

Functional Resistance Training Methods for Targeting Patient-Specific Gait Deficits: A Review of Devices and their Effects on Muscle Activation, Neural Control, and Gait Mechanics

Edward P. Washabaugh^{a,b}, Chandramouli Krishnan^{b,c,*}

^a*Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA.*

^b*Michigan Medicine Department of Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, MI, USA.*

^c*Michigan Robotics, University of Michigan, Ann Arbor, MI, USA*

* email: mouli@umich.edu

Abstract

Background: Injuries to the neuromusculoskeletal system often result in weakness and gait impairments. Functional resistance training during walking—where patients walk while a device increases loading on the leg—is an emerging approach to combat these symptoms. However, there are many methods that can be used to resist the patient, which may alter the biomechanics of the training. Thus, all methods may not address patient-specific deficits.

Methods: We performed a comprehensive electronic database search to identify articles that acutely (i.e., after a single training session) examined how functional resistance training during walking alters muscle activation, gait biomechanics, and neural plasticity. Only articles that examined these effects during training or following the removal of resistance (i.e., aftereffects) were included.

Findings: We found 41 studies that matched these criteria. Most studies (24) used passive devices (e.g., weighted cuffs or resistance bands) while the remainder used robotic devices. Devices varied on if they were wearable (14) or externally tethered, and the type of resistance they applied (i.e., inertial [14], elastic [8], viscous [7], or customized [12]). Notably, these methods provided device-specific changes in muscle activation, biomechanics, and spatiotemporal and kinematic aftereffects. Some evidence suggests this training results in task-specific increases in neural excitability.

Interpretation: These findings suggest that careful selection of resistive strategies could help target patient-specific strength deficits and gait impairments. Also, many

approaches are low-cost and feasible for clinical or in-home use. The results provide new insights for clinicians on selecting an appropriate functional resistance training strategy to target patient-specific needs.

Keywords: Physical Therapy, Rehabilitation, Spinal Cord Injury, Stroke, Cerebral Palsy, Transcranial Magnetic Stimulation

¹ 1. Introduction

² Walking is a motor skill that is intrinsically learned at a young age; however, this
³ seemingly basic skill is actually carried out by a complex network of interdependent
⁴ pathways in the neural and muscular systems. Hence, damage to these systems due
⁵ to neurological or orthopedic conditions (e.g., stroke, spinal cord injury, cerebral
⁶ palsy, osteoarthritis, etc.) often results in gait abnormalities or disability [1, 2, 3, 4].
⁷ Unfortunately, current trends in public health—such as the increase in the ageing
⁸ population—suggest that the prevalence of many of the conditions will grow [5].

⁹ Individuals with these neurological or orthopedic conditions typically exhibit mo-
¹⁰ tor impairments, with the most common being muscle weakness [6, 7, 8]. Strength is
¹¹ highly correlated with functional activity performance [9, 10, 11], and therapists fre-
¹² quently prescribe resistance training with the goal of improving walking [8, 12, 13, 14].
¹³ While resistance training alone can improve walking function (e.g., increased walk-
¹⁴ ing velocity or endurance) [15, 13, 16, 14], it has also been shown that resistance
¹⁵ training has limited transfer to functional activities [17, 18]. Rather, functional
¹⁶ activities, such as walking, are better improved using task-specific training (e.g.,
¹⁷ training patients to walk by specifically practicing walking overground or on a tread-
¹⁸ mill) [17, 18, 19]. This is not surprising considering that task-specific training is a
¹⁹ key determinant for inducing plastic changes in the nervous system [20, 21, 22, 19].
²⁰ Given the unique contributions that task-specific and resistive training offer for gait
²¹ rehabilitation, therapeutic interventions that combine these two training types may
²² be more effective than either training type by itself [23].

²³ Functional resistance training (FRT) is essentially a fusion of resistive and task-
²⁴ specific training principles, and is administered by having a patient perform a task-
²⁵ specific training against an applied resistance. As such, it is specifically designed to
²⁶ improve functional ability by: 1) increasing voluntary muscle force throughout the
²⁷ range of motion for a task and 2) modulating force in muscle groups appropriate
²⁸ for the activity being trained [24, 25]. Historically, FRT principles have been widely
²⁹ applied for training sport performance, such as when a sprinter trains by running
³⁰ with a parachute attached to their waist. By comparison, these training techniques
³¹ have only recently been adapted by the rehabilitation community for gait training.

32 In this context, FRT during walking is applied by having the patient walk with
33 a resistance applied to their lower-extremity. Resistance can be applied to the legs
34 using many different strategies, which vary based on the type of device used, how that
35 device interfaces with the user, and the type of resistance that the device supplies.
36 Notably, the characteristics of the resistance—such as the force profile, the timing
37 relative to the gait cycle, and the muscles that are targeted—vary greatly depending
38 on strategy that is being used. Ultimately, the resistive strategy selected for FRT
39 during walking could greatly affect the outcomes of the training.

40 In this review, we highlight the types of devices that have been used to apply
41 external loads for FRT during walking, as well as the characteristics of the unique
42 resistances provided by each device. We also discuss potential trade-offs and the
43 different effects that may occur due to acute training (i.e., a single training session)
44 with these various resistive strategies. Specifically, we review how FRT has been
45 applied during walking to alter joint moments and muscle activation, how training
46 has elicited kinematic and spatiotemporal aftereffects once resistance is removed, and
47 how it has altered neural control of walking. These findings can be used by clinicians
48 when selecting a resistive strategy to treat their patients' specific impairments and
49 functional goals. Throughout the review, we also raise attention to many areas where
50 future research is required to advance our understanding of FRT.

51 **2. Methods**

52 *2.1. Literature Search*

53 The literature searches were performed in MEDLINE via PubMed, Web of Science,
54 Embase, and Science Direct using the following permutations of the text and
55 keyword combinations (Fig. 1). Relating to the functional task we searched for “gait”
56 and “walking”, along with the type of training being “resistance”. The search was
57 also conducted based on the variables measured, which included “electromyography”,
58 “kinematics”, “transcranial magnetic stimulation”, “spatiotemporal”, “spatial”, and
59 “temporal” along with relevant abbreviations. The references found from this com-
60 puterized search were manually inspected to identify other potential studies that
61 fit our inclusion criteria. All databases were searched for relevant articles up until
62 August 4, 2020.

63 We found 1,638 articles that matched these criteria. We then removed all dupli-
64 cate articles to produce 910 unique articles. From these articles, we selected those
65 that met our inclusion criteria. Mainly, studies were included if they were original
66 investigations related to FRT during walking (see the operational definition below),
67 published as peer-reviewed journal articles (i.e., excluding conference proceedings),

68 and designed to measure the acute effects/adaptations (i.e., excluding clinical trials)
69 of FRT during walking on adult human subjects (i.e., excluding trials on infants or
70 animals). Additionally, studies were only included if they had appropriate statisti-
71 cal analysis (i.e., excluding case studies and series). Eligible articles were reviewed
72 to see if they collected at least one of the following variables: muscle activation or
73 joint moments before and during training; spatiotemporal gait parameters or kine-
74 matic variables before training and after removing the resistance (i.e., aftereffects
75 from washout periods or catch trials); or transcranial magnetic stimulation variables
76 before and during training, or before and after training. Additional articles were
77 excluded because they only measured from the unresisted leg or presented variables
78 as asymmetries. In total, 41 articles met all of our criteria (Table 1).

79 From these articles, we extracted the population that was trained, the type of
80 device that was used to apply resistance (i.e., whether it was a passive device or an
81 active motorized robot), the mode that was used to apply the resistance (i.e., teth-
82 ered to a point on the participant [point-based] or directly to the participant’s joint
83 [joint-based]), the resistance type (e.g., whether the resistance was inertial, elastic,
84 viscous, etc.), and the movement that the device was resisting. For all of our vari-
85 ables of interest (muscle activations, joint moments, kinematics, spatiotemporal gait
86 parameters, and transcranial magnetic stimulation), we report all of the statistically
87 significant findings relative to baseline (i.e., normal walking) and indicate the direc-
88 tion of change with an arrow pointing upwards (variable increased) or downwards
89 (variable decreased).

90 *2.2. Functional Resistance Training Operational Definition*

91 During screening, studies were excluded based on whether they performed FRT
92 during walking. We defined this based on whether the study used a device to in-
93 crease the loading experienced by the leg during walking beyond what would be
94 experienced during normal unassisted walking. We would like to note that many
95 abstractions of existing therapies could be viewed as FRT but were not included in
96 this review. Examples include body-weight supported treadmill training, split-belt
97 treadmill training, stair climbing, inclined walking, electrical stimulation, perturba-
98 tion research, and prosthesis research. Lastly, we have not reviewed many studies
99 that examined the effects of ankle-foot orthoses because these studies often aim to
100 assist the user, report the net moments from both the user and device, and do not
101 make comparisons to walking without the device. Additionally, the biomechanical
102 effects of walking with compliant ankle-foot orthoses have been reviewed elsewhere
103 [26].

104 **3. Results**

105 *3.1. Populations Being Researched*

106 While FRT during walking is often motivated for use in populations with neu-
107 rological injuries, a majority of this acute research has actually been performed on
108 able-bodied individuals (30/41 studies). This is likely due to the ease of recruit-
109 ing able-bodied participants, and the need to validate methods before testing on
110 patients. The remainder of the studies were performed on individuals with neuro-
111 logical injuries, including spinal cord injuries (5/41 studies), strokes (5/41 studies),
112 and cerebral palsy (4/41 studies). A single study was performed in individuals with
113 knee osteoarthritis, an orthopedic condition.

114 *3.2. Devices for Functional Resistance Training*

115 The devices that have been applied for FRT during walking range from sim-
116 ple passive devices to advanced active rehabilitation robots (Fig. 2). We refer to
117 these devices as active or passive based on how energy flows between the device
118 and user. Active rehabilitation robots use active actuators (e.g., motors), which
119 add external energy to the user in order to provide resistance. Meanwhile, passive
120 devices—including weighted cuffs/vests, elastic bands, and brakes—do not add ex-
121 ternal energy to the user. Rather, resistance is produced in passive devices when the
122 user exerts their own internal energy on the device. In some cases, the energy put
123 into the device can be stored and returned to the user; however, this is not external
124 power as it was originally input by the user.

125 We found that most studies performed FRT during walking using passive devices
126 (24/41 studies). This majority likely stems from the accessibility and affordability
127 of these devices, many of which are already possessed by rehabilitation clinics (e.g.,
128 weighted cuffs and resistance bands). However, several studies have also used active
129 robots (17/41 studies). Typically, these studies have used custom devices built for
130 research purposes or programmed commercially available rehabilitation robots to be
131 resistive.

132 *3.3. Modes of Interfacing with the Limb*

133 Within each of these classes of devices (i.e., active robots and passive devices),
134 there are two separate modes that can be used to interface with the limb. By modes,
135 we are referring to whether the resistance is applied at a point on the user (i.e.,
136 attached externally to a segment on the body, as is typically done with weights,
137 resistance bands, or tethered robots; sometimes referred to as an end-effector based)
138 or directly to the joints of the user (as is common with wearable braces or exoskeleton

139 robots). Ultimately, the differences between these two modes can affect how a device
140 is able to resist the user during training, as point loads make it more difficult to target
141 specific joints (Fig. 3). Despite this, we found that most studies applied resistance
142 through point loads (28/41 studies), while only 14 studies used joint loads.

143 *3.4. Types of Resistances*

144 While the mode of applying the resistance dictates how the device is attached to
145 the user, the type of resistance largely dictates the characteristics of the resistance.
146 Generally, resistances can be characterized as inertial, elastic, viscous, frictional, or
147 any combination thereof. In passive devices, the type of resistance is inherent to the
148 type of passive element that the device uses (e.g., mass, spring, damper, etc.). In
149 active robots, the motors can potentially be programmed to emulate any of these
150 resistance types, or provide customized (i.e., user-defined) resistances that are not
151 possible with passive elements. All of these resistance types will provide different
152 resistance profiles based on the mechanics of the movement: inertial resistance de-
153 pends on acceleration, elastic resistance scales based on position, viscous resistance
154 depends on velocity, and friction provides a constant resistance (Fig. 4A). Notably,
155 the resistance type employed by the device will also determine the type of muscle
156 contraction (i.e., concentric or eccentric) that can be trained (Fig. 4B). While most
157 devices can engage the user’s muscles concentrically, eccentric contractions can only
158 be elicited by a device that can exert energy on the user (i.e., active robots, or inertial
159 and elastic devices returning stored energy to the user).

160 We found that most of the studies we examined used inertial resistances (14/41
161 studies) by attaching a weight at some point on the body. In comparison, eight
162 studies used viscous resistances and 7 studied elastic resistances. Several studies
163 also examined more customized robotic resistances (12/41 studies). Many of these
164 studies used the robot to emulate a system of passive devices (creating a viscoelastic
165 resistance), while others used closed-loop control to create a constant resistance or
166 one that was proportional to some other variable.

