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Alfvén wave collisions are the primary building blocks of the non-relativistic
turbulence that permeates the heliosphere and low- to moderate-energy astrophysical
systems. However, many astrophysical systems such as gamma-ray bursts, pulsar
and magnetar magnetospheres and active galactic nuclei have relativistic flows or
energy densities. To better understand these high-energy systems, we derive reduced
relativistic magnetohydrodynamics equations and employ them to examine weak
Alfvénic turbulence, dominated by three-wave interactions, in reduced relativistic
magnetohydrodynamics, including the force-free, infinitely magnetized limit. We compare
both numerical and analytical solutions to demonstrate that many of the findings from
non-relativistic weak turbulence are retained in relativistic systems. But, an important
distinction in the relativistic limit is the inapplicability of a formally incompressible
limit, i.e. there exists finite coupling to the compressible fast mode regardless of the
strength of the magnetic field. Since fast modes can propagate across field lines, this
mechanism provides a route for energy to escape strongly magnetized systems, e.g.
magnetar magnetospheres. However, we find that the fast-Alfvén coupling is diminished
in the limit of oblique propagation.
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2 J.M. TenBarge and others

1. Introduction

Turbulence provides the transport of mass, momentum and energy in a wide range
of plasmas throughout the universe, from the intracluster medium and magnetar
magnetospheres to the solar wind and laboratory fusion confinement experiments. In space
and astrophysical plasmas, turbulence plays the important role of transferring large-scale
motions, often driven by violent processes and instabilities, to small scales at which
damping, dissipation and plasma heating can occur. This cascade of turbulent energy
is governed by nonlinear interactions that occur within the plasma, and the process
is well studied in the non-relativistic (Newtonian) limit. However, many astrophysical
plasmas of interest are relativistic and often magnetically dominated (b2 � h, where
b2 = bμbμ = B2/γ 2 + (B · v)2 is the magnetic energy density, h is the enthalpy density
and γ is the Lorentz factor). How these energetic plasmas are heated is fundamental for
interpreting the electromagnetic radiation we observe at Earth.

We will begin our study of relativistic, magnetically dominated turbulence by reviewing
and building upon results from Newtonian turbulence. The magnetic fields that universally
permeate plasmas imply that Alfvénic fluctuations (Alfvén 1942) will govern the
hierarchy of turbulent fluctuations rather than the eddies that compose hydrodynamic
turbulence. The shear (or transverse) Alfvén wave has the property that the fluid motions
corresponding to it are entirely transverse to the background magnetic field, with no
compressional component. Based on these ideas, Iroshnikov (1963) and Kraichnan (1965)
(IK) employ incompressible magnetohydrodynamics (MHD) to propose that the nonlinear
interactions in plasma turbulence are composed of counter-propagating and overlapping
Alfvén waves or wave packets.

The fundamental assumption underlying the IK picture of turbulence is that the
so-called E × B nonlinearity is the dominant nonlinear term in the plasma. In terms
of fluid, MHD equations, this term appears as v⊥ · ∇�, where v⊥ � E × B0/B2

0 is the
dominant drift velocity in the plasma, B0 is a mean magnetic field, � indicates either v
or B and perpendicular, ⊥, indicates perpendicular to B0. The form of this term makes
clear immediately that the nonlinearity requires fluctuations in the plane perpendicular
to the mean magnetic field, i.e. k⊥ �= 0. This term also requires that the perpendicular
wavevectors of interacting Alfvén waves are not collinear, but this point is not obvious
from the simplified expression above and is explored further in § 2.1. Although there
are cases in which the E × B nonlinearity is not dominant, e.g. parametric instabilities
such as the decay, modulation and beat instabilities, we will adopt the assumption that the
E × B nonlinearity is the dominant nonlinear term. Additionally, the above discussion is
based on a fluid description of plasma; however, most high-energy astrophysical systems
are in the weakly collisional limit (l � λmfp, where l is an intermediate turbulence scale
and λmfp is the collisional mean free path), formally requiring a kinetic description.
Fortunately, kinetic Newtonian turbulence retains many of the same basic properties as
MHD turbulence for scales larger than ion kinetic scales, e.g. the ion inertial length and
gyroradius. Importantly, the E × B nonlinearity is the dominant nonlinearity in kinetic
Newtonian turbulence, even at turbulence scales below ion kinetic scales (Schekochihin
et al. 2009).

The IK theory of Alfvénic turbulence assumes that the turbulent cascade proceeds
isotropically across scales, i.e. k‖ ∼ k⊥ at all scales. Montgomery & Turner (1981) and
Shebalin, Matthaeus & Montgomery (1983) revisit the IK theory under the assumption
that the turbulence is weak, ωNL � ω, where ωNL ∼ k⊥δv⊥ is the nonlinear frequency and
ω ∼ k‖vA is the linear, Alfvén frequency. Under this weak assumption, they demonstrate
that the three-wave interaction is the dominant nonlinear interaction of the E × B
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nonlinearity. Importantly, this three-wave interaction involves a frequency and wavevector
matching condition for two counter-propagating Alfvén waves colliding to produce a
k‖ = 0 mode, leading to an anisotropic cascade of energy which fixes k‖ at the outer scale.
Based on this interaction, Montgomery & Turner (1981), Montgomery (1982) and Higdon
(1984) develop a theory of highly anisotropic incompressible MHD turbulence consisting
of two-dimensional velocity and magnetic field fluctuations in the plane perpendicular
to the mean magnetic field1. To describe this system, they employ the reduced MHD
(RMHD) equations introduced by Kadomtsev & Pogutse (1974) and Strauss (1976) for
systems in which there is a strong mean magnetic field, leading to the ordering assumptions
of RMHD: δB⊥/B0 ∼ δv⊥/vA ∼ k‖/k⊥ ∼ ε � 1. Note that the assumptions of RMHD
necessarily imply that the Alfvén and fast modes are well separated in frequency since
ωA ∝ k‖ � ωF ∝ k ∼ k⊥. This ordering implies that the fast mode is ordered out of the
RMHD system. All of the following discussion regarding the development of MHD
turbulence is predicated on this assumption that the fast wave is well separated from the
Alfvén mode and is therefore ignorable. To develop a theory of relativistic, magnetically
dominated astrophysical plasmas, we revisit the concept of RMHD in the relativistic limit
in § 3.2.

Sridhar & Goldreich (1994) take a different approach in expanding upon the work of IK
by first pointing out that IK is a theory of weak turbulence, and then loosening the isotropy
assumption of IK by building anisotropy into weak turbulence theory. However, Sridhar &
Goldreich (1994) argue that the three-wave interaction is empty because it involves a
mode with ω = 0, which cannot be a linear wave mode with finite power. Therefore,
they invoke a four-wave interaction (A + A → A + A) which maintains k‖ = 0, and as the
weak cascade proceeds to smaller scales, the strength of nonlinear interactions increases,
eventually reaching a state of strong turbulence. Goldreich & Sridhar (1995) carry the
weak turbulence theory developed in Sridhar & Goldreich (1994) into the strong limit. In
the strong limit, they argue that the resonance condition for interaction is broadened, and
due to the broadening, a parallel cascade develops. Further, they argue that the parallel
cascade leads the turbulence towards a state of critical balance in which χ = ωNL/ω � 1,
where χ is the nonlinearity parameter and χ � 1 corresponds to weak turbulence. Critical
balance is a condition in which the nonlinear frequency or cascade time is balanced by
the linear time in the system. The critically balanced turbulence cascade is predicted to
have an energy spectrum E ∼ k−5/3

⊥ and a spectral anisotropy of the form k‖ ∼ k2/3
⊥ , thus

developing a scale-dependent anisotropy. Note that Alfvénic turbulence, whether weak or
strong, always leads to a case at small scales in which k‖ � k⊥ and δB � B0 regardless of
the isotropy or amplitude of fluctuations at the outer scale2.

Montgomery & Matthaeus (1995) and Ng & Bhattacharjee (1996) concurrently claim
that Sridhar & Goldreich (1994) are incorrect to claim that three-wave interactions
are empty, because k‖ = 0 modes are valid nonlinear fluctuations. Ng & Bhattacharjee
(1997) further employ perturbation theory to demonstrate explicitly that the three-wave
interaction is non-empty, k‖ = 0 modes do develop and the three-wave interaction
dominates over the four-wave one. They also present the energy spectrum of weak
turbulence, E ∼ k−2

⊥ . Admitting their mistake in omitting the three-wave interaction,
Goldreich & Sridhar (1997) reformulate their weak turbulence theory to include

1Note that in the purely two-dimensional limit, i.e. the two-dimensional plane not containing the mean field, the
distinction between weak and strong Alfvénic turbulence vanishes, since the linear physics of Alfvén waves is mostly
eliminated. Therefore, two-dimensional simulations in this geometry are always strong, analogous to hydrodynamic
turbulence that does not support linear waves.

2Built into this statement and all discussions of turbulence herein is the assumption that the viscosity and resistivity
are sufficiently small that a turbulent cascade is able to fully develop.

https://doi.org/10.1017/S002237782100115X Published online by Cambridge University Press

https://doi.org/10.1017/S002237782100115X


4 J.M. TenBarge and others

three-wave interactions. The basic prediction for the spectral anisotropy (no parallel
cascade), energy spectrum E ∼ k−2

⊥ and the strengthening of the cascade as it proceeds
to smaller scales remain unchanged. Galtier et al. (2000) provide a rigorous derivation of
the k−2

⊥ scaling result based on the wave kinetic approach (Zakharov, L’Vov & Falkovich
1992), and Perez & Boldyrev (2008) numerically verify the derivation and examine
the weak to strong turbulence transition. Lithwick & Goldreich (2003) present further
extensions of weak turbulence theory.

More recently, a series of papers were written examining the building blocks of
weak turbulence through the interaction of waves analytically (Howes & Nielson 2013),
numerically (Nielson, Howes & Dorland 2013) and in an experiment (Drake et al. 2013;
Howes et al. 2013) conducted at the Large Plasma Device (Gekelman et al. 1991). This
series of papers focuses on a heuristic, analytical solution beginning with a collision of
counter-propagating Alfvén waves at first order in the fluctuation amplitude and following
their evolution order-by-order. At second order, the three-wave interaction involving the
nonlinear, k‖ = 0 mode is found to be dominant. This mode does not involve a secular
exchange of energy and oscillates with frequency ω = 2ω0, where ω0 = k‖vA is the
frequency of the incident Alfvén waves. At third order, the incident Alfvén waves interact
with the k‖ = 0 mode, and the k‖ = 0 mode shears the Alfvén waves in the perpendicular
plane, providing a secular exchange of energy to smaller perpendicular scales but fixed k‖
scale.

