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Alfvén waves as excited in black hole accretion disks and neutron star magnetospheres
are the building blocks of turbulence in relativistic, magnetized plasmas. A large
reservoir of magnetic energy is available in these systems, such that the plasma can be
heated significantly even in the weak turbulence regime. We perform high-resolution
three-dimensional simulations of counter-propagating Alfvén waves, showing that an
EB⊥(k⊥) ∝ k−2

⊥ energy spectrum develops as a result of the weak turbulence cascade in
relativistic magnetohydrodynamics and its infinitely magnetized (force-free) limit. The
plasma turbulence ubiquitously generates current sheets, which act as locations where
magnetic energy dissipates. We show that current sheets form as a natural result of
nonlinear interactions between counter-propagating Alfvén waves. These current sheets
form owing to the compression of elongated eddies, driven by the shear induced by
growing higher-order modes, and undergo a thinning process until they break-up into
small-scale turbulent structures. We explore the formation of current sheets both in
overlapping waves and in localized wave packet collisions. The relativistic interaction
of localized Alfvén waves induces both Alfvén waves and fast waves, and efficiently
mediates the conversion and dissipation of electromagnetic energy in astrophysical
systems. Plasma energization through reconnection in current sheets emerging during the
interaction of Alfvén waves can potentially explain X-ray emission in black hole accretion
coronae and neutron star magnetospheres.
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2 B. Ripperda and others

1. Introduction

Plasma turbulence is ubiquitous in the Universe and it is not fully understood how
energy cascades to small scales, and how it is eventually dissipated. Turbulent plasma in
the magnetospheres of compact objects is typically magnetically dominated, characterized
by a magnetization parameter σ = B2/(4πρc2) � 1, which indicates that the magnetic
energy density B2/(4π) is larger than the rest-mass energy density ρc2 (Goldreich &
Julian 1969; Blandford & Znajek 1977; Duncan & Thompson 1992). The large reservoir
of magnetic energy in such relativistic plasmas can be transferred to kinetic and thermal
energy through a turbulent cascade. In the relativistic regime, even low-amplitude waves
can interact to liberate a significant amount of magnetic energy for dissipation. A variety of
astrophysical systems rely on understanding the long-term dynamics of wave interactions,
namely how they drive turbulent energy cascades and how energy is eventually dissipated
at the smallest scales. Specifically, they are important to understand plasma dynamics
in neutron star magnetospheres and X-ray emitting coronae around black hole accretion
disks. Magnetars, for example, can emit initially low-amplitude Alfvén waves (AWs)
through star quakes that interact with the highly magnetized magnetosphere (Li, Zrake
& Beloborodov 2019; Bransgrove, Beloborodov & Levin 2020; Yuan et al. 2020a).
Turbulent black hole accretion disks can emit similar waves, which propagate into their
magnetized coronae and can interact with counter-propagating waves (Thompson &
Blaes 1998; Chandran, Foucart & Tchekhovskoy 2018). In this work, we explore how
overlapping, low-amplitude, Alfvén waves interact in the highly magnetized plasma
regime, how they create a weak turbulence spectrum and eventually dissipate. In more
realistic magnetospheric settings, Alfvénic fluctuations can be localized in wave packets
that travel along a strong guide field (see, e.g. Li et al. 2019; Yuan et al. 2020b). In addition
to magnetic energy dissipation arising from the interaction of wave packets, it is crucial
to understand the production and dynamics of fast waves (FWs). Unlike Alfvén waves,
fast modes are not confined to travel along the strong guide field and are, thus, suitable
candidates to transport electromagnetic energy out of the magnetosphere.

We explore the development of weak turbulence through wave interactions in the
relativistic, highly magnetized, magnetohydrodynamics (MHD) regime. While MHD
is a valid theory for high magnetization, numerically, it is difficult to accurately
describe highly magnetized plasma at σ � O(102) (Noble et al. 2006; Ripperda et al.
2019a). Compact object magnetospheres in particular can be so highly magnetized
that the infinitely magnetized, or force-free, limit of relativistic MHD1 is not only
applicable (Goldreich & Julian 1969; Blandford & Znajek 1977) but also provides a more
accurate numerical method. Although the force-free MHD limit technically cannot
describe the physical effects of dissipation, it does capture the formation of a turbulent
cascade (Thompson & Blaes 1998; Cho 2005; Li et al. 2019) and of current sheets
(Mahlmann et al. 2021b). The force-free MHD limit admits two normal modes, an Alfvén
wave and a fast wave. Nonlinear interactions of these waves are expected to result in
a turbulent cascade (cf. Takamoto & Lazarian (2017), in the ideal relativistic MHD
limit). Wave interactions in the force-free MHD limit have been studied analytically and
numerically (Thompson & Blaes 1998; Heyl & Hernquist 1999; Troischt & Thompson
2004; Cho 2005; Li et al. 2019), which have emphasized the dominance of either a
four-wave interaction of two incoming and two outgoing Alfvén waves as the building
blocks of relativistic MHD turbulence (following the Newtonian theory of Sridhar &

1Note that the Newtonian force-free limit is a subset of the relativistic force-free MHD equations. We refer the
reader to the introduction of Mahlmann (2020) for a detailed review of and context for relativistic force-free methods in
astrophysics.
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Current sheets in relativistic weak Alfvénic turbulence 3

Goldreich 1994), or a three-wave interaction of two colliding Alfvén waves producing a
fast wave; two fast waves producing a fast wave; and an Alfvén and a fast wave producing
an Alfvén wave. Newtonian theory has, however, firmly shown that Alfvén–Alfvén
three-wave interactions, which result in an outgoing Alfvén wave, are the dominant
building block for MHD turbulence (Montgomery & Matthaeus 1995; Ng & Bhattacharjee
1996; Howes & Nielson 2013; Nielson, Howes & Dorland 2013). TenBarge et al. (2021,
Paper I of this sequence) concluded both analytically and numerically that the three-wave
interaction of two Alfvén waves resulting in a tertiary Alfvén mode is also the fundamental
physical process underlying weak relativistic MHD turbulence.

The slope of the turbulent energy spectrum that results from the wave interactions is
an open issue that has crucial implications for both plasma turbulence theory as well
as plasma dynamics in compact object magnetospheres. In the presence of a uniform
magnetic field, the energy spectrum that develops from two interacting Alfvén waves
is expected to be anisotropic based on Newtonian MHD weak turbulence theory. In
other words, the energy cascade occurs entirely in the direction perpendicular (⊥) to the
uniform field. In this case, one expects an energy spectrum EB⊥(k⊥) ∝ k−2

⊥ to develop,
where k⊥ is the perpendicular Fourier component of the waves (Ng & Bhattacharjee
1997; Galtier et al. 2000; Bhattacharjee & Ng 2001; Kuznetsov 2001). In Paper I,
we argue that this prediction holds in relativistic MHD turbulence, very much akin
to Newtonian theory. In Paper II, we study the shape and formation of a turbulent
spectrum arising from the long-term interaction of initially low-amplitude Alfvén
waves.

In the Newtonian limit, it has been shown that plasma turbulence intermittently
generates small-scale coherent structures in the form of current sheets, which provide
the main locations where magnetic energy is dissipated after it cascades (Matthaeus &
Lamkin 1986; TenBarge & Howes 2013; Zhdankin et al. 2013; Howes 2016; Dong et al.
2018; Verniero & Howes 2018; Verniero, Howes & Klein 2018; Rueda et al. 2021). These
current sheets can be viewed as small-scale eddies stretched along the magnetic field lines,
which form as the cascade proceeds towards the smallest dissipative scales (Boldyrev
2006; Loureiro & Boldyrev 2017; Mallet, Schekochihin & Chandran 2017; Comisso et al.
2018). Recently, such coherent structures were confirmed to also form in relativistic
plasma turbulence (Zhdankin et al. 2017; Comisso & Sironi 2018; Nättilä & Beloborodov
2020) and general relativistic, turbulent, black hole accretion flows (Nathanail et al. 2020;
Ripperda, Bacchini & Philippov 2020). Here, we explore the formation of current sheets
as a result of fundamental wave interactions in relativistic, highly magnetized plasma, and
their effect on the turbulent spectrum.

This work is organized as a sequence of papers. This manuscript (Paper II) extends the
interaction of counter-propagating Alfvén waves (as examined asymptotically in Paper
I) up to their turbulent decay in the far nonlinear regime by numerically solving the
full three-dimensional (3-D) set of special relativistic ideal MHD equations and their
force-free limit. We compare results from independent and different numerical methods
to substantiate our findings. The algorithms we employ, the high-order force-free code
ET-FFE (Mahlmann et al. 2021a) and the force-free/relativistic MHD code BHAC (Porth
et al. 2017; Olivares et al. 2019; Ripperda et al. 2019a), are described in § 2. We explore
the nonlinear modelling of continuously overlapping Alfvén waves in detail in § 3, where
we provide an analysis of current sheet formation in developing weak turbulence. The
formation of current sheets and the dynamics of fast modes as a result of the interaction
between localized Alfvén wave packets are examined in § 4. We conclude with a discussion
of the obtained results in § 5.
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4 B. Ripperda and others

2. Numerical methods

We solve the set of 3-D ideal special-relativistic MHD equations in Cartesian
coordinates (x, y, z) using Lorentz–Heaviside units, where a factor of 1/

√
4π is absorbed

into the electromagnetic fields and velocities are measured in units of the speed of light
c = 1:

∂tB + ∇ × E = 0, (2.1)

∂tD + ∇ · (ρΓ v) = 0, (2.2)

∂tτ + ∇ · (
E × B + (

hΓ 2 − D
)
v
) = 0, (2.3)

∂tS + ∇ · (−EE − BB + hΓ 2vv + [
1
2

(
E2 + B2) + p

]) = 0. (2.4)

In the ideal MHD limit, the electric field is not evolved, but given by the relation E =
−v × B, dependent on the velocity field v and the magnetic field B. The conserved mass
density D, energy density τ and energy flux density S are given by

D = Γρ, (2.5)

τ = 1
2(E

2 + B2) + hΓ 2 − p − D, (2.6)

S = E × B + hΓ 2v, (2.7)

where the enthalpy h = ρ(1 + ε) + p is given in terms of the rest-mass density ρ and
specific internal energy ε. In the following, we adopt the ideal fluid equation of state, p =
ρε(γ̂ − 1), with an adiabatic index γ̂ = 4/3. We find it useful to define the dimensionless
magnetization parameter as the ratio between magnetic enthalpy density and rest-mass
density with σ = B2/ρ. We note that σhot = B2/h is commonly used to specify the
magnetization of hot plasma as it accounts for non-vanishing thermal pressure; it defines
the Alfvén speed vA = √

σhot/(1 + σhot). The gas to magnetic pressure ratio β = 2p/B2

is limited to β � 1/(2σhot). The fluid velocity v measured by an inertial observer has
the corresponding Lorentz factor Γ = (1 − v2)−1/2. We note that an observer locally
comoving with velocity v will measure the magnetic energy density b2 = B2/Γ 2 + (B ·
v)2.

In addition, we will also consider the limit of negligible plasma inertia and pressure,
namely σ → ∞ and, hence, vA → 1. This limit corresponds to a vanishing Lorentz force,
qE + J × B = 0, which implies that E · B = 0 and also requires magnetic dominance
E2 < B2. Here, q = ∇ · E is the charge density and J is the current as seen by an inertial
observer. We treat this limit by solving the following set of special-relativistic force-free
MHD equations (e.g. Gruzinov 1999; Blandford 2002):

∂tB + ∇ × E = 0, (2.8)

∂tE − ∇ × B = −J , (2.9)

with force-free current density

J = q
E × B

B2
+ B · (∇ × B) − E · (∇ × E)

B2
B. (2.10)

The force-free limit of MHD does not describe the physics of dissipative mechanisms
like magnetic reconnection. Dissipation is instead the result of the numerical procedure
applied to obey the ideal force-free conditions E · B = 0 and E2 < B2. Enforcing these
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conditions, particularly in reconnecting current sheets, i.e. where the reconnecting
components of the magnetic field go to zero, results in the removal of electromagnetic
energy from the system. We perform our force-free MHD simulations with two different
and independent algorithms (BHAC and ET-FFE, described below) that enforce the ideal
force-free conditions in different manners. We compare the results to assure that the
turbulent cascade, the formation process of current sheets in weak turbulence conditions
and the thinning of those current sheets are accurately captured. We also test the robustness
and convergence of our force-free MHD results for a large number of characteristic
timescales by simulating the same set-up for increasing resolutions. Finally, the relativistic
ideal MHD capacities of BHAC allow us to extend our results to finite magnetizations as
opposed to the force-free limit. We outline the details of the numerical algorithms below.

