ms

2

(
us,i − ur,i

) (
M0,rM1i,s − M0,sM1i,r

)]
.

(3.16)

The division by M0,sM0,r on the right side of these equations is to be performed weakly
(Hakim et al. 2020) in order to avoid aliasing errors.
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3.4. Summary of discrete equations
In summary, in order for the algorithm based on (3.1) to conserve momentum and energy
the discrete cross-primitive moments are computed using the conservation constraints

msνsr

(
usr,iM0,s − v2

t,sr

∫
fs

∣∣∣vi,max

vi,min

dSi

)

+ mrνrs

(
urs,iM0,r − v2

t,rs

∫
fr

∣∣∣vi,max

vi,min

dSi

)
.= msνsrM1i,s + mrνrsM1i,r,

msνsr

[
usr,iM1i,s + v2

t,sr

(
dvM0,s −

∫
vifs

∣∣∣vi,max

vi,min

dSi

)]

+ mrνrs

[
ursiM1i,r + v2

t,rs

(
dvM0,r −

∫
vifr

∣∣∣vi,max

vi,min

dSi

)]
.= msνsrM2,s + mrνrsM2,r.

(3.17)

Additionally, the LBO-EM and LBO-ET use usr,i = urs,i and msv
2
t,sr = mrv

2
t,rs, respectively,

as well as their corresponding collision frequencies (2.19) and (2.25). When the discrete
expansions are inserted in (3.17) one is faced with a linear problem of size (dv + 1)Nx

b that
must be solved in every position-space cell (Nx

b is the number of monomials of the basis
spanning position space). The LBO-G on the other hand uses the equality between discrete
LBO relaxation rates and the FPO relaxation rates

msνsr

(
usr,iM0,s − v2

t,sr

∫
fs

∣∣∣vi,max

vi,min

dSi

)
− mrνrs

(
urs,iM0,r − v2

t,rs

∫
fr

∣∣∣vi,max

vi,min

dSi

)
.= msνsrM1i,s − mrνrsM1i,r + αE (ms + mr)

M0,sM0,r

(
M0,sM1i,r − M0,rM1i,s

)
, (3.18)

msνsr

{
usr,i

(
M1i,s − us,iM0,s

)+ v2
t,sr

[
dvM0,s −

∫ (
vi − us,i

)
fs

∣∣∣vi,max

vi,min

dSi

]}

− mrνrs

{
urs,i

(
M1i,r − ur,iM0,r

)+ v2
t,rs

[
dvM0,r −

∫ (
vi − ur,i

)
fr

∣∣∣vi,max

vi,min

dSi

]}
.= msνsr

(
M2,s − us,iM1i,s

)− mrνrs
(
M2,r − ur,iM1i,r

)
+ αE

M0,sM0,r

[
mrM0,s

(
M2,r − ur,iM1i,r

)− msM0,r
(
M2,s − us,iM1i,s

)

+mr − ms

2

(
us,i − ur,i

) (
M0,rM1i,s − M0,sM1i,r

)]
, (3.19)

where the relationship between αE and νsr is given by (2.7). Therefore for the
LBO-G (3.17)–(3.19) signify a 2(dv + 1)Nx

b linear problem that must be solved in every
position-space cell.

3.4.1. Discrete equations for the gyroaveraged operator
In § 2.4 we introduced the gyroaveraged cross-species LBO. Its discretization follows

that outlined in Francisquez et al. (2020) and the calculation of the cross-primitive
moments u‖sr and vt,sr is similar to that done for the non-gyroaveraged operator. The main
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differences arise from the fact that moments are defined via v‖-μ integrals (e.g. (2.37)) and
that the momentum density M1‖,s is a scalar instead of a vectorial quantity. The equations
that arise from momentum and energy conservation in the gyroaveraged case are thus

msνsr

(
M1‖,s − u‖srM0,s + v2

t,sr
2π

ms

∫
J f̂s

∣∣∣v‖ max

v‖ min

dμ
)

+ mrνrs

(
M1‖,r − u‖rsM0,r + v2

t,rs
2π

mr

∫
J f̂r

∣∣∣v‖ max

v‖ min

dμ
)
.= 0, (3.20)

msνsr

[
−v2

t,sr

(
3M0,s − 2π

ms

∫
v‖J f̂s

∣∣∣v‖ max

v‖ min

dμ− 2π

ms

∫
2μJ f̂s

∣∣∣μmax

μmin

dv‖

)]

+ mrνrs

[
M2,r − u‖rsM1‖,r

−v2
t,rs

(
3M0,r − 2π

mr

∫
v‖J f̂r

∣∣∣v‖ max

v‖ min

dμ− 2π

mr

∫
2μJ f̂r

∣∣∣μmax

μmin

dv‖

)]
.= 0. (3.21)

For the gyroaveraged LBO-EM and LBO-ET (3.20)–(3.21), and the relations u‖sr = u‖rs
and msv

2
t,sr = mrv

2
t,rs, is all that is needed to compute the cross-primitive moments. This

requires a solution to a linear problem of size 2Nx
b in each position-space cell. In the case

of the LBO-G operator we make use of the discrete moment relaxation equations once
again, as in (3.18)–(3.19) but using the gyroaveraged moments instead

msνsr

(
u‖srM0,s − v2

t,sr
2π

ms

∫
J f̂s

∣∣∣v‖ max

v‖ min

dμ
)

− mrνrs

(
u‖rsM0,r − v2

t,rs
2π

mr

∫
J f̂r

∣∣∣v‖ max

v‖ min

dμ
)

.= msνsrM1‖,s − mrνrsM1‖,r + αE (ms + mr)

M0,sM0,r

(
M0,sM1‖,r − M0,rM1‖,s

)
, (3.22)

msνsr

{
u‖sr

(
M1‖,s − u‖sM0,s

)