The theory of critically balanced strong turbulence has also been further refined since
Goldreich & Sridhar (1995). Boldyrev (2005, 2006) note that the vector nature of
the nonlinearity leads to a state called dynamic alignment wherein the velocity and
magnetic field fluctuations align themselves as the cascade proceeds to smaller scales.
This alignment leads to the formation of thin current sheets at small scales, and these
current sheets can eventually disrupt (Loureiro & Boldyrev 2017; Mallet, Schekochihin
& Chandran 2017; Comisso et al. 2018; Dong et al. 2018). Intermittency has also
been built into the theory of critically balanced and dynamically aligned turbulence
(Chandran, Schekochihin & Mallet 2015), leading to the theory of refined critical balance
(Mallet, Schekochihin & Chandran 2015). For a more complete, contemporary (but biased,
according to the authors) review of the current state of MHD turbulence including weak,
strong and imbalanced turbulence, see Schekochihin (2020).

Although fundamentally important for understanding energy dissipation and
astrophysical observations, relativistic turbulence has received much less attention.
Thompson & Blaes (1998) and Troischt & Thompson (2004) examine weak turbulence
in the magnetically dominated, relativistic regime. Thompson & Blaes (1998) follow
Sridhar & Goldreich (1994) and Goldreich & Sridhar (1995) in arguing that the four-wave
interaction is the dominant Alfvénic interaction because the k‖ = 0 mode is not a linear
mode of the system. However, they note that in the extreme relativistic regime, one cannot
assume that the fast and Alfvén modes are well separated, i.e. the intuition gained from
incompressible MHD no longer holds. Therefore, they argue that the dominant three-wave
interactions are of the form A + A → F, A + F → A or F + F → F. Heyl & Hernquist
(1999) extend the work of Thompson & Blaes (1998) to include quantum electrodynamic
effects making the same assumptions regarding three- versus four-wave interactions. Li,
Zrake & Beloborodov (2019) return to the problem of weak, magnetically dominated
turbulence following the work of Thompson & Blaes (1998), again assuming that the
dominant Alfvénic interactions are the four-wave coupling or the three-wave couplings
involving fast modes, as listed above. Li et al. (2019) follow the analytical discussion with
relativistic MHD simulations in the force-free limit considering both weak and strong
turbulence limits. They focus on the nonlinear, turbulent conversion of Alfvén to fast mode
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energy as a possible mechanism to release energy from magnetar magnetospheres, since
Alfvén waves propagate along field lines and remain trapped in the magnetosphere, while
fast modes can propagate across fields lines, thereby escaping confinement and releasing
energy. A variety of other recent papers have explored various aspects of relativistic
turbulence theory and simulations, finding broadly similar results to those of Newtonian
MHD turbulence, except they consistently find a small portion (�10 %–15 %) of the
initial Alfvénic energy leaks into the fast mode branch (Cho 2005; Takamoto & Lazarian
2016, 2017; Li et al. 2019).

This work is organized as a sequence of papers. In this paper (Part 1), we derive a set of
relativistic RMHD (RRMHD) equations which have the same form and properties as their
Newtonian counterpart, including the wave kinetic equation governing spectral evolution.
We then employ an approach similar to that of Howes & Nielson (2013) to obtain
an analytical solution for three-wave interactions in relativistic systems. We emphasize
that although we make a connection with the wave kinetic equation for the relativistic
system, the primary analysis is intended to be heuristic to highlight the role of the
three-wave interactions and other similarities to Newtonian turbulence rather than a formal
weak turbulence theory. Our approach, wherein we obtain the solution order-by-order,
is well suited to comparison with numerical simulations (Part 2) and complements the
variational approach of Thompson & Blaes (1998). We build upon the wisdom gained from
Newtonian turbulence and begin by outlining and reviewing some of the salient properties
for an astrophysical audience of both incompressible and compressible MHD turbulence
in § 2. In § 3, we derive the relativistic Elsasser equations in the reduced, relativistic limit
and discuss their connection with weak Newtonian turbulence. We then derive through
third order the weak Alfvénic turbulence solutions in § 4. In § 5, we compare our solutions
with direct numerical simulations and consider the role of fast waves in both relativistically
hot and magnetically dominated turbulence. Finally, we summarize the results in § 6. More
in-depth numerical simulation studies of weak, relativistic turbulence are presented in Part
2 (Ripperda et al. 2021).

2. General properties of non-relativistic turbulence
2.1. Incompressible MHD

Before exploring relativistic Alfvénic turbulence, it is important to first review some of
the fundamental knowledge learned from Newtonian turbulence to provide a framework
for discussing the relativistic limit. This discussion is far from exhaustive, because
incompressible MHD turbulence is an exceptionally broad and deep field.

We will begin our discussion by presenting some of the basic properties of
incompressible turbulence. Incompressible MHD is the basis from which Newtonian
turbulence theories have been derived. Incompressible MHD assumes v � cs, where cs is
the sound speed. In other words, compressive fluctuations are carried away from the source
at essentially infinite speed, an assumption that is not applicable for relativistic systems.
This assumption implies ∇ · v = 0, leading to the incompressible MHD equations

∂v

∂t
+ v · ∇v = −∇P/ρ0 + B · ∇B/ρ0, (2.1)

∂B
∂t

+ v · ∇B = B · ∇v, (2.2)

∇ · B = 0, (2.3)

where P is the total (thermal plus magnetic) pressure and ρ0 is the equilibrium mass
density.
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6 J.M. TenBarge and others

For turbulence analysis, the incompressible MHD equations are typically cast in
Elsasser form (Elsasser 1950) by adding and subtracting the momentum and induction
equations to arrive at

∂z±

∂t
∓ vA · ∇z±=−z∓ · ∇z±−∇P/ρ0, (2.4)

∇ · z±=0, (2.5)

where the magnetic field has been separated into equilibrium and fluctuating parts, B =
B0ẑ + δB, vA = B0/

√
4πρ0 and z± = v ± δB/

√
4πρ0 are the Elsasser fields. Because the

Elsasser fields are divergenceless, this is a closed system of equations (Montgomery 1982).
To obtain an equation for the pressure, one can simply take the divergence of (2.4) to find

∇2P/ρ0 = −∇ · (
z∓ · ∇z±)

. (2.6)

The Elsasser equations, (2.4), are the progenitor equations to describe Alfvénic
turbulence, and one can discern many important points about turbulence simply from
the form of the equations. First, the terms on the left-hand side are linear, while those
on the right are nonlinear. Therefore, linearizing the equations is as simple as setting
the right-hand side to zero. By linearizing, one can immediately see that the system
supports two propagating linear wave modes with ω = ±k‖vA: (i) Alfvén waves with z±

polarized in the ẑ × k̂
±

direction and (ii) pseudo-Alfvén waves, the incompressible limit
of magnetosonic slow modes, with polarization k̂

± × (ẑ × k̂
±
), where k̂

±
corresponds

to the unit vector along the wavevector of z±. We adopt the convention that ω ≥ 0,
and the sign of k‖ determines the propagation direction. Note that the incompressible
assumption orders the magnetosonic fast mode out of the system by imposing cs → ∞.
Thus, one can interpret the Elsasser field z+ (z−) as describing the evolution of Alfvén or
pseudo-Alfvén waves propagating down (up) the equilibrium magnetic field.

Next, we turn our focus to the primary nonlinear term, z∓ · ∇z±. The most immediate
point one can see from the form of this term is that the nonlinearity only survives if both
z+ and z− are non-zero, i.e. the nonlinearity is one that does not involve self-interaction of
an Alfvén wave with itself but its interaction with an oppositely propagating Alfvén wave.
If either Elsasser field is zero, then the opposite Elsasser variable is an exact solution. For
instance, if z− = 0, then z+(x, y, z + vAt) is an exact, nonlinear solution representing an
arbitrary-amplitude Alfvén or pseudo-Alfvén wave propagating in the −ẑ direction.

Physically, the counter-propagating waves shear one another when they interact through
this nonlinear term, and the shearing leads to a transfer of energy to smaller scales. For
simplicity, let us focus on the case of counter-propagating Alfvén waves and examine the
nonlinear term in more detail. In Fourier space, the nonlinear interaction term for a z+

wave distorted by a z− wave is

z− · ∇z+∝
[(

ẑ × k̂
−)

· k̂
+] (

ẑ × k̂
+)

=
[
ẑ ·

(̂
k

−×k̂
+)] (

ẑ × k̂
+)

, (2.7)

where we have used the polarization properties of the Alfvén waves to write z± ∝ ẑ ×
k̂

±
. Therefore, for the nonlinear interaction of counter-propagating Alfvén waves to be

non-zero, ẑ · (̂k
− × k̂

+
) �= 0, i.e. variation is required in both directions perpendicular to

the equilibrium field. An alternative way to state this requirement is that the waves must
be polarized with respect to one another in the plane perpendicular to the equilibrium field
so that the perpendicular wavevector components are not collinear.
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From examination of the linear and nonlinear terms of the Elsasser equation, we
have gleaned three crucial facts for turbulence: (i) the system supports two linear
waves modes, both of which require k‖ �= 0 to propagate; (ii) the nonlinearity requires
counter-propagating fluctuations; and (iii) the nonlinearity requires that the fluctuations
be relatively polarized with one another in the plane perpendicular to the equilibrium
field. Thus, to fully capture the physics of the turbulent cascade one requires all three
dimensions (Tronko, Nazarenko & Galtier 2013; Howes 2015). This requirement to retain
all three dimensions to capture Alfvénic turbulence persists in both full MHD and kinetic
plasmas (Schekochihin et al. 2009; Howes 2015).

Finally, we highlight one other important fact about turbulence, which can be seen by
examining the Elsasser energy equation, obtained by taking the dot product of z± with
(2.4) and integrating over all of space. Assuming periodic boundary conditions or that the
fields vanish at infinity, one obtains ∫

d3r
d|z±|2

dt
= 0. (2.8)

Equation (2.8) implies that there is no exchange of energy between the upward-
and downward-propagating fluctuations, even during nonlinear interactions (Maron
& Goldreich 2001; Schekochihin et al. 2009). The collisions of counter-propagating
fluctuations are therefore elastic: one wave packet can scatter another, but the individual
energies of the z+ and z− fluctuations do not change.

2.2. The connection to RMHD
As noted in § 1, Alfvénic turbulence proceeds in an anistropic fashion as it cascades to
smaller scales, eventually leading to a state in which k‖ � k⊥ (and δB/B0 � 1) regardless
of the initial isotropy of the plasma at the outer scale. This scale-by-scale anisotropic
turbulence cascade has been well observed in simulations (Cho & Vishniac 2000; Maron
& Goldreich 2001; Chen et al. 2012) and in situ solar wind observations (Horbury, Forman
& Oughton 2008; Wicks et al. 2010; Chen et al. 2012; Chen 2016). Thus, it would be
advantageous to consider an ordering framework that leverages this fact. Fortunately,
the minimal ordering assumptions for RMHD are anisotropic fluctuations (k‖ ∼ εk⊥),
small-amplitude fluctuations relative to the background (e.g. δB ∼ εB0) and characteristic
time scales ω ∼ k‖vA, where ε � 1. Note that early derivations of RMHD (Kadomtsev
& Pogutse 1974; Strauss 1976) further assumed strong magnetization, implying plasma
β � 1. However, more recent derivations (Schekochihin & Cowley 2007; Schekochihin
et al. 2009) have demonstrated that the RMHD equations are valid for arbitrary plasma
β, assuming a homogeneous background. Conveniently, the equations of RMHD are
essentially identical to (2.4), with the exception that the gradients in the nonlinear terms
reduce to gradients perpendicular to the equilibrium magnetic field.