167 *3.5. Joint Moments and Muscle Activation During Training*

168 It is important to note that the mode and type of resistance cannot be viewed in-
169 dependently—every resistive device must utilize both—and the combination of these
170 factors determines the resistance that the patient experiences. Further, because gait
171 is a repetitive task with stereotypical kinematics, each resistive strategy is going to be
172 stereotypical in its ability to resist the user. Hence, the FRT strategy largely dictates
173 the muscles groups, types of muscle contraction, joint action, and the phase of gait
174 when a device is able to apply resistance. This section examines all of the studies

175 that have measured muscle activation or joint moments while providing FRT (Table
176 2). For reference, Supplemental Fig. 1 depicts internal joint moments and muscle
177 activation changes with different FRT strategies using a computer-based simulation
178 [27].

179 *3.5.1. Inertial Point Resistances*

180 Typically, point-based inertial resistances have been administered by placing
181 weights on the foot/shank, thigh, pelvis, or torso. When attached to the foot/shank,
182 weighted cuffs increased hip extension and flexion moments during the stance phase,
183 as well as hip flexion and knee flexion moments during the swing phase [28, 29, 30].
184 This strategy also increased muscle activation of the quadriceps at the transition
185 between stance and swing [28], the hamstrings during swing [31], and the triceps
186 surae during stance [28]. Weighted cuffs attached to the thigh or pelvis had no sig-
187 nificant effects on joint moments; however, triceps surae activation increased during
188 the stance phase [28, 32]. Weights attached to the torso (e.g., using a backpack)
189 [33, 34, 35, 36, 37] significantly increased hip extension, knee flexion and extension,
190 and ankle dorsi and plantarflexion moments during the stance phase [34, 35, 37].
191 This strategy also increased muscle activation of the quadriceps, hamstrings, and
192 triceps surae during the stance and swing phases [35, 36]. Inertial resistance pulling
193 backwards on the shank increased muscle activation of the quadriceps during the
194 pre-swing phase of gait [38].

195 *3.5.2. Elastic Point Resistances*

196 Pulling forward on the foot/shank with an elastic resistance band increased mus-
197 cle activation of the hamstrings during the early–mid swing phase [39, 40]. However,
198 when the band was placed proximally on the shank, hamstring activation decreased
199 during the stance phase [41]. Pulling backwards on the pelvis increased muscle acti-
200 vation of the triceps surae muscles during the terminal stance and pre-swing phases
201 of gait [42].

202 *3.5.3. Custom Point Resistances*

203 An active robotic cable device that pulled backwards on the shank with a vis-
204 coelastic resistance [43, 44] increased muscle activation of the tibialis anterior during
205 the swing phase [43], and it would likely increase quadriceps activation as well if
206 tested on less impaired individuals. A robotic walker that pulled backwards on
207 the pelvis with a constant force [45] increased muscle activation of the quadriceps,
208 tibialis anterior, gluteus maximus, and adductor longus muscles during the stance
209 phase of gait. Yet another motorized cable device pulled downwards on the pelvis

210 with a constant force [46]; however, this strategy did not significantly alter muscle
211 activation.

212 *3.5.4. Elastic Joint Resistances*

213 An ankle orthosis with elastic tubing between the heel and calf has been used
214 to resist to ankle dorsiflexion during walking [47]. This strategy increased muscle
215 activation of the tibialis anterior muscle during pre- and initial-swing [47]. Future
216 research in this area has large potential given the availability of elastic ankle-foot
217 orthoses.

218 *3.5.5. Viscous Joint Resistances*

219 Viscous resistances have been applied to the hip and/or knee joints using active
220 robotic exoskeletons (i.e., the Lokomat) [48, 31, 49, 50, 51] and passive braces [52, 53].
221 In each instance, the resistance has been applied to both flexion and extension of the
222 joint (i.e., bidirectionally). When applied to the hip, this strategy increased muscle
223 activation of the rectus femoris and tibialis anterior during the swing phase of gait
224 [50, 49]. When applied to the knee, this strategy mainly increased muscle activation
225 of the quadriceps, hamstrings, and tibialis anterior during the swing phase [52, 53].
226 However, this strategy also increased activation of the triceps surae and gluteus
227 medius during the swing phase, as well as the quadriceps, hamstrings, and gluteus
228 medius during the stance phase [52]. Resisting both the hip and knee increased
229 muscle activation of the hamstrings during pre-swing, and the rectus femoris, medial
230 hamstring, and tibialis anterior during mid-swing [48, 51]. These effects were absent
231 when tested in individuals with spinal cord injury [31].

232 *3.5.6. Custom Joint Resistances*

233 Several active robotic exoskeletons have been programmed to provide custom
234 resistances. One device provided a constant torque to resist either knee flexion
235 or extension [54]. With this device, resisting extension increased activation of the
236 quadriceps muscles and resisting flexion reduced activation of the vastus medialis
237 [54]. An electrohydraulic ankle foot orthosis has also been programmed resist to
238 ankle dorsiflexion during the early swing phase [55]. This strategy increased muscle
239 activation of the tibialis anterior muscle from pre- to mid-swing [55]. Lastly, a
240 wearable, soft robot has been used to resist ankle plantar flexion [56]. The resistance
241 provided by this robot was unique because the torque was proportional to the real-
242 time ankle moment; thus, mimicking normal joint loading. During training, this
243 strategy increased muscle activation of the soleus while decreasing muscle activation
244 of the tibialis anterior during the stance phase [56].

245 *3.6. Aftereffects Following the Removal of Resistance*

246 Aftereffects are typically measured when studying motor adaptation. Motor
247 adaptation occurs when a movement (in this case, walking) is practiced in the pres-
248 ence of a perturbation [57, 58], such as the extra loading presented by a resistive
249 device. During practice with the perturbation, one’s perception of the movement
250 gets altered and the nervous system gradually creates a new set of controls for the
251 movement. Finally, once the perturbation is removed, some aspects of the modified
252 movement persist, which are referred to as aftereffects. These aftereffects contain
253 information about how the nervous system is being driven to adapt [59, 60] and may
254 indicate potential gains a particular training can produce, as aftereffects have been
255 seen to transfer to overground walking after training [61, 62, 63, 64, 53]. In this
256 section, we examine how different strategies for FRT during walking have produced
257 acute kinematic and spatiotemporal aftereffects (i.e., following a single session of
258 training) (Table 3).

259 *3.6.1. Inertial Point Resistances*

260 Aftereffects have been measured with inertial resistances by placing weighted cuffs
261 on the shank [30, 62, 31, 65]. Once resistance was removed with this strategy, indi-
262 viduals walked with increased knee flexion [31, 65]. Spatiotemporally, this resulted in
263 increased overground gait speed and step length [62] and foot clearance when walk-
264 ing on a treadmill [30]. Pulling backwards on the shank with an inertial resistance
265 [38, 66, 63] increased hip flexion and reduced hip extension once the resistance was
266 removed [38]. Spatiotemporally, this strategy increased step length and single leg
267 support time while reducing swing time [38, 66]. It also increased overground gait
268 speed and stride length [63].

269 *3.6.2. Elastic Point Resistances*

270 Pulling forward on the foot with an elastic resistance band decreased foot velocity
271 once the resistance was removed [40]. A passive device that pulled downward on the
272 pelvis did not have an effect on sagittal plane hip, knee, or ankle kinematics [67].

273 *3.6.3. Custom Point Resistances*

274 Several studies have provided a viscoelastic resistance using a cable robot to pull
275 backwards on the shank [43, 68, 69, 44] and thigh [64]. While none of these studies
276 have measured kinematic aftereffects, spatiotemporally, this strategy increased over-
277 ground gait speed [64] and step/stride length [43, 68, 69, 64, 44]. Another active
278 robot has been used to pull downward on the pelvis with a custom force [46]. With
279 this strategy, hip range of motion and cadence were unchanged once the resistance
280 was removed; however, the stance phase duration increased.

281 *3.6.4. Elastic Joint Resistances*

282 Walking with resistance to ankle dorsiflexion during the swing phase [47] resulted
283 in an aftereffect of increased ankle range of motion.

284

285 *3.6.5. Viscous Joint Resistances*

286 A bidirectional viscous resistance at the hip produced a kinematic aftereffect of
287 increased hip and knee flexion [50, 49]. Spatiotemporally, these aftereffects presented
288 as increased stride length and foot clearance [50, 49]. When applied at the knee,
289 this strategy produced aftereffects of increased hip and knee excursions [52, 53] and
290 increased overground gait speed [53]. When applied to the hip and knee concurrently,
291 viscous resistances produced a kinematic aftereffect of increased hip and knee flexion
292 [48].

293 *3.6.6. Custom Joint Resistances*

294 Walking with an active ankle-foot orthosis that resisted ankle dorsiflexion during
295 the swing phase significantly increased ankle dorsiflexion angle during the mid-swing
296 phase once the resistance was removed [55]. Joint-based resistances that emulated
297 pulling backwards on the shank were found to increase step length [70, 71].

298 *3.7. Neural Adaptations to Functional Resistance Training*

299 Very few articles have studied the neural effects of this training [72, 47, 73, 74]
300 and findings have been mixed. Refer to supplemental section 1 for details.

301 **4. Discussion**

302 FRT during walking is an emerging technique for rehabilitation following neu-
303 romusculoskeletal injury. As such, there are several different strategies that have
304 been used to apply resistance, which vary based on the type of device used, how the
305 device interfaces with the user, and the type of resistance that the device supplies.
306 Hence, we examined the different strategies that have been used to apply FRT dur-
307 ing walking, and how the characteristics of each resistive strategy altered the acute
308 effects of training (i.e., after a single training session). Specifically, we reviewed how
309 FRT has been applied during walking to alter joint moments and muscle activation,
310 how training has elicited kinematic and spatiotemporal aftereffects once resistance
311 is removed, and how it has altered neural control of walking. In this section, we will
312 discuss the significance of our findings, as well as any potential trade-offs to consider
313 when applying this training.

314 *4.1. Patient Populations that May Benefit*

315 While the majority of acute research on FRT during walking was performed
316 on able-bodied individuals, these studies were often motivated for individuals with
317 neurological injuries, including spinal cord injury, stroke, and cerebral palsy. This is
318 understandable, as FRT is largely based on principles of experience dependent neural
319 plasticity [20, 21, 22, 19]. However, we found that training strategies often had more
320 evident effects in able-bodied participants than individuals with neurological injuries
321 [48, 31, 43, 44]. This may have occurred because many participants with neurological
322 injuries were too impaired to overcome the resistance. Hence, it has been suggested
323 that patients with severe impairments following injuries could be better served with
324 assistive training rather than FRT [75].

325 Notably, patients with orthopedic injuries are underrepresented in this research.
326 We only found a single study trained individuals with osteoarthritis [33]. However,
327 following orthopedic injury or reconstructive surgery, most patients present with
328 muscle weakness, altered neural control, and functional impairments, which extend to
329 gait [2, 76]. Hence, individuals with orthopedic injuries could be prime beneficiaries
330 of this training, and future studies should be performed on these populations. Indeed,
331 preliminary evidence from pilot clinical trials indicate that FRT during walking could
332 have positive effects in individuals with anterior cruciate ligament (ACL) injuries
333 [77, 78].

334 *4.2. Types of Devices for Functional Resistance Training*

335 We found that most studies have either used active rehabilitation robots or pas-
336 sive devices to apply FRT during walking. While there are benefits to both types
337 of devices, there are also several trade-offs that must be considered when selecting
338 a device for training. In this section, we will discuss this broad spectrum of devices
339 (Fig. 2) and the practicality of their application for FRT during walking. Addition-
340 ally, we will introduce a third type of device that has the potential to alter how this
341 training is applied.

342 *4.2.1. Active Robots*

343 We will first consider active rehabilitation robots; we refer to this set of robots
344 as active because they use active actuators capable of either assisting or resisting
345 movement. There is large potential for training with active robots because the motors
346 can be controlled to provide unique force environments to the user. Additionally,
347 sensors on the robot allow therapists to track the progress of a patient throughout
348 training and offer opportunities to provide real-time feedback to the user through

349 interactive games. Given this upside, it is understandable that active robots have
350 been widely applied for FRT during walking.

351 However, a major issue with most active robots is that they are not very accessible
352 for patients or clinicians. First, a majority of these robots are custom-built,
353 which requires an investment and expertise. Second, commercially available robots
354 are very expensive, which prevents their widespread use in-home or in small clinics
355 [79]. Lastly, the commercial versions of these devices are typically used for assistive
356 training on heavily impaired individuals, and resistance settings are not available for
357 routine clinical use. For these reasons, clinicians are more likely to use the more
358 cost-effective passive devices instead of active robots.

359 *4.2.2. Passive Devices*

360 A majority of the studies in this review used passive devices for training. This was
361 likely because passive devices are very practical—they have the inherent ability to
362 provide large resistances at a fraction of the cost of a robot [80, 81]. Moreover, they
363 can be purchased at a local sporting goods store, which increases the feasibility of in-
364 home use by the patient. The downside to these passive devices is that they are not
365 controllable, so resistance must be scaled by manually adjusting the device. Further,
366 these devices are not typically instrumented with encoders and load cells, which
367 limits a clinician’s ability to monitor the patient’s compliance or recovery throughout
368 the training process, especially if the device is being used at home. Without these
369 capabilities, patients must be intrinsically motivated to train. Some of these issues
370 could potentially be remedied if the devices were instrumented in order to track
371 movement (e.g., using encoders or inertial sensors) or, as we will see in the next
372 section, if the passive elements were made controllable.