+v2
t,sr

[
3M0,s − 2π

ms

∫ (
v‖−u‖s

)
J f̂s

∣∣∣v‖ max

v‖ min

dμ− 2π

ms

∫
2μJ f̂s

∣∣∣μmax

μmin

dv‖

]}

− mrνrs

{
u‖rs

(
M1‖,r − u‖rM0,r

)

+v2
t,rs

[
3M0,r − 2π

mr

∫ (
v‖−u‖r

)
J f̂r

∣∣∣v‖ max

v‖ min

dμ− 2π

mr

∫
2μJ f̂r

∣∣∣μmax

μmin

dv‖

]}
.= msνsr

(
M2,s − u‖sM1‖,s

)− mrνrs
(
M2,r − u‖rM1‖,r

)
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+ αE

M0,sM0,r

[
mrM0,s

(
M2,r − u‖rM1‖,r

)− msM0,r
(
M2,s − u‖sM1‖,s

)

+mr − ms

2

(
u‖s − u‖r

) (
M0,rM1‖,s − M0,sM1‖,r

)]
, (3.23)

where once again weak division by M0,sM0,r on the right-hand side of these equations
assumed (Hakim et al. 2020) in order to avoid aliasing errors. In (3.20)–(3.23) we assumed
a v‖-μ simulation such that dv = 3. For a v‖ simulation the 3 in front of M0,s and M0,r would
be simply a 1, (2π/m)

∫
dμ integrals would vanish and so would the the 2μJ f̂ terms. In

either case, the gyroaveraged LBO-G requires inverting a matrix with 4Nx
b × 4Nx

b matrix
in each configuration space cell.

4. Benchmarks and results

The algorithm introduced in § 3 has been implemented in the DG Vlasov–Maxwell
(Juno et al. 2018; Hakim & Juno 2020) and gyrokinetic (Shi et al. 2019; Mandell et al.
2020) solvers of the Gkeyll computational plasma physics framework (Gkeyll 2020). In
order to demonstrate the algorithm’s properties and test the implementation we have run
a number of tests and we here present the results of three of them: § 4.1 contains basic
tests showing the conservative properties of the algorithm, § 4.2 contains four dimensional
Vlasov–Maxwell simulations of collisional Landau damping of an electron plasma wave
and § 4.3 uses the gyrokinetic solver to explore velocity and temperature relaxation. All
the input files used to generate these results are available online (see Appendix A).

4.1. Conservation tests
4.1.1. Vlasov LBO conservation

We check that momentum and energy are indeed conserved by our discrete scheme
by initiating two populations of electrons and protons with an arbitrary non-Maxwellian
distribution function given by

fs(v, t = 0) = a [1 + d cos (ksv)] exp
[
−(v − bs)

2

2σ 2
s

]
, (4.1)

with a = 7 × 1019, d = 0.5, ks = π/vt,s, σs = vt,s, be = {vt,e/2,−vt,e/2, 0}, bi =
{3vt,i/2, 3vt,i/2, vt,i/2} with vt,s = √

Ts0/ms, and Te0 = 40 eV and Ti0 = 80 eV.
We discretize these distribution functions in phase spaces restricted to [−1, 1] ×
[−5vt,s, 5vt,s]dv and meshed with 1 × Ndv

v cells. We show conservation properties for
both piecewise-linear (p = 1) and piecewise-quadratic (p = 2) serendipity basis functions
(Juno et al. 2018); higher-order basis functions may also be used but the results do not
change. For the same reason we use a single cell in position space; the results in this
section are independent of position-space dimensionality although we checked such cases
anyway to make sure there are no errors in the implementation.

We time integrate the cross-species collision terms (no self-species collisional
or collisionless terms are included here) with constant collision frequency using a
strong-stability preserving (SSP) third-order Runge–Kutta method (RK3). As electrons
and ions collide with each other their temperatures and flow velocities relax to a common
value, a process that is more carefully benchmarked in § 4.3. We also see that whatever
anisotropies were present at t = 0 go away on the ν−1

sr time scale. In figure 1, for example,
we illustrate the isotropization of the electrons after several (νM

ei )
−1 periods as they collide

with the ions using the LBO-EM, but since νie is smaller by me/mi the ions will take much
longer to isotropize as they collide with the electrons.
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(a) (b)

(c) (d )

FIGURE 1. Initial and final (after νM
ei t = 100) electron and ion distribution functions as they

collide with each other with the LBO-EM model using 1 × 642 cells and a p = 2 serendipity
basis. Initial conditions are given in (4.1). Colour bars are normalized to the extrema at νM

ei t =
100.

We ran this simulation for dv = {1, 2, 3}, p = {1, 2} and using both the LBO-EM and
the LBO-G. The ability to conserve the first three volume-integrated velocity moments
of the distribution function was quantified in each case by integrating the equations for
Nt time steps, and computing the relative error per time step in the volume-integrated
particle, momentum and kinetic energy density. The relative error per time step in the
number density M0 is given by

Er,M0 = 1
Nt

〈M0e + M0i〉 (t = Nt�t)− 〈M0e + M0i〉 (t = 0)
〈M0e + M0i〉 (t = 0)

, (4.2)

where 〈·〉 indicates a volume average and Nt = 104. The relative error per time step in
momentum and kinetic energy conservation takes into account the mass of each species

Er,M1k = 1
Nt

〈
meM1e,k + miM1i,k

〉
(t = Nt�t)− 〈

meM1e,k + miM1i,k
〉
(t = 0)〈

meM1e,k + miM1i,k
〉
(t = 0)

, (4.3)
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(a) (b) (c)

(d) (e) ( f )

(g) (h) (i)

FIGURE 2. Relative error per time step in number density (a–c), momentum density in each
direction (d–f ) and kinetic energy density (g–i). The middle row plots contain dv lines for each
operator and p, corresponding to the error per time step in the conservation of momentum along
each direction.