Much like the incompressible MHD equations, the fast wave is ordered out of RMHD.
In the solar wind, this is well justified and supported by observations, which show that
fast modes generally compose a small fraction of the solar wind (Tu & Marsch 1994;
Howes et al. 2012; Klein et al. 2012). The RMHD equations have gained prominence as
the preferred set of equations for describing Alfvénic turbulence because they have a few
favourable properties compared with incompressible MHD, despite their close similarity.
First, the RMHD equations are a rigorous set of equations for describing collisional or
collisionless Alfvénic physics at scales large compared to the ion gyroradius, k⊥ρi � 1
(Schekochihin et al. 2009). Second, in the anisotropic limit of RMHD, the plus and
minus Alfvén mode, plus and minus slow (or pseudo-Alfvén) mode and the lone entropy
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mode cascades decouple. In other words, there are five independent cascade channels
in RMHD, and the energy in each channel is independently conserved. Thus, the five
channels do not exchange energy with one another, analogous to the two independent
channels described above for incompressible MHD. The Alfvénic cascade is described
by the perpendicular vector components of (2.4), the slow mode cascade by the parallel
component and the entropy mode cascade by the pressure balance condition (Schekochihin
et al. 2009). Formally, the RMHD equations are only valid for the slow and entropy modes
in the collisional limit, because these modes are subject to collisionless wave–particle
interactions via Landau (Landau 1946) or Barnes (Barnes 1966) damping, even for scales
k⊥ρi � 1. To describe these modes in the collisionless limit, one can instead use kinetic
RMHD, which evolves the perpendicular dynamics using conventional RMHD and the
parallel dynamics using the reduced ion kinetic equation (Schekochihin et al. 2009). Third,
in the anisotropic limit of RMHD, the Alfvén waves are not affected by the slow or entropy
modes, and the slow and entropy modes do not cascade on their own. The slow and entropy
modes behave as passive scalars, which can only be cascaded to small scales by interacting
with Alfvén waves. This fact also implies that slow and entropy fluctuations will not be
generated in situ in a purely Alfvénic RMHD turbulence cascade3.

Finally, before moving forward to discuss compressible MHD turbulence, we note that
RMHD is equally valid for describing weak and strong (critically balanced) turbulence
(Galtier & Chandran 2006). Comparing the strength of the nonlinear and linear terms in
RMHD, we find

χ = z∓ · ∇z±

vA · ∇z± ∼ z∓k⊥
vAk‖

∼ k⊥δB
k‖B0

. (2.9)

The final expression is the ratio of asymptotically ordered quantities in RMHD and is
therefore unordered. In other words, RMHD can equally well describe weak (χ � 1) and
critically balanced (χ ∼ 1) turbulence.

As a brief aside, it is worthwhile at this point to provide a physical interpretation of
critical balance, and justify why we have chosen to ignore the case χ > 1. Physically,
critical balance amounts to equating the linear, propagation time, τA = l‖/vA, with the
nonlinear (or ‘eddy turnover’) time, τNL ∼ l⊥/u⊥. The case τA � τNL (χ � 1) is the weak
turbulence case, which will eventually, at sufficiently small scales, transition to τA ∼ τNL
because the weak turbulence cascade does not produce a cascade in the direction parallel
to the equilibrium field: l‖ is fixed at the outer scale. Thus, in weak turbulence τA remains
fixed while τNL will decrease with scale. The case τA � τNL corresponds essentially to
creating two-dimensional structures perpendicular B0 and is not sustainable at small scales
separated from any external forcing. A fluctuation can only remain two-dimensional if it
is causally connected, but for a system with an equilibrium B0, the maximum parallel
length over which a fluctuation can be coherent is l‖ ∼ τNLvA, i.e. l‖/vA ∼ τA ∼ τNL. Thus,
if a system is driven such that τA � τNL, it will rapidly relax back to critical balance,
τA ∼ τNL, at small scales. It is also worth noting that the critical balance condition, or
predictions that follow from critical balance, has been observed in simulations (Cho &
Vishniac 2000; Maron & Goldreich 2001; Perez & Boldyrev 2008; TenBarge & Howes
2012; Mallet et al. 2015; Mallet & Schekochihin 2017), in situ solar wind observations

3The passive scalar property of slow modes is only true in the RMHD limit. In fact, Tronko et al. (2013) use
incompressible MHD to demonstrate that in reduced dimensions, specifically in a two-dimensional plane containing B0,
the slow-mode cascade is the dominant cascade. Indeed, in this particular geometry, the Alfvénic nonlinearity vanishes,
leaving only a slow-mode cascade.
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(Horbury et al. 2008; Chen et al. 2010; Wicks et al. 2010; Chen et al. 2012; Chen 2016)
and laboratory experiments (Ghim et al. 2013)4.

Although the current discussion is focused on RMHD, which requires a strong
equilibrium magnetic field, the preceding discussion concerning critical balance can
equally well apply to small scales in a system without an equilibrium magnetic field.
Alfvénic fluctuations at a scale l propagate along the total, local magnetic field at
position x0, Blocal

0 (x0) = B0 + ∑
l′�l δBl′(x0). Since the propagation and nonlinear times

both decrease with scale, the fluctuations with l′ � l are approximately static relative to
small-scale turbulence fluctuations, and those with l′ � l are more rapid and will average
to zero. Therefore, small-scale Alfvénic turbulence always sees an approximately constant,
local mean magnetic field.

2.3. Compressible MHD
Given the complexity of incompressible turbulence, it is somewhat unsurprising that
compressible MHD turbulence has received less attention. The first important point
about compressible turbulence is the nature of the fast mode cascade. The fast mode
propagates isotropically (ωF ∝ k), and therefore the fast mode turbulence cascade is
also isotropic, as confirmed in numerical simulations of compressible MHD (Cho &
Lazarian 2002, 2003). In the weak limit, Chandran (2005), Luo & Melrose (2006)
and Chandran (2008) have examined the wave kinetic equation in detail to explore the
couplings between the Alfvén and fast modes. For quasi-parallel fluctuations (k‖ > k⊥),
the frequency and wavevector matching conditions permit any of the following three-wave
interactions on approximately equal footing: A + A → A, A + A → F, A + F → F
and F + F → F. However, in the obliquely propagating limit (k‖ � k⊥), the cascades
decouple, leaving only A + A → A and F + F → F, because in this limit, the frequency
of the fast modes exceeds significantly that of the Alfvén modes, making the frequency
matching conditions involving mixed wave modes impossible. Although the wavevector
and frequency matching conditions are broadened as the turbulence becomes stronger,
one still expects the turbulence to be dominated by interactions that are nearby in scale
(Kolmogorov 1941; Frisch 1995; Howes, TenBarge & Dorland 2011), and thus also nearby
in wavevector and frequency space. Considering these facts combined with the isotropic
cascade of fast modes and the anisotropic cascade of Alfvénic modes, it is expected that
the cascades decouple at small scales, regardless of the initial wavevector distribution. In
other words, regardless of the way a system is driven or initialized, the Alfvénic portion of
the cascade will eventually decouple and behave the same as the RMHD cascade described
in the preceding section. Further, moderate-amplitude fast modes rapidly form shocks as
they propagate, and in weakly collisional plasmas fast modes are moderately to strongly
damped via resonant wave–particle interactions (Landau 1946; Barnes 1966) for a wide
range of plasma parameters (Klein et al. 2012). Therefore, in the Newtonian limit, focusing
only on the Alfvénic turbulence cascade is, generally, well justified.

3. The equations of relativistic weak turbulence
3.1. Relativistic Elsasser equations

To begin our exploration of weak turbulence in relativistic, magnetically dominated
plasmas, we start from an equation set that: (i) makes direct contact with the Newtonian
Elsasser equations, (2.4), and (ii) highlights the fundamental role of Alfvén wave collisions

4Despite the arguments provided in favour of critical balance on physical grounds, as well as numerical and
observational evidence, it remains a rather controversial topic in the field. For an opposing review, we refer the reader to
Oughton & Matthaeus (2020).
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in establishing the turbulence cascade. To this end, we turn to Chandran, Foucart &
Tchekhovskoy (2018), who present a set of Elsasser-like equations for general relativistic
MHD, including an inhomogeneous background. Here, we outline the derivation and
consider only the special relativistic form with a homogeneous background. From this
point forward, we employ Lorentz–Heaviside units and all speeds are normalized to the
speed of light, c = 1, and we assume a fixed Minkowski metric with signature ημν =
diag{−1, 1, 1, 1}. The ideal relativistic MHD equations are mass conservation

∂ν(ρuν) = 0, (3.1)

the stress energy equation
∂νTμν = 0 (3.2)

and the induction equation
∂ν(bμuν − bνuμ) = 0, (3.3)

where ρ is the rest-mass density, uμ = (γ, γ v) is the four-velocity and γ = 1/
√

1 − v2 is
the Lorentz factor. Furthermore,

Tμν = Euμuν +
(

p + b2

2

)
ημν − bμbν (3.4)

is the stress-energy tensor,

bμ = 1
2
εμνκλuνFκλ =

(
γ (v · B),

1
γ

[
Bi + γ 2(v · B)vi

])
(3.5)

is the magnetic field four-vector, b2 = bμbμ, Fκλ is the Faraday tensor, E = h + b2, h =
ρ(1 + ε) + p is the enthalpy density, ε is the specific internal energy and p is the gas
pressure. Repeated indices indicate summation, Greek indices span the four-dimensional
spacetime (0 to 3), while Latin indices (1 to 3) correspond to the spatial directions in
a suitably chosen 3 + 1 foliation of spacetime. We adopt an ideal equation of state p =
ρε(Γ − 1), with an adiabatic index Γ = 4/3 appropriate for relativistic plasmas. For this
equation of state and adiabatic index, h = ρ + 4p.