373 *4.2.3. Semi-Passive Robots*

374 There is another class of devices that exist in the middle ground between active
375 robots and passive devices (Fig. 2), which we refer to as semi-passive rehabilitation
376 robots [81]. These robots draw inspiration from passive devices by employing passive
377 elements to provide resistance to the patient; however, like with active robots, the
378 passive elements can be controlled by a computer. Thus, the resulting robotic devices
379 balance the cost and portability of passive devices, while still allowing for patient
380 monitoring and interactive treatment. Although removing motors typically sacrifices
381 the ability to assist the user during training, semi-passive robots may offer a cost-
382 effective way to provide FRT. While none of the articles we reviewed were semi-
383 passive, simple modifications could be made to make some of these devices controllable
384 [82].

385 *4.3. Differences in Modes of Interfacing With the Limb*

386 In this review, we distinguished devices based on how they interfaced with the
387 limb. That is, if they attached the resistive element to a point on the user (i.e., a
388 point-based resistance), or if the resistance was applied as a torque directly at the
389 joint (i.e., a joint-based resistance). From a mechanical viewpoint this distinction
390 is largely semantic, as point resistances can be applied to emulate a desired joint-
391 based resistance (i.e., torques) and vice versa (Fig. 3) [70]. However, in practice, the
392 differences between these two modes can have a profound effect on how a device is
393 able to resist the user during training and how exercise using that device should be
394 administered.

395 Joint-based resistances are desirable because they can be easily applied to target
396 patient-specific weaknesses. During rehabilitation, strength is typically measured at
397 the joint level using dynamometry or graded scales such as manual muscle testing
398 [83]. Hence, with a joint-based approach, muscle weakness can be detected at a
399 specific joint and a resistive torque can be prescribed to target the weakened muscle
400 group. While point-based approach can still provide targeted treatment, it is more
401 difficult. For example, 1) the torques experienced at the joints due to a point-based
402 resistance are often coupled with one another, 2) joints more proximal point where
403 the resistance is applied (i.e., with a larger lever arm) experience larger resistances,
404 and 3) the resistance with point-based loads is more dependent on anatomy and gait
405 kinematics (i.e., segment lengths and joint angles) (Fig. 3). Despite these limitations,
406 point-based devices can still provide utility for FRT. Additionally, we found that
407 a majority of the studies in this review actually used point-based device (28/41
408 studies). Hence, there are other factors to be considered when distinguishing between
409 these two modes.

410 Point and joint-based resistances can also differ based on their cost and ease of
411 use. Devices that provide point-based resistances are typically lower cost and easier
412 to set up than joint-based devices, especially if they are passive devices. This stems
413 from how they attach to the user with a simple strap/cuff; hence, more time can be
414 spent on training and a single device can be used on multiple patients. This is in
415 contrast with braces and exoskeletons, as care must be taken to fit the device to the
416 patient or it will not perform as intended. For these reasons, clinicians may choose to
417 train their patients using point- rather than joint-based devices. Hence, the decision
418 of which resistance mode to use may be based on pragmatic choices.

419 *4.4. How the Type of Resistance Could Affect Training*

420 While numerous types of resistive loads were identified by this review, it is difficult
421 to make comparisons between studies due to differences in the methods and variables

422 analyzed. As such, it is still unclear how altering the type of resistance affects
423 training outcomes. Undoubtedly there are differences in the resistance profiles that
424 are generated by different types of resistive elements (Fig. 4A), but only a single study
425 in this review tested multiple resistance types (inertial and viscous) [31]. Without
426 a larger number of acute studies, computer based analyses [27], or even randomized
427 controlled clinical trials, the role of resistance type for FRT will remain unclear.

428 We do know that the type of resistance dictates the type of muscle contractions
429 that can be elicited during training (Fig. 4B) and how the resistance feels to the user.
430 Inertial, elastic, and customized robotic resistances permit concentric, eccentric, and
431 even isometric muscle contractions during training, while friction and viscous re-
432 sistances only permit concentric muscle contraction [84]. The ability to provide
433 eccentric training may be an advantage, as eccentric training can better promote
434 strength when compared with concentric training [85, 86, 87]. However, strength
435 also increases when training involves concentric muscle contractions [88]. It has been
436 speculated that viscous resistances could benefit power training, as the peak force
437 requirements when using a viscous resistance coincide with the peak velocity profile
438 of the movement (Fig. 4A) [89]. While FRT during walking is generally regarded as
439 safe, the same mechanism that allows for eccentric contractions also poses a poten-
440 tial safety risk, as the momentum of the weight, recoil of the spring, or unvalidated
441 programming in a robot could hyperextend the user's limb during training. For
442 this reason, resistance types that do not exert energy on the user (i.e., viscous and
443 friction) may be the safest options.

444 The feeling of the resistance (i.e., the haptics) also affects how widely a device will
445 be adopted. Inertial, elastic, and viscous resistances have different haptics but feel
446 smooth because the resistance scales with the mechanics of the movement. Notably,
447 none of the studies in this review applied friction based resistance training during
448 walking. This is likely because friction based resistance feels jerky due to instability at
449 the beginning and end of a movement (often referred to as stiction) (Fig. 4A). Stiction
450 occurs because the coefficient of friction (the constant that determines the magnitude
451 of the resistance) is different when an object is at rest (where the coefficient is larger)
452 or in motion. In order to avoid this unpleasant feeling, friction is often minimized in
453 mechanical systems. However, the haptics of resistance types is a potential area for
454 future research, and it is possible that all resistance types have a role to play.

455 *4.5. Applying Biomechanics and Aftereffects Results*

456 The main goal of this review was to examine different strategies that have been
457 used to apply resistance during walking and how these strategies alter the outcomes
458 of acute training. Generally, we found that different resistive strategies varied in

459 their ability to alter gait biomechanics (i.e., muscle activations and moments) during
460 training and aftereffects following the removal of the resistance. Given that muscle
461 strength and functional deficits vary between patients, we do not believe that there
462 is a single resistive strategy that can be applied uniformly. Instead, clinicians must
463 select a resistive strategy that will work for their patient given their current impair-
464 ments (e.g., strength deficits and kinematic abnormalities) and functional goals (e.g.,
465 to reduce fall risk or increase gait speed), while remaining feasible for use in their
466 clinic or home. We hope the information within this review can serve as a reference
467 to inform these decisions.

468 Interpreting biomechanics data is relatively straightforward. When prescribing
469 FRT during walking, we suggest that a strategy be applied based on patient-specific
470 strength deficits. Once strength deficits are identified, we would suggest applying a
471 resistive strategy that has been shown to increase the joint moment of the specific
472 action that is weakened, or in the muscles that contribute to that joint moment (Table
473 2). A similar logic can be applied to aftereffects. That is, we would suggest that
474 any kinematic or spatiotemporal deficits be identified using either motion capture,
475 inertial measurement units, a gait mat, etc. Once the desired outcome is identified,
476 Table 3 can be used to identify a resistive strategy has produced increases in that
477 particular outcome. When referring to the tables in this review, please note that
478 all variables were not measured by each study. Hence, it is possible that a resistive
479 strategy could have an effect that is not indicated simply because it has not been
480 measured.

481 We must note that using aftereffects to predict the outcomes for rehabilitation
482 is an active area of research. As such, it is not yet certain whether the afteref-
483 fects observed after an acute training are retained in the patient's normal walking
484 pattern following an intervention [90]. While acute aftereffects have been seen to per-
485 sist in overground walking following training [61, 62, 63, 64, 53], patients typically
486 deadapt once the resistance is removed. Clinical trials have found that aftereffects
487 are present after an intervention and can persist for months [91, 92, 93, 94, 95], but
488 it is unclear if this is an improvement over the standard of care [96, 93]. At the very
489 least, aftereffects are a surrogate variable that represent the muscles that are being
490 trained. For example, pulling backwards on the shank increases activation of the
491 rectus femoris during training, which produces an aftereffect of increased step length
492 [38]. Hence, even if aftereffects do not represent cumulative gains from a training,
493 they still indicate that the muscles integral to that task are being trained.

494 *4.6. Interpreting Neural Adaptations using TMS*

495 More studies are needed to elucidate the effects that FRT during walking has on
496 neural excitability. Refer to supplemental section 2 for in-depth discussion.

497 *4.7. Feedback during Training*

498 Feedback was seldomly applied in conjunction with FRT, while recent studies
499 have found that feedback increases the intensity of training several fold [82]. Hence,
500 feedback/coaching may bolster the effects of this training for future studies (see
501 supplemental section 3 for details).

502 **5. Conclusion**

503 This review examined the strategies that have been used to apply FRT during
504 walking, and characterized how resistive strategies altered the acute effects of
505 training—including biomechanics during training, aftereffects once resistance was
506 removed, and neural excitability. We found that strategies varied in their ability to
507 alter gait biomechanics (i.e., muscle activations and moments) during training and
508 aftereffects following the removal of the resistance. Overall we believe that resistive
509 strategies can be selected to target patient specific strength deficits and gait impair-
510 ments, but this selection should also account for affordability and ease of use of the
511 device. Additionally, more research is needed to understand how this training can
512 alter neural control of walking.

513 **6. Conflict of Interest Statement**

514 The authors have no financial or personal relationships with other people or
515 organizations that could inappropriately influence (bias) their work.

516 **7. Acknowledgements**

517 This work was supported in part by the National Institutes of Health (Grant R21
518 HD092614), the National Science Foundation (Grants 1804053, and DGE 1256260),
519 and the UM-BICI Collaboratory Initiative. Any opinions, findings, and conclusions
520 or recommendations expressed in this material are those of the authors and do not
521 necessarily reflect the views of the funding sources.

522 **References**

523 [1] J. Perry, M. Garrett, J. K. Gronley, and S. J. Mulroy, "Classification of walking
524 handicap in the stroke population.," *Stroke*, vol. 26, no. 6, pp. 982–989, 1995.

525 [2] B. Pietrosimone, J. T. Blackburn, D. A. Padua, S. J. Pfeiffer, H. C. Davis,
526 B. A. Luc-Harkey, M. S. Harkey, L. Stanley Pietrosimone, B. S. Frank, R. A.
527 Creighton, G. M. Kamath, and J. T. Spang, "Walking gait asymmetries 6
528 months following anterior cruciate ligament reconstruction predict 12-month
529 patient-reported outcomes.," *J. Orthop. Res.*, vol. 36, pp. 2932–2940, nov 2018.

530 [3] L. D. Duffell, S. J. Jordan, J. P. Cobb, and A. H. McGregor, "Gait adaptations
531 with aging in healthy participants and people with knee-joint osteoarthritis.,"
532 *Gait Posture*, vol. 57, pp. 246–251, sep 2017.

533 [4] G. Chen, C. Patten, D. H. Kothari, and F. E. Zajac, "Gait differences between
534 individuals with post-stroke hemiparesis and non-disabled controls at matched
535 speeds.," *Gait Posture*, vol. 22, pp. 51–56, aug 2005.

536 [5] A. Pollock, G. Baer, P. Campbell, P. L. Choo, A. Forster, J. Morris, V. M.
537 Pomeroy, and P. Langhorne, "Physical rehabilitation approaches for the recovery
538 of function and mobility following stroke.," *Cochrane Db. Syst. Rev.*, vol. 2014,
539 p. CD001920, apr 2014.

540 [6] G. Williams, M. Kahn, and A. Randall, "Strength training for walking in neu-
541 rologic rehabilitation is not task specific: A focused review," *Am. J. Phys. Med.*
542 *Rehab.*, vol. 93, no. 6, pp. 511–522, 2014.

543 [7] S. J. Olney and C. Richards, "Hemiparetic gait following stroke. part i: Char-
544 acteristics," *Gait Posture*, vol. 4, no. 2, pp. 136–148, 1996.

545 [8] L. A. Harvey, "Physiotherapy rehabilitation for people with spinal cord in-
546 juries.," *J. of Physiother.*, vol. 62, pp. 4–11, jan 2016.

547 [9] R. W. Bohannon, "Muscle strength and muscle training after stroke.," *J. Reha-*
548 *bil. Med.*, vol. 39, pp. 14–20, jan 2007.

549 [10] A.-L. Hsu, P.-F. Tang, and M.-H. Jan, "Analysis of impairments influencing gait
550 velocity and asymmetry of hemiplegic patients after mild to moderate stroke.,"
551 *Arch. Phys. Med. Rehab.*, vol. 84, pp. 1185–1193, aug 2003.

552 [11] A. Pouliot-Laforte, A. Parent, R. Hamdy, P. Marois, M. Lemay, and L. Ballaz,
553 “Relationship between lower limb strength and walking capacities in children
554 with spastic bilateral cerebral palsy.,” *Disabil. Rehabil.*, pp. 1–7, sep 2020.

555 [12] L. F. Teixeira-Salmela, S. J. Olney, S. Nadeau, and B. Brouwer, “Muscle
556 strengthening and physical conditioning to reduce impairment and disability
557 in chronic stroke survivors.,” *Arch. Phys. Med. Rehab.*, vol. 80, pp. 1211–1218,
558 oct 1999.

559 [13] U.-B. Flansbjer, M. Miller, D. Downham, and J. Lexell, “Progressive resistance
560 training after stroke: effects on muscle strength, muscle tone, gait performance
561 and perceived participation.,” *J. Rehabil. Med.*, vol. 40, pp. 42–48, jan 2008.