Er,M2 = 1
Nt

〈
1
2 meM2e + 1

2 miM2i
〉
(t = Nt�t)− 〈

1
2 meM2e + 1

2 miM2i
〉
(t = 0)〈

1
2 meM2e + 1

2 miM2i
〉
(t = 0)

. (4.4)

The results as a function of velocity-space resolution (i.e. Nv) are given in figure 2. The
middle row plots have dv lines for each operator and polynomial order p because the
relative error per time step in the volume-integrated momentum density is measured along
each direction separately. In all cases we see that the errors in momentum conservation per
time step remain of the order of machine precision. This is true even for the simulations
with piecewise-linear basis functions or very coarse velocity-space meshes. The LBO-ET
uses the same algorithm and implementation as LBO-EM but with a different collision
frequency, so its conservation errors are similar to those of the LBO-EM shown here.

These conservation properties do not depend on the large mass disparity between
ions and electrons; the algorithm’s ability to conserve the velocity moments is also
independent of the mass ratio. We provide as an example the dv = 2 and p = 2 simulation
with the LBO-EM, scanning the number of velocity-space cells in one direction (Nv)
and using the mass ratios mi/me = {300, 600, 1000, 1836}. The conservation errors for
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(a) (b) (c)

FIGURE 3. Relative error per time step in number density (a), momentum density in each
direction (b) and kinetic energy density (c) in two-dimensional velocity space (dv = 2).

these simulations are provided in figure 3, once again shown that for all mass ratios
and resolutions used, the error per time step in the volume-integrated velocity moments
remains of the order of machine precision.

4.1.2. Gyroaveraged LBO conservation
Similar tests were run with the gyroaveraged version of the LBO operators in order to

guarantee that the algorithm remains conservative in that case as well. For these tests we
initialize the ion and electron distribution functions with

fs(v‖, μ, t = 0) = a [1 + d cos (ksv)](
2πσ 2

s

)3/2 exp

[
−
(
v‖−bs

)2 + 2μBms

2σ 2
s

]
, (4.5)

and the parameters B = 1.2 T, a = 7 × 1019, d = 0.5, ks = π/vt,s, σs = vt,s, be = 5vt,i/4,
bi = vt,i, vt,s = √

Ts0/ms, Te0 = 40 eV and Ti0 = 80 eV. The phase space [−1, 1] ×
[−5vt,s, 5vt,s] × [0,ms(5vt,s)

2/(2B)] is meshed with 1 × N2
v cells and functions are

expanded on piecewise-linear (p = 1) or piecewise-quadratic (p = 2) serendipity basis.
We allow the electrons and ions to collide with each other but not with themselves,

and we do not apply the collisionless terms either. The cross-species collision terms were
integrated in time for 104 time steps using a third-order SSP RK3, and we computed the
relative error per time step in the volume-integrated velocity moments as in § 4.1.2. The
results in figure 4 demonstrate how the relative error per time step in the conservation of
velocity moments stays of order of machine precision for all velocity-space resolutions,
and even for p = 1. Figure 4 gives conservation errors for the LBO-ET and the LBO-G;
the LBO-EM has similar conservative properties as the LBO-ET since it only differs by
the definition of the collision frequency.

4.2. Landau damping of electron Langmuir waves
A seminal test bed for collision operators is the Landau damping of plasma waves across
the collisional range. We pursued this analysis to examine the effect that these collision
models have on the Landau damping rate of electrostatic electron Langmuir waves. For
this purpose we employ the Vlasov–Maxwell solver in Gkeyll (Juno et al. 2018; Hakim &
Juno 2020) with the self-species collision terms (Hakim et al. 2020) and the multispecies
collision models described in this work. The hydrogen ions are fixed in time so the
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(a) (b) (c)

(d ) (e) ( f )

FIGURE 4. Relative error per time step in number density (a,b), momentum density (c,d) and
kinetic energy density (e, f ) as a function of the number of cells along one direction of velocity
space (Nv) for the gyroaveraged LBO-ET (solid) and LBO-G (dashed). Top row contains tests
with v‖-space only, while the bottom row contains tests in v‖ − μ space.

equations solved are

∂fe

∂t
+ v · ∇fe − E · ∇vfe =

∑
r=e,i

νer∇v · [(v − uer) fe + v2
ter∇vfe

]
, (4.6)

∂E
∂t

= −J , (4.7)

where we used normalized units,4 the current density is given by J = −M1e and we
solve (4.7) in a way that keeps the simulation electrostatic.5 We use four-dimensional
simulations with the phase space [−π/k,π/k] × [−5vt,e, 5vt,e]3 discretized by 16 × 363

cells and p = 2 basis functions, for the wavenumber kλDe = 0.3, with λDe being the
electron Debye length. We confirmed that the resolution used is the minimum needed
to obtain converged results by scanning the position- and velocity-space resolution as
well as the velocity-space extents. The static ions have the normalized density ni(x) = 1
while the electrons are initialized with a non-drifting Maxwellian distribution that has
the temperature Te = 1 = Ti and the density ne(x, t = 0) = 1 + α cos(kx), with α = 10−4.
The electric field is initialized in a manner consistent with Poisson’s equation E =
−x̂α sin(kx)/k.

As the simulation proceeds we see the amplitude of the electrostatic wave damp, which
can be appreciated by examining the volume-integrated field energy over time as shown in
figure 5(a). We can quantify the rate at which these waves damp and plot it as a function of

4https://gkeyll.readthedocs.io/en/latest/dev/vlasov-normalizations.html.
5http://ammar-hakim.org/sj/je/je33/je33-buneman.html.
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(a) (b)

FIGURE 5. (a) Normalized volume-integrated field energy in simulations of electron Langmuir
waves as they Landau damp over time. (b) Damping rates of electron Langmuir waves given
as the offset from the collisionless value of γcollisionless/ωpe = −1.247 × 10−2 for the LBO-G
with β = 0 and β = −0.65 (blue circles), the LBO-EM (purple triangles) and the LBO-ET
(dotted green) compared with those with a full FPO (Jorge et al. 2019) (solid red). If using
only self-collisions, numerical Gkeyll data (black crosses) agrees with theory (black circles).

collision frequency as is done in figure 5(b). If one were to only use self-species collisions
one would obtain the results shown with black crosses, and for that case the equations
are sufficiently simple that one can obtain an analytic dispersion relation (Anderson &
O’Neil 2007; Francisquez et al. 2020) which agrees well with the numerical results (black
circles), providing additional confidence in the Gkeyll implementation. When we introduce
electron–ion collisions obtaining analytic growth rates is more difficult. So we instead
compare the results obtained with the LBO-G (solid blue), the LBO-EM (dashed purple)
and the LBO-ET (dotted green) with previously reported results for the FPO (Jorge et al.
2019).