An Elsasser-like formulation of the relativistic MHD equations can be achieved by
simply multiplying (3.3) by ±√E , adding the result to (3.2) and dividing the sum by
E , yielding

∂ν(z
μ
±zν

∓+Πημν) +
(

3
4

zμ
±zν

∓+1
4

zμ
∓zν

±+Πημν

)
∂νE
E = 0, (3.6)

where

zμ
±=uμ ± bμ

√E (3.7)

are the relativistic Elsasser four-vector fields and

Π = 2p + b2

2E = 1
2

− 2p + ρ

2E . (3.8)

Much like in non-relativistic MHD, (3.6) represents the evolution of upward- and
downward-propagating Elsasser fields; however, (3.6) represents the fully compressible
system and is thus not completely analogous to (2.4). In the relativistic limit, one cannot
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simply go to the incompressible limit typically used to derive incompressible MHD,
because the maximum speed is the speed of light, and thus compressible fluctuations
cannot be ordered in such a way as to instantaneously carry information away from
a source. We can, however, consider a limit similar to that of RMHD to isolate
the Alfvénic fluctuations described by (3.6). Such a limit, in which fluctuations are
highly elongated relative to a mean magnetic field, is reasonable to consider for many
astrophysical plasmas which often have strong mean fields, e.g. black hole accretion disks
and jets (Narayan, Igumenshchev & Abramowicz 2003), coronae (Chandran et al. 2018;
Yuan, Blandford & Wilkins 2019) and magnetar magnetospheres (Parfrey, Beloborodov
& Hui 2012). Further, as we show in § 4, relativistic Alfvénic turbulence proceeds
in the same anisotropic sense as Newtonian turbulence, eventually leading to highly
anisotropic, small-amplitude fluctuations at small scales, regardless of the outer-scale
conditions. Additionally, many astrophysical systems are characterized by exceptionally
large inertial ranges5, vastly exceeding the three- to four-order-of-magnitude-wide inertial
range observed in the solar wind near Earth (Howes et al. 2008; Bruno & Carbone 2013;
Kiyani, Osman & Chapman 2015; Chen 2016).

3.2. Relativistic RMHD
To derive a set of Elsasser equations for RRMHD, we begin by separating the fluid into
mean (background) quantities and fluctuating quantities of the form

bμ = 〈bμ〉 + δbμ. (3.9)

We also construct an average fluid rest frame in which 〈ui〉 vanishes6. We define λ to be the
correlation length transverse to 〈Bi〉, and L to be the characteristic scale of the background,
i.e. the length scale parallel to 〈Bi〉. As in RMHD, we assume λ/L ∼ O (ε), where ε � 1.
In addition to the anisotropy assumption, we also assume that the characteristic frequency
is of the order of the Alfvén frequency, ∂t ∼ 〈Bi〉∂i ∼ k‖vA, and that the fluctuations are
ordered small:

√
δu2

vA
≡

√
δuμδuμ

vA
∼

√
δb2 ∼ O (ε) , (3.10)

δρ

〈ρ〉 ∼ δp
〈p〉 ∼ O (

ε2) , (3.11)

where

vi
A = 〈bi〉√〈E〉 (3.12)

and vA =
√

vi
AvAi. We further assume that all background quantities, e.g. 〈Bi〉 = B0, 〈ρ〉 ≡

ρ0, 〈p〉 ≡ p0, are constant with no background inhomogeneities.
As in Newtonian RMHD, in RRMHD, the fast wave will be ordered out of

the system, since ωF ∼ k � ω ∼ k‖. Relativistic RMHD will describe Alfvén and
pseudo-Alfvén fluctuations; however, we are not interested in the pseudo-Alfvén waves,
which have fluctuations parallel to the background magnetic field and are a separate,
passive, cascade channel. Therefore, we also assume B0iδzi

± = O (
ε2

)
to remove the

pseudo-Alfvén modes. With all of the above assumptions, we note that γ ∼ 1 + O (
ε2

)
,

∂iδui ∼ ∂μδzμ
± ∼ 〈bt〉 ∼ δbt ∼ δut/vA ∼ O (

ε2
)
.

5The range of scales well separated from driving, dissipation and kinetic effects.
6Note that 〈uμ〉 is not formally a four-velocity, since 〈uμ〉〈uμ〉 = −(1 + 〈δv2〉).
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Applying the above reduced assumptions to the relativistic Elsasser equation (3.6), we
arrive at

vν
A∓∂νδzμ

±=−δzν
∓∂νδzμ

±−∂ν(δΠημν), (3.13)

where to lowest non-zero order

v
μ

A± =
(

1,± B0√E0

)
≡ (1,±vA), (3.14)

δzμ
±=δuμ ± δbμ

√E0
=

(
0, δv⊥± δB⊥√E0

)
, (3.15)

δΠ = −2δp + δρ

2E0
+ 2p0 + ρ0

2E0

δE
E0

, (3.16)

E0 = 4p0 + ρ0 + B2
0 and δE = 4δp + δρ + 2B0δB‖. In three-vector form, the equation set

is particularly simple and similar to the Newtonian Elsasser equations:

∂δz⊥±
∂t

∓ vA · ∇δz⊥± = −δz⊥∓ · ∇⊥δz⊥± − ∇⊥δΠ. (3.17)

The terms of the left-hand side of (3.13) are linear, while those on the right-hand side are
nonlinear. Due to the assumptions regarding pressure and parallel fluctuations, the only
relevant components of (3.13) are the two components transverse to the mean magnetic
field, as expressed in (3.17). The other two components, time-like and parallel, are one
order higher in the ordering parameter, ε. Importantly, the parallel fluctuations do not
appear at lowest order in the nonlinear E × B term in the perpendicular, Alfvén wave
equations, (3.13) and (3.17), and they therefore do not cascade the Alfvén waves. However,
the primary nonlinear term for the parallel fluctuations is of the form δz⊥± · ∇⊥δz‖.
Thus, the parallel fluctuations are passively scattered/mixed by the Alfvén waves, much
like in Newtonian RMHD turbulence (Schekochihin et al. 2009). Note that as in the
Newtonian RMHD equations, the system is closed by taking the divergence of (3.17), or
four-divergence of (3.13), to find an equation for δΠ .

The reduced relativistic Elsasser equations, (3.17), for RRMHD are identical in form
to the Newtonian RMHD equations, and at this point the standard approach to solve for
the Alfvén dynamics would be to take the curl of (3.17) to eliminate the pressure term
and solve for the Elsasser potentials rather than the Elsasser fields. Indeed, this is the
approach we will also take; however, we note that it is possible to simplify the system even
further, because there is a straightforward limit to consider in relativistic plasmas. This
final simplification to consider is to remove the pressure fluctuations by assuming that we
are in the magnetically dominated regime, σ = b2/h � 1. In this limit, 〈Π〉 = 1/2, and
δΠ ∼ O (

ε2
)
/σ � O (

ε2
)
. Therefore, we arrive at the magnetically dominated RRMHD

equations:
vν

A∓∂νδzμ
±=−δzν

∓∂νδzμ
±. (3.18)

In three-vector form, the equation set is particularly simple:

∂δz⊥±
∂t

∓ ∇‖δz⊥± = −δz⊥∓ · ∇⊥δz⊥±. (3.19)

Being in the σ � 1 limit, (3.18) and (3.19) are essentially the reduced analogue of the
force-free limit of the ideal MHD equations (Gruzinov 1999; Komissarov 2002). In this
limit, vA = c = 1.
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To arrive at this simple form, it may seem that we have rather seriously brutalized
the relativistic MHD equations by applying a series of restrictive asymptotic orderings:
(i) k‖ � k⊥; (ii) ω ∼ k‖vA; (iii) small-amplitude fluctuations with constant (mean)
backgrounds; (iv) second-order parallel and pressure fluctuations; and (v) magnetically
dominated, σ � 1. The reduced assumptions (i)–(iii) and (v) are consistent with one
another, i.e. they can all be obtained by assuming the system is strongly magnetized.
In the Newtonian limit, the fast mode can be eliminated by assuming the system is
incompressible; however, the finite speed of light prevents easy elimination of the fast
mode (Takamoto & Lazarian 2017) without assuming the fluctuations are anisotropic (k‖ �
k⊥). To remove the slow mode, we assumed that parallel and pressure fluctuations are
second-order quantities when deriving the reduced relativistic Elsasser equations. Moving
to the magnetically dominated regime produces the same result, since in the σ → ∞ limit,
the slow wave is also ordered out of the system. Thus, despite the myriad assumptions to
achieve a simple set of equations for describing relativistic Alfvénic turbulence, they are
all self-consistent. This set of assumptions is also relevant to many astrophysical systems,
such as magnetars (Li & Beloborodov 2015; Li et al. 2019; Yuan et al. 2020b), glitches
affecting radio emission from pulsar magnetospheres (Bransgrove, Beloborodov &
Levin 2020; Yuan et al. 2020a) and X-ray-emitting coronae around black hole accretion
disks (Thompson & Blaes 1998; Chandran et al. 2018). We also note that the most
important assumption is wavevector anisotropy, k‖ � k⊥, which naturally arises as the
Alfvénic turbulence cascades to small scales.

3.3. Connection to and comparison with Newtonian RMHD solutions
Equation (3.17) will form the basis for the following analysis in § 4, because it
represents the simplest set of equations for describing Alfvénic turbulence in magnetized,
relativistic environments and has a form that is nearly identical to the Newtonian RMHD
Elsasser equations. Thus, the system shares many properties with the Newtonian RMHD
system of equations, some of which can be seen immediately: (i) the system supports
linear Alfvén modes, which require k‖ �= 0 to propagate; (ii) the nonlinearity requires
counter-propagating fluctuations; and (iii) the nonlinearity requires that the fluctuations be
polarized with respect to each other in the perpendicular plane. Further, the wave kinetic
equations for the system coincide with the kinetic equations for shear Alfvén waves
derived in Galtier et al. (2000) in the incompressible MHD limit and Boldyrev & Perez
(2009) in the RMHD limit neglecting imbalanced interactions, i.e. non-zero cross helicity.
As demonstrated in those papers, the wave kinetic equation evolves the spectral energy
e± = 〈|δz±

⊥(k)|2〉 and can be expressed as

∂ e±(k)

∂t
=

∫
Mk,pqe∓(q)[e±(p) − e±(k)]δ(q‖)dk,pq, (3.20)

where Mk,pq = (π/vA)(k⊥ × q⊥)2(k⊥ · p⊥)2/(k⊥q⊥p⊥)2 and dk,pq = δ(k − p − q)d3p d3q.
Since the kinetic equation is unchanged from RMHD, we also know that the weak
turbulence solutions: (i) are dominated by three-wave interactions and (ii) lead to an energy
spectrum of the form f (k‖)k−2

⊥ , where f (k‖) is set by external forcing or initial conditions.
In the following sections, we explore in detail the three-wave interaction of Alfvén waves
first analytically via heuristic solutions through third order, and then numerically to
demonstrate the decoupling of the fast mode from the Alfvén waves in the obliquely
propagating (reduced) limit. Note that although we employ the RRMHD equations (3.17)
to derive the turbulence solutions in the following section, the Alfvén solutions are
identical for the σ → ∞ limit of the RRMHD equations (3.19).
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4. Three-wave weak Alfvénic interactions

To construct analytical solutions, we now consider a subsidiary expansion of the form
ζ± = εζ1± + ε2ζ2± + · · · , where δz± = ẑ × ∇⊥ζ± defines the Elasser potential, ζ , and
ζi±(t = 0) = 0 for i > 1. Note that since the relativistic equations are identical in form to
the Newtonian limit, the solution to the RRMHD equations is also the same, and the full
solutions appear in Appendix A. Therefore, we primarily summarize the solutions found in
Howes & Nielson (2013); however, we note that we include corrections to equations (22),
(28)–(29) of Howes & Nielson (2013), and all equations involving ζ3−, including the
equations for B⊥3 and E⊥3. These errors have been corrected in Appendix A.