Mahlmann et al. (2021a) introduced a scheme based on the infrastructure of the
EINSTEIN TOOLKIT,2 here dubbed ET-FFE, specifically designed for the high-order
conservative modelling of the force-free electrodynamics equations (2.8)–(2.9). The
charge density is evolved in a separate continuity equation and the algorithm relies on the
fully consistent force-free current (2.10). Hyperbolic/parabolic cleaning is used to maintain
a solenoidal magnetic field and a conserved electric charge. Algebraic corrections are
applied when numerical violations of the force-free constraints occur. The combination of
algebraic corrections and the consistent ideal force-free current does not require implicit
steps in the time integrator. Therefore, employing MP7 (Suresh & Huynh 1997) spatial
reconstruction and fourth-order accurate time integration results in very competitive
convergence of the numerical diffusion and dispersion (Mahlmann et al. 2021b). These
properties are essential for the robustness of the results presented in this manuscript.

BHAC (Porth et al. 2017; Olivares et al. 2019) can capture the transformation of
electromagnetic to kinetic and thermal energy when performing simulations for finite
magnetization by evolving the full set of ideal special-relativistic MHD equations
(2.1)–(2.4). Additionally, the set of force-free MHD equations (2.8)–(2.9) is implemented
in the relativistic resistive MHD framework in BHAC (Ripperda et al. 2019a,b), in
combination with the resistive force-free Ohm’s law of Alic et al. (2012) replacing (2.10),

J = q
E × B

B2
+ 1

η

[
(E · B)

B
B2

+ Θ(E2 − B2)
E
B2

]
, (2.11)

which imposes the force-free conditions using a damping current on timescales set by
an effective resistivity η, which is smaller than the time step �t of our simulation. We
employ a fiducial, small, uniform and constant resistivity η = 10−6, and show that larger
values have a significant effect on the large-scale damping of the total electromagnetic
energy owing to Ohmic heating. The second damping term (proportional to E2 − B2 in
(2.11)) only needs to be activated locally when E2 > B2, which rarely occurs in weak
turbulence with a strong guide field, and we therefore make use of the Heaviside function
Θ . Throughout this manuscript, BHAC is used for both relativistic ideal MHD simulations
with different magnetizations and force-free MHD simulations. To treat small damping
timescales and, hence, stiff source terms in the electric current, we use an implicit–explicit
(IMEX) Runge–Kutta time integrator (Pareschi & Russo 2005). We compute curl and
divergence terms in the evolution equations using a second-order accurate finite-volume
scheme composed of a Rusanov Riemann solver (Rusanov 1961) paired with a third-order
accurate monotonicity preserving reconstruction scheme (Čada & Torrilhon 2009). The
solenoidal magnetic field constraint, ∇ · B = 0, is enforced to machine precision by means

2http://www.einsteintoolkit.org
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6 B. Ripperda and others

of a staggered constrained transport scheme (Evans & Hawley 1988; Olivares et al. 2019),
where the electric fluxes are computed using the upwind-constrained transport scheme
(Londrillo & del Zanna 2004). Instead of evolving the charge density q, it is obtained by
numerically taking the divergence of the evolved electric field as q = ∇ · E at every time
step of the simulation. While this may lead to a small non-conservation of global charge,
we have found the effect to be negligible (Ripperda et al. 2019a). The implementation of
the IMEX scheme used for the solution of the force-free MHD equations is presented by
Ripperda et al. (2019a,b) in the context of resistive relativistic MHD.

Our results are numerically converged between the two force-free MHD algorithms
at the high resolutions we employ, and in Appendix A, we show that dispersion and
diffusion errors never dominate on the evolved timescales. The high-order reconstruction
capacities of ET-FFE compensate for the significant factor of resolution needed in
lower-order methods, such as BHAC. We present results that converge between two
different implementations of the force-free limit of MHD. Different techniques to process
violations of the force-free conditions can alter the global field dynamics. Comparing
two methods that use the two most commonly employed correction methods (namely,
algebraic resets and charge conservation in ET-FFE versus driving currents in BHAC with
a finite resistivity η) supports the reliability and reproducibility we claim for our results.
In Appendix B, we show that the formation of current sheets in weak turbulence with a
strong guide field is captured by both force-free MHD algorithms and that ideal force-free
violations are negligible until the current sheets break-up.

3. Overlapping Alfvén waves

Interacting Alfvén waves, for example launched into the magnetosphere of a compact
object, can result in the development of a weak turbulence cascade (Chandran et al.
2018; Yuan et al. 2020a). In this section, we set up a toy problem of two overlapping
perpendicularly polarized counter-propagating Alfvén waves. The waves are initialized
on top of each other and cover the entire 3-D domain with periodic boundaries. This
initial condition reproduces all the characteristics of the nonlinear interactions described
theoretically in Paper I. We explore the development of a weak turbulence spectrum and
the formation of current sheets owing to the interaction of the waves, which can provide a
viable dissipation route.

3.1. Wave initialization
We consider the nonlinear interaction between two overlapping, perpendicularly polarized
Alfvén waves that counter-propagate in a periodic 3-D domain along a uniform guide field
B0 = B0ẑ. The waves are described by positive constants representing the components
of the wave vector that are perpendicular (k⊥) and parallel (k‖) to the guide field
B0. We employ a cubic box with L⊥ = Lx = Ly = 2π, L‖ = Lz = 2π and a uniform
resolution of (Nx, Ny, Nz) = (N⊥, N⊥, N‖) cells per initial wavelength. For a scale-free
definition of characteristic (wave)lengths, we prescribe k‖ = 2π/L‖ and k⊥ = 2π/L⊥.
Then, we examine the waves described by the wave vectors k+

1 = k⊥x̂ − k‖ẑ, from now on
represented as (1, 0,−1) and k−

2 = k⊥ŷ + k‖ẑ, or (0, 1, 1). The magnetic field is initialized
through a vector potential A = (−B0y, 0, δB⊥[sin(k⊥x + k‖z) + sin(k⊥y − k‖z)]), which
represents the initial counter-propagating Alfvén waves with frequency ω0 = k‖vA and
B̂ = δB⊥/B0. The electric field is initialized as E = (vABy, vABx, 0) such that the velocity
is equal to the drift velocity v = E × B/B2. We note that the overlapping Alfvén waves, in
contrast to a single Alfvén wave, are not an exact force-free MHD equilibrium owing
to a small second-order violation E∓ · B± 	= 0 between the fields of the two waves.
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These perturbations are instantaneously algebraically cut in ET-FFE and damped on
a short timescale in BHAC. Initially, we set a gas to magnetic pressure ratio of β =
2p/B2

0 = 0.02 and set the magnetization σ ∈ [10−2; 10−1; 1; 10; 100] (corresponding to
σhot ∈ [10−2; 10−1; 1; 7; 20]), where we vary the density ρ and keep a constant guide field
with B0 = 1. We fix the pressure to p = 0.01 and employ an adiabatic index γ̂ = 4/3 for
an ideal relativistic gas. In the force-free MHD case, β → 0, σ → ∞ and vA → 1.

Through the three-wave interaction, turbulence can transfer magnetic energy
anisotropically from large to small scales. The two initial waves interact to form an
inherently nonlinear, purely magnetic mode, physically representing a shear in the
magnetic field with wave vector k0

2 = k⊥(x̂ + ŷ), or (1, 1, 0), which does not grow
secularly in time but oscillates at twice the frequency of the primary waves (see Paper I).
The interaction between this secondary mode and the primary Alfvén modes nonlinearly
generates two tertiary Alfvén waves whose energy grows secularly in time. The k+

1 wave
transfers energy to an Alfvén mode with k+

3 = 2k⊥x̂ + k⊥ŷ − k‖ẑ, or (2, 1,−1), and the
k−

1 wave to k−
3 = k⊥x̂ + 2k⊥ŷ + k‖ẑ, or (1, 2, 1).

To capture all physical behaviour including nonlinear interactions at play in magnetized
turbulence, we solve the full 3-D set of equations. The strength of the nonlinearity is
characterized by χ = k⊥v⊥/(k‖vA), where k⊥ = k‖ in the set-up presented in this section,
and v⊥/vA ∼ δB⊥/B0 = 10−1. This gives χ = 10−1, which results in a nonlinear time
of χ−2 = 100 wave-crossings 2π/ω0. The limit of strong turbulence occurs when the
nonlinear energy transfer timescale is comparable to the wave period, as to say, when χ �
1 (Goldreich & Sridhar 1995). The nonlinearities governing these dominant three-wave
interactions require variations in both directions perpendicular to the equilibrium magnetic
field (Howes & Nielson 2013; Howes 2014, Paper I). In the two-dimensional (2-D) limit
perpendicular to the uniform field, the dominant nonlinearities governing the three-wave
interactions are retained, yet the linear physics of the anisotropic cascade is absent: the
linear interactions representing the propagation of the Alfvén waves along the magnetic
field are only non-zero when the parallel wavenumber k‖ is non-zero, which requires a
(third) field-parallel dimension.

3.2. Current sheet formation
In this section, we analyse the formation of the sheets, their thickness, and the dynamics
until the moment they break-up and magnetic energy is quickly dissipated. As shown in
Paper I, the energy transfer to smaller scales is mediated by self-consistently generated
k‖ = 0 modes in the χ � 1 limit, specifically, at least until the nonlinear time of ∼
χ−2 = 100 wave-crossings. If the nonlinearly generated Alfvén waves increase in power,
they can generate coherent current sheet-like structures owing to constructive interference
with the primary Alfvén modes. Although in the ideal limit, current sheets are Dirac
delta-functions, at finite dissipation, they can be represented by many fewer modes such
as those in Howes (2016), who showed that the formation of current sheets results
from interference between just five complex Fourier modes. To study whether current
sheets can form and become thin enough to provide an efficient dissipation channel, we
evolve the system for 200 wave-crossings, beyond the nonlinear time of ∼ χ−2 = 100
wave-crossings.

Current sheets emerge once the wave interaction reaches a nonlinear state. To track
the dynamics of an emerging current sheet, we show the evolution of the normalized
in-plane current density Ĵz = [∇ × B]z/(k‖B0)

3 perpendicular to the equilibrium field

3We confirmed that the contribution of the displacement current dE/dt to the current density is negligible and
J ≈ ∇ × B.
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(a) (b) (c)

FIGURE 1. Normalized out-of-plane current density Ĵz = [∇ × B]z/(k⊥B0) in the (x, y)-plane
perpendicular to the guide field showing the formation (t � 100 [2π/ω0]), thinning (t ∼ 100 −
120 [2π/ω0]) and break-up of current sheets (t ∼ 120–130 [2π/ω0]) into developed turbulence
(t � 130–150 [2π/ω0]) with ET-FFE. In-plane magnetic field lines are overplotted. We note that
the evolution of the current density is similar for a run at 10243 cells with BHAC. Figure 4
presents a 3-D rendering of the evolving current sheet enclosed by the dashed green rectangles.
An animated version of this figure is provided in Media Supplement A (2021).

B = B0ẑ at z = π between 100 and 150 wave-crossings in figure 1, for the ET-FFE run
with 5123 grid-points. We find that the results from ET-FFE (5123) are comparable to
the high-resolution runs conducted with BHAC (10243). The high-order reconstruction
methods employed in ET-FFE capture the smallest scales with very good accuracy (see
also § 3.3 and Mahlmann et al. 2021b). Current sheets are characterized by in-plane
magnetic field line reversals (overplotted as black lines) and are clearly distinguishable
by a strong current density (red and blue colours). At the interface of interacting eddies,
current sheets are compressed into thin layers, as we examine in detail in figure 2. In
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(a) (b)

FIGURE 2. Current sheets form between elongated eddies. Zoomed-in view of the out-of-plane
current density Ĵz = [∇ × B]z/(k⊥B0) at 125 wave-crossings. Contours of the out-of-plane
vector potential Az (where B = ∇ × A), which represent in-plane magnetic field lines, are
overplotted in green, showing that regions of large current density originate from compressed
magnetic field (direction indicated by arrows). We select the strongest current sheet in the
domain of a BHAC 10243 simulation (a) and an ET-FFE 5123 set-up (b). To indicate the respective
applied resolutions, we show a fraction of the numerical grid stacked with blocks, where each
block consists of 8 × 8 cells. The current sheets (in bright red) are covered along their thickness
δ ≈ 0.01 × 2π ≈ 0.06 by at least 8 cells in both cases. A one-dimensional (1-D) outline of field
quantities across the centre of each current sheet (dashed black lines) is presented in figure 3.

figure 1, such regions are indicated by an anti-parallel in-plane magnetic field, for example
at x = 0.9π, y = 0.9π at t = 125 [2π/ω0]. We also detect regions of non-zero current
density which are not associated with current sheets owing to the lack of anti-parallel
magnetic field, i.e. there is no in-plane magnetic null, as in figure 1 at x = 0.7π, y = 0.7π
at t = 110 [2π/ω0].