The LBO-G simulations were performed using νG
ei = √

2νee (= (mi/me)νie) since this
is the relationship assumed in the reference FPO work (Jorge et al. 2019). Figure 5(b)
suggests that the LBO-G can provide a more accurate description of this kinetic
phenomenon than, say, using self-species collisions only. There is the caveat, however,
that we have not established from first principles what the most suitable choice of the free
parameter β ought to be at any given collision frequency. We scanned this parameter and
show the results for β = 0 and β = −0.65, the latter bringing the damping rates closer
to those of the full FPO. But it is apparent that the wrong choice of β can also result in
significant deviation from the FPO.

Also shown in figure 5(b) are the damping rates obtained when using the LBO-EM
and the LBO-ET. Despite having a different model for usr and vt,sr, LBO-EM has the
same collision frequency (νM

ei = νG
ei(β = 0)) and gives the same damping rates as the

LBO-G with β = 0 (top blue and dashed purple lines). The LBO-ET on the other hand
has a collision frequency that is smaller by the mass ratio (νT

ei = meν
M
ei /(me + mi) �

(me/mi)ν
M
ei ), and therefore is essentially equivalent to neglecting cross-species collisions

for this problem; i.e. solid black and dotted green lines agree. If we were to run the
simulation with the LBO-ET but the same value of νei as the LBO-EM then we would
simply obtain the same results as if we had used the LBO-EM.

4.3. Velocity and temperature relaxation
As a final benchmark of the multispecies LBO algorithms and solvers we employ the
gyroaveraged LBO to model the relaxation of a deuterium plasma to thermal equilibrium.
We employ identical conditions, as best as we can tell, to those used in a benchmark of the
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FPO in the XGC code (Hager et al. 2016). The same test was recently performed with a
finite-volume implementation of the LBO-ET and LBO-EM in GENE-X Ulbl et al. (2021).
This means that the initial distribution functions are described by the bi-Maxwellians

fs
(
v‖, μ, t = 0

) = n0

α
(
2πv2

t,s

)3/2 exp

[
−
(
v‖−u‖s

)2 + 2μB/(msα)

2v2
t,s

]
, (4.8)

where B = 1 T, vt,s = √
Ts0/ms α = 1.3, u‖i = 50(me/mi)vt,i, u‖e = 0.5

√
me/mivt,s, Ti0 =

200 eV and Te0 = 300 eV. Note that these reference temperatures are slightly different
than the true initial temperatures Ti(t = 0) = 240 eV and Te(t = 0) = 360 eV given by
Ts = (2T⊥s + T‖s)/3. For this test we once again neglect the collisionless terms and use
a collision frequency that depends on time, i.e. νsr = νsr(Ts(t),Tr(t)). The phase space
[−2, 2] × [−5vt,s, 5vt,s] × [0,ms(5vt,s)

2/(2B)] is meshed with 1 × 162 cells and dynamic
fields are expanded in a piecewise-linear (p = 1) basis. This resolution and velocity-space
extents were confirmed as sufficient by convergence tests.

Figure 6 provides the time evolution of the parallel and perpendicular temperatures
for the LBO-G (β = 0), LBO-EM and LBO-ET operators compared with the previously
reported FPO results6 (Hager et al. 2016). The first event is the isotropization of the
electrons followed by the isotropization of the ions, happening on the ν−1

ss time scale. We
used

νss = 1√
2

q4
s ns logΛss

3 (2π)3/2 ε2
0m2

sv
3
t,s

, (4.9)

for the like-species scattering rate. Note that the LBO-G and LBO-EM exhibit a delayed
isotropization time compared with the FPO’s, an observation that Pezzi, Valentini & Veltri
(2015) had also made while comparing the self-species Dougherty operator with the FPO
(in Landau form). Later, on the ν−1

ie time scale, we see the electrons and ions come into
thermal equilibrium with each other, a process that is better described by both the LBO-G
and the LBO-ET operators since, after all, the LBO-EM made no attempt at matching the
FPO thermal relaxation rates. The time axis on these plots has been normalized to the
isotropization rate (Huba 2013)

ν i
T = 2

√
πq4

i ni logΛii

(4πε0)
2 m2

i v
3
t,i

A−2 [−3 + (A + 3) aF] , (4.10)

where vt,i and logΛii use the initial ion temperature (240 eV), and A = T⊥i/T‖i − 1 and
aF = A−1/2 tan−1(A1/2) if A > 0 or aF = (−A)1/2 tanh−1(−A)1/2 if A < 0.

We can also examine the velocity evolution as the plasma approaches an equilibrium
as is done in figure 7. The first thing we notice is that the LBO-ET (green dash-dot with
circles) grossly overestimates the time scale on which the electron flow relaxes to the
ion flow, which happens because the ions are so much more massive. By definition the
LBO-ET did not attempt to match the momentum relaxation rate, and we see the result of
that here. On the other hand, the LBO-G (solid blue) and LBO-EM (dashed orange with
crosses) models do a better job of approximating the FPO results for the slowing down
of electrons, since their formulation included matching the FPO’s momentum relaxation
rates. There is still a discrepancy, e.g. between solid blue and dashed orange lines, although

6Note that the FPO results here (and those in figure 7) have been shifted in time by −�t = 3.85783 × 10−7 s
compared with those in Hager et al. (2016), since that work shifted them by �t in order to show the results with a
logarithmic x-axis.
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(a) (b)

(c)

FIGURE 6. Isotropization and relaxation of temperatures as deuterium ions and electrons collide
with themselves and each other, compared with the results from the full FPO (Hager et al. 2016).
(a) LBO-G with β = 0. (b) LBO-EM. (c) LBO-ET.

we point out that the LBO-G and LBO-EM would appear to match the analytic result based
on the flow relaxation frequency given by the friction force at large mass ratio (Hinton &
Hazeltine 1976) (see figure 4 of Hager et al. 2016).