For specificity, we will consider a periodic domain of size Lx × Ly × Lz with B0 = B0ẑ.
At t = 0, we will initiate two counter-propagating, perpendicularly polarized fluctuations:

z1+ = z+ cos (k⊥x − k‖z − ω0t)ŷ,

z1− = z− cos (k⊥y + k‖z − ω0t)x̂,

}
(4.1)

where z± are the initial amplitudes, k⊥ = 2π/Lx = 2π/Ly and k‖ = 2π/Lz. We maintain
the convention that k⊥, k‖ and ω0 are positive constants, and the direction of propagation
is supplied by the explicit sign of k‖. To describe the wave modes that arise from the
nonlinear evolution, we use the notation (kx/k⊥, ky/k⊥, kz/k‖). For instance, the plus and
minus initial wave modes in this notation are (1, 0,−1) and (0, 1, 1), respectively.

The solutions through third order are lengthy, and as such can be found in Appendix
A. Here, we summarize the important findings at each order. The initial conditions
provided in (4.1) satisfy the lowest-order equations if ω0 is the linear Alfvén wave
frequency, ω0 = k‖vA. Thus, at lowest order the solution describes counter-propagating,
linear Alfvén waves.

The second-order solutions for the electric and magnetic field are given by (A 14) and
(A 15), from which we can immediately see that at second order, all components are purely
oscillatory, i.e. there is no secularly growing mode. We can also see that two Fourier
modes are generated at this order, (1, 1, 0) and (−1, 1, 2). Both of these modes satisfy the
wavevector matching conditions, which require k2 = k1− ± k1+ = (0, 1, 1) ± (1, 0,−1).
The (−1, 1, 2) mode satisfies the conditions for a linear Alfvén wave. Specifically,
the frequency of this mode is ω = ±2ω0 = ±2k‖vA = ±kzvA, and the mode obeys the
Alfvén wave eigenrelation

δB⊥√E0
= ±δu⊥= ± E⊥

B0
× ẑ. (4.2)

These two linear modes are counter-propagating along the background magnetic field;
however, they are not perpendicularly polarized. Therefore, their interaction is simply
a linear superposition that forms a standing wave for this particular symmetric initial
condition. The (1, 1, 0) mode is a purely magnetic mode that has no structure along the
background field (kz = 0) but oscillates with frequency ω = 2ω0. This mode is not a linear
Alfvén mode and corresponds to a nonlinear magnetic shear. The interaction of this shear
mode with the initial wave modes is the nonlinear interaction that will provide secular
growth at the next order.

As with the second-order equations for B⊥ and E⊥, we can once again straightforwardly
interpret the third-order solutions, (A 23) and (A 24). First, we note that there are now
secularly (proportional to t) growing modes which are boxed for clarity: (2, 1,−1)

and (1, 2, 1). Both of these modes are linear Alfvén waves. They have frequency ω =
±ω0 = ±k‖z = ±kzz and obey the Alfvén wave eigenrelations (4.2). Therefore, the modes
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correspond to linear Alfvén waves propagating up, (1, 2, 1), and down, (2, 1,−1), the
background magnetic field. These secularly growing modes are phase-shifted relative
to the initial modes by −π/2, have perpendicular wavevectors

√
5k⊥, but |kz| = k‖.

Therefore, the weak turbulence cascade proceeds to smaller scales in the perpendicular
plane, but the parallel scales are conserved, confirming the prediction from simple
three-wave matching conditions. Further, as alluded to in the previous section, these
secular modes follow from the interaction of the second-order (1, 1, 0) mode with the
initial Alfvén waves: k3 = k2 + k1± = (1, 1, 0) + (1, 0,−1) = (2, 1,−1) and (1, 1, 0) +
(0, 1, 1) = (1, 2, 1), i.e. each third-order mode conserves not just the magnitude but also
the sign of kz. This fact confirms that there is no exchange of energy between upward- and
downward-propagating fluctuations.

The other six purely oscillatory components are a mixture of linear Alfvén waves
and nonlinear structures. Unlike the second-order solutions, there is no purely
magnetic mode at third order. Four of the components, those with wavevectors
(2, 1,−1), (1, 2, 1), (−2, 1, 3) and (−1, 2, 3), have

√
5k⊥, but these all have both linear

and nonlinear components. Similarly, the (0, 1, 1) and (1, 0,−1) components appear as
both linear and nonlinear terms. Note that these final two components have the same
wavevector as the initial Alfvén waves, but these third-order modes have different phases
and will serve to cancel the initial modes.

5. Numerical comparison
5.1. Simulation description

To confirm the analytical results of §§ 3 and 4, we consider the nonlinear interaction
between two perpendicularly polarized Alfvén waves that counter-propagate in a
three-dimensional, periodic domain along a uniform guide field B0 = B0ẑ using the
general relativistic MHD code BHAC (Porth et al. 2017; Olivares et al. 2019; Ripperda
et al. 2019a, ). The recently added force-free limit for the resistive MHD code
BHAC employs the numerical scheme of Ripperda et al. (2019a, ) and damps force-free
violations E > B and E · B �= 0 on resistive time scales7. We employ both a periodic
cubic domain with L⊥ = Lx = Ly = L‖ = Lz = 2π and a periodic elongated domain
with L‖ = 10L⊥ = 20π, with resolution Nx = Ny = Nz = 256 and Nz = 2560 cells for
the elongated case. Initially, we set a gas-to-magnetic-pressure ratio of β = 2p/B2

0 =
0.02 and magnetization σcold ≡ b2/ρ ∈ [0.01; 0.1; 1; 10; 100] (corresponding to σ ∈
[0.01; 0.1; 1; 7; 20]), where we vary the density, ρ, but maintain a constant guide field,
B0 = ẑ, and pressure p = 0.01 with adiabatic index Γ = 4/3 for an ideal relativistic gas.
In the force-free case, β → 0, σ → ∞ and vA → 1.

As in § 4, we prescribe a scale-free definition of characteristic wavelengths
(kx/k⊥, ky/k⊥, kz/k‖), and initialize our Alfvén wave simulations with two overlapping,
counter-propagating and perpendicularly polarized Alfvén waves described by the
wavevectors k+ = (1, 0,−1) and k− = (0, 1, 1). The magnetic field is initialized through
a vector potential A = (−B0y, 0, δB⊥[sin(k⊥x + k‖z) + sin(k⊥y − k‖z)]), representing the
initial counter-propagating Alfvén waves with frequency ω0 = k‖vA. The electric field is
initialized as E = (vABy, vABx, 0) such that the velocity is equal to the drift velocity, δu⊥ =
E × B/B2. Note that the overlapping Alfvén waves, in contrast to a single Alfvén wave,
are not an exact force-free equilibrium due to a small second-order violation E∓ · B± �= 0
between the fields of the two waves, which is damped on a short time scale in BHAC.

7Full details of the simulation code, including convergence, numerical diffusion and numerical dispersion studies,
can be found in Part 2 (Ripperda et al. 2021).
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The strength of the nonlinearity is characterized by χ = k⊥δB⊥/k‖B0. To maintain weak
turbulence, we fix χ = 0.01 in all of the following simulations. By fixing χ , we expect to
maintain self-similar behaviour as we explore elongated domains that approximate the
reduced limit. Thus, in the cubic domain with k⊥ = k‖, δu⊥/vA = δB⊥/B0 = 0.01, and in
the elongated case with k⊥ = 10k‖, δu⊥/vA = δB⊥/B0 = 0.001.

5.2. Alfvén wave–Alfvén wave collisions
5.2.1. Cubic domain

In figure 1, we present the evolution of the mode amplitudes of the B⊥ (Alfvénic)
fluctuations in a cubic domain scanning σcold ≡ b2/ρ ∈ [0.01; 0.1; 1; 10; 100;∞],
presented in descending order of σ from top-left to bottom-right. The initial,
counter-propagating and perpendicularly polarized Alfvén waves are represented by the
red lines in each panel, the (0, 1,−1) mode by dashed lines and the (1, 0, 1) mode by
dotted lines. These modes interact to produce a secondary, nonlinear, magnetic shear
mode indicated by the green line, representing the (1, 1, 0) mode. Note that this mode
is purely oscillatory in time with ω = 2ω0, as found in § A.3. Finally, the secondary mode
interacts with each of the primary Alfvén waves to produce at third order two higher
k⊥ Alfvén waves, but with the same k‖ as the primary waves, where the (1, 2,−1) and
(2, 1, 1) modes are represented by the blue dashed and dotted curves. These dynamics
are in agreement with the results of § A.4. These modes grow secularly in time, B⊥3 ∝ t,
as indicated by the black line in each panel, which is a curve proportional to time and
scaled by the final amplitude of B⊥3. The net result of this Alfvén wave–Alfvén wave
collision is the anisotropic transfer of energy from large to small scales, which is governed
by three-wave interactions.

5.2.2. What about fast waves? Exploring the Alfvén wave–fast wave coupling
Our analytical analysis in the preceding sections purposefully neglected the fast wave

by choosing the reduced limit. However, the fast wave may play an important role in
releasing energy in strongly magnetized, relativistic, astrophysical plasmas, because the
fast wave can travel across field lines (Li et al. 2019; Yuan et al. 2020b). For instance,
Alfvén waves travel along magnetic fields, and on closed magnetic field lines in pulsar and
magnetar magnetospheres their energy is confined to the magnetosphere, but fast waves
can release their energy into the surrounding medium by propagating across field lines.
For this reason, the coupling between the fast and Alfvén branches in relativistic MHD
and its force-free limit has been explored in detail in recent years (Cho 2005; Takamoto &
Lazarian 2016, 2017; Li et al. 2019). Through a numerical simulation study of relativistic
turbulence, Takamoto & Lazarian (2016, 2017) find that the fast-to-Alfvén mode power
scales as (δuf /δuA)

2 ∝ √
(1 + σ)δuA/cf ⊥ in the σ � 1 limit, where cf ⊥ is the fast mode

speed in the perpendicular plane. In the σ � 1 limit, Cho & Lazarian (2002, 2003) find
that (δuF/δuA)

2 ∝ δuA/cf ⊥. Thus, for σ � 1, the fast and Alfvén branches decouple as the
background magnetic field strength is increased; however, for σ � 1, the coupling between
the modes increases with

√
1 + σ , asymptotically approaching unity for large σ .

