A Closer Look at Intel Resource Director Technology (RDT)

Parul Sohal Michael Bechtel Renato Mancuso
Boston University University of Kansas Boston University
psohal@bu.edu mbechtel@ku.edu rmancuso@bu.edu
Heechul Yun Orran Krieger
University of Kansas Boston University
heechul. yun@ku.edu okrieg@bu.edu

ABSTRACT

Unarbitrated contention over shared resources at different levels of
the memory hierarchy represents a major source of temporal inter-
ference. Hardware manufacturers are increasingly more receptive
to issues with temporal interference and are starting to propose
concrete solutions to mitigate the problem. Intel Resource Director
Technology (RDT) represents one such attempt. Given the wide
adoption of Intel platforms, RDT features can be an invaluable asset
for the consolidation of real-time systems on complex multi- and
many-core machines.

Unfortunately, to date, a systematic analysis of the capabilities
introduced by the RDT framework has not yet been conducted.
Moreover, no clear understanding has been matured about the
implementation-specific behavior of RDT primitives across pro-
cessor generations. And ultimately, the ability of RDT to provide
real-time guarantees is yet to be established.

In our work, we conduct a systematic investigation of the RDT
mechanisms from a real-time perspective. We experimentally eval-
uate the functionality and interpretability of RDT-aided allocation
and monitoring controls across the two most recent processor gen-
erations. Our evaluations show that while some features like Cache
Allocation Technology (CAT) yield promising results, the implemen-
tation of other primitives such as Memory Bandwidth Allocation
(MBA) has much room for improvement. Moreover, in some cases,
the presented interfaces range from blurry to incomplete, as is the
case for MBA and Memory Bandwidth Monitoring (MBM).

KEYWORDS

memory management, bandwidth control, shared cache partition-
ing, performance guarantees, application profiling, Resource Direc-
tor Technology, CAT, MBA, MBM, CMT, RDT

ACM Reference Format:

Parul Sohal, Michael Bechtel, Renato Mancuso, Heechul Yun, and Orran
Krieger. 2022. A Closer Look at Intel Resource Director Technology (RDT).
In Proceedings of the 30th International Conference on Real-Time Networks
and Systems (RTINS °22), June 7-8, 2022, Paris, France. ACM, New York, NY,
USA, 13 pages. https://doi.org/10.1145/3534879.3534882

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

RTNS °22, June 7-8, 2022, Paris, France

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9650-9/22/06. .. $15.00
https://doi.org/10.1145/3534879.3534882

1 INTRODUCTION

As multi-core systems have become more prevalent, providing
accurate performance guarantees has become increasingly chal-
lenging. With the advent of additional computing units, such as
accelerators, the pressure on the limited shared cache and mem-
ory controllers has increased [3, 51, 55, 56]. Embedded research
areas, such as real-time edge computing have become increasingly
more data-intensive. The real-time community has developed mul-
tiple hardware and software techniques to mitigate both spatial
and temporal interference at different levels of the memory hierar-
chy [9, 12, 13, 19, 49, 63, 67]. As already recognized in some of these
works, high-performance platforms are an attractive alternative for
complicated, highly interconnected real-time systems in need of
soft real-time guarantees [60, 61, 63].

Shared caches lead to inter-core interference as different tasks
can evict each other’s data from the cache and, as a result, make
calculating the worst-case execution time (WCET) convoluted and
pessimistic [32, 41, 64, 66] or overly pessimistic [20, 59]. Similarly,
main memory bandwidth is a significant bottleneck when various
applications are concurrently access DRAM (2, 30, 49, 66].

Hence, hardware techniques for cache partitioning and main
memory bandwidth regulation have found widespread adoption in
the real-time community [6, 67]. For example, ARM introduced a
specification for Memory Partitioning and Monitoring (MPAM) in
2017, which enables monitoring and control over the main mem-
ory usage [5]; ARM QoS extensions are already available in com-
mercial systems [49, 50]. In parallel, Intel has implemented new
hardware support for cache partitioning and memory bandwidth
regulation under their Resource Director Technology (RDT) um-
brella. For cache partitioning, Intel has introduced Cache Alloca-
tion Technology (CAT), which has already been used in a number
of works [61, 63]. For bandwidth regulation, Intel has introduced
Memory Bandwidth Allocation (MBA) [46, 60]. The management
tools are accompanied by their corresponding monitoring support,
i.e., Cache Monitoring Technology (CMT) and Memory Bandwidth
Monitoring (MBM).