5. Conclusion

This work presented three separate formulations of full-f nonlinear multispecies
collisions based on the model Lenard–Bernstein or Dougherty operator (LBO), following
the ideas Greene (1973) and Haack et al. (2017) employed for the BGK operator.
This resulted in the LBO-G, LBO-EM and LBO-ET operators, each providing different
formulas for the cross-species primitive moments usr,i and vt,sr and collision frequency
νsr. The LBO-G attempts to exactly match the thermal and momentum relaxation rates
of the FPO, but it introduces a free parameter β. The LBO-EM only matches the FPO
momentum relaxation rate, while the LBO-ET only tries to approximately match the FPO
thermal relaxation rate. Gyroaveraged versions of this operator were also provided in this
work, which may be used in long-wavelength gyrokinetic models. Compared with previous
works, the multispecies LBO model presented here has the following advantages:

(i) It is suitable for arbitrary mass ratios.
(ii) Some pathologies, such as negative cross-species temperatures (possible in the BGK

operator of Greene 1973), are avoided.
(iii) It conserves energy and momentum exactly.
(iv) It approximately reproduces the FPO’s momentum and thermal relaxation rates.
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(a) (b)

FIGURE 7. Relaxation of parallel flow speed as deuterium ions and electrons collide with
themselves and each other. Electron flow speeds are compared with the results from the full
FPO (dotted black, Hager et al. (2016)). Flow speeds when using the LBO-G (β = 0) are given
in solid dark blue, results for the LBO-EM in dashed orange with crosses and green dash-dot
lines with circles represent results obtained with the LBO-ET.

(v) A proof of non-decreasing entropy (the H theorem) exists.

These multispecies LBO models may also be discretized for numerical implementation
using a DG method in the spirit of Hakim et al. (2020) and Francisquez et al. (2020). We
provided an algorithm for a DG discretization of such operators based on weak projections
and the recovery of discontinuous derivatives across cell boundaries (Hakim et al. 2020).
The primary focus of this work was, however, the computation of the cross-primitive
moments usr,i and vt,sr in a manner that results in an exactly conservative algorithm,
i.e. capable of conserving particle, momentum and kinetic energy density independently
of resolution. This property was accomplished by solving a weak system of equations
consisting of the discrete equivalent of momentum and energy conservation, and in the
case of the LBO-G, a discrete equivalent of the momentum and thermal relaxation rate
constraints. Discrete conservation was also attained when piecewise-linear basis functions
(p = 1) were used by carefully employing the projection of v2 onto the basis (or v2

‖ for the
gyroaveraged operator).

Our tests indicate that the implementation in Gkeyll exhibits this exact conservation
feature, for all the velocity dimensions and polynomial orders tested. Exact conservation
was also confirmed in Gkeyll’s gyroaveraged solver for one and two velocity dimensions. In
addition we combined the LBO solver with Gkeyll’s Vlasov–Maxwell solver and examined
the impact that LBO cross-species collisions has on the Landau damping rates of electron
Langmuir waves. Due to the definition of the LBO-ET collision frequency, such operator
gave no improvements over using self-species collisions only, while the LBO-G and
LBO-EM gave slightly more accurate descriptions of this phenomenon. The LBO-G can
be made to agree more with the FPO by choosing a different value of β, but we have
not presented a first-principles model for that free parameter yet. Despite this unspecified
parameter, the LBO-G operator has been in use by Gkeyll’s Vlasov and gyrokinetic solvers
for quite some time now. For example, recent Vlasov–Maxwell simulations using this
operator showed the inhibition of magnetic dynamo due to Landau damping (Pusztai et al.
2020). Nevertheless, this β parameter will be the focus of follow up work.

Lastly, we benchmarked the gyroaveraged multispecies LBO by simulating a system
in which ions and electrons are anisotropic, drifting relative to each other and out of
thermal equilibrium. The LBO-EM and LBO-ET each do better at approximating the
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FPO’s velocity and temperature evolution, as their formulation would predict. The LBO-G
is perhaps the best choice here, since it does well at matching the temperature evolution
and provides the same level of accuracy when it comes to the velocity relaxation as the
LBO-EM.
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Appendix A. Getting Gkeyll and reproducing results

Readers may reproduce our results and also use Gkeyll for their applications. The code
and input files used here are available online. Full installation instructions for Gkeyll are
provided on the Gkeyll website Gkeyll (2020). The code can be installed on Unix-like
operating systems (including Mac OS and Windows using the Windows Subsystem for
Linux) either by installing the pre-built binaries using the conda package manager (https://
www.anaconda.com) or building the code via sources. The input files used here are under
version control and can be found at https://github.com/ammarhakim/gkyl-paper-inp/tree/
master/2021_JPP_crossLBO.