In figure 2, we present the evolution of the highest-amplitude B‖ modes for the same
initial configuration as presented in figure 1. Here B‖ serves as a proxy for the amplitude
of compressible, fast mode fluctuations, since the Alfvén modes have negligible B‖
components. As an additional test (not shown), we have projected the fluctuations onto
the fast and Alfvén wave eigenfunctions and recovered quantitatively similar results.

We first note that the (0, 1,−1) and (1, 0, 1) B‖ modes have zero amplitude at t = 0
but do develop finite amplitude that is approximately independent of σ . These modes
appear at a mixture of two or more frequencies, the most dominant of which is at the
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(a) (b)

(c) (d)

(e) ( f )

FIGURE 1. Mode evolution of B⊥ for a cubic domain with χ = 0.01 and σcold ≡ b2/ρ ∈
[0.01; 0.1; 1; 10; 100; ∞], presented in descending order of σ from (a) to ( f ). The red lines
correspond to the initial counter-propagating Alfvén modes: the (0, 1, −1) and (1, 0, 1) modes
are shown by dashed and dotted lines, respectively. Dashed green lines correspond to the
second-order nonlinear shear mode (1, 1, 0). The (1, 2, −1) and (2, 1, 1) third-order, secularly
growing modes are shown by dashed and dotted blue lines, respectively. The black line
corresponds to a secular growth directly proportional to t and scaled by the final amplitude of
the third-order mode.
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(a) (b)

(c) (d)

(e) ( f )

FIGURE 2. Mode evolution of B‖ for a cubic domain with χ = 0.01 and σcold ≡ b2/ρ ∈
[0.01; 0.1; 1; 10; 100; ∞], presented in descending order of σ from (a) to ( f ). Line styles and
colours are as defined in figure 1.
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fast mode frequency, ω ∼ ωf ∼ kcf ∼ √
2ω0, and remain at the same or lower amplitude as

the tertiary (blue) modes. The secondary mode, (1, 1, 0) (green), is the highest-amplitude
mode and is again composed of two or more frequencies, the most dominant of which
are ω ∼ ωf ∼ kcf ∼ √

2ω0 and ω ∼ ω0/2. Unlike the Alfvén branch, the (1, 1, 0) mode
can be a linear fast mode, which is consistent with a component frequency being at the
fast mode frequency. Finally, the tertiary modes (blue) again display secular growth with
time, with a primary frequency given by the fast mode frequency ω ∼ ωf ∼ kcf ∼ √

6ω0.
The tertiary mode also displays the most significant dependence on σ . For σ � 1, the
amplitude is independent of σ .

5.2.3. Elongated domain
The scaling of the Alfvén–fast mode coupling discussed above focuses purely on the

strength of the background magnetic field while neglecting any wavevector anisotropy
that may naturally arise from a strong magnetic field. As noted in § 2.3, in the Newtonian,
obliquely propagating limit (k‖ � k⊥), the fast and Alfvén branch turbulent cascades
decouple, and we expect an analogous decoupling to occur in the relativistic limit, since
the fast and Alfvén wave frequencies remain well separated in the oblique limit. Thus, we
now examine the results of an elongated box simulation with L‖ = 10L⊥.

In figure 3(a,b) are presented the mode analysis results of a force-free simulation of
obliquely propagating Alfvén waves, with k⊥ = 10k‖. The colour and line styles are as in
the previous figures. Comparing the relative amplitudes between each of the B⊥ modes
with the relative amplitudes for the cubic domain case presented in figure 1(a), it is
clear that the elongated domain does not change the Alfvénic B⊥, cascade. However, the
three parallel modes’ growth, amplitude and frequency in the elongated case compared
with the cubic case in figure 2(a) are markedly different. First, no secular growth of
parallel modes is apparent. If there is a secularly growing mode, it is sufficiently low in
amplitude that it does not modulate or interfere with the non-growing, purely oscillatory
modes. Second, the mode amplitudes relative to the Alfvén wave primaries are an order of
magnitude smaller in the elongated case relative to the cubic domain, which is consistent
with the compressible mode amplitudes scaling with the elongation factor. Third, in the
elongated case, the first-order (red) and third-order (blue) parallel modes are dominated
by low-frequencyoscillations that match the frequency of the Alfvénic secondary mode.
The second-order (green) mode is much higher in frequency, well above even the
fast mode frequency, suggesting nonlinear modes with multiple frequencies contribute
to this component.

These results support our intuition that the Alfvén and fast mode cascades decouple
as the wavevector anisotropy increases and extend the findings of Chandran (2005) to
the relativistic limit. In the case examined here, ωA = k‖ � 0.1ωF = 0.1k, leading to a
poor frequency matching condition required for the resonant weak turbulence interaction.
Although the wave matching condition broadens in strong turbulence, the Alfvén and
fast mode cascades will remain well separated in the limit k‖ � k⊥.

5.3. Alfvén wave–fast wave collisions
In the Alfvén wave–Alfvén wave collision case, we have shown that the amplitude of
the product fast modes decreases as the initial modes become anisotropic, indirectly
demonstrating that the modes decouple. Here, we directly diagnose the coupling of the
Alfvén and fast mode cascades by examining the collision between an Alfvén wave and a
fast wave in both cubic and elongated domains. Unlike the Alfvén wave–Alfvén wave
collision explored in the previous sections, there is not a canonical choice for the
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(a) (b)

(c) (d)

(e) ( f )

FIGURE 3. Mode evolution of B⊥ and B‖ with χ = 0.01. (a,b) Results for an
Alfvén wave–Alfvén wave collision in an elongated domain, Lz = 10Lx. (c–f ) Results for an
Alfvén wave–fast wave collision in a cubic domain (c,d) and elongated domain (e, f ). The line
style and colour are as in previous figures.
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counter-propagating fast mode. Therefore, we choose a fiducial fast mode with k =
(0, 1,−1), and an Alfvén wave with k = (1, 0, 1). This choice is largely for consistency
with the Alfvén wave–Alfvén wave collision; however, it also obeys reasonable wavevector
and frequency matching conditions, and it has the same expected product modes as the
Alfvén wave–Alfvén wave collision. Further, the secondary modes will still be (1, 1, 0)

and (−1, 1,−2), and for these initial modes in a cubic domain, the secondary (1, 1, 0)
mode can satisfy the linear fast mode dispersion relation. For these simulations, we
continue the convention of fixing χ = 0.01 to satisfy weak turbulence.

5.3.1. Cubic domain
In figure 3(c,d) are plotted the results of the Alfvén wave–fast wave collision outlined

above for a cubic domain. Note that in this case, the dotted and dashed red lines in
the B⊥ panel correspond to the initial Alfvén and fast waves respectively. Focusing
on the behaviour in figure 3(c), the secondary, green, mode is the lowest-amplitude
mode, displays no apparent secular growth and contains a mixture of linear and
nonlinear frequencies. Similarly, the minus tertiary mode is oscillatory and dominated
by high-frequency nonlinear modes. However, the plus tertiary mode does exhibit secular
growth, and is dominated by the linear Alfvén wave frequency. Relative to the Alfvén
wave–Alfvén wave collision in figure 1(a), this tertiary mode is decreased in amplitude by
approximately a factor of three.

Turning to the Alfvén wave–fast wave in figure 3(d), we see different behaviour
compared with figure 2(a). The largest-amplitude component remains the secondary mode,
which is dominated by the fast mode linear frequency and an additional low-frequency
component. Both the plus mode ‘primary’ and tertiary exhibit secular growth with
comparable amplitude. Note that the plus mode B‖ ‘primary’ is not initialized since the
initial plus mode is an Alfvén wave. This ‘primary’ mode growth is due to the interaction
of the (−1, 1, 2) secondary with the fast mode primary with (0, 1,−1) summing to give
(1, 0, 1), i.e. the ‘primary’ is here a tertiary mode.

5.3.2. Elongated domain
In figure 3(e, f ) are plotted the results of the Alfvén wave–fast wave collision outlined

above for the elongated domain with L‖ = 10L⊥. The overall behaviour is similar to
that of the Alfvén wave–fast wave collision in the cubic domain with a few notable
differences. Focusing first on figure 3(e), we see that the Alfvénic tertiary is further
suppressed in amplitude, now reduced by nearly two orders of magnitude relative to the
cubic and elongated domain Alfvén wave–Alfvén wave collisions in figures 1(a) and
3(a). The secondary and minus tertiary are also further suppressed in amplitude, and
the secondary is dominated by higher-frequency modes relative to the cubic domain.
Turning to the Alfvén wave–fast wave in figure 3( f ), we again see that all product
modes are suppressed by approximately an order of magnitude, consistent with the
elongation factor weakening the interaction. Notably, both blue tertiary modes display
no secular growth. The secondary mode is of higher frequency, and the ‘primary’ mode
is the only B‖ component with clear secular growth; however, the ‘primary’ is now
dominated by a high-frequency, nonlinear component. These results further support our
intuition from Newtonian weak turbulence (Chandran 2005) that the Alfvén and fast mode
cascades decouple as the wavevector anisotropy increases by directly comparing the
Alfvén wave–fast wave collision in both cubic and elongated domains extend the findings
of Chandran 2005 to the relativistic limit.
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6. Summary and conclusions

In this paper, we present an analytical and numerical study of relativistic, weak
Alfvénic turbulence focusing on the three-wave interaction. We begin by reviewing the
knowledge gained from non-relativistic (Newtonian) turbulence and use that framework to
guide our study of relativistic turbulence. From Newtonian turbulence theories, we know
that both weak and strong Alfvénic turbulence lead to anisotropic cascades. Therefore,
regardless of the strength of the turbulence and isotropy at large scales, turbulence will
become anisotropic and eventually satisfy k‖ � k⊥. Leveraging the anisotropic cascade
of energy and the fact that δB/B0 � 1 is satisfied either at the outer scale or once the
cascade reaches sufficiently small scales, we derive a set of RRMHD equations and cast
them in Elsasser form. This set of equations has the same properties and basic form as
RMHD and is appropriate for describing strongly magnetized relativistic plasmas for
which Alfvénic fluctuations dominate. We note that RRMHD is not equivalent to the
magnetically dominated equations of the force-free limit of relativistic MHD, which
require σ = b2/h → ∞. However, we do also derive a set of magnetically dominated
RRMHD equations which are valid in the σ → ∞ limit but retain the favourable
properties inherent to RMHD for the analysis of Alfvénic turbulence.