In this paper, we provide a comprehensive analysis of the RDT
mechanisms as their use become more common in the real-time
community. Using synthetic benchmarks, we study their effective-
ness in providing temporal isolation for co-running applications.
Furthermore, we also investigate RDT monitoring features. We
substantiate our conclusion on the maturity of these features with
experiments conducted on two Intel platforms of different genera-
tions, namely Cascade Lake and Ice Lake.

RTNS ’22, June 7-8, 2022, Paris, France

2 RELATED WORK

Shared resource contention is a well-known issue in the real-time
community, and many research papers have explored performance
degradation in multi-core systems [38]. For example, Sha et al. [48]
demonstrated how contention at both the shared last-level cache
(LLC) and main memory impacts real-time performance. Know-
ing this, research works have proposed and used several resource
allocation techniques to limit and bound contention over shared
resources at different levels of the memory hierarchy [19, 39, 39,
44,52, 57, 62, 65, 67, 68]. Some works mandate strict resource par-
titioning between individual cores [31, 40, 48], or propose to de-
compose real-time tasks into a sequence of memory and execution
phases that can be explicitly scheduled. The Predictable Execution
Model (PREM) [47] and Acquisition Execution Restitution (AER)
model [37] are such examples. Additionally, specific works have pro-
posed custom hardware resource management primitives to resolve
contention over shared resources at different levels of the memory
hierarchy [15, 35, 36, 38]. For instance, the work in [36] proposes
a methodology to prioritize memory requests from high critical-
ity tasks by tagging them. Tag-based prioritization is enforced via
customizable hardware modules in the memory sub-system. In this
work, we focus on a commercially available resource management
primitives.

In particilar, we focus on the analysis of Intel RDT. Intel intro-
duced RDT features in the latest-generation Xeon processors to
manage contention over key memory resources. Several research
works have already employed Intel RDT technologies. Most notably,
many works employed CAT to manage cache allocation for critical
applications [19, 61, 63]. Farshin et al. implemented a slice-aware
cache management framework and compared it to CAT [16]. In
particular, they find that enabling CAT does not provide the desired
isolation and that limiting the available cache ways can instead add
more pressure on main memory bandwidth. However, the critical
assumption in these works is that CAT partitioning provides deter-
ministic results and can be trusted in providing way-based cache
partitioning.

Similarly, many techniques to regulate DRAM bandwidth have
been proposed. In software, a popular approach has been to monitor
memory bandwidth at the OS-level with LLC miss performance
counters and throttle cores that exceed a set bandwidth thresh-
old [67]. More recently, hardware-level designs have proposed
arbiters capable of enforcing bandwidth partitioning among co-
running applications [14, 44, 49, 57, 68]. Intel MBA—which is part
of RDT—is one such hardware-based bandwidth regulation mecha-
nism. Even though MBA is a recent addition to RDT, some works
have already attempted to apply MBA to decrease the performance
degradation caused by unregulated applications sharing the limited
main memory bandwidth [46, 60]. However, these works focus on
the earlier version of MBA which is known to have major limita-
tions and bugs [27].

While much prior research fundamentally assumed that CAT and
MBA have been correctly implemented, our goal is to specifically
put this hypothesis to the test. The description of the errors in the
document presented by Intel is vague and not comprehensive [27].
For example, specific workloads, especially memory intensive, can
use more of the shared cache than what allocated to them. Also,

Sohal et al.

MBA might throttle the cores at a different setting than the one
applied if the hardware register controlling the settings is read di-
rectly after changing the MBA level. Differently from the provided
errata documents, our approach is experiment-driven and our con-
clusions are tailored to the applicability of RDT from a real-time
perspective.

As RDT mechanisms become more common and more research
works attempt to build atop RDT to restore predictability, it is
crucial to analyze their functionality and maturity in depth. We
experimentally investigate the performance of both allocation and
monitoring primitives across two generations of processors. Fur-
thermore, we study whether the RDT framework is reliable enough
to be used by the real-time community by documenting the level
of isolation guarantees the resource allocations offer and the accu-
racy of the monitoring counters. Therefore, this paper sets itself
apart from previous works that have used Intel RDT mechanisms
as black-boxes.