Appendix B. H-theorem proof

In this section we show that the improved interspecies Dougherty collisions do not
decrease total entropy given the cross-species primitive moments for collisions between
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species s and species r (2.8)–(2.9). The rate of change of the entropy S can be written as

∂S
∂t

= − ∂

∂t

∑
s

∫
ddv v fs ln fs

= −
∑

s

∫
ddv v

∂fs

∂t
(ln fs + 1) ,

= −
∑

s

∫
ddv v νsr (÷vJsr) (ln fs + 1) , (B1)

where Jsr = (v − usr)fs + v2
t,sr∇vfs. Integrate (B1) by parts and use the fact that fs → 0

faster than any polynomial or logarithmic singularity. In the interest of simplicity we adopt
the notation

∫
dv

= ∫
ddv v, then the time rate of change Ṡ becomes

Ṡ =
∑

s

∫
dv

νsrJsr ∇v(ln fs + 1)

=
∑

s

∫
dv

νsr
[
(v − usr) fs + v2

t,sr∇vfs
] · ∇vln fs,

=
∑

s

∫
dv

νsr
[
(v − usr) · ∇vfs + v2

t,sr∇vfs · ∇vln fs
]
. (B2)

The first term can be integrated again so that, upon discarding the surface term, and
adopting the notation Ṅsr = νsrdvns and Ṫsr = νsrv

2
t,sr, one obtains

Ṡ =
∑

s

(
−Ṅsr + Ṫsr

∫
dv

∇vfs · ∇vln fs

)
. (B3)

At this point we can ask what is the distribution function that minimizes Ṡ . Given a set of
primitive moments (usr,i, vt,sr, and also us,i, vt,s) and the virtual displacement δfs = fs − fs0,
the response of the functional in (B3) is

δṠ =
∑

s

Ṫsr

∫
dv

[
δ

(
1
fs

)
|∇vfs0|2 + 1

fs0
δ |∇vfs|2

]
,

≈
∑

s

Ṫsr

∫
dv

1
fs0

(
−δfs

fs0
|∇vfs0|2 + 2∇vfs0 · ∇vδfs

)
,

=
∑

s

Ṫsr

∫
dv

{
1
fs0

(
−δfs

fs0

)
|∇vfs0|2 + 2

[
∇v · δfs

fs0
∇vfs0 − δfs∇v · 1

fs0
∇vfs0

]}
. (B4)

The second term vanishes since δfs → ±∞ as vi → ±∞. Thus at an extremum

δṠ =
∑

s

Ṫsr

∫
dv

[
− 1

f 2
s0

|∇vfs0|2 − 2∇v · 1
fs0

∇vfs0

]
δfs (B5)
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must vanish, and since (B3) has no upper bound this extremum must be a minimum. At
this point we can impose the conditions∫

dv

δfs = 0, (B6)

∫
dv

msv δfs = 0, (B7)

∫
dv

1
2 msv

2 δfs = 0, (B8)

requiring the virtual displacement to not alter the moments of the solution (but does not
mean that the moments are constant in time). From (B5)–(B8) we can deduce that for (B5)
to vanish for all displacements δfs it must be that

|∇vln fs0|2 + 2∇2
v ln fs0 = a + b · v + cv2, (B9)

where a, b and c are constants. We can re-write this equation as

h(t, x, v)2 + 2∇v · h(t, x, v) = a + b · v + cv2, (B10)

where h(t, x, v) = ∇v ln fs0. We claim that the solution to this nonlinear inhomogeneous
equation is

h(t, x, v) = h0 + h1v, (B11)

with h0 and h1 yet undetermined constants. Check by substituting (B11) into (B10):

h(t, x, v)2 + 2∇v · h(t, x, v) = h2
0 + 2h1h0 · v + h2

1v
2 + 2∇v · (h0 + h1v), (B12)

which has the same form as the right-hand side of (B10) with a = h2
0 + 2dvh1, b = 2h1h0

and c = h2
1. Going back to the definition of h(t, xi, vi), we can arrive at

ln fs0 = g0 + h0 · v + 1
2 h1v

2,

⇒ fs0 = A exp
(
h0 · v + 1

2 h1v
2) . (B13)

We can now explore whether our minimized Ṡ falls below zero. For this we rewrite (B3)
making use of vanishing total derivatives

min
(
Ṡ
) =

∑
s

(
−Ṅsr − Ṫsr

∫
dv

fs0∇v · 1
fs0

∇vfs0

)
, (B14)

and, from (B9),

fs0∇v · 1
fs0

∇vfs0 = a + b · v + cv2

2
fs0 − 1

2fs0
|∇vfs0|2 . (B15)

Putting these two equations together we have

min
(
Ṡ
) =

∑
s

[
−Ṅsr − 1

2
Ṫsr

∫
dv

(
a + b · v + cv2 − |∇vln fs0|2

)
fs0

]
. (B16)
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Take the derivative of (B13) and insert it into (B16) to obtain

min
(
Ṡ
) =

∑
s

[
−Ṅsr − 1

2
Ṫsr

∫
dv

(
a + b · v + cv2 − |h0 + h1v|2) fs0

]
. (B17)

Employing the definitions of a, bi and c above this becomes

min
(
Ṡ
) =

∑
s

(
−Ṅsr − dvh1Ṫsr

∫
dv

fs0

)
. (B18)

If we require that the zeroth moment of fs0 equals ns, we find that

fs0 = ns

(
− h1

2π

)dv/2

exp
[
(h0 + h1v)

2

2h1

]
. (B19)

Identify h1 with −v−2
t,s such that the minimizing function becomes

fs0 = ns(
2πv2

t,s

)dv/2
exp

[
−
(
v2

t,sh0 − v
)2

2v2
t,s

]
, (B20)

and by taking the first moment of this distribution it would become clear that v2
t,sh0 = us.

The minimizing distribution is thus a Maxwellian with number density ns, mean flow
velocity us and thermal speed vt,s. Since we have found a single distribution that minimizes
Ṡ then the minimum given below must be global.