We note that the similarity between RMHD and RRMHD extends to the wave kinetic
equation, which describes the spectral evolution of a weakly turbulent plasma. As such,
we conclude that RRMHD: (i) is dominated by three-wave interactions of Alfvén waves
and (ii) leads to an energy spectrum of the form f (k‖)k−2

⊥ , where f (k‖) is set by
external forcing or initial conditions. We then employ the RRMHD equations in
Elsasser form to analytically compute the building blocks of weak turbulence through
third order to heuristically demonstrate the primacy of the three-wave interaction. The
primary interaction is the collision of perpendicularly polarized Alfvén waves with
ω = ω0 and wavevectors k1± = (1, 0, 1) and (0, 1,−1) that interact through a three-wave
interaction to produce a nonlinear, magnetic shear mode, k2 = (1, 1, 0), with ω = 2ω0
at second order. The interaction of this secondary mode with the primaries through a
subsequent three-wave interaction produces at third order two secularly growing linear
Alfvén waves with k3 = (1, 2, 1) and (2, 1,−1), confirming the prediction that there
is no parallel cascade of energy. The analytical results also confirm the constraint
that upward- and downward-propagating fluctuations do not exchange energy. In other
words, the upward-propagating primary mode transfers energy to the upward-propagating
tertiary mode, and the downward-propagating primary mode transfers energy to the
downward-propagating tertiary mode. These analytical solutions are fundamentally
identical to the Newtonian results of Howes & Nielson (2013) and highlight the
fundamental role that three-wave interactions of Alfvén waves play in transferring energy
from large to small scales in relativistic plasmas.

Since there is not a formally incompressible limit in relativistic systems wherein there
is a finite speed of propagation, c, we turn to numerical simulations to confirm these
analytical results and test the coupling of the Alfvén and fast modes in relativistic weak
turbulence. We perform a set of numerical simulations for σ ∈ [0.01; 0.1; 1; 7; 20;∞]
while keeping χ = 0.01 fixed to maintain weak turbulence. We examine both Alfvén
wave–Alfvén wave collisions as well as Alfvén wave–fast wave collisions in both cubic
and elongated domains, where the elongated domain is employed to approximate the
reduced limit of k‖ � k⊥. The numerical results confirm the analytical findings for the
case of Alfvén wave–Alfvén wave collisions in both cubic and elongated domains, and
the Alfvénic cascade is unaltered by the elongated domain. We find that in the cubic
domain, both the Alfvén wave–Alfvén wave and Alfvén wave–fast wave collisions produce
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secondary and tertiary fluctuations consistent with fast waves. However, in the elongated
domains, the Alfvén wave–fast wave interaction is suppressed, and the suppression is
proportional to the elongation factor, thus confirming our theoretical expectation that
the two modes decouple in the anisotropic limit. More detailed numerical analysis of
relativistic Alfvén wave and Alfvén wave packet collisions, including the formation and
evolution of current sheets, can be found in Part 2 (Ripperda et al. 2021).

The results of this analytical and numerical study of weak, relativistic, Alfvénic
turbulence present a simple picture of nonlinear energy transfer through Alfvén wave
collisions by highlighting the importance of the three-wave interaction and the decoupling
of the fast and Alfvén modes in the anisotropic, reduced limit. Further, they demonstrate
the fundamental importance of Alfvénic turbulence to high-energy astrophysical systems,
extending the work of Ng & Bhattacharjee (1996), Galtier et al. (2000), Chandran (2005)
and Howes & Nielson (2013). With these insights into the continued importance of
Alfvénic interactions even in the relativistic limit, we may examine turbulence in these
extreme astrophysical systems with newfound intuition.
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Appendix A. Ordered equations
A.1. Conversion to Elsasser potentials and characteristic variables

To prepare the system of equations for analysis of their asymptotic solutions, we convert to
the Elsasser potential formulation. This approach eliminates the nonlinear pressure term,
and reduces the equation system to two scalar equations for the Elsasser potentials, ζ±,
rather than two vector equations for the Elsasser fields, z±8. The Elsasser potentials are
defined by the relation δz± = ẑ × ∇⊥ζ±, which follows from the fact that the Elsasser

8For the remainder of the analysis, we focus on the three-vector form of the relativistic, reduced Elsasser equations
rather than the covariant form. This is done for simplicity and to avoid unnecessary covariant projection four-vectors and
curl formulations.
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fields are solenoidal. Note that δv⊥ and δB⊥ can be reconstructed from the potentials

δv⊥=1
2

ẑ × ∇⊥(ζ++ζ−),

δB⊥√E0
= 1

2
ẑ × ∇⊥(ζ+−ζ−).

⎫⎪⎪⎬⎪⎪⎭ (A 1)

Also, using the fact that in general in relativistic MHD we use E = −v × B, to lowest
order

E⊥
B0

= −1
2
∇⊥(ζ++ζ−). (A 2)

Taking the curl of (3.17) and substituting the expression for the Elsasser potentials yields
the Elasser potential equations

∂∇2
⊥ζ±
∂t

∓ vA
∂∇2

⊥ζ±
∂z

= −1
2

[{
ζ+,∇2

⊥ζ−
} + {

ζ−,∇2
⊥ζ+

} ∓ ∇2
⊥ {ζ+, ζ−}] , (A 3)

which are identical in form to those derived by Schekochihin et al. (2009). The Poisson
bracket is defined by

{f , g} = ẑ · (∇⊥f × ∇⊥g). (A 4)

Equation (A 3) retains the form that the left-hand side describes the linear evolution, and
we can further simplify the task of solving the equation set by converting to characteristic
variables, φ± = z ± vAt9. In terms of these characteristic variables, (A 3) becomes

∂∇2
⊥ζ±

∂φ∓
= ± 1

4vA

[{
ζ+,∇2

⊥ζ−
} + {

ζ−,∇2
⊥ζ+

} ∓ ∇2
⊥ {ζ+, ζ−}] . (A 5)

Finally, the Elsasser potential form for the initial conditions provided in (4.1) is

ζ1+ = z+
k⊥

sin (k⊥x − k‖z − ω0t) = z+
k⊥

sin (k⊥x − k‖φ+),

ζ1− = − z−
k⊥

sin (k⊥y + k‖z − ω0t) = − z−
k⊥

sin (k⊥y + k‖φ−),

⎫⎪⎬⎪⎭ (A 6)

where the final equality follows from conversion to the characteristic variables φ±.

A.2. Linear, O (ε) solutions
At lowest, linear order, (A 5) reduces to

∂∇2
⊥ζ1±

∂φ∓
= 0. (A 7)

The initial conditions above satisfy (A 7) if ω0 is the linear Alfvén wave frequency,
ω0 = k‖vA. Thus, at lowest order the solution describes counter-propagating, linear
Alfvén waves, as expected of RRMHD.

9Note that this variable transformation remains valid even in the force-free limit in which vA = c, because the frame
remains inertial.
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A.3. Secondary, O (
δ2

)
solutions

At second order, the evolution equations become

∂∇2
⊥ζ2±

∂φ∓
= ± 1

4vA

[{
ζ1+,∇2

⊥ζ1−
} + {

ζ1−,∇2
⊥ζ1+

} ∓ ∇2
⊥ {ζ1+, ζ1−}] , (A 8)

and we can simply insert our ζ1± solutions to solve for ζ2±. Upon substitution, we note that
the first two nonlinear terms on the left-hand side cancel, leaving

∂∇2
⊥ζ2±

∂φ∓
= −k2

⊥z+z−
4vA

{
cos

[
k⊥x + k⊥y − k‖(φ+−φ−)

]
+ cos

[
k⊥x − k⊥y − k‖(φ++φ−)

]}
. (A 9)

Integrating the above equations from t′ = 0 to t′ = t, i.e. from φ′
± = φ+ = φ− to φ′

+ = φ+
and φ′

− = φ−, yields the O (
ε2

)
solutions

ζ2+ = z+z−
8ω0

{
sin[k⊥x + k⊥y − k‖(φ+−φ−)] − sin[k⊥x + k⊥y]

− sin[k⊥x − k⊥y − k‖(φ++φ−)] + sin[k⊥x − k⊥y − 2k‖φ+]
}
, (A 10)

ζ2− = −z+z−
8ω0

{
sin[k⊥x + k⊥y − k‖(φ+−φ−)] − sin[k⊥x + k⊥y]

+ sin[k⊥x − k⊥y − k‖(φ++φ−)] − sin[k⊥x − k⊥y − 2k‖φ−]
}
, (A 11)

or in terms of z and t

ζ2+ = z+z−
8ω0

{sin[k⊥x + k⊥y − 2ω0t] − sin[k⊥x + k⊥y]

− sin[k⊥x − k⊥y − 2k‖z] + sin[k⊥x − k⊥y − 2k‖z − 2ω0t]
}
, (A 12)

ζ2− = −z+z−
8ω0

{sin[k⊥x + k⊥y − 2ω0t] − sin[k⊥x + k⊥y]

+ sin[k⊥x − k⊥y − 2k‖z] − sin[k⊥x − k⊥y − 2k‖z + 2ω0t]
}
. (A 13)

Converting the second-order Elsasser potential solutions into solutions for B⊥2 and E⊥2:

B⊥2√E0
= z+z−

16vA

k⊥
k‖

{[
2 cos(k⊥x + k⊥y − 2ω0t) − 2 cos(k⊥x + k⊥y)

]
(−x̂ + ŷ)

+ [
cos(−k⊥x + k⊥y + 2k‖z + 2ω0t)

− cos(−k⊥x + k⊥y + 2k‖z − 2ω0t)
]
(x̂ + ŷ)

}
, (A 14)

E⊥2

B0
= −z+z−

16vA

k⊥
k‖

{[
2 cos(−k⊥x + k⊥y + 2k‖z) − cos(−k⊥x + k⊥y + 2k‖z + 2ω0t)

− cos(−k⊥x + k⊥y + 2k‖z − 2ω0t)
]
(−x̂ + ŷ)

}
. (A 15)
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A.4. Tertiary, O (
ε3

)
solutions

At third order, the evolution equations for the Elsasser potentials become

∂∇2
⊥ζ3±

∂φ∓
= ± 1

4vA

[{ζ1+,∇2
⊥ζ2−} + {ζ2+,∇2

⊥ζ1−} + {ζ1−,∇2
⊥ζ2+}

+{ζ2−,∇2
⊥ζ1+} ∓ ∇2

⊥{ζ1+, ζ2−} ∓ ∇2
⊥{ζ2+, ζ1−}] . (A 16)

Substituting the lower-order solutions into the nonlinear terms:

∂∇2
⊥ζ3+

∂φ−
= z2

+z−k3
⊥

64ω0vA

{
4 cos[2k⊥x + k⊥y − k‖φ+] − 4 cos[2k⊥x + k⊥y − 2k‖φ++k‖φ−]

+ 4 cos[−2k⊥x + k⊥y + 2k‖φ++k‖φ−]

−4 cos[−2k⊥x + k⊥y + k‖φ++2k‖φ−]
}

+ z+z2
−k3

⊥
64ω0vA

{
6 cos[k⊥x + 2k⊥y + k‖φ−] − 6 cos[k⊥x + 2k⊥y − k‖φ++2k‖φ−]