The current sheets in this system can be characterized by the aspect ratio in the
perpendicular plane between their thickness, δ, and width, w. We determine δ as the
full-width at half maximum of the out-of-plane current density Ĵz. The sheet becomes
thinner between 100 and 127 crossings, until it breaks up. The width of the sheet w,
namely, its extension along the interface of two eddies, is determined by the perpendicular
wavelength λ⊥ = 2π of the initial waves in the box. It remains approximately constant
w ≈ 2π from its formation at 100 crossings until the sheet breaks up at 127 crossings
(see also figure 3). The aspect ratio decreases from δ/w � 0.025 (ET-FFE) at 100
wave-crossings onward to δ/w ≈ 0.01 (ET-FFE/BHAC) at 125 wave-crossings (see also
figure 3(e), indicated by the black dashed line). The reconnection rate is expected to scale
with the aspect ratio, vrec/c ∼ δ/w, which suggests that the sheet breaks up in the linear
regime of the instability (Biskamp 2000; Ni et al. 2010), and in the nonlinear regime,
the asymptotic ‘fast reconnection rate’ (Bhattacharjee et al. 2009; Uzdensky, Loureiro &
Schekochihin 2010; Huang & Bhattacharjee 2016) of 0.01 might be reached. The life-time
of the sheets is approximately 25 wave-crossings, and hence it is maintained on timescales
(and length scales) of the initial large-scale waves (cf. Howes, McCubbin & Klein 2018).
Turbulent fluctuations initiate inside the current sheets after 125 wave-crossings, where
energy is quickly dissipated at the grid scale, which is smaller than the current sheet
thickness, �x/δ � 0.2.

https://doi.org/10.1017/S0022377821000957 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377821000957


10 B. Ripperda and others

(a) (b)

(c) (d )

(e)

FIGURE 3. Current sheets form similarly across different codes and resolutions. Profiles of
normalized magnetic field B̂i = δBi/B0 (a,b) in minimum variance coordinates (cf. Sonnerup
& Cahill 1967; Howes 2016), and out-of-plane current density Ĵz = [∇ × B]z/(k⊥B0) (c,d) at
t = 125 [2π/ω0]. The 1-D outlines are extracted across the current sheet (see dashed black lines
in figure 2), where the coordinate s is centred at the respective structure. (e) Aspect ratio δ/w
of the current sheet measured as the full-width half maximum of the current density normalized
by its approximately constant width w ≈ 2π versus wave-crossings for both BHAC and ET-FFE.
The current sheet forms around the nonlinear time t = 100 [2π/ω0] and the thinning process
halts at around 125 wave-crossings at δ/w ≈ 0.01, which suggests that the sheet breaks up once
an asymptotic reconnection rate vrec/c ∼ δ/w ≈ 0.01 (indicated by a vertical dashed line) is
reached.

The 3-D structure of the current sheet is lucidly illustrated in figure 4. We provide
a volume rendering of Ĵz and observe a clear coherent structure that breaks after 127
wave-crossings. Initially, the current structure is, indeed, sheet-like in three dimensions.
In the direction parallel to the guide field, the characteristic scale is the current sheet’s
length, L. We measure the length of the sheet along the z-axis to be L ≈ 2π, which is
determined by the parallel wavelength λ‖ = 2π along the equilibrium magnetic field. At
the same time, it becomes visually evident that the extension in the plane perpendicular
to the guide field is less than the box diagonal, but rather corresponds to w ≈ 2π (see
above). At t = 125 [2π/ω0], the current sheet is already very thin (see also figure 1). In
the very short time interval of �T ≈ 5 [2π/ω0], the current sheet ripples and breaks up
into turbulent structures in the plane perpendicular to the guide field. During this time, we
identified that non-ideal electric fields build up in the localized region of the current sheet.
Such fields are subsequently damped to maintain a (globally) force-free field configuration.

3.3. Comparison of current sheet characteristics in ET-FFE and BHAC
The emerging current sheet is analysed in detail in figures 2 and 3 and compared between
the employed numerical schemes. We illustrate the current sheet properties and their
numerical resolution in figure 2. There, we plot numerical blocks of 8 × 8 cells in a
zoom-in on the strongest currents in the domain, which shows that the current sheet is
indeed resolved by more than one block (approximately 11 cells) at the break-up time
when the sheet is at its thinnest point, in the case of BHAC with a total of 10243 cells,
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(a) (b)

(c) (d)

FIGURE 4. Volume rendering of the normalized out-of-plane current density Ĵz = [∇ ×
B]z/(k⊥B0), which shows the moment of the break-up of the current sheet between
t = 125 [2π/ω0] and t = 130 [2π/ω0], within the reduced volume x × y × z = [2π/5, 6π/5] ×
[2π/5, 6π/5] × [0, 2π] at a resolution of 5123. An animated version of this figure is provided in
Media Supplement B (2021).

and by slightly less than one block (approximately 8 cells) in the case of ET-FFE with
a total of 5123 cells. While such resolution arguments do not imply a convergence of
dissipative dynamics in the force-free current sheet, they correspond to the minimum
resolution needed to capture their formation in the magnetically dominated regime (as
was established by Mahlmann et al. 2021b, namely, 5 to 10 cells per current sheet width).
A notable characteristic of the examined sheet can be drawn from the overplotted contours
of the out-of-plane vector potential Az (green lines): one can see that the regions of high
current density originate from magnetic field compression at the edges of the elongated
eddies.

The current sheet formation and evolution are very similar for the different codes and
resolutions. In figure 3(a,b), we show the normalized magnetic field B̂i = δBi/B0 and
(c,d) show the normalized out-of-plane current density Ĵz = [∇ × B]z/(k‖B0) along a
cut perpendicular to the current sheet presented in figure 2 just before it breaks at the
time t = 125 [2π/ω0]. In this analysis, we choose minimum variance coordinates (cf.
Sonnerup & Cahill 1967; Howes 2016) for comparability. These coordinates combine
the guide field direction m̂ = ẑ, as well as the in-plane directions n̂ = (x̂ + ŷ)/

√
2 and
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l̂ = (x̂ − ŷ)/
√

2. For both BHAC and ET-FFE, we use the location of the strongest current
in the domain for the analysis (indicated by the black dashed line in figure 2). The current
sheet shows a typical profile with a peak in the current density and magnetic field reversals
of the reconnecting in-plane components B̂x and B̂y (i.e. the perpendicular component
B̂l). The gradient of the guide field pressure (red line) is non-zero in the current sheet,
which compensates for gas pressure that is absent in the force-free limit of MHD, and
effectively working to sustain the evolving force-free current sheet by a locally balanced
magnetic pressure at the location of the field reversal (similar to the stationary force-free
current sheets analysed by Komissarov, Barkov & Lyutikov 2007; Del Zanna et al. 2016;
Mahlmann et al. 2021b).

The process of current sheet formation and thinning is independent of the manner in
which force-free violations are managed (see also Appendix B) and is likely dominated
by the field compression driven by mode interactions. The thickness δ = 0.01w after 125
crossings is approximately 10 times larger than the smallest resolvable perpendicular scale
in the BHAC simulation, ∼ 2π/1024 and five times larger than the smallest resolvable
scale in the ET-FFE simulation, ∼ 2π/512 (figure 3e). Additionally, we measure the
thickness of the current sheet in time for progressively increasing resolutions in the
right panel, which shows that the thinning rate and aspect ratio in ET-FFE converges
for 2563 and 5123 grid points, while for BHAC, it converges for 5123 and 10243 grid
points. The thinning rate and aspect ratio also converge between the highest resolution
results of the two different algorithms. We demonstrate that the current sheet’s thickness
is larger than a single numerical cell by measuring the number of cells across the
sheet’s thickness at 125 wave-crossings just before the sheet breaks up. The observation
that the current sheet formation, thinning as well as asymptotic thickness and time of
break-up coincide between runs in BHAC and ET-FFE (with a largely different order
of convergence and treatment of the force-free violations) is worth mentioning in this
context. Small local differences aside, the comparison of results from the two numerical
schemes in figures 2 and 3 shows that the field structure is remarkably similar in
both cases. The global dynamics of field compressions is captured accurately in the
force-free limit of MHD. In Appendix B, we compare the appearance of non-ideal
electric fields in both methods, and conclude that despite numerical differences, the results
show a remarkable level of similarity both in magnitude and location of the force-free
violations.

In summary, the following features let us conclude that the identified structures are 3-D
current sheets: (a) strong and localized ordered current structures; (b) field reversals with a
compensating magnetic pressure; (c) compression and subsequent thinning of the current
structure; and (d) non-ideal electric fields around magnetic null-lines (see Appendix B) in
the plane perpendicular to the guide field.

3.4. Weak turbulence development
In this section, we investigate how energy cascades and dissipates at small scales. In
force-free MHD, the total electromagnetic energy is conserved in the domain until the
turbulent cascade reaches the numerical grid scale. By measuring the total electromagnetic
wave-energy EEM = (B − B0)

2 + E2, we determine the dissipation rate depending on the
resolution and the explicit resistivity, η (in BHAC runs). For a resolved simulation,
i.e. where the current sheet thickness is resolved by multiple cells, the energy EEM should
dissipate as dEEM/dt ∼ E · J ∼ ηJ2 ∼ η|∇ × B|2, where ∇ × B ∼ Bk/λ and λ = 2π is
the wavelength, which implies that the typical dissipation time is τ ∼ λ2η−1, such that we
can approximate the total energy as EEM(t) ≈ EEM,t=0(1 − η(2πt/ω0)). Figure 5(a) shows
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(a) (b)

FIGURE 5. Evolution of the (normalized) total wave energy ÊEM = EEM/EEM,t=0, with
EEM = (B − B0)

2 + E2 for the overlapping Alfvén waves in all force-free MHD cases at
different resolutions (a). We present ideal MHD cases and a force-free reference case ((b),
BHAC) normalized to the initial electromagnetic wave energy of the force-free set-up for 200
wave-crossings, with initial wave-amplitude χ = 10−1 and N⊥ = N‖ = 512 grid-cells. In (a),
we overplot results for BHAC (blue, red and magenta lines for different resistivities; dotted,
solid and thick lines for different resolutions) at resolutions N⊥ = N‖ = 256, 512 and 1024 as
well as ET-FFE (black lines) at 256 and 512 grid cells to show that the energy evolution and
current sheet formation converges. We also show the (conserved) energy density for a single
Alfvén wave at 256 cells/wavelength (green dotted line), which does not undergo a cascade (a).
The theoretical expectation of the energy dissipation for a fixed resistivity is indicated by grey
dash–dotted lines, with the respective value of η shown below the respective line.

the estimated dissipation rate (dash–dotted lines) for force-free MHD runs with η = 10−4,
5 × 10−5 and 10−6. We conclude that for η � 10−6 and resolutions of � 5123, Ohmic
dissipation has a negligible effect on the initial 130 wave-crossings before the current
sheets break-up. The energy dissipation rate agrees very well between ET-FFE (5123 cells)
and BHAC (η = 10−6) for a resolution of 10243 cells. This result demonstrates that the
formation and the thinning process of the current sheets, which occur between 100 and
125 wave-crossings, neither result in a significant energy decay nor in a violation of the
ideal force-free constraints that would reduce the electromagnetic energy density (see also
Appendix B). After approximately 125 wave-crossings, a steep decay is observed, which
corresponds to the break-up of current sheets in figure 1, and energy is quickly dissipated
at the grid-scale. We further conclude that the energy decay is a result of the cascade
initiated by the wave interactions by showing that a single non-interacting Alfvén wave
(green dashed line in figure 5a) shows no significant energy loss over 200 wave-crossings
as indicated in figure 5(a). In figure 5(b), we show the MHD runs (BHAC) at σ = 1, 10 and
100, which correspond to smaller initial total electromagnetic energy, showing a similar
evolution with a larger variability owing to the transfer of electromagnetic energy to fluid
(kinetic and thermal) energy.
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We analyse the evolution of the spectral magnetic energy EB(k) dk = ∑
k∈dk Bk · B∗

k for
the resolved4 ET-FFE is run at a resolution of 5123 cells in figure 6. We observe a magnetic
energy spectrum with a EB⊥(k⊥) ∝ k−2

⊥ power law forming after 100 wave-crossings (green
line in panel (a,c)) as a result of three-wave interactions. The power spectrum indicates
that the turbulence in our simulations remains in the the weak regime k‖B0 � k⊥δB
(Ng & Bhattacharjee 1997; Bhattacharjee & Ng 2001; Kuznetsov 2001; TenBarge et al.
2021). The transition from weak to strong turbulence is expected to occur after at least
∼ χ−2 = 100 wave-crossings. When the critical balance condition k‖B0 ∼ k⊥δB becomes
satisfied, such that the turbulence is in the strong regime, a EB⊥(k⊥) ∝ k−3/2

⊥ energy
spectrum is expected to form (Perez & Boldyrev 2008; Schekochihin, Nazarenko & Yousef
2012; Verdini & Grappin 2012). Owing to limited resolution and, hence, a limited inertial
range, the wave energy starts to dissipate at the grid scale after ∼120 wave-crossings in
our simulations such that the transition to strong turbulence is not captured here.