562 [14] M. C. Cramp, R. J. Greenwood, M. Gill, J. C. Rothwell, and O. M. Scott, “Low
563 intensity strength training for ambulatory stroke patients.,” *Disabil. Rehabil.*,
564 vol. 28, pp. 883–889, jul 2006.

565 [15] S. Pak and C. Patten, “Strengthening to promote functional recovery poststroke:
566 an evidence-based review.,” *Top. Stroke Rehabil.*, vol. 15, no. 3, pp. 177–99,
567 2008.

568 [16] C.-J. Liu and N. K. Latham, “Progressive resistance strength training for im-
569 proving physical function in older adults.,” *Cochrane Db. Sys. Rev.*, vol. 2009,
570 p. CD002759, jul 2009.

571 [17] K. J. Sullivan, D. A. Brown, T. Klassen, S. J. Mulroy, T. Ge, S. P. Azen, and
572 C. J. Winstein, “Effects of Task-Specific Locomotor and Strength Training in
573 Adults Who Were Ambulatory After Stroke: Results of the STEPS Randomized
574 Clinical Trial,” *Phys. Ther.*, vol. 87, pp. 1580–1602, dec 2007.

575 [18] D. E. Krebs, D. M. Scarborough, and C. A. McGibbon, “Functional vs. strength
576 training in disabled elderly outpatients.,” *Am. J. Phys. Med. Rehab.*, vol. 86,
577 pp. 93–103, feb 2007.

578 [19] T. J. Carroll, S. Riek, and R. G. Carson, “Neural adaptations to resistance
579 training: implications for movement control.,” *Sports Med.*, vol. 31, no. 12,
580 pp. 829–840, 2001.

581 [20] J. A. Kleim and T. A. Jones, “Principles of experience-dependent neural plastic-
582 ity: implications for rehabilitation after brain damage.,” *J. Speech Lang. Hear.
583 R.*, vol. 51, no. 1, pp. S225–39, 2008.

584 [21] R. L. Harvey, "Improving poststroke recovery: neuroplasticity and task-oriented
585 training.," *Curr. Treat. Options Cardiovasc. Med.*, vol. 11, pp. 251–259, jun
586 2009.

587 [22] M. Maier, B. R. Ballester, and P. F. M. J. Verschure, "Principles of Neurore-
588 habilitation After Stroke Based on Motor Learning and Brain Plasticity Mech-
589 anisms.," *Front. Syst. Neurosci.*, vol. 13, p. 74, 2019.

590 [23] J. J. Eng and P.-F. Tang, "Gait training strategies to optimize walking ability
591 in people with stroke: a synthesis of the evidence.," *Expert Rev. Neurother.*,
592 vol. 7, pp. 1417–1436, oct 2007.

593 [24] C. Donaldson, R. Tallis, S. Miller, A. Sunderland, R. Lemon, and V. M.
594 Pomeroy, "Effects of conventional physical therapy and functional strength
595 training on upper limb motor recovery after stroke: a randomized phase II
596 study.," *Neurorehab. Neural Re.*, vol. 23, no. 4, pp. 389–397, 2009.

597 [25] E. V. Cooke, R. C. Tallis, A. Clark, and V. M. Pomeroy, "Efficacy of functional
598 strength training on restoration of lower-limb motor function early after stroke:
599 phase I randomized controlled trial.," *Neurorehab. Neural Re.*, vol. 24, no. 1,
600 pp. 88–96, 2010.

601 [26] D. Totah, M. Menon, C. Jones-Hershinow, K. Barton, and D. H. Gates, "The
602 impact of ankle-foot orthosis stiffness on gait: A systematic literature review.,"
603 *Gait Posture*, vol. 69, pp. 101–111, mar 2019.

604 [27] E. P. Washabaugh, T. E. Augenstein, and C. Krishnan, "Functional resistance
605 training during walking: Mode of application differentially affects gait biome-
606 chanics and muscle activation patterns.," *Gait Posture*, vol. 75, pp. 129–136,
607 jan 2020.

608 [28] R. C. Browning, J. R. Modica, R. Kram, and A. Goswami, "The effects of
609 adding mass to the legs on the energetics and biomechanics of walking," *Med.
610 Sci. Sport. Exerc.*, vol. 39, no. 3, pp. 515–525, 2007.

611 [29] C. Duclos, S. Nadeau, N. Bourgeois, L. J. Bouyer, and C. L. Richards, "Ef-
612 ffects of walking with loads above the ankle on gait parameters of persons with
613 hemiparesis after stroke.," *Clin. Biomech.*, vol. 29, pp. 265–71, mar 2014.

614 [30] J. W. Noble and S. D. Prentice, "Adaptation to unilateral change in lower limb
615 mechanical properties during human walking," *Exp. Brain Res.*, vol. 169, no. 4,
616 pp. 482–495, 2006.

617 [31] T. Lam, M. Wirz, L. Lünenburger, and V. Dietz, “Swing phase resistance en-
618 hances flexor muscle activity during treadmill locomotion in incomplete spinal
619 cord injury.,” *Neurorehab. Neural Re.*, vol. 22, no. 5, pp. 438–446, 2008.

620 [32] C. P. McGowan, R. R. Neptune, and R. Kram, “Independent effects of weight
621 and mass on plantar flexor activity during walking: implications for their con-
622 tributions to body support and forward propulsion.,” *J. Appl. Physiol.*, vol. 105,
623 pp. 486–494, aug 2008.

624 [33] A. J. Kubinski and J. S. Higginson, “Strategies used during a challenging
625 weighted walking task in healthy adults and individuals with knee osteoarthritis.,” *Gait Posture*, vol. 35, pp. 6–10, jan 2012.

627 [34] R. Krupenevich, P. Rider, Z. Domire, and P. DeVita, “Males and Females Re-
628 spond Similarly to Walking With a Standardized, Heavy Load.,” *Mil. Med.*,
629 vol. 180, pp. 994–1000, sep 2015.

630 [35] A. Silder, S. L. Delp, and T. Besier, “Men and women adopt similar walking
631 mechanics and muscle activation patterns during load carriage.,” *J. Biomech.*,
632 vol. 46, pp. 2522–2528, sep 2013.

633 [36] K. M. Simpson, B. J. Munro, and J. R. Steele, “Backpack load affects lower
634 limb muscle activity patterns of female hikers during prolonged load carriage.,”
635 *J. Electromyogr. Kines.*, vol. 21, pp. 782–788, oct 2011.

636 [37] D. H. Chow, M. L. Kwok, A. C. Au-Yang, A. D. Holmes, J. C. Cheng, F. Y. Yao,
637 and M. S. Wong, “The effect of backpack load on the gait of normal adolescent
638 girls,” *Ergonomics*, vol. 48, no. 6, pp. 642–656, 2005.

639 [38] D. N. Savin, S.-C. Tseng, and S. M. Morton, “Bilateral adaptation during lo-
640 comotion following a unilaterally applied resistance to swing in nondisabled
641 adults.,” *J. Neurophysiol.*, vol. 104, no. 6, pp. 3600–11, 2010.

642 [39] A. Blanchette and L. J. Bouyer, “Timing-specific transfer of adapted muscle ac-
643 tivity after walking in an elastic force field.,” *J. Neurophysiol.*, vol. 102, pp. 568–
644 577, jul 2009.

645 [40] A. K. Blanchette, H. Moffet, J.-S. Roy, and L. J. Bouyer, “Effects of repeated
646 walking in a perturbing environment: a 4-day locomotor learning study,” *J.
647 Neurophysiol.*, vol. 108, no. 1, pp. 275–284, 2012.

648 [41] Y. K. Shin, D. R. Lee, D. H. Kim, J. J. Lee, S. J. H. You, C. H. Yi, and
649 H. S. Jeon, “Effects of novel tubing gait on neuromuscular imbalance in cerebral
650 palsy.,” *NeuroRehabilitation*, vol. 35, no. 3, pp. 587–596, 2014.

651 [42] J. S. Gottschall and R. Kram, “Energy cost and muscular activity required
652 for propulsion during walking.,” *J. Appl. Physiol.*, vol. 94, pp. 1766–1772, may
653 2003.

654 [43] S.-C. Yen, J. M. Landry, and M. Wu, “Size of kinematic error affects retention
655 of locomotor adaptation in human spinal cord injury.,” *J. Rehabil. Res. Dev.*,
656 vol. 50, no. 9, pp. 1187–1200, 2013.

657 [44] R. Tang, J. Kim, D. J. Gaebler-Spira, and M. Wu, “Gradual increase of pertur-
658 bation load induces a longer retention of locomotor adaptation in children with
659 cerebral palsy.,” *Hum. Movement Sci.*, vol. 63, pp. 20–33, feb 2019.

660 [45] K.-R. Mun, B. B. S. Yeo, Z. Guo, S. C. Chung, and H. Yu, “Resistance training
661 using a novel robotic walker for over-ground gait rehabilitation: a preliminary
662 study on healthy subjects,” *Med. Biol. Eng. Comp.*, pp. 1–9, 2017.

663 [46] V. Vashista, D. Martelli, and S. Agrawal, “Locomotor Adaptation to an Asym-
664 metric Force on the Human Pelvis Directed Along the Right Leg.,” *IEEE Trans.*
665 *Neural Syst. Rehabilitation Eng.*, vol. 24, pp. 872–881, aug 2016.

666 [47] D. Barthélémy, S. Alain, M. J. Grey, J. B. Nielsen, and L. J. Bouyer, “Rapid
667 changes in corticospinal excitability during force field adaptation of human walk-
668 ing.,” *Exp. Brain Res.*, vol. 217, pp. 99–115, mar 2012.

669 [48] T. Lam, M. Anderschitz, and V. Dietz, “Contribution of feedback and feedfor-
670 ward strategies to locomotor adaptations.,” *J. Neurophysiol.*, vol. 95, pp. 766–
671 773, feb 2006.

672 [49] A. Houldin, R. Chua, M. G. Carpenter, and T. Lam, “Limited interlimb transfer
673 of locomotor adaptations to a velocity-dependent force field during unipedal
674 walking.,” *J. Neurophysiol.*, vol. 108, pp. 943–952, aug 2012.

675 [50] A. Houldin, K. Luttin, and T. Lam, “Locomotor adaptations and aftereffects
676 to resistance during walking in individuals with spinal cord injury.,” *J. Neuro-
677 physiol.*, vol. 106, pp. 247–258, jul 2011.

678 [51] T. Klarner, J.-S. Blouin, M. G. Carpenter, and T. Lam, “Contributions to
679 enhanced activity in rectus femoris in response to Lokomat-applied resistance.,”
680 *Exp. Brain Res.*, vol. 225, pp. 1–10, mar 2013.

681 [52] E. P. Washabaugh, E. S. Clafin, R. B. Gillespie, and C. Krishnan, “A Novel
682 Application of Eddy Current Braking for Functional Strength Training During
683 Gait,” *Ann. Biomed. Eng.*, vol. 44, no. 9, pp. 2760–2773, 2016.

684 [53] E. P. Washabaugh and C. Krishnan, “A wearable resistive robot facilitates loco-
685 motor adaptations during gait.,” *Restor. Neurol. Neuros.*, vol. 36, no. 2, pp. 215–
686 223, 2018.

687 [54] G. Y. Diaz, D. H. Averett, and G. L. Soderberg, “Electromyographic analysis of
688 selected lower extremity musculature in normal subjects during ambulation with
689 and without a Protonics knee brace.,” *J. Orthop. Sports Phys. Ther.*, vol. 26,
690 pp. 292–298, dec 1997.

691 [55] A. Blanchette, S. Lambert, C. L. Richards, and L. J. Bouyer, “Walking while
692 resisting a perturbation: Effects on ankle dorsiflexor activation during swing
693 and potential for rehabilitation.,” *Gait Posture*, vol. 34, pp. 358–363, jul 2011.

694 [56] B. C. Conner, J. Luque, and Z. F. Lerner, “Adaptive Ankle Resistance from a
695 Wearable Robotic Device to Improve Muscle Recruitment in Cerebral Palsy.,”
696 *Ann. Biomed. Eng.*, vol. 48, pp. 1309–1321, apr 2020.

697 [57] T. A. Martin, J. G. Keating, H. P. Goodkin, A. J. Bastian, and W. T. Thach,
698 “Throwing while looking through prisms. I. Focal olivocerebellar lesions impair
699 adaptation.,” *Brain*, vol. 119 (Pt 4), pp. 1183–1198, aug 1996.

700 [58] A. J. Bastian, “Understanding sensorimotor adaptation and learning for reha-
701 bilitation.,” *Curr. Opin. Neurol.*, vol. 21, pp. 628–633, dec 2008.

702 [59] S. M. Morton and A. J. Bastian, “Cerebellar contributions to locomotor adapta-
703 tions during splitbelt treadmill walking.,” *J. Neurosci.*, vol. 26, pp. 9107–9116,
704 sep 2006.

705 [60] R. Shadmehr and F. a. Mussa-Ivaldi, “Adaptive representation of dynamics
706 during learning of a motor task,” *J. Neurosci.*, vol. 14, no. 5, pp. 3208–3224,
707 1994.

708 [61] D. S. Reisman, R. Wityk, K. Silver, and A. J. Bastian, “Split-belt treadmill
709 adaptation transfers to overground walking in persons poststroke,” *Neurorehab. Neural Re.*, vol. 23, no. 7, pp. 735–744, 2009.