+ 6 cos[−k⊥x + 2k⊥y + k‖φ++2k‖φ−]

− 6 cos[−k⊥x + 2k⊥y + 2k‖φ++k‖φ−]

+2 cos[k⊥x − k‖φ−] − 2 cos[k⊥x − 2k‖φ++k‖φ−]
}
, (A 17)

∂∇2
⊥ζ3−

∂φ+
= z2

+z−k3
⊥

64ω0vA

{
6 cos[2k⊥x + k⊥y − k‖φ+] − 6 cos[2k⊥x + k⊥y − 2k‖φ++k‖φ−]

+ 6 cos[−2k⊥x + k⊥y + 2k‖φ++k‖φ−]

− 6 cos[−2k⊥x + k⊥y + k‖φ++2k‖φ−]

+2 cos[k⊥y + k‖φ+] − 2 cos[k⊥y − k‖φ++2k‖φ−]
}

+ z+z2
−k3

⊥
64ω0vA

{
4 cos[k⊥x + 2k⊥y + k‖φ−] − 4 cos[k⊥x + 2k⊥y − k‖φ++2k‖φ−]

+ 4 cos[−k⊥x + 2k⊥y + k‖φ++2k‖φ−]

−4 cos[−k⊥x + 2k⊥y + 2k‖φ++k‖φ−]
}
, (A 18)

and solving for ζ3±:

ζ3+ = z2
+z−k⊥
320ω2

0

{
8ω0t cos[2k⊥x + k⊥y − k‖φ+] + 4 sin[2k⊥x + k⊥y − 2k‖φ++k‖φ−]

− 4 sin[2k⊥x + k⊥y − k‖φ+] + 2 sin[−2k⊥x + k⊥y + k‖φ++2k‖φ−]

+ 2 sin[−2k⊥x + k⊥y + 3k‖φ+] − 4 sin[−2k⊥x + k⊥y + 2k‖φ++k‖φ−]
}

+ z+z2
−k⊥

320ω2
0

{
3 sin[k⊥x + 2k⊥y − k‖φ++2k‖φ−] + 3 sin[k⊥x + 2k⊥y + k‖φ+]

− 6 sin[k⊥x + 2k⊥y + k‖φ−] + 6 sin[−k⊥x + 2k⊥y + 2k‖φ++k‖φ−]
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− 3 sin[−k⊥x + 2k⊥y + 3k‖φ+] − 3 sin[−k⊥x + 2k⊥y + k‖φ++2k‖φ−]

+10 sin[k⊥x − 2k‖φ++k‖φ−] + 10 sin[k⊥x − k‖φ−] − 20 sin[k⊥x − k‖φ+]
}
,

(A 19)

ζ3− = z2
+z−k⊥
320ω2

0

{
6 sin[2k⊥x + k⊥y − k‖φ+] − 3 sin[2k⊥x + k⊥y − 2k‖φ++k‖φ−]

− 3 sin[2k⊥x + k⊥y − k‖φ−] + 6 sin[−2k⊥x + k⊥y + k‖φ++2k‖φ−]

− 3 sin[−2k⊥x + k⊥y + 2k‖φ++k‖φ−] − 3 sin[−2k⊥x + k⊥y + 3k‖φ−]

+20 sin[k⊥y + k‖φ−] − 10 sin[k⊥y − k‖φ++2k‖φ−] − 10 sin[k⊥y + k‖φ+]
}

+ z+z2
−k⊥

320ω2
0

{
−8ω0t cos[k⊥x + 2k⊥y + k‖φ−] −4 sin[k⊥x + 2k⊥y − k‖φ++2k‖φ−]

+4 sin[k⊥x + 2k⊥y + k‖φ−] + 2 sin[−k⊥x + 2k⊥y + 3k‖φ−]

+ 2 sin[−k⊥x + 2k⊥y + 2k‖φ++k‖φ−] − 4 sin[−k⊥x + 2k⊥y + k‖φ++2k‖φ−]
}

.

(A 20)

Replacing the characteristic variables with z and t yields

ζ3+ = z2
+z−k⊥
320ω2

0

{
8ω0t cos[2k⊥x + k⊥y − k‖z − ω0t]

+ 4 sin[2k⊥x + k⊥y − k‖z − 3ω0t] − 4 sin[2k⊥x + k⊥y − k‖z − ω0t]

+ 2 sin[−2k⊥x + k⊥y + 3k‖z − ω0t] + 2 sin[−2k⊥x + k⊥y + 3k‖z + 3ω0t]

− 4 sin[−2k⊥x + k⊥y + 3k‖z + ω0t]
}

+ z+z2
−k⊥

320ω2
0

{
3 sin[k⊥x + 2k⊥y + k‖z − 3ω0t] + 3 sin[k⊥x + 2k⊥y + k‖z + ω0t]

− 6 sin[k⊥x + 2k⊥y + k‖z − ω0t] + 6 sin[−k⊥x + 2k⊥y + 3k‖z + ω0t]

− 3 sin[−k⊥x + 2k⊥y + 3k‖z + 3ω0t] − 3 sin[−k⊥x + 2k⊥y + 3k‖z − ω0t]

+ 10 sin[k⊥x − k‖z − 3ω0t] + 10 sin[k⊥x − k‖z + ω0t]

−20 sin[k⊥x − k‖z − ω0t]
}
, (A 21)

ζ3− = z2
+z−k⊥
320ω2

0

{
6 sin[2k⊥x + k⊥y − k‖z − ω0t] − 3 sin[2k⊥x + k⊥y − k‖z − 3ω0t]

− 3 sin[2k⊥x + k⊥y − k‖z + ω0t] + 6 sin[−2k⊥x + k⊥y + 3k‖z − ω0t]

− 3 sin[−2k⊥x + k⊥y + 3k‖z + ω0t] − 3 sin[−2k⊥x + k⊥y + 3k‖z − 3ω0t]

+ 20 sin[k⊥y + k‖z − ω0t] − 10 sin[k⊥y + k‖z − 3ω0t]

−10 sin[k⊥y + k‖z + ω0t]
}

+ z+z2
−k⊥

320ω2
0

{
−8ω0t cos[k⊥x + 2k⊥y + k‖z − ω0t]
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−4 sin[k⊥x + 2k⊥y + k‖z − 3ω0t]

+4 sin[k⊥x + 2k⊥y + k‖z − ω0t] + 2 sin[−k⊥x + 2k⊥y + 3k‖z + ω0t]

+ 2 sin[−k⊥x + 2k⊥y + 3k‖z − 3ω0t] − 4 sin[−k⊥x + 2k⊥y + 3k‖z − ω0t]
}

,

(A 22)

and finally the third-order solutions for E⊥ and B⊥:

B⊥3√E0
= z2

+z−
640v2

A

k2
⊥

k2
‖

{[
−8ω0t sin(2k⊥x + k⊥y − k‖z − ω0t)

+ 3 cos(2k⊥x + k⊥y − k‖z + ω0t)

− 10 cos(2k⊥x + k⊥y − k‖z − ω0t)

+7 cos(2k⊥x + k⊥y − k‖z − 3ω0t)
]
(−x̂ + 2ŷ)

+ [−2 cos(−2k⊥x + k⊥y + 3k‖z + 3ω0t) + cos(−2k⊥x + k⊥y + 3k‖z + ω0t)

+ 4 cos(−2k⊥x + k⊥y + 3k‖z − ω0t)

−3 cos(−2k⊥x + k⊥y + 3k‖z − 3ω0t)
]
(x̂ + 2ŷ)

+ [−10 cos(k⊥y + k‖z + ω0t) + 20 cos(k⊥y + k‖z − ω0t)

−10 cos(k⊥y + k‖z − 3ω0t)
]

x̂
}

+ z+z2
−

640v3
A

k2
⊥

k2
‖

{[
−8ω0t sin(k⊥x + 2k⊥y + k‖z − ω0t)

+ 3 cos(k⊥x + 2k⊥y + k‖z + ω0t)

−10 cos(k⊥x + 2k⊥y + k‖z − ω0t)

+7 cos(k⊥x + 2k⊥y + k‖z − 3ω0t)
]
(−2x̂ + ŷ)

+ [
3 cos(−k⊥x + 2k⊥y + 3k‖z + 3ω0t) − 4 cos(−k⊥x + 2k⊥y + 3k‖z + ω0t)

− cos(−k⊥x + 2k⊥y + 3k‖z − ω0t)

+2 cos(−k⊥x + 2k⊥y + 3k‖z − 3ω0t)
]
(2x̂ + ŷ)

+ [
10 cos(k⊥x − k‖z + ω0t) − 20 cos(k⊥x − k‖z − ω0t)

+10 cos(k⊥x − k‖z − 3ω0t)
]

ŷ
}

, (A 23)

cE⊥3

B0
= z2

+z−
640v2

A

k2
⊥

k2
‖

{[
8ω0t sin(2k⊥x + k⊥y − k‖z − ω0t)

+ 3 cos(2k⊥x + k⊥y − k‖z + ω0t)

− 2 cos(2k⊥x + k⊥y − k‖z − ω0t)

− cos(2k⊥x + k⊥y − k‖z − 3ω0t)
]
(2x̂ + ŷ)

+ [−2 cos(−2k⊥x + k⊥y + 3k‖z + 3ω0t) + 7 cos(−2k⊥x + k⊥y + 3k‖z + ω0t)

− 8 cos(−2k⊥x + k⊥y + 3k‖z − ω0t)
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+3 cos(−2k⊥x + k⊥y + 3k‖z − 3ω0t)
]
(−2x̂ + ŷ)

+ [
10 cos(k⊥y + k‖z + ω0t) − 20 cos(k⊥y + k‖z − ω0t)

+10 cos(k⊥y + k‖z − 3ω0t)
]

ŷ
}

+ z+z2
−

640v3
A

k2
⊥

k2
‖

{[
−8ω0t sin(k⊥x + 2k⊥y + k‖z − ω0t)

− 3 cos(k⊥x + 2k⊥y + k‖z + ω0t)

+2 cos(k⊥x + 2k⊥y + k‖z − ω0t)

+ cos(k⊥x + 2k⊥y + k‖z − 3ω0t)
]
(x̂ + 2ŷ)

+ [
3 cos(−k⊥x + 2k⊥y + 3k‖z + 3ω0t) − 8 cos(−k⊥x + 2k⊥y + 3k‖z + ω0t)

+ 7 cos(−k⊥x + 2k⊥y + 3k‖z − ω0t)

−2 cos(−k⊥x + 2k⊥y + 3k‖z − 3ω0t)
]
(−x̂ + 2ŷ)

+ [−10 cos(k⊥x − k‖z + ω0t) + 20 cos(k⊥x − k‖z − ω0t)

−10 cos(k⊥x − k‖z − 3ω0t)
]

x̂
}

. (A 24)
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