When the energy cascades to the highest k (or thinnest structures) after 100
wave-crossings, pronounced thin current sheets of high-amplitude current density form
(see figure 1). Following Howes (2016), the emerging current sheets can be described by
as few as the five lowest order modes. Only when smaller scale structures form in the
thinning and breaking of current sheets, energy is transferred to higher order modes. This
effect can be observed in the shift in the spectral evolution between 100 wave-crossings
and the break-up point at 127 wave-crossings (see figure 6(b,d) for a zoom into the interval
between 120 and 130 wave-crossings). At this point, the inertial range extends for almost
two decades of k⊥. Note that a current sheet itself results in a spectral index of −2 by
assuming the Fourier transform of a (near)-step function (Burgers 1948). When the current
sheets break-up at 127 wave-crossings, a maximally developed spectrum has formed as
any thinner structures cannot exist on the numerical grid. Once the sheets break-up,
the smallest scale (highest k) is reached by the cascade and the magnetic energy starts
to dissipate at the grid-scale (roughly corresponding to k⊥ > 100). The spectral energy
decays from here onward (orange and red lines).

The growth of turbulence at smaller scales and the subsequent decay is illustrated in
the analysis of the χ parameter in figure 6(c,d). The steady-state expectation of χ(k⊥) can
be derived by assuming that the parallel cascade is negligible, and the weak turbulence
spectrum shows that δB2

⊥/k⊥ ∼ k−2
⊥ and hence χ = k⊥v⊥/(k‖vA) ∼ δB⊥k⊥/(k‖B0) ∼

k1/2
⊥ /k‖ ∼ k1/2

⊥ , indicated by the dashed line. The nonlinearity parameter clearly indicates
that the turbulence remains in the weak regime χ < 1 and develops towards χ ∼ k1/2

⊥ . The
increasing nonlinearity parameter with k⊥ and the cascade becoming more anisotropic
suggests that, for higher resolutions, the transition to strong turbulence would be inevitable
(Meyrand, Galtier & Kiyani 2016).

3.5. Local weak turbulence properties
In this subsection, we investigate the local properties of the turbulence to determine the
local anisotropy of the spectrum. The Fourier analysis employed for the computation of the
spectra cannot take into account the local properties of turbulence. It implicitly assumes
the local mean magnetic field remains parallel to the initial field B0. However, each small
scale eddy responds to the combined, local contribution of larger scale eddies. The weak

4In Appendix A, we determine the dispersion error for a single wave in a periodic 3-D box for a range of resolutions
to verify that the spectra we obtained are reliable after many wave-crossings, when the original wave has decayed. This
verification is necessary to avoid that, at the moment of current sheet formation, the low-k modes are lost owing to
dispersion errors and the plasma is not in the weak turbulence regime anymore. We confirm in Appendix A that energy
and dispersion errors are negligible for a single wave that is evolved for 200 wave-crossings and resolved by a few cells.
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(a) (b)

(c) (d)

FIGURE 6. Evolution of spectra (a,b) and non-linearity parameter χ (c,d) during the continuous
wave interaction in the force-free limit. (a) ÊB⊥ spectra at every 20 wave-crossings with
wave-amplitude χ = 10−1 and resolution N⊥ = N‖ = 512 grid-cells until 200 wave-crossings
in ET-FFE. (b) Spectra at every wave-crossing between 120 and 130 wave-crossings. (c,d)
Same analysis in time for the non-linearity parameter χ (reduced to its maximum value along
slices of equal k‖). There is a clear transition between 120 and 130 wave-crossings, when the
current sheets thin and break-up after 127 wave-crossings, and an extended ÊB⊥ ∝ k−2

⊥ spectrum
develops. We note that the spectral evolution in the ET-FFE run at 5123 resolution is similar to
BHAC at 10243 resolution.

turbulence limit requires many collisions of counter-propagating waves to substantially
deform the initial eddy, and an Alfvénic eddy propagates along the local, mean magnetic
field. Accounting for the mismatch of local and global guide field requires one to define
locally parallel and perpendicular cascades (Cho & Vishniac 2000; Maron & Goldreich
2001). To mitigate the effect of mixing parallel and perpendicular directions, we employ
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second-order structure functions:

δB2
i (l) = 〈|Bi(r + l) − Bi(r)|2〉, (3.1)

where l is a separation vector and angular brackets denote averages over all r. These
functions contain the information about the local spectrum f (r0, l) at a given point r0,
where l ∼ k−1. The local guide field for two points of an eddy of size l can be defined as

Bguide(r, l) = B(r + l) + B(r)
2

. (3.2)

The shape of an eddy is given as l‖ = l · Bguide/|Bguide|, l⊥ = (l2 − l2
‖)

1/2, assuming
that all eddies are isotropic in the field-perpendicular plane and neglecting effects of
dynamical alignment and intermittency (Boldyrev 2005, 2006; Chandran, Schekochihin &
Mallet 2015; Mallet, Schekochihin & Chandran 2015). The construction of (3.1) requires
calculation of a six-dimensional (6-D) integral, and we employ a Monte Carlo method
with a total of N = N0nxnynz randomly chosen pairs of vectors to uniformly cover both the
space of positions of eddies r and their sizes l. Limits for the point-separation vectors li
are chosen to be (−ni/2, ni/2) to include the effects of the periodic boundary conditions
in direction i. We set N0 = 30 to decrease the shot-noise and confirm convergence of the
results for N0 = 2, 5, 20.

The 2-D structure functions for an ET-FFE run at a resolution of 5123 cells are shown
in figure 7, at time t = 120 [2π/ω0], when thin current sheets have formed and are not
yet broken up (see figure 1). All vectors l are split into 128 bins in both parallel and
perpendicular directions. The white regions at larger l‖ and l⊥ do not contain any points as
all separations larger than li/2 are prohibited owing to the periodic grid. The shape of the
structure function is defined by the winding of magnetic field lines. A bright over-scaled
feature at l‖ ∼ 0.5L‖ and l⊥ < 0.5L⊥ is associated with the thinning current sheets: its
amplitude grows while current sheets are being formed and disappears when current sheets
break-up at t ≈ 128. This feature appears both in the BHAC and ET-FFE results and is
independent of how force-free violations are handled (see Appendix B).

The natural ability of this approach to consider local guide field variation allows us to
measure a local angular anisotropy of the spectrum. To perform such a calculation, we split
all point-separating vectors into 18 angular bins of 5◦ extension, measured with respect to
the field-parallel direction (0◦ is parallel to the guide field and 90◦ is perpendicular to it). In
each bin, the intermediate range of |l| is approximated by a power-law function ∝ lg. The
spectral index α is found using the relation α = −(g + 1) (Monin & Yaglom 1999). The
resulting anisotropy is shown in figure 8(a), and we observe that the spectrum is steeper in
the parallel direction than in the perpendicular. For θ → 0, where θ is the angle between
the local guide field and a chosen direction, the spectral index steepens to −3, which
is the maximum that can be recovered using second-order structure functions as applied
here (Farge & Schneider 2006). This result implies that there is no parallel cascade. For
θ � 20, we find that the EB‖ spectrum is isotropic, which indicates the expected isotropy
of a fast wave EB‖ spectrum (Cho & Lazarian 2002, 2003; Chandran 2005). In figure 8(b),
we present the energy in modes parallel and perpendicular to the local guide field. This
allows us to estimate the energy distribution in Alfvén and fast waves. The latter have
parallel perturbations of the magnetic field while Alfvén waves have only perpendicular
fluctuations δB ⊥ Bguide. Most of the magnetic energy is associated with Alfvén waves,
and the fraction of energy in fast waves remains low at 1–5 %. For comparison, we overplot
the energy distribution in the parallel and perpendicular components to the global guide
field B0: they are shown with dashed lines in figure 8(b). The fact that the energies match

https://doi.org/10.1017/S0022377821000957 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377821000957


Current sheets in relativistic weak Alfvénic turbulence 17

(a) (b)

FIGURE 7. Two-dimensional structure functions for (a) δB̂‖ and (b) δB̂⊥ with respect to the
local guide field, at time t = 120 [2π/ω0] before the current sheets break-up. Here, l‖ and l⊥
are defined with respect to the local guide field. White regions at large l do not have any points
owing to periodic boundary conditions. The bright feature at l‖/L‖ ≈ 0.5 corresponds to the
current sheets.

(a) (b)

FIGURE 8. Angular properties for the turbulence at t = 120 [2π/ω0]: (a) the spectral index
of the power-law spectrum as a function of angle between the local guide field and a chosen
direction (θ ); (b) the total energy contained in modes perpendicular and parallel to the local
(solid lines) and global guide field (dashed lines) modes.

closely with respect to local and global fields highlights the nature of weak turbulence: as
τnl � τA, eddies predominantly interact with the global guide field. The difference in the
energy distribution of the parallel modes can be explained by projection of the energy in
perpendicular modes on the parallel direction.

3.6. Weak turbulence and current sheets in relativistic magnetohydrodynamics
In this section, we compare the formation of current sheets in weak MHD turbulence to
the force-free results presented in the previous sections. In figure 9, we compare force-free
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(a) (b) (c)

FIGURE 9. Evolution of spectra during the continuous wave interaction for different
magnetizations. The ÊB⊥ spectra at 100 ± 2, 120 ± 2 and 130 ± 2 wave-crossings at resolution
N⊥ = N‖ = 512 grid-cells for runs at σ = 100, 10 and 1 and force-free MHD in BHAC. The
spectra are averaged over five wave-crossings. For the force-free MHD run, we set η = 10−6.
The ÊB⊥ ∝ k−2

⊥ spectra develop at 100 wave-crossings.

MHD and ideal MHD spectra obtained with BHAC for σ = 1, 10 and 100 at 512 cells per
initial wavelength, which shows that in all four cases, a EB⊥(k⊥) ∝ k−2

⊥ magnetic energy
spectrum forms and then a transition occurs between 100, shown in panel (a), and 130,
shown in panel (c), wave-crossings induced by current sheet formation and break-up. After
120 wave-crossings, shown in panel (b), the total electromagnetic energy starts to decay
(see figure 5b). Owing to energy transfer between electromagnetic and hydrodynamic
(kinetic and thermal) components, the onset time of the steep decay and therewith the
development of the spectrum differs slightly for varying σ , where σ = 100 corresponds
most closely to the force-free MHD result.

We show the structure of the forming current sheet shortly before it breaks-up at
t = 118 [2π/ω0] in the σ = 100 MHD run in BHAC in figure 10(a), similar to the
force-free current sheet in figure 1. The sheet breaks up at t = 123 [2π/ω0]. A pressure
gradient contributes to the force balance to sustain current sheets in the relativistic MHD
simulations. For smaller σ , the current sheets have a smaller aspect ratio and they have
an effectively lower Lundquist number owing to the lower Alfvén speed and length. The
thinning rate (shown in panel (c)) of the current sheet is very similar to the force-free
result, which converges between 5123 and 10243 grid points (see figure 3).

4. Collisions of Alfvén wave packets

In this section, we illuminate the development of current sheets in a more realistic setting
of collisions between initially separated Alfvén wave packets (see e.g. Verniero & Howes
2018; Verniero et al. 2018; Li et al. 2019; Li, Beloborodov & Sironi 2021). Owing to
the localization of wave packets, we expect the character of secondary modes to differ
significantly from the results presented in § 3 (cf. Verniero et al. 2018). In the following
sections, we will dissect the secondary mode structure emerging during the interaction of
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(a) (b) (c)

FIGURE 10. Current sheets form between elongated eddies in the MHD run for σ = 100 with
BHAC. (a,b) Out-of-plane current density Ĵz = [∇ × B]z/(k⊥B0) at 118 and 123 wave-crossings,
respectively, before and after the break-up of the current sheet. (c) Current sheet’s aspect ratio
δ/w measured as the full-width at half maximum of the current density normalized by its
approximately constant width w ≈ 2π versus wave-crossings for both the σ = 100 and force-free
runs in BHAC at 5123 grid points.

Alfvén wave packets in the relativistic limit. Further, we probe if the finite extension and
interaction time of the wave also results in rapid dissipation of electromagnetic energy in
current sheets, as we proposed in § 3.2.