One can show that if the two colliding distributions are Maxwellian, that the total
entropy does not decrease. We can check this here by going back to (B18), and find that
the minimum entropy rate of change is

min
(
Ṡ
) = −dv

∑
s

nsνsr

(
1 − v2

t,sr

v2
t,s

)
. (B21)

At this point one must substitute the definition for the cross-species thermal speed in (2.9)
to yield

min
(
Ṡ
) = dv

∑
s

nsνsr

v2
t,s

δs

2
1 + β

1 + mr

ms

[
mr

ms
v2

t,r + 1
dv

mr

ms
(us − ur)

2 − v2
t,s

]
,

= dv
msnsνsr

v2
t,s

δs

2
1 + β

ms + mr

∑
s

[
Tr

Ts
+ 1

dv

mr

ms

(us − ur)
2

v2
t,s

− 1
]
,

= dv
msnsνsr

v2
t,s

δs

2
1 + β

ms + mr

[
(Tr − Ts)

2

TsTr
+ 1

dv

(
mr

ms

1
v2

t,s

+ ms

mr

1
v2

t,r

)
(us − ur)

2
]

� 0,

(B22)

and thus the entropy cannot decrease and the H-theorem of this nonlinear full-f
multispecies collision model is guaranteed.
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Appendix C. Energy conservation with piecewise-linear basis
C.1. Cartesian p = 1 energy conservation

The derivation of a constraint on the operator to conserve energy in § 3.2 relied on v2

belonging to the space span by the basis set. For piecewise-linear basis (p = 1) that is
not the case, so instead we can guarantee that the algorithm preserves the projection of
the energy onto the basis. We use the notation and strategy first outlined in Hakim et al.
(2020) for self-species collisions; v2 is the projection of v2 onto the basis. For the energy
to be conserved the left-hand side of (3.1) has to be zero after making the substitution
ψ
 = msv2/2, summing over species and over all cells. Those steps lead to the relation

∑
j

∫ xi+1/2

xi−1/2

⎧⎨
⎩ms

2
νsr

⎡
⎣(v2Gs − ∂v2

∂v
v2

t,sr f̂s

)∣∣∣∣∣
vj+1/2

vj−1/2

−
∫ vj+1/2

vj−1/2

∂v2

∂v
(v − usr) fs dv

⎤
⎦

+ms

2
νrs

⎡
⎣(v2Gr − ∂v2

∂v
v2

t,rs f̂r

)∣∣∣∣∣
vj+1/2

vj−1/2

−
∫ vj+1/2

vj−1/2

∂v2

∂v
(v − urs) fr dv

⎤
⎦
⎫⎬
⎭ dx = 0, (C1)

where we used ∂2v2/∂v2 = 0. Next, we use the fact that (Hakim et al. 2020)

1
2
∂v2

∂v
= v̌j = vj−1/2 + vj+1/2

2
(C2)

(the cell centre) and the continuity of v2Gs as well at the zero flux boundary conditions, to
turn (C1) into∫ xi+1/2

xi−1/2

∑
j

{
msνsr

[
−v̌jv

2
t,sr f̂s

∣∣∣vj+1/2

vj−1/2

−
∫ vj+1/2

vj−1/2

v̌j (v − usr) fs dv

]

+msνrs

[
−v̌jv

2
t,rs f̂r

∣∣∣vj+1/2

vj−1/2

−
∫ vj+1/2

vj−1/2

v̌j (v − urs) fr dv

]}
dx = 0. (C3)

Carrying out the velocity integrals this equation becomes∫ xi+1/2

xi−1/2

{
msνsr

[
−v2

t,sr

(
v̌jfs(vj±1/2)

∣∣∣jmax

jmin

− M�
0,s

)
− (

M�
2,s−usrM�

1,s

)]

+msνrs

[
−v2

t,rs

(
v̌jfr(vj±1/2)

∣∣∣jmax

jmin

− M�
0,r

)
− (

M�
2,r−ursM�

1,r

)]}
dx = 0, (C4)

where the ± sign is used when evaluating at jmax/jmin and we have introduced the star
moments

M�
0,s =

Nv−1∑
j=1

(
v̌j+1 − v̌j

)
f̂s,j+1/2,

M�
1,s =

Nv∑
j=1

∫ vj+1/2

vj−1/2

v̌jfs dv,

M�
2,s =

Nv∑
j=1

∫ vj+1/2

vj−1/2

v̌jvfs dv.

(C5)
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Therefore, our DG scheme will conserve energy if we enforce the following weak
constraint:

msνsr

[
usrM�

1,s+v2
t,sr

(
M�

0,s−v̌jfs(vj±1/2)

∣∣∣jmax

jmin

)]

+ mrνrs

[
ursM�

1,r+v2
t,rs

(
M�

0,r−v̌jfr(vj±1/2)

∣∣∣jmax

jmin

)]
.= msνsrM�

2,s+mrνrsM�
2,r. (C6)

In order to formulate an energy-conserving LBO-G with p = 1 we also need
to re-examine the thermal relaxation rate of the discrete operator, (3.12). If we
instead substitute ψ
 = ms(v − us)2/2 = ms(v2 − 2vus + u2

s )/2 into (3.1) and sum over
velocity-space cells we get

∑
j

∫
Ki,j

ms

2
(v − us)

2
(

dfs

dt

)
c

dx dv = −
∫ xi+1/2

xi−1/2

msνsr

∑
j

[ (
v̌j − us

)
v2

t,sr f̂s

∣∣∣vj+1/2

vj−1/2

+
∫ vj+1/2

vj−1/2

(
v̌j − us

)
(v − usr) fs dv

]
dx, (C7)

having used the continuity of (v − us)2Gs, its boundary conditions, (C2) and
∂2v2/∂v2 = 0. Carry out the velocity-space integrals on the right as well as the sum over
j in order to land at

∑
j

∫
Ki,j

ms

2
(v − us)

2
(

dfs

dt

)
c

dx dv

=
∫ xi+1/2

xi−1/2

msνsr

[
v2

t,sr

(
M�

0,s−v̌jfs(vj±1/2)

∣∣∣jmax

jmin

+ usf̂s

∣∣∣vjmax+1/2

vjmin−1/2

)

+usr
(
M�

1,s−usM0,s
)− (

M�
2,s−usM1,s

)]
dx. (C8)

Therefore, when using p = 1 bases we enforce the equality of the relaxation rates with

msνsr

[
usr
(
M�

1,s−usM0,s
)+ v2

t,sr

(
M�

0,s−v̌jfs(vj±1/2)

∣∣∣jmax

jmin

+ usf̂s

∣∣∣vjmax+1/2

vjmin−1/2

)