3 RESOURCE DIRECTOR TECHNOLOGY

In this section, we provide an overview of the different components
of Intel RDT. The objective of these techniques, as explained by
Intel, is to reduce performance interference at the shared cache and
the main memory subsystem while enabling "key" applications to
maintain desired progress when the system has multiple applica-
tions running [10, 23]. These design goals are in line with the effort
placed by the real-time community in ensuring that high-criticality
tasks receive temporal isolation. Hence, the RDT framework is (in
principle) a viable alternative to existing techniques and tools.

RDT is made up of five mechanisms that can be subdivided
into resource allocation and resource monitoring capabilities - 1)
Cache Allocation Technology (CAT), 2) Code and Data Prioritiza-
tion (CDP), 3) Cache Monitoring Technology (CMT), 4) Memory
Bandwidth Allocation (MBA), and 5) Memory Bandwidth Moni-
toring (MBM). CAT and MBA help manage the shared cache and
main memory bandwidth, respectively. CDP is an extension of CAT
which enables the user to select the placement of code and data in
the shared cache. CMT and MBM monitor the shared cache and
main memory bandwidth. RDT was first introduced in Intel Xeon E5
v3 family of processors with limited functionality [25]. Our paper
uses two different generations of Intel platforms: 1) 2nd Generation
Xeon Scalable Processors (Cascade Lake), and 2) 3rd Generation
Xeon Scalable Processors (Ice Lake). Table 1 lists the platforms that
support RDT features.

3.1 Resource Allocation

It has been extensively shown that sharing of unregulated hardware
resources leads to performance degradation due to a lack of tem-
poral isolation [7, 8, 43, 58, 65, 67]. Partitioning resources ensures
high-criticality applications can maintain their quality of service
(QoS) by mitigating interference. The resource allocation mecha-
nisms provided by RDT work on the same principle. They allow
system designers to enforce specific limits on using performance-
critical shared hardware resources by applications scheduled on
individual cores.

A Closer Look at Intel Resource Director Technology (RDT)

Table 1: RDT with Availability Details

RDT Components |Variations|Generations

Atom Server C3000
11th Gen i3,i5,i7
Atom X Series

Xeon W

Xeon E3 v4

Xeon E5 v3,v4

Xeon D

Xeon Scalable

Xeon Scalable Gen2
Xeon Scalable Gen3
11th Gen i3,i5,i7
Atom X Series

Xeon W

11th Gen i3,i5,i7

L2 Atom X Series

Xeon W

Xeon E5 v4

L3 Xeon Scalable

Xeon Scalable Gen2
Xeon Scalable Gen3
Xeon Scalable

Xeon Scalable Gen2
Xeon Scalable Gen3
Snow Ridge

MBA 3.0 |Xeon Scalable Gen4
Xeon E3 v4

Xeon E5 v3,v4

N/A Xeon D

Xeon Scalable

Xeon Scalable Gen2
Xeon Scalable Gen3
Xeon E5 v4

Xeon D

Xeon Scalable

Xeon Scalable Gen2
Xeon Scalable Gen3

L2

Cache Allocation
Technology

L3

mHPBO00=EB

Code and Data

Prioritization

Memory Bandwidth MBA 1.0

Allocation

MBA 2.0

Cache Monitoring
Technology

WOMH~ZO0Z

Memory Bandwidth

oo N/A
Monitoring

Currently, RDT specifications support management of L2 cache,
L3 cache, and main memory bandwidth. The number of imple-
mented management controls differs between processor genera-
tions. For cache management, the partitioning is way-based, whereas
the main memory bandwidth controls limit the amount of band-
width extracted on a per-core basis. In this paper, we focus on LLC
partitioning and bandwidth throttling. In Section 3.1.1 we discuss
CAT, followed by two versions of MBA in Section 3.1.2.

RDT uses a notion of "criticality” to manage applications. In-
tel calls this Class of Service (CLOS/COS). The number of CLOS
available on a machine varies. Multiple cores can be mapped to
one CLOS. All cores with the same CLOS abide to the resource
allocation policy associated with that CLOS.

The CPUID assembly instruction can be used to see the resource
allocation features that exist for a particular platform [24]!. If allo-
cation for a resource exists, additional information about various

When RDT exists, use CPUID with EAX=0X10 and ECX=0x0 to obtain the list of RDT
features available on the current platform. Register EDX reveals which resources for
either monitoring or allocating exist. Please refer to the Intel Software Manual for
more details [26].