4.1. Packet initialization
To allow for a direct comparison with the results of the previous sections, we only modify
the wave initialization described in § 3.1 in two key aspects. First, the cubic box is extended
along the direction parallel to the guide field, with L‖ = 10π. This choice allows us to
separate the waves in packets while the choice of k‖ re-scales the wave in the elongated
domain. Second, the two Alfvén waves are localized along the (parallel) z-direction by
window functions with a Gaussian profile (cf. Verniero et al. 2018):

w(z) = exp
[
−

(
z − z0

Δz

)p]
+ exp

[
−

(
z − z0 + L‖

Δz

)p]
+ exp

[
−

(
z − z0 − L‖

Δz

)p]
.

(4.1)

We choose a window width of Δz = L‖/4π and the power p = 2. The two waves are
localized at the window centres z0− = L‖/4 and z0+ = 3 × L‖/4. Initial phase shifts δ−
and δ+ align the waves symmetrically in their respective windows. For the tests presented
in this section, we fix the nonlinearity parameter to χ = k⊥δB⊥/(k‖B0) = 0.25. Hence,
though the wave amplitudes are comparable to the continuous set-up (§ 3), the nonlinear
time in the localized set-up is drastically reduced to χ−2 = 16 wave interactions. This
choice is beneficial for this numerical exploration. In contrast to the overlapping waves
in § 3, the elongated domain requires each wave packet to propagate significant distances
between the interaction events. Decreasing the nonlinear time thus allows us to reach the
relevant stages of turbulence during a reasonable computational time.

We present insight into the collisional dynamics of localized Alfvén waves by
combining two specific wave types: AW1, where k‖ = 2π/L‖ with an initial wave
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(a)

(b)

(c)

(d)

(e)

FIGURE 11. Evolution of individual modes during the interaction: (a) comparison of the AW3 +
AW3 and AW1 + AW1 collisions for the intermediate resolution of 2562 × 320; (b) decay of
the primary modes (1, 0) and (0, 1) with sustained growth of the (1, 1) mediator mode as well
as the secondary modes (2, 1) and (1, 2). The respective ratio between the total energy stored
in the Alfvén and in the fast channel of the (1, 1) mode is displayed in panel (a). Exemplary
decomposition of the (1, 1) mode by its polarization for the AW3 + AW3 collisions: (c) total
magnetic field along the centre of the domain; (d) projection into the Alfvén mode; (e) projection
into the fast mode. An animation of the (1, 1) mode structure and dynamics during the first
interaction cycles is provided in Media Supplement C (2021) and Media Supplement H (2021).

amplitude of δB⊥/B0 = 0.05 and k⊥/k‖ = 5; and AW3, where k‖ = 3 × 2π/L‖ with an
initial wave amplitude of δB⊥/B0 = 0.15 and k⊥/k‖ = 5/3. Specifically, we examine
the interactions AW1 + AW1 and AW3 + AW3 to understand the evolution of higher
order modes (figure 11). We then focus on comparing the interactions AW1 + AW3 and
AW3 + AW3 by closely following the effect of shearing modes and the ensuing dissipation
of electromagnetic energy (figure 12). The wave vectors differ to those of the continuous
case (§ 3) in their parallel component: k‖ is both re-scaled and filtered by the window
function, which results in the initial wave packets having a broad spectrum of k‖ modes
rather than k‖ = ±1. It is, thus, simplest to limit the representation of modes to the
components of k⊥, namely, (kxL⊥, kyL⊥) = (1, 0) for k+

1 and (0, 1) for k−
1 . The mediator

mode k0
2 is then (1, 1), with tertiary modes (2, 1) for k+

3 and (1, 2) for k−
3 . The reality

condition of the Fourier transform also implies a mirrored energy in the modes (−1, 0)
for k+

1 and (0,−1) for k−
1 , as well as in their respective superpositions. The interaction

of Alfvén wave packets proceeds through the coupling of these modes in (superficial)
analogy to the continuous case presented in § 3. The details of this mechanism, however,
reveal some notable subtleties.
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(a)

(c)

(b)

(d )

FIGURE 12. Decay of (normalized) total wave energy ÊEM = EEM/EEM,t=0, with EEM =
(B − B0)

2 + E2 driven by the reconnection zones and current sheets induced by the shearing
action of the secondary mode. (a,b,c) Visualization of the out-of-plane current density Ĵz =
[∇ × B]z/(k⊥B0) and field composition of the wave packets at different times in high resolution
as indicated in the energy plot. The insets provide an impression of the z-averaged non-ideal
field marker E · B/B2. Regions of strong (numerical) diffusion of non-ideal electric fields
(i.e. violations of the force-free conditions) appear in dark shades. Such locations include
Y-points, such as the anchor points of the shearing motion, and current sheets. (d) Evolution
of the wave energy (normalized) for interactions of different wave types and resolutions.
Animations of the interaction dynamics are provided in Media Supplement D (2021) and Media
Supplement E (2021).

4.2. Interaction dynamics
Two localized Alfvén waves create linear fast waves as well as linear Alfvén waves during
their interaction, and we exploit the mode structure in Fourier space to conduct the analysis
of secondary modes. Such a transformation allows us to select specific coordinates of k⊥
and k‖ to identify and distinguish Alfvén and fast modes. As we show in figure 11(b), the
interacting primary modes (1, 0) and (0, 1) transfer their energy to the (1, 1) mediator
mode and, subsequently, to the tertiary waves (1, 2) and (2, 1). The energy transfer is
strongest during each collision, as one can infer from the step-like growth in figure 11 (b).
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(a) (b)

(c) (d)

FIGURE 13. Three-dimensional impressions of the AW3 + AW3 collision during a phase of
packet separation (t = 31 [2π/ω0], (a,c)) and the subsequent interaction (t = 31.5[2π/ω0],
(b,d)). We colour field lines along B̂ by the current density |∇ × B|z/(k‖B0) (a,c) and by the
local non-ideal electric field marker E · B/B2 (b,d). The vortex-like anchor points of the shear
(cf. figure 12) are extended along the z-direction and coincide with regions of non-ideal diffusion.
The inset in panel (c) shows a top view of the maximum current density to estimate the depth of
the current structures. The different colours in panel (b) distinguish between field lines as seeded
in the two central planes of the displayed wave packets. A 3-D animation of the dynamics in the
interaction region can be found in Media Supplement F (2021).

In analogy to Verniero & Howes (2018), we examine two key characteristics of the
secondary (1, 1) mode: field polarization and wave dispersion. Force-free linear Alfvén
waves with dispersion ω(k) = ±k‖ are composed of an electric field along k⊥ and a
magnetic field along ẑ × k⊥. For the (1, 1) mode, this reduces to the following polarization
and group velocity

[AW] Bx = ±Ey By = ∓Ex ∂ω

∂k‖
= ±1. (4.2a–d)

Force-free fast waves with dispersion ω(k) = ±|k| are composed of an electric field along
k⊥ × ẑ and a magnetic field along k × (k⊥ × ẑ). For the (1, 1) mode, this reduces to the
following polarization and group velocity

[FW] Bx = ∓ k⊥
|k|Ey By = ± k⊥

|k|Ex ∂ω

∂k
= ±1. (4.3a–d)

Both Alfvén waves and fast waves are relevant for the relativistic interaction of localized
wave packets, and we present a summary of our detailed investigation in the following.
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(a) (b)

(c) (d)

FIGURE 14. Three-dimensional impressions of the AW1 + AW3 collision in analogy to
figure 13 (t = 31 [2π/ω0], (a,c)); t = 31.5 [2π/ω0], (b,d)). A current layer separates two equally
polarized eddies. It coincides with field reversals, strong currents and significant dissipation by
emerging non-ideal electric fields. A detailed outline of the reconnection region (green box) with
realistic proportions is presented in figure 15. A 3-D animation of the dynamics in the interaction
region can be found in Media Supplement G (2021).

For a fixed χ = k⊥δB/(k‖B0), a smaller ratio k⊥/k‖ corresponds to a larger δB/B0 such
that the system is driven away from the reduced MHD limit δB⊥/B0 ∼ k‖/k⊥ � 1 (Paper
I). Hence, the amount of energy stored in the FW increases for a smaller ratio k⊥/k‖ (as
we show in figure 11a). During the initial phase of the interaction, fast waves in the (1, 1)

mode show a progressive decay in energy after each primary wave collision. In contrast,
(1, 1) Alfvén waves incrementally increase in energy during each primary interaction
event and conserve their energy in between. Fast waves effectively propagate as spherical
waves in a periodic domain (see also Media Supplement C 2021; Media Supplement H
2021). They, thus, continuously interact with Alfvén waves and other fast waves; energy
is transferred out of the (1, 1) mode at a higher rate than for their Alfvénic counterpart.
Figure 11(c,d,e) probes the decomposition of the wave fields in the (1, 1) mode along the
aforementioned characteristic directions. For the Alfvén mode (analysed in figure 11d),
it is then straightforward to identify the field polarizations derived in (4.2a–d). However,
a quantitative analysis of the group velocity as well as the field polarizations of the fast
wave (4.3a–d) is more difficult. This intricacy is rooted in the finite spectrum of k‖ owing
to the localization of the initial pulses, i.e. k‖ is not a constant. A careful decomposition
of wave modes for each individual k‖ is required to confirm the remaining dispersion
properties locally in Fourier space. We conducted such a brute-force validation. It shows
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that the (1, 1) mode is, indeed, the superposition of a linear Alfvén wave and a linear fast
wave.

We note that in contrast to the continuous interaction of AWs, the localized (1, 1)
mediator mode is a superposition of waves with a finite spectrum in k‖. More specifically,
it is not a nonlinear fluctuation with k‖ = 0. This distinction of spectral components is the
key to understanding the localized AW + AW interaction. Counter-propagating Alfvén
waves interact resonantly and satisfy the matching conditions

k+
1 +k−

1 =k2, ω+
1 +ω−

1 =ω2. (4.4a,b)

For these conditions to result in an outgoing AW, as identified in (4.2a–d), one of the
incoming modes is required to have k‖ = 0. Such a combination is possible when one wave
packet of a finite k‖ spectrum interacts with the k‖ = 0 component of another wave packet
(Ng & Bhattacharjee 1996). The resulting AW would then have a distribution of k‖ that
matches the primary mode; we find that this is indeed the case. An interaction between
primary modes across the full spectral range of k‖ also results in an outgoing FW. Owing
to the addition of spectral ranges, the FW should have an accumulation of power at k‖ = 0.
We observe this feature consistently in our analysis.

The interaction of continuous counter-propagating AWs with the symmetry of constant
and oppositely signed k‖ has a unique solution to the resonance condition of (4.4a,b).
Namely, it yields the nonlinear fluctuation (1, 1, 0). The localization of waves in packets
extends the spectrum of k‖ along a finite range and the symmetry in the resonance is
broken. In contrast to the continuous interaction (§ 3), the secondary mode has a linear
Alfvén wave character and propagates according to the dispersion relation given above.
During each interaction of the wave packets, energy is transferred to the secondary (and
higher order) modes. The secondary mode manifests through shearing of the magnetic
field. While, initially, wave packets form elongated tubes along their respective k⊥, the
persistent shearing stretches these tubes, gradually compressing them (cf. figure 12). The
interaction of waves with symmetric k‖ induces the (1, 1, 0) oscillating shear mode. Thus,
depending on the combination of initial k‖, as to say, of the wave packets AW1 and AW3,
the shearing motion can be continuously progressing (for non-symmetric k‖) or oscillating
(for symmetric k‖).

In the case of AW1 + AW1, the oscillation of the shearing process prevents the
compression of anti-parallel field lines in between eddies into current sheets. However,
elongated eddies, e.g. at x ≈ 3π/2, y ≈ π/2 at t = 31 [2π/ω0] in figure 12(a), develop
and form pancake-like current sheets, e.g. at x ≈ 4π/3, y ≈ π/3 at t = 31 [2π/ω0] in
figure 12(b). Prominent non-ideal electric fields form at these locations. The signatures of
current sheets at later times (figure 12(b)) can be associated with a mild steepening of the
energy dissipation. The shearing and stretching of larger eddies into reconnection layers
are a characteristic of both continuous and localized Alfvén wave interactions.

In analogy to the case of continuous interaction (§ 3), elongated eddies can form long
current sheets that will eventually break up (cf. § 3.2). As in the previous analysis of
continuous interactions, we associate the onset of dissipation of cascaded energy with
the emergence and break-up of current sheets. We identify sheets of strong current
density, prominent non-ideal electric fields, and field reversals in the AW1 + AW3 case
(figure 12(c)) owing to field line compression between two eddies at x ≈ π, y ∈ [0,π] in
figure 12(c). They emerge and decay at the same time as we observe a change in slope in
the energy evolution.