711 [62] G. L. Gama, D. N. Savin, T. Keenan, S. M. Waller, and J. Whitall, “Comparing
712 the effects of adapting to a weight on one leg during treadmill and overground
713 walking: A pilot study,” *Gait Posture*, vol. 59, no. February 2017, pp. 35–39,
714 2018.

715 [63] D. N. Savin, S. M. Morton, and J. Whitall, “Generalization of improved step
716 length symmetry from treadmill to overground walking in persons with stroke
717 and hemiparesis,” *Clin. Neurophysiol.*, vol. 125, pp. 1012–1020, may 2014.

718 [64] S. C. Yen, B. D. Schmit, J. M. Landry, H. Roth, and M. Wu, “Locomotor adap-
719 tation to resistance during treadmill training transfers to overground walking in
720 human SCI,” *Exp. Brain Res.*, vol. 216, no. 3, pp. 473–482, 2012.

721 [65] C. R. Simão, I. C. R. Regalado, A. P. Spaniol, D. O. Fonseca, T. d. S. Ribeiro,
722 and A. R. Lindquist, “Immediate effects of a single treadmill session with addi-
723 tional ankle loading on gait in children with hemiparetic cerebral palsy,” *Neu-
724 roRehabilitation*, vol. 44, no. 1, pp. 9–17, 2019.

725 [66] D. N. Savin, S.-C. Tseng, J. Whitall, and S. M. Morton, “Poststroke hemipare-
726 sis impairs the rate but not magnitude of adaptation of spatial and temporal
727 locomotor features.,” *Neurorehab. Neural Re.*, vol. 27, pp. 24–34, jan 2013.

728 [67] V. Vashista, N. Agrawal, S. Shaharudin, D. S. Reisman, and S. K. Agrawal,
729 “Force adaptation in human walking with symmetrically applied downward
730 forces on the pelvis.,” *IEEE Trans. Neural Syst. Rehabilitation Eng.*, vol. 21,
731 pp. 969–978, nov 2013.

732 [68] S.-C. Yen, J. M. Landry, and M. Wu, “Augmented multisensory feedback en-
733 hances locomotor adaptation in humans with incomplete spinal cord injury.,”
734 *Hum. Movement Sci.*, vol. 35, pp. 80–93, jun 2014.

735 [69] S.-C. Yen, B. D. Schmit, and M. Wu, “Using swing resistance and assistance
736 to improve gait symmetry in individuals post-stroke.,” *Hum. Movement Sci.*,
737 vol. 42, pp. 212–224, jun 2015.

738 [70] I. Cajigas, A. Koenig, G. Severini, M. Smith, and P. Bonato, “Robot-induced
739 perturbations of human walking reveal a selective generation of motor adap-
740 tation,” *Sci Robot*, vol. 2, no. 6, pp. 1–10, 2017.

741 [71] G. Severini, A. Koenig, C. Adans-Dester, I. Cajigas, V. C. Cheung, and P. Bonato, “Robot-driven locomotor perturbations reveal synergy-mediated, context-dependent feedforward and feedback mechanisms of adaptation,” *Scientific reports*, vol. 10, no. 1, pp. 1–16, 2020.

745 [72] M. Bonnard, M. Camus, T. Coyle, and J. Pailhous, “Task-induced modulation of motor evoked potentials in upper-leg muscles during human gait: a TMS study.,” *Eur. J. Neurosci.*, vol. 16, pp. 2225–2230, dec 2002.

748 [73] J. R. Zabukovec, L. A. Boyd, M. A. Linsdell, and T. Lam, “Changes in corticospinal excitability following adaptive modification to human walking.,” *Exp. Brain Res.*, vol. 226, pp. 557–564, may 2013.

751 [74] A. E. Chisholm, S. Peters, M. R. Borich, L. A. Boyd, and T. Lam, “Short-term Cortical Plasticity Associated With Feedback-Error Learning After Locomotor Training in a Patient With Incomplete Spinal Cord Injury,” *Phys. Ther.*, vol. 95, no. 2, pp. 257–266, 2015.

755 [75] M. Wu, J. M. Landry, B. D. Schmit, T. G. Hornby, and S.-C. Yen, “Robotic resistance treadmill training improves locomotor function in human spinal cord injury: A pilot study,” *Arch. Phys. Med. Rehab.*, vol. 93, no. 5, pp. 782–789, 2012.

759 [76] K. M. Rodriguez, R. M. Palmieri-Smith, and C. Krishnan, “How does anterior cruciate ligament reconstruction affect the functioning of the brain and spinal cord? A systematic review with meta-analysis.,” *J. Sport Health Sci.*, jul 2020.

762 [77] J. E. Rocchi, L. Labanca, V. Luongo, and L. Rum, “Innovative rehabilitative bracing with applied resistance improves walking pattern recovery in the early stages of rehabilitation after acl reconstruction: a preliminary investigation,” *BMC Musculoskelet. Disord.*, vol. 21, no. 1, pp. 1–9, 2020.

766 [78] S. R. Brown, E. P. Washabaugh, A. Dutt-Mazumder, E. M. Wojtys, R. M. Palmieri-Smith, and C. Krishnan, “Functional resistance training to improve knee strength and function after acute anterior cruciate ligament reconstruction: A case study,” *Sports Health*, p. 1941738120955184, 2020.

770 [79] E. C. Lu, R. H. Wang, D. Hebert, J. Boger, M. P. Galea, and A. Mihailidis, “The development of an upper limb stroke rehabilitation robot: identification of clinical practices and design requirements through a survey of therapists.,” *Disabil. Rehabil.: Assist. Technol.*, vol. 6, no. 5, pp. 420–431, 2011.

774 [80] E. P. Washabaugh, J. Guo, C.-K. Chang, C. D. Remy, and C. Krishnan, “A
775 portable passive rehabilitation robot for upper-extremity functional resistance
776 training,” *IEEE Trans. Biomed. Eng.*, vol. 66, no. 2, pp. 496–508, 2018.

777 [81] C. K. Chang, E. P. Washabaugh, A. Gwozdzowski, C. D. Remy, and C. Krishnan, “A Semi-passive Planar Manipulandum for Upper-Extremity Rehabilitation,” *Ann. Biomed. Eng.*, vol. 46, no. 7, pp. 1047–1065, 2018.

780 [82] E. P. Washabaugh, L. H. Cubillos, A. C. Nelson, B. T. Cargile, E. S. Claflin,
781 and C. Krishnan, “Motor slacking during resisted treadmill walking: Can visual
782 feedback of kinematics reduce this behavior?,” *Gait & Posture*, 2021.

783 [83] R. W. Bohannon, “Measuring knee extensor muscle strength.,” *Am. J. Phys.
784 Med. Rehab.*, vol. 80, pp. 13–18, jan 2001.

785 [84] E. P. Washabaugh, T. E. Augenstein, A. M. Ebenhoeh, J. Qiu, K. A. Ford,
786 and C. Krishnan, “Design and preliminary assessment of a passive elastic leg
787 exoskeleton for resistive gait rehabilitation,” *IEEE Trans. Biomed. Eng.*, 2020.

788 [85] M. Roig, K. O’Brien, G. Kirk, R. Murray, P. McKinnon, B. Shadgan, and W. D.
789 Reid, “The effects of eccentric versus concentric resistance training on muscle
790 strength and mass in healthy adults: a systematic review with meta-analysis.,”
791 *Brit. J. Sport. Med.*, vol. 43, pp. 556–568, aug 2009.

792 [86] L. K. Lepley, A. S. Lepley, J. A. Onate, and D. R. Grooms, “Eccentric Exercise
793 to Enhance Neuromuscular Control.,” *Sports Health*, vol. 9, no. 4, pp. 333–340,
794 2017.

795 [87] T. W. Kaminski, C. V. Wabbersen, and R. M. Murphy, “Concentric versus
796 enhanced eccentric hamstring strength training: clinical implications.,” *J. Athl.
797 Training*, vol. 33, pp. 216–221, jul 1998.

798 [88] E. J. Higbie, K. J. Cureton, G. L. r. Warren, and B. M. Prior, “Effects of
799 concentric and eccentric training on muscle strength, cross-sectional area, and
800 neural activation.,” *J. Appl. Physiol.*, vol. 81, pp. 2173–2181, nov 1996.

801 [89] T. M. Stoeckmann, K. J. Sullivan, and R. A. Scheidt, “Elastic, viscous, and
802 mass load effects on poststroke muscle recruitment and co-contraction during
803 reaching: a pilot study,” *Phys. Ther.*, vol. 89, no. 7, pp. 665–678, 2009.

804 [90] R. T. Roemmich and A. J. Bastian, “Closing the Loop: From Motor Neuro-
805 science to Neurorehabilitation.,” *Annu. Rev. Neurosci.*, vol. 41, pp. 415–429, jul
806 2018.

807 [91] D. S. Reisman, H. McLean, J. Keller, K. A. Danks, and A. J. Bastian, “Repeated
808 split-belt treadmill training improves poststroke step length asymmetry.,” *Neuro-
809 rehab. Neural Re.*, vol. 27, pp. 460–468, jun 2013.

810 [92] G. Rode, S. Lacour, S. Jacquin-Courtois, L. Pisella, C. Michel, P. Revol,
811 N. Alahyane, J. Luauté, S. Gallagher, P. Halligan, D. Pélinson, and Y. Ros-
812 setti, “Long-term sensorimotor and therapeutical effects of a mild regime of
813 prism adaptation in spatial neglect. A double-blind RCT essay.,” *Ann. Phys.
814 Rehabil. Med.*, vol. 58, pp. 40–53, apr 2015.

815 [93] M. Wu, J. M. Landry, J. Kim, B. D. Schmit, S.-C. Yen, J. McDonald, and
816 Y. Zhang, “Repeat exposure to leg swing perturbations during treadmill train-
817 ing induces long-term retention of increased step length in human sci: a pilot
818 randomized controlled study,” *American journal of physical medicine & reha-
819 bilitation*, vol. 95, no. 12, pp. 911–920, 2016.

820 [94] M. Wu, J. Kim, D. J. Gaebler-Spira, B. D. Schmit, and P. Arora, “Robotic resis-
821 tance treadmill training improves locomotor function in children with cerebral
822 palsy: a randomized controlled pilot study,” *Archives of physical medicine and
823 rehabilitation*, vol. 98, no. 11, pp. 2126–2133, 2017.

824 [95] T. Lam, K. Luttmann, A. Houldin, and C. Chan, “Treadmill-based locomo-
825 tor training with leg weights to enhance functional ambulation in people with
826 chronic stroke: a pilot study,” *Journal of Neurologic Physical Therapy*, vol. 33,
827 no. 3, pp. 129–135, 2009.

828 [96] A. F. Ten Brink, J. M. A. Visser-Meily, M. J. Schut, M. Kouwenhoven, A. L. H.
829 Eijsackers, and T. C. W. Nijboer, “Prism Adaptation in Rehabilitation? No
830 Additional Effects of Prism Adaptation on Neglect Recovery in the Subacute
831 Phase Poststroke: A Randomized Controlled Trial.,” *Neurorehab. Neural Re.*,
832 vol. 31, pp. 1017–1028, dec 2017.

833 **List of Figures**

834	1	Flow diagram depicting study identification.	28
835	2	The spectrum of devices used for functional strength training during gait and their relative costs. Active robots provide exceptional control over the rehabilitation setting, but are also the most expensive to acquire. Meanwhile, passive devices (e.g., weighted cuffs/belts, elastic bands, and passive braces) are the most cost-effective option but offer no real-time control. While not widely studied in functional resistance training, semi-passive robots utilize controllable passive elements (e.g., controllable brakes) in order to provide a limited set of controls but at a modest price.	29
844	3	Schematic depicting how a point-based resistance applied to the shank translates to torques at the hip and knee (i.e., joint-based resistances) during the swing phase. Equations can describe the relationship between point- and joint-based resistances, and indicate that the resulting torques depend on the limb lengths and joint angles. Additionally, the torques at the hip and knee are coupled with one another. The notation $f(\theta)$ denotes a function of θ	30
851	4	(A) Resistance types and the resulting forces when they are applied to a one dimensional motion. The left panel characterizes this simple motion. Maintaining these characteristics, the right panel shows the force F that would be required to: lift a weight with mass m against gravity g ; deform an elastic spring with stiffness k ; deform a viscous damper with a damping coefficient b ; or move along a surface with a coefficient of friction μ . Most passive devices will provide one of these resistance types, and active robots can emulate these components or provide customized resistances. (B) Resistances types differ in the types of muscle contractions (e.g., concentric and eccentric) that they can elicit. During the seated knee extension/flexion task depicted, inertial and elastic resistances elicit concentric contraction when extending the leg and eccentric contraction when flexing the leg. During the same task, viscous and friction based resistances require concentric contraction during both extension and flexion.	31

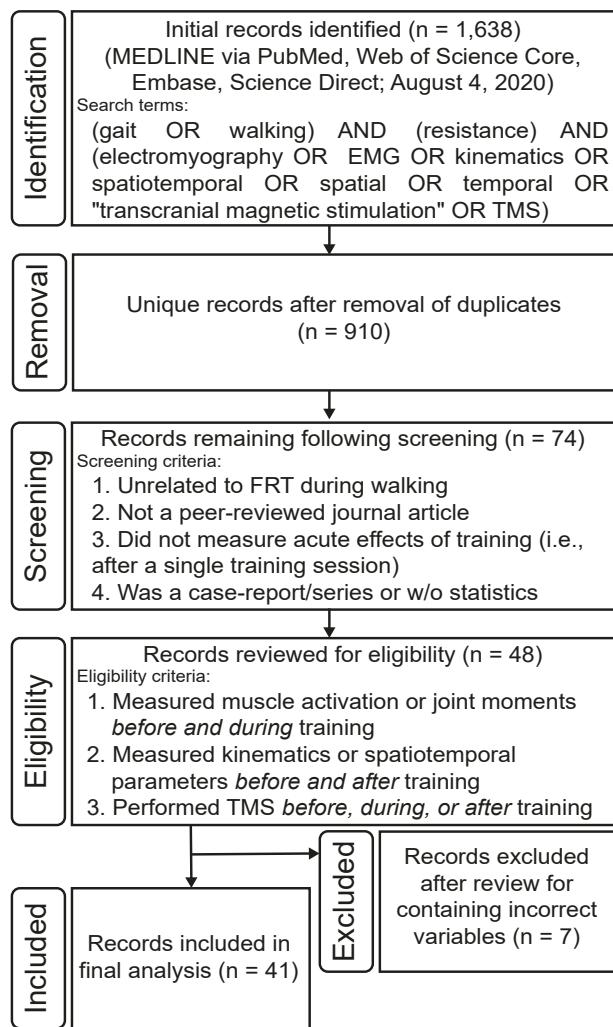


Figure 1: Flow diagram depicting study identification.