− mrνrs

[
urs
(
M�

1,r−urM0,r
)+ v2

t,rs

(
M�

0,r−v̌jfr(vj±1/2)

∣∣∣jmax

jmin

+ urf̂r

∣∣∣vjmax+1/2

vjmin−1/2

)
.= msνsr

(
M�

2,s−usM1,s
)− mrνrs

(
M�

2,r−urM1,r
)

+ αE

M0,sM0,r

[
mrM0,s

(
M2,r − ur,iM1i,r

)− msM0,r
(
M2,s − us,iM1i,s

)

+mr − ms

2

(
us,i − ur,i

) (
M0,rM1i,s − M0,sM1i,r

)]
. (C9)

C.2. Gyroaveraged p = 1 energy conservation
Energy conservation with p = 1 basis functions is also possible with the gyroaveraged
operator in (2.35). The discretization and calculation of the cross-primitive moments
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follows in the vein of that explained in § 3.4.1, although this time we must consider the
projection of the v2

‖ onto the p = 1 as was done for the non-gyroaveraged operator in

the previous section. Substituting ψ
 = msv
2
‖/2 into the weak form of the gyroaveraged

collision operator, summing over velocity-space cells and species we obtain the following
constraint:

msνsr

{
u‖srM�

1‖,s+v2
t,sr

[
M�

0,s+2M0,s − 2π

ms

(∫
v̌‖jfs(v‖j±1/2)

∣∣∣jmax

jmin

dμ

+2
∫
μfs

∣∣∣μmax

μmin

dv‖

)]}

+ mrνrs

{
ursM�

1‖,r+v2
t,rs

[
M�

0,r+2M0,r − 2π

mr

(∫
v̌‖jfr(v‖j±1/2)

∣∣∣jmax

jmin

dμ

+2
∫
μfr

∣∣∣μmax

μmin

dv‖

)]}
.= msνsrM�

2,s+mrνrsM�
2,r. (C10)

In addition to energy conservation the gyroaveraged LBO-G requires the discrete
thermal relaxation rate of the operator, which we must re-calculate assuming p = 1 basis
functions. Multiplying the discrete gyroaveraged LBO by ψ
 = ms(v − u‖s)2/2 + μB,
integrating over phase space and summing over velocity-space cells we obtain the
following discrete relaxation rate:

∑
j,k

∫
Ki,j,k

[
ms

2

(
v‖−u‖s

)2 + μB
](

∂fs

∂t

)
c

dx dv‖ dμ

= νsr

∑
j,k

(∫ μk+1/2

μk−1/2

{[
ms

2

(
v‖−u‖s

)2 + μB
]

Gv‖s − ms
(
v̌‖j − u‖s

)
v2

t,sr f̂s

}∣∣∣∣
v‖j+1/2

v‖j−1/2

dμ

+
∫ v‖j+1/2

v‖j−1/2

{[
ms

2

(
v‖−u‖s

)2 + μB
]

Gμs − 2μmsv
2
t,sr f̂s

}∣∣∣∣
μk+1/2

μk−1/2

dv‖

−
∫

Ki,j,k

[
ms
(
v̌‖j − u‖s

) (
v‖−u‖sr

)
fs + B2μfs − 2msv

2
t,sr fs

]
dx dv‖ dμ

)
, (C11)

where j(k) labels the cell along v‖(μ), and we used the fact that ms(v − u‖s)2/2 + μB
is linear in v‖ and that its v‖ derivative is ms(v̌‖j − u‖s). In (C11) the Gv‖s and Gμs are
numerical fluxes (Francisquez et al. 2020). Doing the velocity-space integrals, carrying
out the sums over velocity-space cells, using the continuity of Gv‖s, Gμs and f̂s and the
zero-flux boundary conditions (BCs) one obtains

∑
j,k

∫
Ki,j,k

[
ms

2

(
v‖−u‖s

)2 + μB
](

∂fs

∂t

)
c

dx dv‖ dμ
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= msνsr

∫ xi+1/2

xi−1/2

{
v2

t,sr

[
2M0,s + M�

0,s−
2π

ms

(∑
k

∫ μk+1/2

μk−1/2

v̌‖jfs(v‖j±1/2)

∣∣∣jmax

jmin

dμ

+2
∑

j

∫ v‖j+1/2

v‖j−1/2

μfs

∣∣∣μmax

μmin

dv‖

)]
+ u‖sr

(
M�

1‖,s−u‖sM0,s
)− (

M�
2,s−u‖sM1‖,s

)}
dx.

(C12)

Using this equation we can enforce the equality between the discrete thermal relaxation
rates via

msνsr

{
u‖sr

(
M�

1‖,s−u‖sM0,s
)+ v2

t,sr

[
2M0,s + M�

0,s

−2π

ms

(∑
k

∫ μk+1/2

μk−1/2

v̌‖jfs(v‖j±1/2)

∣∣∣jmax

jmin

dμ+ 2
∑

j

∫ v‖j+1/2

v‖j−1/2

μfs

∣∣∣μmax

μmin

dv‖

)]}

− mrνrs

{
u‖rs

(
M�

1‖,r−u‖rM0,r
)+ v2

t,rs

[
2M0,r + M�

0,r

−2π

mr

(∑
k

∫ μk+1/2

μk−1/2

v̌‖jfr(v‖j±1/2)

∣∣∣jmax

jmin

dμ+ 2
∑

j

∫ v‖j+1/2

v‖j−1/2

μfr

∣∣∣μmax

μmin

dv‖

)]}

.= msνsr
(
M�

2,s−u‖sM1‖,s
)− mrνrs

(
M�

2,r−u‖rM1‖,r
)

+ αE

M0,sM0,r

[
mrM0,s

(
M2,r − u‖rM1‖,r

)− msM0,r
(
M2,s − u‖sM1‖,s

)

+mr − ms

2

(
u‖s − u‖r

) (
M0,rM1‖,s − M0,sM1‖,r

)]
. (C13)
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