We note that at the relatively high value of χ for wave packet simulations, while we have
seen a persistence of the EB⊥(k⊥) ∝ k−2

⊥ spectrum despite the presence of intermittency
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(a) (b)

FIGURE 15. Detailed 3-D outline of the reconnection region during the AW1 + AW3 collision
(as presented in figure 14). (a) Magnetic null points (red spheres, where we removed the initial
background field B0 along ẑ) between eddies of the same polarity. Yellow field lines are seeded
at the locations of the strongest currents, black field lines have a slight offset to these seeds in
the perpendicular plane. (b) Volume rendering of the strongest currents (as we showed for the
continuous case in figure 4).

(in the form of current sheets), we begin to see some features of a transition to strong
turbulence (Meyrand et al. 2016) which call for further studies.

We conclude this section by studying 3-D profiles of the wave interactions of the
AW3 + AW3 as well as the AW1 + AW3 collision in figures 13 and 14. In these figures,
we colour a large number of field lines seeded in planes at the centre of the respective
wave packets (or their superposition) by the current density |∇ × B|z/(k‖B0) in panel
(a,c) and by the local non-ideal electric field marker E · B/B2 in panel (b,d). First, we
note that the wave magnetic field is well localized even after several tens of interactions.
Second, possible 3-D reconnection sites emerge in the form of bulged eddies (figure 13)
or current sheets with varying depth (figure 14). These structures exist individually in each
wave packet and interact progressively, enhanced by the shearing action of the secondary
mode. The z-extensions of non-ideal structures is a fraction of the initial window-size
Δz in the case of the bulged eddies. Current sheet structures, however, have a significant
depth of the order of (and even slightly above) the initial window-size Δz. Figure 15
dissects the topology of the current sheet emerging during the AW1 + AW3 collision,
which shows some anti-parallel field lines and some reconnecting field lines. We mark
the localized layer of magnetic null points with red dots (i.e. points with reversals of all
field components, where the initial background field B0 along ẑ is removed).

Collisions of localized Alfvén waves are efficient mediators of energy conversion to
smaller scales (perpendicular to the guide field) and powerful drivers of nonlinear energy
cascades. The mixing of wave packets with different ratios of k⊥/k‖ significantly changes
the interaction dynamics by suppressing the oscillatory (1,1,0) shear mode. Mixing
effectively triggers episodes of very fast dissipation of electromagnetic energy mediated
by the break-up of elongated current sheets. As in the continuous case (cf. figure 4), the
current sheet ripples as it is stretched between elongated eddies and eventually breaks up
into smaller (turbulent) structures. Mixing waves of different k⊥/k‖ is an appealing case for
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a future exploration of current sheet formation and the transition into the strong turbulence
regime for the interaction of overlapping Alfvén waves in high-resolution runs.

5. Conclusions

In this work, we show that the interaction of overlapping and counter-propagating
Alfvén waves in highly magnetized relativistic plasma results in an anisotropic energy
spectrum EB⊥(k⊥) ∝ k−2

⊥ . The weak turbulence energy cascade occurs owing to the
scattering of Alfvén waves dominated by three-wave interactions. The nonlinear dynamics
of Alfvén wave collisions provide a natural mechanism for the development of current
sheets in plasma turbulence. Turbulent eddies that form through constructive interference
of the primary Alfvén waves and nonlinearly generated modes become elongated and
stretched on nonlinear timescales ∼ χ−2, until they transiently form current sheets. The
current sheets undergo a thinning process owing to the compression of the eddies, which
results in a final thickness δ/w ≈ 0.01 before they break-up into small-scale turbulent
structures. Analysing the electromagnetic energy evolution of the system, we find that
the turbulent cascade reaches the grid scale at the moment the current sheets break-up, at
which time the energy dissipates dramatically. We suggest that magnetic reconnection in
the current sheet regions is a viable mechanism through which energy dissipates in these
highly relativistic and magnetically dominated fluid systems.

The presented results show that the fundamental properties of Alfvén wave collisions,
as observed in the idealized case of periodic and overlapping waves, persist under the
more realistic conditions of localized wave packets. The evolution and interaction of the
wave packets occurs during their overlap only, and the Alfvén component of the wave
packets remains localized along the guide magnetic field before and after their collision.
As a consequence, packet collisions are, in many ways, similar to the continuous wave
collisions. Especially, strong dissipation of electromagnetic energy in current sheets starts
to develop at nonlinear timescales of the order of χ−2. In contrast to the continuously
overlapping waves, the mediator of the turbulent cascade that transfers energy to the
smallest scales is not a purely nonlinear magnetic mode, but a combination of linear Alfvén
and fast waves.

In fact, fast waves are absent in the non-relativistic limit (Verniero & Howes 2018;
Verniero et al. 2018); thus, despite a multitude of similarities between Alfvénic turbulence
in the Newtonian versus relativistic limits, this notable difference provides at least one
alternative path for the turbulence to dissipate its energy because the linear fast modes can
travel across field lines. Regardless, as in the Newtonian limit, the secondary Alfvén mode
is essentially a shear in the magnetic field that propagates along the guide field and shears
the counter-propagating Alfvén wave packets. In addition, for a fixed χ = k⊥δB/(k‖B0),
a large ratio of k⊥/k‖ results in a smaller amount of energy stored in the fast waves, in
accordance with the asymptotic solutions in Paper I. We have demonstrated that current
sheets form during the interaction of two packets for different ratios of k⊥/k‖ and that they
act as the main dissipation sites.

Although the force-free limit of the MHD equations is technically invalid inside a
reconnecting current sheet (where E > B or E · B 	= 0) and it cannot describe the physical
effects of magnetic reconnection and resistive dissipation, it does contain the minimal
ingredients that lead to the anisotropic cascade and the development and thinning of
current sheets in relativistic plasma turbulence. We have validated our results for finite
magnetization in magnetically dominated ideal relativistic MHD. We suggest that the
emergence and dynamic decay of current sheets is driven by the global dynamics of wave
interactions. We verify that at the highest presented resolutions, the small structures we
identify are not dominated by numerical diffusion or dispersion errors (cf. Appendix A).

https://doi.org/10.1017/S0022377821000957 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377821000957


Current sheets in relativistic weak Alfvénic turbulence 27

To validate our findings, we emphasize, once more, the striking similarity of results from
two independent, vastly different force-free MHD algorithms. To study current sheets as
dissipation sites in interacting Alfvén waves in more depth, we will in the future carry out
relativistic resistive MHD simulations (Ripperda et al. 2019a,b) and evolve test particles to
capture magnetic reconnection as a particle heating and acceleration mechanism (Ripperda
et al. 2017a,b, 2018).

Though obtained in the context of fundamental plasma physics, the results are vital for
the magnetospheres of astrophysical compact objects. Turbulence in black hole accretion
disks may launch Alfvén waves that propagate from the disk into the corona (Thompson
& Blaes 1998; Chandran et al. 2018). Such waves may propagate away from the disk
into regions with varying magnetization and reflect, after which the interaction with
other waves may result in a turbulent cascade. At this point, a significant fraction of
the wave energy can dissipate within a few scale heights of the disk. The current sheets
formed by relativistic Alfvénic turbulence, as found in this work, may provide the main
dissipation sites of magnetic energy through magnetic reconnection, which yields a
promising mechanism for explaining the X-ray emitting coronae that are observed around
luminous active galactic nuclei. Even in the weak turbulence regime (χ < 1) explored
here, a large reservoir of magnetic energy is available in the turbulent fluctuations δB⊥ in
magnetized accretion disk coronae. The turbulence in black hole accretion disks may even
be in the strong turbulence limit (i.e. δB⊥/B � 1), a regime we explore in another study
(Chernoglazov, Ripperda & Philippov 2021).

The interaction of wave packets is equally relevant in neutron star magnetospheres.
Magnetar flares can excite strong Alfvén waves in the highly magnetized magnetosphere.
The wave packets can dissipate their energy through interactions with reflecting waves
(Li et al. 2019), or they may dissipate their energy in the neutron star’s crust (Li &
Beloborodov 2015). They can also convert to fast modes which are not confined to the
magnetic field and can escape from the magnetosphere (cf. Yuan et al. 2020b). A turbulent
cascade of large amplitude Alfvén waves in the magnetosphere can lead to plasma heating
and X-ray emission. The fraction and rate of dissipation constrains the duration and flux of
the observed X-ray emission following a magnetar flare. On another note, pulsar glitches
may launch Alfvén waves into the magnetosphere, which can lead to enhanced current
and pair production that quenches the radio emission (Bransgrove et al. 2020; Yuan
et al. 2020a). The lifetime, dissipation channel and the ratio between turbulent Alfvén
and fast modes (dependent on the k‖/k⊥ ratio of the primary waves, as we show in
§ 3) constrains the duration of the observed radio emission anomaly. We argue in this
work that it is essential to study wave interaction in neutron star magnetospheres in three
dimensions to determine the fraction of energy that can escape through fast modes in
future magnetospheric modelling.

Finally, looking beyond the validity of our models, we note that the low density of the
plasma in the magnetospheres of neutron stars and black holes results in a mean free
path for collisions that is much larger than the length scales of turbulent fluctuations,
often even exceeding the system size. Thus, plasma can be considered collisionless,
and turbulent dynamics and dissipation are governed by kinetic physics. The MHD
approximation fails in this regime and cannot capture the collisionless kinetic physics,
potentially resulting in non-thermal radiation that is typically observed. Throughout
the results presented in this manuscript, we observe strong guide field current sheets
emerging as a result of Alfvén wave collisions. In this regime, the energy available for
plasma energization is limited, which results in significantly steeper power-law spectra
shown by the first-principles particle-in-cell simulations of Werner & Uzdensky (2017).
By using gyrokinetic simulations, TenBarge & Howes (2013) and Howes et al. (2018)
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showed that plasma heating is indeed correlated with the emergence of current sheets.
Landau damping plays an essential role in the spatially intermittent energization of
particles through dissipation of turbulent fluctuations. Understanding the mechanism that
energizes the plasma in black hole accretion disk coronae and neutron star magnetospheres
is an important problem in high-energy astrophysics. Force-free and relativistic MHD
simulations capture the essential global dynamics to describe a weak turbulence cascade
and the formation of current sheets that can act as dissipative regions in highly magnetized
plasma as found in compact object magnetospheres and coronae.
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Appendix A. Numerical convergence of the force-free MHD schemes

We test our newly implemented force-free algorithm in BHAC for an Alfvén wave
propagating in the z-direction along the guide field Bz = B0 with wave vector k = (1, 0, 1),
for 200 wave-crossings through a box of size (2π, 2π, 4π) with Nλ,z cells per wavelength
and resolution (N⊥, N⊥, N‖), where Nλ,z = N⊥ = 0.5N‖ ∈ [8, 16, 32, 64, 128, 256, 512].
We measure the numerical energy dissipation by plotting the maximum (taken at every
point in time over the whole domain, i.e. not necessarily at the same location) of the
electric energy density max[E2], which should be conserved in ideal force-free MHD for
a non-interacting wave.

We analyse the error in the electric energy density because the dissipation operator
appears in Ampere’s law (2.9). The electromagnetic energy at Nλ,z = 8 cells per
wavelength has completely dissipated after 10 collisions and the error is equal to
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(a) (b)

FIGURE 16. Convergence properties of the employed numerical methods. (a) Second-order
convergence of the electric energy density error δÊ2

EM = || max[Ê2
EM]ω0t/2π=10 −

max[Ê2
EM]ω0t/2π=0|| versus resolution per wavelength Nλ,z, for single waves with k = (0, 0, 1)

in force-free MHD with η = 10−6 (the force-free limit) and the electrovacuum limit, and for
a single wave with k = (1, 0, 1) with η = 10−6. For the k = (1, 0, 1) wave, we find that the
explicit resistivity dominates the dissipation from Nλ,z = 256 onward, and the error saturates.
For the k = (0, 0, 1) wave, we find that the error in the energy conservation is independent
of the effective resistivity η as expected for a wave that has zero conduction current. We find
second-order convergence, as expected for our IMEX scheme, both in the ideal force-free MHD
limit η → 0 and in the electrovacuum limit η → ∞ in (2.11). For Nλ,z = 8 cells per wavelength,
the error is equal to the initial wave energy because most energy is dissipated after 10 collisions.
We confirm that the error is dominated by the spatial resolution and that it does not decrease for
a decreasing time step at a given resolution of Nλ,z = 16. (b) The dispersion error of a single
wave as the phase shift δφ = δx/2π of the nulls of the wave normalized by the number of wave
periods T = t/2π. The error converges as first-order N−1

λ,z with grid points per wavelength and
is dominated by the temporal error that is first order owing to the implicit step in the IMEX
scheme for BHAC, whereas it converges at seventh order for the ET-FFE code.

the initial energy in the wave. By increasing the resolution per wavelength, we find
second-order convergence of the error δE2 = || max[E2]ω0t/2π=10 − max[E2]ω0t/2π=0|| after
ten wave-crossings, both in the ideal force-free MHD limit (η → 0 in (2.11)), by setting
η = 10−7, and in the electrovacuum limit (η → ∞ in (2.11)), by setting η = 1014 (see
figure 16). We confirm that the error in the energy conservation is independent of the
effective resistivity for η ∈ [10−3, 10−4, 10−5, 10−6, 10−7]. The specific resistivity sets a
resistive spatial scale that cuts off the energy error convergence once it reaches that scale,
thus, the error becomes smaller for smaller resistivity. We compare the result with a wave
vector k = (0, 0, 1) that is aligned with the guide field, such that there is no damping
term in (2.11) and hence the resistivity has no effect on the energy dissipation. There, we
observe that the energy error converges at second order and there is indeed no cut-off
at the resistive scale. The convergence is dominated by the spatial order of the scheme,
which we validate by measuring the error for a decreasing time step at a fixed resolution
of Nλ,z = 16. A similar analysis was conducted for the ET-FFE algorithm (Mahlmann et al.
2021a), showing convergence close to the spatial order of reconstruction, i.e. seventh-order
in the simulations presented throughout this manuscript.
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(a) (b) (c)

FIGURE 17. Non-ideal electric field |E · B|/B2 growing inside the current sheets. We examine
such fields shortly after the formation of the sheets at t = 110 [2π/ω0], at the end of the
thinning period of the sheets to δ/w ≈ 0.01 at t = 128 [2π/ω0] and at their break-up around
t = 130 [2π/ω0]. Here, we employ the force-free MHD infrastructure in BHAC with η = 10−6.
The violations of the ideal force-free condition are damped by resistive dissipation (see § 2).