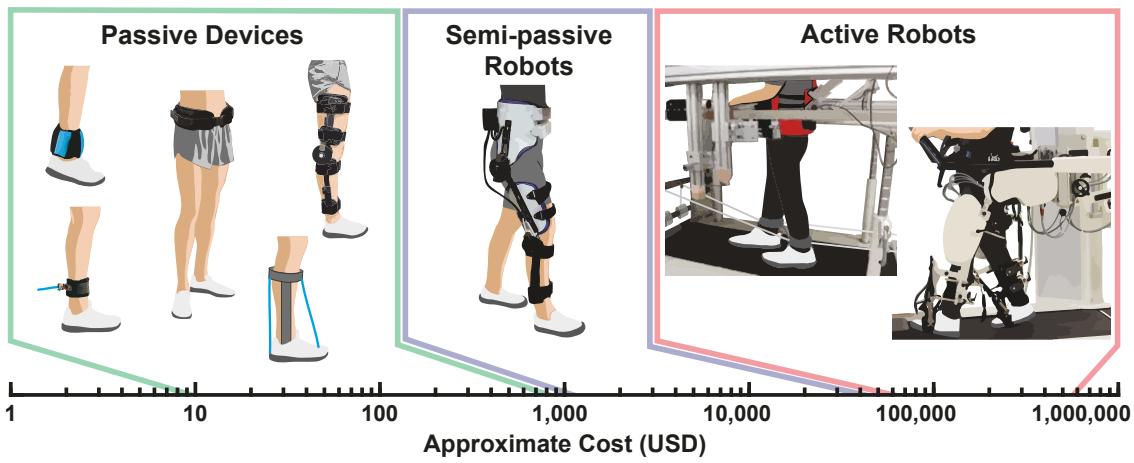


Figure 2: The spectrum of devices used for functional strength training during gait and their relative costs. Active robots provide exceptional control over the rehabilitation setting, but are also the most expensive to acquire. Meanwhile, passive devices (e.g., weighted cuffs/belts, elastic bands, and passive braces) are the most cost-effective option but offer no real-time control. While not widely studied in functional resistance training, semi-passive robots utilize controllable passive elements (e.g., controllable brakes) in order to provide a limited set of controls but at a modest price.

Converting Between Point and Joint Resistances

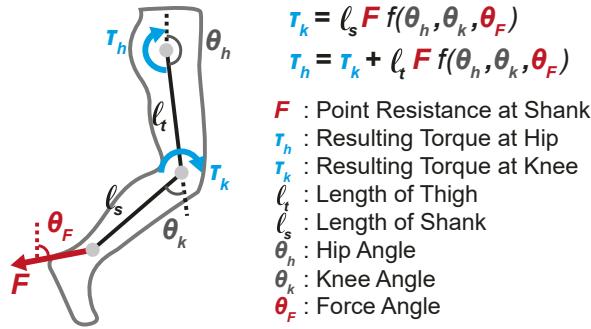


Figure 3: Schematic depicting how a point-based resistance applied to the shank translates to torques at the hip and knee (i.e., joint-based resistances) during the swing phase. Equations can describe the relationship between point- and joint-based resistances, and indicate that the resulting torques depend on the limb lengths and joint angles. Additionally, the torques at the hip and knee are coupled with one another. The notation $f(\theta)$ denotes a function of θ .

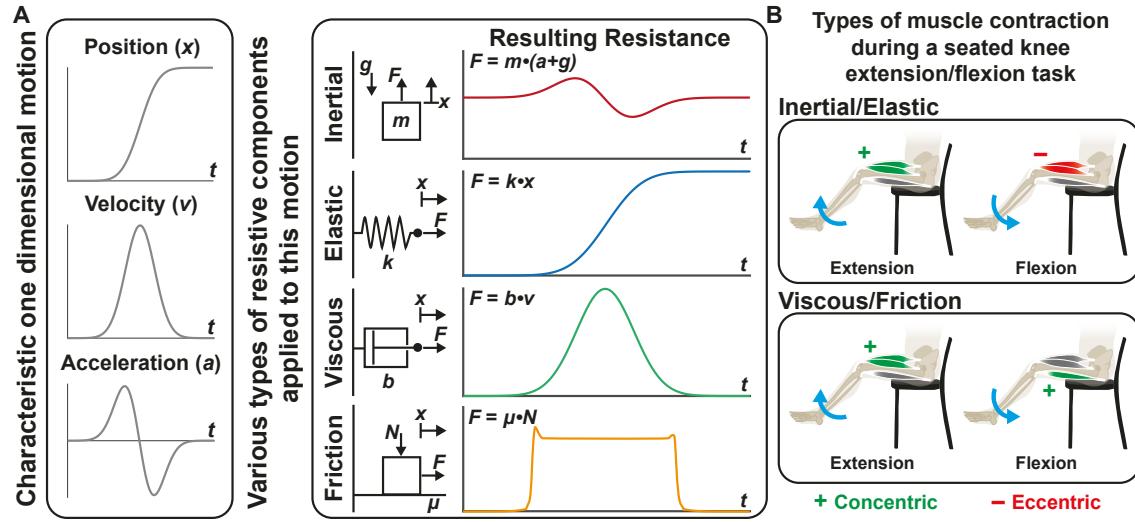


Figure 4: (A) Resistance types and the resulting forces when they are applied to a one dimensional motion. The left panel characterizes this simple motion. Maintaining these characteristics, the right panel shows the force F that would be required to: lift a weight with mass m against gravity g ; deform an elastic spring with stiffness k ; deform a viscous damper with a damping coefficient b ; or move along a surface with a coefficient of friction μ . Most passive devices will provide one of these resistance types, and active robots can emulate these components or provide customized resistances. (B) Resistances types differ in the types of muscle contractions (e.g., concentric and eccentric) that they can elicit. During the seated knee extension/flexion task depicted, inertial and elastic resistances elicit concentric contraction when extending the leg and eccentric contraction when flexing the leg. During the same task, viscous and friction based resistances require concentric contraction during both extension and flexion.

866 **List of Tables**

867	1	Summary of all of the studies and the variables they measured	33
868	2	Summary of how resistance during walking has altered muscle activation and internal joint moments.	34
869			
870	3	Summary of how strategies of providing resistance during walking produce spatiotemporal and kinematic aftereffects after acute (i.e., a single session) training.	35
871			
872			

Table 1: Summary of all of the studies and the variables they measured

Reference	Population	# Subj	Age	Device	Mode	Type	Resisting	MA	Mom	Kin	Spat	Neur
Browning et al. [28]	AB	5 (0F)	A	Passive	Point	Inertial	Foot Shank Thigh Pelvis	Yes	Yes			
Noble & Prentice [30]	AB	8 (5F)	YA	Passive	Point	Inertial	Shank	Yes	Yes			
Sinâo et al. [65]	CP	20 (10F)	9	Passive	Point	Inertial	Shank	Yes	Yes			
Lam et al. [31]	SCI	6 (NS)	65	Passive	Point	Inertial	Shank	Yes	Yes			
Duclos et al. [29]	Stroke	7 (NS)	62	Active	Joint	Inertial	Hip+Knee	Yes	Yes			
Savin et al. [38]	AB	10 (5F)	56	Passive	Point	Inertial	Shank	Yes	Yes			
McGowan et al. [32]	AB	10 (9F)	26	Passive	Point	Inertial	Shank Back	Yes	Yes			
Krupenich et al. [34]	AB	10 (5F)	21-45	Passive	Point	Inertial	Pelvis	Yes	Yes			
Kubinski & Higginson [33]	AB	20 (12F)	20	Passive	Point	Inertial	Torso	Yes	Yes			
Silder et al. [35]	Knee OA	20 (12F)	64	Passive	Point	Inertial	Torso	Yes	Yes			
Silder et al. [35]	AB	29 (12F)	62	Passive	Point	Inertial	Torso	Yes	Yes			
Simpson et al. [36]	AB	15 (0F)	22	Passive	Point	Inertial	Torso	Yes	Yes			
Chow et al. [37]	AB	22 (22F)	13	Passive	Point	Inertial	Torso	Yes	Yes			
Blanchette & Bouyer [39]	AB	10 (7F)	22	Passive	Point	Elastic	Foot Front	Yes	Yes			
Blanchette et al. [40]	AB	10 (5F)	25	Passive	Point	Elastic	Foot Front	Yes	Yes			
Shin et al. [41]	AB	7 (2F)	12	Passive	Point	Elastic	Shank Front	Yes	Yes			
Gottschall & Kram [42]	CP	7 (1F)	13	Passive	Point	Elastic	Pelvis Back	Yes	Yes			
Tang et al. [44]	AB	10 (5F)	27	Passive	Point	Viscoelastic	Shank Back	Yes	Yes			
Yen et al. [43]	SCI	11 (5F)	12	Active	Point	Viscoelastic	Shank Back	Yes	Yes			
Mun et al. [45]	AB	12 (NS)	48	Active	Point	Viscoelastic	Shank Back	Yes	Yes			
Vashista et al. [46]	AB	9 (0F)	24	Active	Point	Constant	Pelvis Back	Yes	Yes			
Barthélémy et al. [47]	AB	10 (5F)	27	Active	Point	Constant	Pelvis Down	Yes	Yes			
Washabaugh et al. [52]	AB	7 (NS)	NS	Passive	Joint	Elastic	Ankle Dorsi	Yes	Yes			
Washabaugh & Krishnan [53]	Stroke	6 (3F)	58	Passive	Joint	Viscoelastic	Knee Bi	Yes	Yes			
Houldin et al. [50]	AB	17 (NS)	22-75	Active	Joint	Viscoelastic	Knee Bi	Yes	Yes			
Houldin et al. [50]	SCI	9 (2F)	22-66	Active	Joint	Viscoelastic	Hip Bi	Yes	Yes			
Houldin et al. [49]	AB	20 (13F)	25	Active	Joint	Viscoelastic	Hip Bi	Yes	Yes			
Klarner et al. [51]	AB	20 (10F)	22-37	Active	Joint	Viscoelastic	Hip+Knee Bi	Yes	Yes			
Lam et al. [48]	AB	20 (10F)	26	Active	Joint	Viscoelastic	Hip+Knee Bi	Yes	Yes			
Diaz et al. [54]	AB	19 (9F)	31	Active	Joint	Constant	Knee Flex	Yes	Yes			
Blanchette et al. [55]	AB	12 (NS)	28	Active	Joint	Custom	Knee Ext	Yes	Yes			
Conner et al. [56]	CP	8 (1F)	14	Active	Joint	Custom	Ankle Dorsi	Yes	Yes			
Gama et al. [62]	AB	18 (12F)	21	Passive	Point	Custom	Ankle Plantar	Yes	Yes			
Savin et al. [63]	AB	10 (7F)	62	Passive	Point	Inertial	Shank Back	Yes	Yes			
Savin et al. [66]	Stroke	14 (7F)	63	Passive	Point	Inertial	Shank Back	Yes	Yes			
Vashista et al. [67]	AB	8 (0F)	27	Passive	Point	Elastic	Pelvis Down	Yes	Yes			
Yen et al. [43]	SCI	10 (NS)	48	Active	Point	Viscoelastic	Shank Back	Yes	Yes			
Yen et al. [69]	Stroke	10 (NS)	59	Active	Point	Viscoelastic	Shank Back	Yes	Yes			
Yen et al. [68]	SCI	10 (NS)	50	Active	Point	Viscoelastic	Thigh Back	Yes	Yes			
Cajigas et al. [70]	AB	15 (5F)	33	Active	Joint	Custom	Shank Back	Yes	Yes			
Severini et al. [71]	AB	9 (3F)	28	Active	Joint	Custom	Shank Back	Yes	Yes			
Zabukovec et al. [73]	AB	40 (27F)	26	Active	Joint	Viscoelastic	Hip+Knee Bi	Yes	Yes			
Bonnard et al. [72]	AB	10 (NS)	22-28	Passive	Point	Elastic	Foot Up	Yes	Yes			

Variable abbreviations: subjects (Subj), muscle activation (MA), moments (Mom), kinematics (Kin), spatiotemporal (Spat), neural (Neur); population abbreviations: AB (able-bodied), SCI (spinal cord injury), CP (cerebral palsy), OA (osteoarthritis); # Subj: the number of females in the study is noted in parentheses; age: single numbers represent the mean age in years, otherwise it is expressed as an age range; abbreviations: adult (A), young adult (YA); resisting abbreviations: flex (flexion), Ext (extension), Plant (plantarflexion), Dorsi (dorsiflexion), Bi (Bidirectional [e.g., Flex & Ext]); Front/Back/Down indicate the direction the device was pulling. Yes indicates that a variable was measured in the study. Note, many studies had additional variables that were not of interest to this study.