Furthermore, we determine the dispersion error as the shift δφ = δx/2π of the nulls
of the wave normalized by the number of wave periods T = t/2π. We measure the error
after 1, 10 and 20 wave-crossings and summarize the results in figure 16(b). The dispersion
error is dominated by temporal errors and converges at first order owing to the implicit
step that makes the IMEX scheme first order in time (Ripperda et al. 2019a). We confirm
that the dispersion error linearly increases in time such that we can normalize the results
by the wave period. With a seventh-order spatial reconstruction and fourth-order time
integration, the dispersion error of the ET-FFE algorithm decreases slightly faster than the
order of reconstruction. In other words, this method is more diffusive then it is dispersive
and hence well suited for the long time modelling of wave interactions.

Appendix B. Non-ideal electric fields in (force-free) current sheets

Current sheets, i.e. regions of anti-parallel magnetic field where typically E · B 	= 0 or
E2 > B2, are inherently difficult to model in the force-free limit of infinite conductivity.
Non-ideal electric fields, characterized by E · B 	= 0, can form as a result of magnetic
reconnection in a current sheet. Force-free evolution codes either allow for transient
non-ideal electric fields and gradually dampen them (as is the case in BHAC, cf. (2.11))
or they remove them instantly from the domain in each sub-step of the time integrator (as
it is the case in ET-FFE).

Figures 17 and 18 show the non-ideal electric fields accumulating in the different
frameworks. In the case of the ET-FFE data, a direct measurement of E‖ (or equally, of
an Ohmic heating term) is not possible, as all violations of the force-free conditions are
instantly removed from the domain. Instead, we track the magnitude of parallel electric
fields that are algebraically removed in each sub-step of the time integrator, namely
E · B/B2. In both cases, we find direct coincidence of the location of field reversals and
other markers for current sheets with regions of stronger E‖. Furthermore, such fields are
still small at t = 110 [2π/ω0], but they grow significantly during the thinning and break-up
phases of the sheets.
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(a) (b) (c)

FIGURE 18. As in figure 17 but displaying the magnitude of the non-ideal electric field
(averaged along the z-directions) that is removed in each sub-step of the time integrator at a
given time by the ET-FFE scheme. We note the similarities to the non-ideal electric field that is
allowed for finite times by BHAC (figure 17).

BHAC and ET-FFE differ significantly in their treatment of non-ideal electric fields. This
distinction is imprinted on the data by the emergence of small-scale structures that are
visible in figures 17 and 18. The combination of a finite phenomenological resistivity
and lower-order spatial reconstruction in BHAC renders strong E‖ significant for the
resolution of thin resistive layers occurring in current sheets. ET-FFE deals with force-free
violations much more rigorously, removing even the smallest E‖ instantly and preventing
the physical development of the smallest resistive layers (but increasing the overall order
of convergence; see extensive discussion in Mahlmann et al. 2021b). The fact that despite
these differences, our results across the platforms BHAC and ET-FFE show a remarkable
level of similarity reassures us of the physical validity of the conclusions presented in this
manuscript.
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ČADA, M. & TORRILHON, M. 2009 Compact third-order limiter functions for finite volume methods.
J. Comput. Phys. 228, 4118.

CHANDRAN, B.D.G. 2005 Weak compressible magnetohydrodynamic turbulence in the solar corona.
Phys. Rev. Lett. 95, 265004.

CHANDRAN, B.D.G., FOUCART, F. & TCHEKHOVSKOY, A. 2018 Heating of accretion-disk coronae and
jets by general relativistic magnetohydrodynamic turbulence. J. Plasma Phys. 84 (3), 905840310.

CHANDRAN, B.D.G., SCHEKOCHIHIN, A.A. & MALLET, A. 2015 Intermittency and alignment in strong
RMHD turbulence. Astrophys. J. 807 (1), 39.

CHERNOGLAZOV, A., RIPPERDA, B. & PHILIPPOV, A. 2021 Dynamic alignment and plasmoid formation
in relativistic magnetohydrodynamic turbulence. Astrophys. J. Lett. (submitted).

CHO, J. 2005 Simulations of relativistic force-free magnetohydrodynamic turbulence. Astrophys. J.
621 (1), 324–327.

CHO, J. & LAZARIAN, A. 2002 Compressible sub-alfvenic MHD turbulence in low-β plasmas. Phys. Rev.
Lett. 88 (24), 245001.

CHO, J. & LAZARIAN, A. 2003 Compressible magnetohydrodynamic turbulence: mode coupling, scaling
relations, anisotropy, viscosity-damped regime and astrophysical implications. Mon. Not. R. Astron.
Soc. 345, 325–339.

CHO, J. & VISHNIAC, E.T. 2000 The anisotropy of magnetohydrodynamic alfvénic turbulence. Astrophys.
J. 539 (1), 273–282.

COMISSO, L., HUANG, Y.M., LINGAM, M., HIRVIJOKI, E. & BHATTACHARJEE, A. 2018
Magnetohydrodynamic turbulence in the plasmoid-mediated regime. Astrophys. J. 854 (2), 103.

COMISSO, L. & SIRONI, L. 2018 Particle acceleration in relativistic plasma turbulence. Phys. Rev. Lett.
121 (25), 255101.

DEL ZANNA, L., PAPINI, E., LANDI, S., BUGLI, M. & BUCCIANTINI, N. 2016 Fast reconnection in
relativistic plasmas: the magnetohydrodynamics tearing instability revisited. Mon. Not. R. Astron.
Soc. 460 (4), 3753–3765.

DONG, C., WANG, L., HUANG, Y., COMISSO, L. & BHATTACHARJEE, A. 2018 Role of the plasmoid
instability in magnetohydrodynamic turbulence. Phys. Rev. Lett. 121 (16), 165101.

DUNCAN, R.C. & THOMPSON, C. 1992 Formation of very strongly magnetized neutron stars: implications
for gamma-ray bursts. Astrophys. J. Lett. 392, L9.

EVANS, C.R. & HAWLEY, J.F. 1988 Simulation of magnetohydrodynamic flows: a constrained transport
model. Astrophys. J. 332, 659.

FARGE, M. & SCHNEIDER, K. 2006 Encyclopedia of Mathematical Physics. Elsevier.
GALTIER, S., NAZARENKO, S.V., NEWELL, A.C. & POUQUET, A. 2000 A weak turbulence theory for

incompressible magnetohydrodynamics. J. Plasma Phys. 63 (5), 447–488.
GOLDREICH, P. & JULIAN, W.H. 1969 Pulsar electrodynamics. Astrophys. J. 157, 869.
GOLDREICH, P. & SRIDHAR, S. 1995 Toward a theory of interstellar turbulence. II. Strong alfvenic

turbulence. Astrophys. J. 438, 763.
GRUZINOV, A. 1999 Stability in force-free electrodynamics. arXiv:astro-ph/9902288.
HEYL, J.S. & HERNQUIST, L. 1999 Nonlinear QED effects in strong-field magnetohydrodynamics. Phys.

Rev. D 59 (4), 045005.
HOWES, G.G. 2014 The inherently three-dimensional nature of magnetized plasma turbulence. J. Plasma

Phys. 81 (2), 325810203.
HOWES, G.G. 2016 The dynamical generation of current sheets in astrophysical plasma turbulence.

Astrophys. J. 827 (2), L28.
HOWES, G.G., MCCUBBIN, A.J. & KLEIN, K.G. 2018 Spatially localized particle energization by

Landau damping in current sheets produced by strong alfvén wave collisions. J. Plasma Phys.
84, 905840105.

HOWES, G.G. & NIELSON, K.D. 2013 Alfvén wave collisions, the fundamental building block of plasma
turbulence. I. Asymptotic solution. Phys. Plasmas 20 (7), 072302.

HUANG, Y.M. & BHATTACHARJEE, A. 2016 Turbulent magnetohydrodynamic reconnection mediated by
the plasmoid instability. Astrophys. J. 818 (1), 20.

KOMISSAROV, S.S., BARKOV, M. & LYUTIKOV, M. 2007 Tearing instability in relativistic magnetically
dominated plasmas. Mon. Not. R. Astron. Soc. 374 (2), 415–426.

https://doi.org/10.1017/S0022377821000957 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377821000957


Current sheets in relativistic weak Alfvénic turbulence 33

KUZNETSOV, E.A. 2001 Weak magnetohydrodynamic turbulence of a magnetized plasma. J. Expl Theor.
Phys. 93 (5), 1052–1064.

LI, X. & BELOBORODOV, A.M. 2015 Plastic damping of alfvén waves in magnetar flares and delayed
afterglow emission. Astrophys. J. 815 (1), 25.

LI, X., BELOBORODOV, A.M. & SIRONI, L. 2021 Fast dissipation of colliding alfvén waves in a
magnetically dominated plasma. arXiv:2103.05700.

LI, X., ZRAKE, J. & BELOBORODOV, A.M. 2019 Dissipation of alfvén waves in relativistic
magnetospheres of magnetars. Astrophys. J. 881 (1), 13.

LONDRILLO, P. & DEL ZANNA, L. 2004 On the divergence-free condition in Godunov-type schemes for
ideal magnetohydrodynamics: the upwind constrained transport method. J. Comput. Phys. 195 (1),
17–48.

LOUREIRO, N.F. & BOLDYREV, S. 2017 Role of magnetic reconnection in magnetohydrodynamic
turbulence. Phys. Rev. Lett. 118 (24), 245101.

MAHLMANN, J.F. 2020 Dynamics in the magnetospheres of compact objects. PhD thesis, Universitat de
València.

MAHLMANN, J.F., ALOY, M.A., MEWES, V. & CERDÁ-DURÁN, P. 2021a Computational general
relativistic force-free electrodynamics. I. Multi-coordinate implementation and testing. Astron.
Astrophys. 647, A57.

MAHLMANN, J.F., ALOY, M.A., MEWES, V. & CERDÁ-DURÁN, P. 2021b Computational general
relativistic force-free electrodynamics. II. Characterization of numerical diffusivity. Astron.
Astrophys. 647, A58.

MALLET, A., SCHEKOCHIHIN, A.A. & CHANDRAN, B.D.G. 2015 Refined critical balance in strong
Alfvénic turbulence. Mon. Not. R. Astron. Soc. 449, L77–L81.

MALLET, A., SCHEKOCHIHIN, A.A. & CHANDRAN, B.D.G. 2017 Disruption of Alfvénic turbulence by
magnetic reconnection in a collisionless plasma. J. Plasma Phys. 83 (6), 905830609.

MARON, J. & GOLDREICH, P. 2001 Simulations of incompressible magnetohydrodynamic turbulence.
Astrophys. J. 554, 1175–1196.

MATTHAEUS, W.H. & LAMKIN, S.L. 1986 Turbulent magnetic reconnection. Phys. Fluids
29, 2513–2534.

MEDIA SUPPLEMENT A 2021 Interaction of continuously overlapping alfvén waves: 2d current and field
structure. https://youtu.be/HHacblwqiS0. The supplementary material was published on behalf of
the authors of this manuscript.

MEDIA SUPPLEMENT B 2021 Interaction of continuously overlapping alfvén waves: 3d current structure.
https://youtu.be/GTLvtH7CKOs. The supplementary material was published on behalf of the
authors of this manuscript.