Table 2: Summary of how resistance during walking has altered muscle activation and internal joint moments.

Reference	Pop	Device	Mode	Type	Resisting	Significant Outcomes [Variable (Phase)]
Browning et al. [28]	AB	Passive	Point	Inertial	Foot	MA: RF (PSw) ↑, TA (TSw) ↑, MG (MSt–TSt) ↑, Sol (MSt–TSt) ↑ Moment: H Ext (MSt) ↑, H Flex (TSt–Isw, TSw) ↑, K Flex (TSw) ↑, A Dorsi (ISw) ↑ MA: MG (MSt–TSt) ↑ Moment: No Effect
Browning et al. [28]	AB	Passive	Point	Inertial	Shank	Moment: H Ext (TSw) ↑, H Flex (ISw) ↑, K Ext (ISw) ↑, K Flex (TSw) ↑
Noble & Prentice [30]	AB	Passive	Point	Inertial	Shank	MA: LH (Sw) ↑
Lam et al. [31]	SCI	Passive	Point	Inertial	Shank	Moment: H Ext (LR,TSw) ↑, H Flex (TSt–PSw) ↑, K Flex (LR,TSw) ↑
Duclos et al. [29]	Stroke	Passive	Point	Inertial	Shank	MA: RF (ISw) ↑
Savin et al. [38]	AB	Passive	Point	Inertial	Shank Back	MA: MG (MSt–TSt) ↑, Sol (MSt–TSt) ↑ Moment: No Effect
Browning et al. [28]	AB	Passive	Point	Inertial	Thigh	MA: MG (MSt–TSt) ↑, Sol (MSt–TSt) ↑ Moment: No Effect
Browning et al. [28]	AB	Passive	Point	Inertial	Pelvis	MA: MG (MSt–TSt) ↑, Sol (MSt–TSt) ↑ Moment: No Effect
McGowan et al. [32]	AB	Passive	Point	Inertial	Pelvis	MA: MG (LR–PSw) ↑, Sol (LR–PSw) ↑
Krupenich et al. [34]	AB	Passive	Point	Inertial	Torso	Moment: K Ext (St) ↑, A Plant (St) ↑
Kubinski & Higginson [33]	AB	Passive	Point	Inertial	Torso	Moment: No Effect
Silder et al. [35]	AB	Passive	Point	Inertial	Torso	MA: RF (St, Sw) ↑, VM (LR–MSt, TSw) ↑, VL (LR–MSt, TSw) ↑, MH (MSw–TSw) ↑, LH (LR–MSt, MSw–TSw) ↑, MG (MSt–PSw) ↑, Sol (MSt–PSw, Sw) ↑ Moment: H Ext (LR - MSt) ↑, K Ext (MSt) ↑, K Flex (PSw), A Dorsi (LR) ↑, A Plant (PSw) ↑
Simpson et al. [36]	AB	Passive	Point	Inertial	Torso	MA: VL (LR, TSw) ↑, MG (TSt–PSw) ↑
Chow et al. [37]	AB	Passive	Point	Inertial	Torso	Moment: H Flex (PSw) ↑, H Abd (St) ↑, H Int (St) ↑, H Ext (St) ↑, K Ext (St) ↑, K Val (St) ↑, A Plant (St) ↑
Kubinski & Higginson [33]	Knee OA	Passive	Point	Inertial	Torso	Moment: No Effect
Blanchette & Bouyer [39]	AB	Passive	Point	Elastic	Foot Front	MA: LH (PSw–MSw) ↑, MH (PSw–MSw) ↑
Blanchette et al. [40]	AB	Passive	Point	Elastic	Foot Front	MA: LH (PSw–MSw) ↑, MH (PSw–MSw) ↑
Shin et al. [41]	AB	Passive	Point	Elastic	Shank Front	MA: Hst (LR–MSt) ↓
Shin et al. [41]	CP	Passive	Point	Elastic	Shank Front	MA: Hst (LR–MSt) ↓
Gottschall & Kram [42]	AB	Passive	Point	Elastic	Pelvis Back	MA: MG (TSt–PSw) ↑, Sol (TSt–PSw) ↑
Tang et al. [44]	CP	Active	Point	Viscoelastic	Shank Back	MA: No Effect
Yen et al. [43]	SCI	Active	Point	Viscoelastic	Shank Back	MA: TA (Psw–ISw) ↑
Mun et al. [45]	AB	Active	Point	Constant	Pelvis Back	MA: RF (St) ↑, VM (St) ↑, TA (St) ↑, GMax (St) ↑, AdL (St) ↑
Vashista et al. [46]	AB	Active	Point	Constant	Pelvis Down	MA: No Effect
Barthélemy et al. [47]	AB	Passive	Joint	Elastic	Ankle Dorsi	MA: TA (Sw) ↑
Washabaugh et al. [52]	AB	Passive	Joint	Viscous	Knee Bi	MA: RF (St, Sw) ↑, VM (St, Sw) ↑, MH (Sw) ↑, LH (St, Sw) ↑, TA (Sw) ↑, MG (Sw) ↑, Sol (Sw) ↑, GMed (St, Sw) ↑
Washabaugh & Krishnan [53]	Stroke	Passive	Joint	Viscous	Knee Bi	MA: VM (Sw) ↑, MH (Sw) ↑, LH (Sw) ↑
Houldin et al. [50]	AB	Active	Joint	Viscous	Hip Bi	MA: RF (Sw) ↑
Houldin et al. [49]	AB	Active	Joint	Viscous	Hip Bi	MA: RF (Sw) ↑, TA (Sw) ↑
Houldin et al. [50]	SCI	Active	Joint	Viscous	Hip Bi	MA: RF (Sw) ↑
Klarner et al. [51]	AB	Active	Joint	Viscous	Hip+Knee Bi	MA: RF (ISw–MSw) ↑
Lam et al. [48]	AB	Active	Joint	Viscous	Hip+Knee Bi	MA: RF (MSw) ↑, MH (PSw, MSw) ↑, LH (PSw) ↑, TA (MSw) ↑
Lam et al. [31]	SCI	Active	Joint	Viscous	Hip+Knee Bi	MA: No Effect
Diaz et al. [54]	AB	Active	Joint	Constant	Knee Flex	MA: VM ↓
Diaz et al. [54]	AB	Active	Joint	Constant	Knee Ext	MA: RF ↑, VM ↑, VL ↑
Blanchette et al. [55]	AB	Active	Joint	Custom	Ankle Dorsi	MA: TA (PSw–MSw) ↑
Conner et al. [56]	CP	Active	Joint	Custom	Ankle Plant	MA: TA (St) ↓, Sol (St) ↑

Population abbreviations: Pop (population), AB (able-bodied), SCI (spinal cord injury), CP (cerebral palsy), OA (osteoarthritis); muscle activation (MA) abbreviations: AdL (adductor longus), GMax (gluteus maximus), GMed (gluteus medius), Hst (hamstring), LH (lateral hamstring), MH (medial hamstring), MG (medial gastrocnemius), RF (rectus femoris), Sol (soleus), TA (tibialis anterior), VL (vastus lateralis), VM (vastus medialis); resistance and internal moment abbreviations: H (Hip), K (knee), A (ankle), Flex (flexion), Ext (extension), Abd (abduction), Val (valgus), Int (internal), Plant (plantarflexion), Dorsi (dorsiflexion), Bi (Bidirectional [e.g., Flex & Ext]); gait phase abbreviations: St (stance), Sw (Swing), LR (loading response), MSt (mid-stance), TSt (terminal stance), PSw (pre-swing), ISw (initial-swing), MSw (mid-swing), TSw (terminal swing). Front/Back/Down indicate the direction the device is pulling. ↑ Indicates that the variable significantly increased during training, while ↓ indicates a significant decrease. Note, many studies had additional variables that were reported but that did not show significance.

Table 3: Summary of how strategies of providing resistance during walking produce spatiotemporal and kinematic aftereffects after acute (i.e., a single session) training.

Reference	Pop	Device	Mode	Type	Resisting	Significant Aftereffects [Variable (Phase)]
Gama et al. [62]	AB	Passive	Point	Inertial	Shank	Spatiotemporal: OG Gait Speed ↑, OG Step Length ↑
Noble & Prentice [30]	AB	Passive	Point	Inertial	Shank	Spatiotemporal: Foot Clearance ↑ Kinematic: No Effect
Simão et al. [65]	CP	Passive	Point	Inertial	Shank	Spatiotemporal: Foot Clearance ↑ Kinematic: H Flex (Sw) ↑, K Flex (Sw) ↑, H RoM ↑, K RoM ↑
Lam et al. [31]	SCI	Passive	Point	Inertial	Shank	Kinematic: K Flex (Sw) ↑
Savin et al. [38]	AB	Passive	Point	Inertial	Shank Back	Spatiotemporal: Step Length ↑, Swing Time ↓ Kinematic: Hip Flexion (Sw) ↑, Hip Extension (St) ↓
Savin et al. [63]	AB	Passive	Point	Inertial	Shank Back	Spatiotemporal: OG Gait Speed ↑, OG Stride Length ↑
Savin et al. [63]	Stroke	Passive	Point	Inertial	Shank Back	Spatiotemporal: OG Gait Speed ↑, OG Stride Length ↑
Savin et al. [66]	Stroke	Passive	Point	Inertial	Shank Back	Spatiotemporal: Step Length ↑, SLS Time ↑
Blanchette & Bouyer [39]	AB	Passive	Point	Elastic	Foot Front	Spatiotemporal: Foot Speed (Sw) ↓
Blanchette et al. [40]	AB	Passive	Point	Elastic	Foot Front	Spatiotemporal: Foot Speed (Sw) ↓
Vashista et al. [67]	AB	Passive	Point	Elastic	Pelvis Down	Kinematic: Pelvis Displacement ↑
Tang et al. [44]	CP	Active	Point	Viscoelastic	Shank Back	Spatiotemporal: Step Length ↑
Yen et al. [43]	SCI	Active	Point	Viscoelastic	Shank Back	Spatiotemporal: Stride Length ↑
Yen et al. [68]	SCI	Active	Point	Viscoelastic	Shank Back	Spatiotemporal: Stride Length ↑
Yen et al. [69]	Stroke	Active	Point	Viscoelastic	Shank Back	Spatiotemporal: Step Length ↑
Yen et al. [64]	SCI	Active	Point	Viscoelastic	Thigh Back	Spatiotemporal: OG Gait Speed ↑, OG Stride Length ↑, Stride Length ↑, Stance Time ↑
Vashista et al. [46]	AB	Active	Point	Custom	Pelvis Down	Spatiotemporal: Stance Time ↑ Kinematic: No Effect
Barthélemy et al. [47]	AB	Passive	Joint	Elastic	Ankle Dorsi	Kinematic: A Exc ↑
Washabaugh et al. [52]	AB	Passive	Joint	Viscous	Knee Bi	Kinematic: H Exc ↑, K Exc ↑
Washabaugh & Krishnan [53]	Stroke	Passive	Joint	Viscous	Knee Bi	Spatiotemporal: OG Gait Speed ↑ Kinematic: H Exc ↑, K Exc ↑
Houldin et al. [50]	AB	Active	Joint	Viscous	Hip Bi	Spatiotemporal: Foot Clearance ↑ Kinematic: H Flex (Sw) ↑, K Flex (Sw) ↑
Houldin et al. [49]	AB	Active	Joint	Viscous	Hip Bi	Spatiotemporal: Foot Clearance ↑ Kinematic: H Flex (Sw) ↑, K Flex (Sw) ↑
Houldin et al. [50]	SCI	Active	Joint	Viscous	Hip Bi	Spatiotemporal: Step Length ↑ Kinematic: H Flex (Sw) ↑
Lam et al. [48]	AB	Active	Joint	Viscous	Hip+Knee Bi	Kinematic: H Flex (Sw) ↑, K Flex (Sw) ↑
Lam et al. [31]	SCI	Active	Joint	Viscous	Hip+Knee Bi	Kinematic: No Effect
Blanchette et al. [55]	AB	Active	Joint	Custom	Ankle Dorsi	Kinematic: A Dorsi (MSw) ↑
Cajigas et al. [70]	AB	Active	Joint	Custom	Shank Back	Spatiotemporal: Step Length ↑
Severini et al. [71]	AB	Active	Joint	Custom	Shank Back	Spatiotemporal: Step Length ↑

A full list of abbreviations can be found in Table 1. Additional abbreviations: Exc (excursion), OG (overground), SLS (single leg support), RoM (range of motion). If not specified as overground, variables were measured over a treadmill; many studies had additional variables that were reported but that did not show significance or were not variables of interest for this review.