MEDIA SUPPLEMENT C 2021 Interaction of alfvén wave packets: 2d growth and dynamics of the (1, 1)

mode. https://youtu.be/Rd9qTNyaN5s. The supplementary material was published on behalf of the
authors of this manuscript.

MEDIA SUPPLEMENT D 2021 Interaction of alfvén wave packets: 2d current and field structure for the
AW3 + AW3 setup. https://youtu.be/E3wjj4blpg8. The supplementary material was published on
behalf of the authors of this manuscript.

MEDIA SUPPLEMENT E 2021 Interaction of alfvén wave packets: 2d current and field structure for the
AW1 + AW3 setup. https://youtu.be/iEIlV3q1Oto, The supplementary material was published on
behalf of the authors of this manuscript.

MEDIA SUPPLEMENT F 2021 Interaction of alfvén wave packets: 3d current structure for the AW3 + AW3
setup. https://youtu.be/EMBVLRTtaHg. The supplementary material was published on behalf of the
authors of this manuscript.

MEDIA SUPPLEMENT G 2021 Interaction of alfvén wave packets: 3d current structure for the AW1 + AW3
setup. https://youtu.be/Kdmz6ebLPiQ. The supplementary material was published on behalf of the
authors of this manuscript.

MEDIA SUPPLEMENT H 2021 Interaction of alfvén wave packets: 3d growth and dynamics of the (1, 1)

mode. https://youtu.be/5RLFXu0D1Ps. The supplementary material was published on behalf of the
authors of this manuscript.

https://doi.org/10.1017/S0022377821000957 Published online by Cambridge University Press

arXiv:2103.05700
https://youtu.be/HHacblwqiS0
https://youtu.be/GTLvtH7CKOs
https://youtu.be/Rd9qTNyaN5s
https://youtu.be/E3wjj4blpg8
https://youtu.be/iEIlV3q1Oto
https://youtu.be/EMBVLRTtaHg
https://youtu.be/Kdmz6ebLPiQ
https://youtu.be/5RLFXu0D1Ps
https://doi.org/10.1017/S0022377821000957


34 B. Ripperda and others

MEYRAND, R., GALTIER, S. & KIYANI, K.H. 2016 Direct evidence of the transition from weak to strong
magnetohydrodynamic turbulence. Phys. Rev. Lett. 116 (10), 105002.

MONIN, A.S. & YAGLOM, A.M. 1999 Statistical fluid mechanics: the mechanics of turbulence. https://
mitpress.mit.edu/books/statistical-fluid-mechanics-volume-1.

MONTGOMERY, D. & MATTHAEUS, W.H. 1995 Anisotropic modal energy transfer in interstellar
turbulence. Astrophys. J. 447, 706.

NATHANAIL, A., FROMM, C.M, PORTH, O., OLIVARES, H., YOUNSI, Z., MIZUNO, Y. & REZZOLLA,
L. 2020 Plasmoid formation in global GRMHD simulations and AGN flares. Mon. Not. R. Astron.
Soc. 495 (2), 1549–1565.

NÄTTILÄ, J. & BELOBORODOV, A.M. 2020 Radiative turbulent flares in magnetically-dominated plasmas.
arXiv:2012.03043.

NG, C.S. & BHATTACHARJEE, A. 1996 Interaction of shear-alfven wave packets: implication for weak
magnetohydrodynamic turbulence in astrophysical plasmas. Astrophys. J. 465, 845.

NG, C.S. & BHATTACHARJEE, A. 1997 Scaling of anisotropic spectra due to the weak interaction of
shear-Alfvén wave packets. Phys. Plasmas 4 (3), 605–610.

NIELSON, K.D., HOWES, G.G. & DORLAND, W. 2013 Alfvén wave collisions, the fundamental building
block of plasma turbulence. II. Numerical solution. Phys. Plasmas 20 (7), 072303.

NI, L., GERMASCHEWSKI, K., HUANG, Y.M., SULLIVAN, B.P., YANG, H. & BHATTACHARJEE, A.
2010 Linear plasmoid instability of thin current sheets with shear flow. Phys. Plasmas 17 (5),
052109.

NOBLE, S.C., GAMMIE, C.F., MCKINNEY, J.C. & DEL ZANNA, L. 2006 Primitive variable solvers for
conservative general relativistic magnetohydrodynamics. Astrophys. J. 641 (1), 626–637.

OLIVARES, H., PORTH, O., DAVELAAR, J., MOST, E.R., FROMM, C.M., MIZUNO, Y., YOUNSI, Z. &
REZZOLLA, L. 2019 Constrained transport and adaptive mesh refinement in the black hole accretion
code. Astron. Astrophys. 629, A61.

PARESCHI, L. & RUSSO, G. 2005 Implicit–explicit Runge–Kutta schemes and applications to hyperbolic
systems with relaxation. J. Sci. Comput. 25 (1), 129–155.

PEREZ, J.C. & BOLDYREV, S. 2008 On weak and strong magnetohydrodynamic turbulence. Astrophys.
J. Lett. 672 (1), L61.

PORTH, O., OLIVARES, H., MIZUNO, Y., YOUNSI, Z., REZZOLLA, L., MOSCIBRODZKA, M., FALCKE,
H. & KRAMER, M. 2017 The black hole accretion code. Comput. Astrophys. Cosmol. 4, 1.

RIPPERDA, B., BACCHINI, F. & PHILIPPOV, A.A. 2020 Magnetic reconnection and hot spot formation in
black hole accretion disks. Astrophys. J. 900 (2), 100.

RIPPERDA, B., BACCHINI, F., PORTH, O., MOST, E.R., OLIVARES, H., NATHANAIL, A., REZZOLLA,
L., TEUNISSEN, J. & KEPPENS, R. 2019a General-relativistic resistive magnetohydrodynamics
with robust primitive-variable recovery for accretion disk simulations. Astrophys. J. Suppl. 244 (1),
10.

RIPPERDA, B., BACCHINI, F., TEUNISSEN, J., XIA, C., PORTH, O., SIRONI, L., LAPENTA, G. &
KEPPENS, R. 2018 A comprehensive comparison of relativistic particle integrators. Astrophys.
J. Suppl. 235 (1), 21.

RIPPERDA, B., PORTH, O., SIRONI, L. & KEPPENS, R. 2019b Relativistic resistive magnetohydrodynamic
reconnection and plasmoid formation in merging flux tubes. Mon. Not. R. Astron. Soc. 485 (1),
299–314.

RIPPERDA, B., PORTH, O., XIA, C. & KEPPENS, R. 2017a Reconnection and particle acceleration in
interacting flux ropes II. 3d effects on test particles in magnetically dominated plasmas. Mon. Not.
R. Astron. Soc. 471 (3), 3465–3482.

RIPPERDA, B., PORTH, O., XIA, C. & KEPPENS, R. 2017b Reconnection and particle acceleration in
interacting flux ropes I. Magnetohydrodynamics and test particles in 2.5d. Mon. Not. R. Astron. Soc.
3279–3298.

RUEDA, J.A.A., VERSCHAREN, D., WICKS, R.T., OWEN, C.J., NICOLAOU, G., WALSH, A.P.,
ZOUGANELIS, I., GERMASCHEWSKI, K. & VARGAS DOMÍNGUEZ, S. 2021 Three-dimensional
magnetic reconnection in particle-in-cell simulations of anisotropic plasma turbulence. arXiv:2103.
13232.

https://doi.org/10.1017/S0022377821000957 Published online by Cambridge University Press

https://mitpress.mit.edu/books/statistical-fluid-mechanics-volume-1
https://mitpress.mit.edu/books/statistical-fluid-mechanics-volume-1
arXiv:2012.03043
arXiv:2103.13232
arXiv:2103.13232
https://doi.org/10.1017/S0022377821000957


Current sheets in relativistic weak Alfvénic turbulence 35

RUSANOV, V.V. 1961 Calculation of interaction of non–steady shock waves with obstacles. J. Comput.
Math. Phys. USSR 1, 267–279.

SCHEKOCHIHIN, A.A., NAZARENKO, S.V. & YOUSEF, T.A. 2012 Weak Alfvén-wave turbulence
revisited. Phys. Rev. E 85 (3), 036406.

SONNERUP, B.U.O. & CAHILL, L.J.JR. 1967 Magnetopause structure and attitude from explorer 12
observations. J. Geophys. Res. 72, 171.

SRIDHAR, S. & GOLDREICH, P. 1994 Toward a theory of interstellar turbulence. I. Weak alfvenic
turbulence. Astrophys. J. 432, 612.

SURESH, A. & HUYNH, H.T. 1997 Accurate monotonicity-preserving schemes with Runge–Kutta time
stepping. J. Comput. Phys. 136 (1), 83–99.

TAKAMOTO, M. & LAZARIAN, A. 2017 Strong coupling of alfvén and fast modes in compressible
relativistic magnetohydrodynamic turbulence in magnetically dominated plasmas. Mon. Not. R.
Astron. Soc. 472 (4), 4542–4550.

TENBARGE, J.M. & HOWES, G.G. 2013 Current sheets and collisionless damping in kinetic plasma
turbulence. Astrophys. J. 771 (2), L27.

TENBARGE, J.M., RIPPERDA, B., CHERNOGLAZOV, A., BHATTACHARJEE, A., MAHLMANN, J.F.,
MOST, E.R., JUNO, J., YUAN, Y. & PHILIPPOV, A.A. 2021 Weak alfvénic turbulence in relativistic
magnetically dominated plasmas I: asymptotic solutions. J. Plasma Phys. (submitted).

THOMPSON, C. & BLAES, O. 1998 Magnetohydrodynamics in the extreme relativistic limit. Phys. Rev. D
57, 3219–3234.

TROISCHT, P. & THOMPSON, C. 2004 Force-free magnetohydrodynamic waves: nonlinear interactions
and effects of strong gravity. Phys. Rev. D 70 (12), 124030.

UZDENSKY, D.A., LOUREIRO, N.F. & SCHEKOCHIHIN, A.A. 2010 Fast magnetic reconnection in the
plasmoid-dominated regime. Phys. Rev. Lett. 105, 23.

VERDINI, A. & GRAPPIN, R. 2012 Transition from weak to strong cascade in MHD turbulence. Phys. Rev.
Lett. 109 (2), 025004.

VERNIERO, J.L. & HOWES, G.G. 2018 The alfvénic nature of energy transfer mediation in localized,
strongly nonlinear alfvén wavepacket collisions. J. Plasma Phys. 84, 905840109.

VERNIERO, J.L., HOWES, G.G. & KLEIN, K.G. 2018 Nonlinear energy transfer and current sheet
development in localized alfvén wavepacket collisions in the strong turbulence limit. J. Plasma
Phys. 84, 905840103.

WERNER, G.R. & UZDENSKY, D.A. 2017 Nonthermal particle acceleration in 3d relativistic magnetic
reconnection in pair plasma. Astrophys. J. 843 (2), L27.

YUAN, Y., BELOBORODOV, A.M., CHEN, A.Y. & LEVIN, Y. 2020a Plasmoid ejection by alfvén waves
and the fast radio bursts from SGR 1935 + 2154. Astrophys. J. 900 (2), L21.

YUAN, Y., LEVIN, Y., BRANSGROVE, A. & PHILIPPOV, A.A. 2020b Alfvén wave mode conversion in
pulsar magnetospheres. arXiv:2007.11504.

ZHDANKIN, V., UZDENSKY, D.A., PEREZ, J.C. & BOLDYREV, S. 2013 Statistical analysis of current
sheets in three-dimensional magnetohydrodynamic turbulence. Astrophys. J. 771 (2), 124.

ZHDANKIN, V., UZDENSKY, D.A., WERNER, G.R & BEGELMAN, M.C. 2017 Numerical investigation
of kinetic turbulence in relativistic pair plasmas I. Turbulence statistics. Mon. Not. R. Astron. Soc.
474 (2), 2514–2535.

https://doi.org/10.1017/S0022377821000957 Published online by Cambridge University Press

arXiv:2007.11504
https://doi.org/10.1017/S0022377821000957

	1 Introduction
	2 Numerical methods
	3 Overlapping Alfvén waves
	3.1 Wave initialization
	3.2 Current sheet formation
	3.3 Comparison of current sheet characteristics in ET-FFE and BHAC
	3.4 Weak turbulence development
	3.5 Local weak turbulence properties
	3.6 Weak turbulence and current sheets in relativistic magnetohydrodynamics

	4 Collisions of Alfvén wave packets
	4.1 Packet initialization
	4.2 Interaction dynamics

	5 Conclusions
	A Appendix A. Numerical convergence of the force-free MHD schemes
	B Appendix B. Non-ideal electric fields in (force-free) current sheets
	References