Supplement: Functional Resistance During Walking: Review of Devices and their Effects on Muscle Activation, Neural Control, and Gait Mechanics

1. Neural Adaptations to Functional Resistance Training

Although neural adaptation is a motivator for providing FRT during walking, only a few studies that have directly investigated the neural effects of this training [1, 2, 3, 4]. A majority of these studies have analyzed neural adaptation using transcranial magnetic stimulation (TMS)—a noninvasive brain stimulation technique, where an electromagnet (referred to as a coil) is placed over the scalp to stimulate the superficial brain cortex. TMS can be used to assess neural excitability of the motor system by stimulating over a motor “hotspot” of a muscle (i.e., the area of the brain that corresponds to that muscle) then recording the output from the muscle (i.e., a motor evoked potential [MEP]) using electromyography or dynamometry. Therefore, comparing MEPs before, during, or after training can indicate an increase or decrease in excitability in the neurons that control that muscle.

TMS has been used to evaluate neural excitability both during training (i.e., stimulating the brain as the participant walked on the treadmill) and directly after training (i.e., with the participant seated in a chair) in able-bodied participants. Bonnard et al. [1] measured neural excitability during training, which consisted of walking with an elastic band attached between the subject’s feet and shoulders (i.e., a point-based resistance pulling upwards on the foot). They found that neural excitability (i.e., the size of the MEPs) increased in the rectus femoris and lateral hamstring during the late swing phase while training. Barthélemy et al. [2] measured changes in neurological excitability both during and after training with an elastic ankle-foot orthosis (i.e., a joint-based strategy) that provided resistance to ankle dorsiflexion during the swing phase. They found that excitability increased in the tibialis anterior during the swing phase while training, but did not see any significant changes following training. Lastly, Zabukovec et al. [3] applied a joint-based viscous resistance to the hip and knee joints and measured the neural excitability after training; however, they did not see any significant changes in neural excitability. Hence, these studies have typically found that excitability increases during training [1, 2], but that these effects are not present following training [3, 2].

2. Interpreting Neural Adaptations using TMS

Surprisingly, there were very few studies that have examined the effects of FRT during walking on neural excitability. Without such information, we can only discuss

the methods that have been used to measure neural excitability, highlight potential problems with interpreting these data, and stress the importance of creating larger datasets to better understand the neural mechanisms of recovery.

The results from the limited number of studies suggest that neural excitability is altered during training but not following training. However, the methods that were used to measure neural excitability were very different in these two instances. During training, TMS was performed functionally (i.e., as the participant walked on the treadmill), but following the training, TMS was applied more conventionally, with the subject in a seated posture. While functional TMS is potentially a powerful technique, it is not widely used because there are several factors that must be controlled when performing TMS, and it is difficult to control for these factors during functional tasks.

The finding that neural excitability remained unchanged when measured in a seated posture following training does not necessarily indicate that neural excitability is unchanged in the entire motor system; rather, there may not be a net change in excitability. TMS is a measure of the entire corticospinal tract—which includes the motor cortex, midbrain, brainstem, spinal cord, and all of the connections in between—as well as peripheral motor neurons and muscles. Hence, it is possible that an increase in cortical excitability is being masked by a decrease somewhere else in the system. However, techniques that are more targeted within the corticospinal tract (e.g., transcranial electrical stimulation, cervicomedullary stimulation, Hoffmann’s reflex) would be required to test this theory.

It is also important to mention that an increase in excitability is not necessarily a desirable outcome, while a decrease in excitability is not necessarily undesirable. For example, decreased neural excitability has been found following strength training in uninjured subjects [5]. This does not mean that strength training should be avoided, but that an adaptive change (presumably inhibitory) is happening somewhere along the corticospinal tract, which could potentially have therapeutic value. Indeed, patients with overactive spinal reflexes (i.e., hyperreflexia), as is often seen following neurological injury, could potentially benefit from a training that induces inhibitory effects [6, 7]. Ultimately, the desired neural outcome will need to be defined by the condition being tested. Unfortunately, it is still not well understood how specific neural changes correlate with functional outcomes.

3. Feedback during Training

Feedback has rarely been provided when performing FRT during walking, however, this may be a crucial component to induce positive outcomes after an intervention [8]. Feedback can be used to increase the intensity or ensure the participant

walks with normal kinematics. Typically, when a resistance is applied to the leg, subjects have a tendency to alter their walking in order to take “the path of least resistance”; but feedback can help to alert the subject that they are using an abnormal gait strategy. Studies that have directly compared training with and without visual feedback have found that feedback increased muscle activation several fold [8, 9]. The few studies that have provided feedback have typically provided the subject with a real-time depiction of their kinematics or spatiotemporal gait parameters [10, 9, 11, 8, 3, 12]. While these methods require some sort of instrumentation, a similar effect could also be obtained through verbal coaching or having the patient avoid/clear an obstacle while walking [13].

References

- [1] M. Bonnard, M. Camus, T. Coyle, and J. Pailhous, “Task-induced modulation of motor evoked potentials in upper-leg muscles during human gait: a TMS study.,” *Eur. J. Neurosci.*, vol. 16, pp. 2225–2230, dec 2002.
- [2] D. Barthélemy, S. Alain, M. J. Grey, J. B. Nielsen, and L. J. Bouyer, “Rapid changes in corticospinal excitability during force field adaptation of human walking.,” *Exp. Brain Res.*, vol. 217, pp. 99–115, mar 2012.
- [3] J. R. Zabukovec, L. A. Boyd, M. A. Linsdell, and T. Lam, “Changes in corticospinal excitability following adaptive modification to human walking.,” *Exp. Brain Res.*, vol. 226, pp. 557–564, may 2013.
- [4] A. E. Chisholm, S. Peters, M. R. Borich, L. A. Boyd, and T. Lam, “Short-term Cortical Plasticity Associated With Feedback-Error Learning After Locomotor Training in a Patient With Incomplete Spinal Cord Injury,” *Phys. Ther.*, vol. 95, no. 2, pp. 257–266, 2015.
- [5] T. J. Carroll, S. Riek, and R. G. Carson, “The sites of neural adaptation induced by resistance training in humans.,” *J. Physiol.*, vol. 544, pp. 641–652, oct 2002.
- [6] T. Akbas, K. Kim, K. Doyle, K. Manella, R. Lee, P. Spicer, M. Knikou, and J. Sulzer, “Rectus femoris hyperreflexia contributes to Stiff-Knee gait after stroke.,” *J. Neuroeng. Rehabil.*, vol. 17, p. 117, aug 2020.
- [7] J. B. Nielsen, C. Crone, and H. Hultborn, “The spinal pathophysiology of spasticity—from a basic science point of view.,” *Acta Physiol.*, vol. 189, pp. 171–180, feb 2007.

- [8] E. P. Washabaugh, L. H. Cubillos, A. C. Nelson, B. T. Cargile, E. S. Clafin, and C. Krishnan, “Motor slacking during resisted treadmill walking: Can visual feedback of kinematics reduce this behavior?,” *Gait & Posture*, 2021.
- [9] E. P. Washabaugh, E. S. Clafin, R. B. Gillespie, and C. Krishnan, “A Novel Application of Eddy Current Braking for Functional Strength Training During Gait,” *Ann. Biomed. Eng.*, vol. 44, no. 9, pp. 2760–2773, 2016.
- [10] T. Klarner, J.-S. Blouin, M. G. Carpenter, and T. Lam, “Contributions to enhanced activity in rectus femoris in response to Lokomat-applied resistance.,” *Exp. Brain Res.*, vol. 225, pp. 1–10, mar 2013.
- [11] E. P. Washabaugh and C. Krishnan, “A wearable resistive robot facilitates locomotor adaptations during gait.,” *Restor. Neurol. Neuros.*, vol. 36, no. 2, pp. 215–223, 2018.
- [12] A. Houldin, R. Chua, M. G. Carpenter, and T. Lam, “Limited interlimb transfer of locomotor adaptations to a velocity-dependent force field during unipedal walking.,” *J. Neurophysiol.*, vol. 108, pp. 943–952, aug 2012.
- [13] M. Reid and S. Prentice, “Strategies associated with altered segment parameters during voluntary gait modifications,” *Neurosci. Res. Commun.*, vol. 29, no. 2, pp. 79–87, 2001.

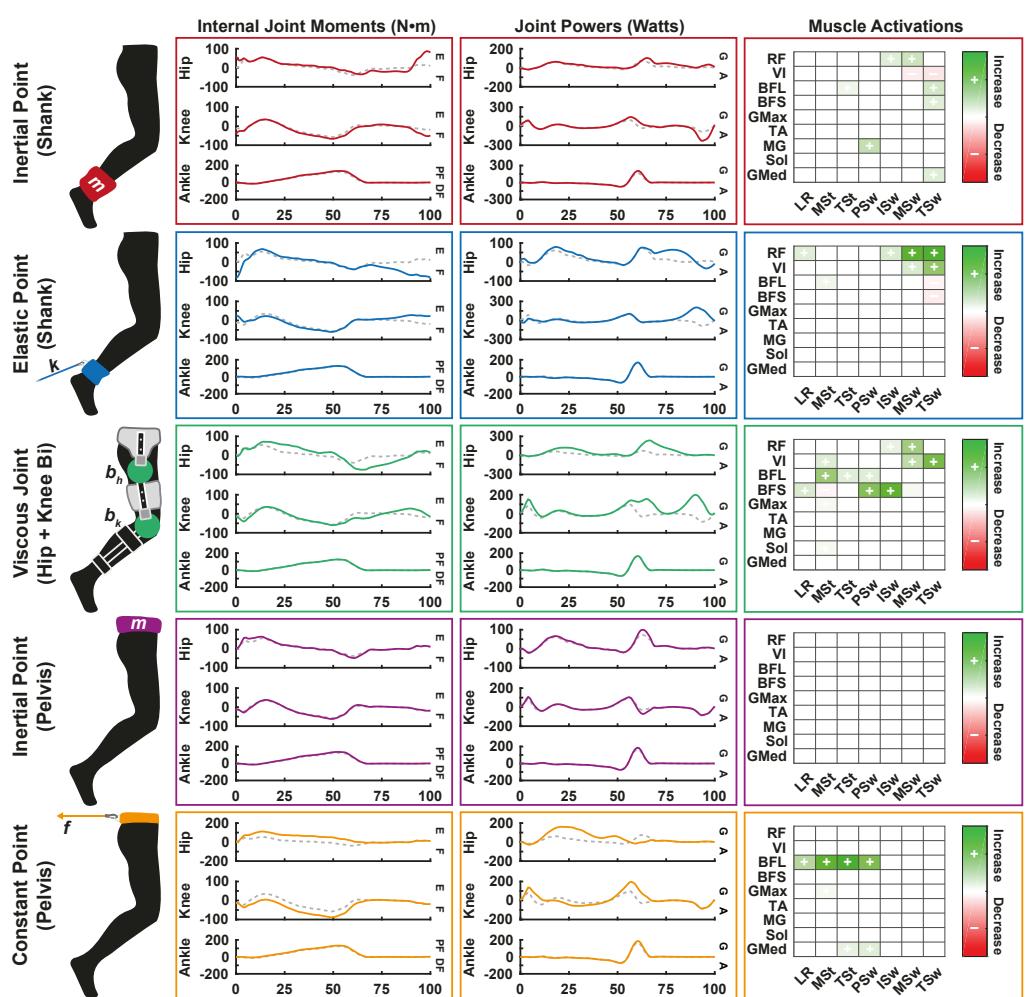


Figure S1: Representative joint moments, powers, and muscle activations resulting from common resistive strategies applied while walking. Internal joint moments and powers are plotted against the percentage of the gait cycle, where solid lines represent walking with the load and dashed lines represent normal walking. Labels to the right of the moment plots indicate the direction for extension, flexion, plantarflexion, and dorsiflexion. Labels on the power plots indicate a power generation or absorption. Muscle activations are depicted as a heat map of the muscles and the phase of the gait cycle, and indicate a change in muscle activation between resisted and normal walking. Note that these data are the result of a biomechanical computer simulation. Muscle abbreviations: RF (rectus femoris), VI (vastus intermedius), BFL (biceps femoris long head), BFS (biceps femoris short head), GMax (gluteus maximus), TA (tibialis anterior), MG (medial gastrocnemius), Sol (soleus), GMed (gluteus medius). Gait phase abbreviations: LR (loading response), MSt (mid-stance), TSt (terminal stance), PSw (pre-swing), ISw (initial-swing), MSw (mid-swing), TSw (terminal swing). Reprinted from Publication Gait & Posture, 75, Edward P. Washabaugh, Thomas E. Augenstein, Chandramouli Krishnan, Functional resistance training during walking: Mode of application differentially affects gait biomechanics and muscle activation patterns, 129-136, Copyright (2020), with permission from Elsevier. <https://doi.org.proxy.lib.umich.edu/10.1016/j.gaitpost.2019.10.024>