RTNS °22, June 7-8, 2022, Paris, France

knobs for controlling the resource partition is also provided. Specifi-
cally, for each resource type, CPUID instruction tabulates the number
of CLOS and the available allocation settings. By using per-CLOS
model-specific registers (MSRs), one can define the quantity of a
particular resource available to a given CLOS.

Once the values are assigned to each CLOS using the various
MSRs, a one-to-many mapping can be created to associate each
processor to its respective CLOS’s available resources. This mapping
is established by setting the value for an MSR that exists on each
logical core to one of the CLOS identifiers. This control register,
namely IA32_PQR_ASSOC, can also be read to retrieve the current
CLOS at each context switch.

To summarize, to correctly allocate resources to applications, the
following steps need to be performed: 1) for each resource that can
be managed (e.g. shared cache, main memory bandwidth) use the
MSRs to define a partitioning scheme for shared resources for each
of the CLOS, and 2) create a mapping of cores to CLOS.

The remainder of this section describes the interfaces for man-
aging shared cache and memory bandwidth resource allocations.

3.1.1 Cache Allocation Technology. CAT has been extensively used
to provide temporal isolation at the shared cache level [19, 34, 61,
63]. CAT itself is a hardware way-based partitioning mechanism.
On the two micro-architectures that we considered, i.e., Cascade
Lake and Ice Lake, there are 16 CLOS available.

To do CLOS-based cache way partitioning, CAT provides a set
of per-CLOS MSRs where a bitmask forces the assignment of cache
ways. In each of those registers, the least W significant bits encode
whether each of the W ways can be used for allocation by any
of the CPUs in the considered CLOS. These registers are called,
TA32_L3_MASK_n MSRs where n € {0,....,15} is the number of
CLOS available.

For example, setting IA32_L3_MASK_5=0b000@11100000 expresses
that CLOS5 allows a core to allocate cache lines in only three cache
ways. This can be used to portion out a fixed number of ways
that are not allocated to any other CLOS. However, nothing in the
current definition prevents CLOS from sharing cache ways. For
example, IA32_L3_MASK_4=0b00110000000 could be assigned this
value, which means that CLOS4 and CLOS5 share only one cache
way. By default, all CLOS have access to all the cache ways as all of
the bits in their MSR bitmasks are set to one after reset.

Until now the literature has employed CAT for isolation, but no
systematic effort has been placed in investigating the strength of
the isolation that can be achieved with CAT. Over the years, many
researchers have also reported bugs in different generations of
CAT, including Intel themselves [27]. In this paper, we provide one
systematic approach to assess CAT’s validity along with methods
to improve temporal isolation when using current implementations
of CAT.

3.1.2 Memory Bandwidth Allocation. Currently, there are three
different implementations of MBA: MBA1.0, MBA2.0, and MBA3.0.
The available CLOS are different in the three versions of MBA, and
the granularity of MBA controls is linear, starting at 10% up to 100%
in increments of 10%. Percentage to represent regulation settings is
a piece of notation used by Intel [26]. Because it is unclear what
these percentages refer to, we call these settings "throttling levels
"(TLs).

RTNS °22, June 7-8, 2022, Paris, France

Like CAT, MBA uses CLOS-based bandwidth allocation and pro-
vides a set of MSR registers, IA32_L2_QoS_Ext_BW_Thrtl_n MSRs,
where n represents the CLOS. Only values corresponding to avail-
able throttling levels are acceptable, such as 10%, 20%.

MBA1.0: The initial implementation of MBA enacted indirect
throttling over the bandwidth. This implementation of MBA uses
a Programmable Rate Controller (Figure 1a) between the per-core
L2 cache and the L3 interconnect. It would appear that the con-
troller introduces a constant delay on L2 cache misses based on
the throttling level. This hypothesis on the behavior of MBA1.0 is
consistent with the use of the term “delay” interchangeably with
threshold in the documentation, as well as with the statement that
"MBA throttles accesses to the last-level cache, and care should be
taken to not throttle applications which are LLC-intensive [26]”

0 pesiyL
0 pesiyL

Chip Multiprocessor Platform
Software

Core[0] Core[n]
private L2 | ¢ | Private L2
- New L2 Cach
" ‘H " .I :ac :
L | | Feature Rate Limit (MBA)
Qther throttling
I Memory I
High-speed interconnect Controller
| l L3 Miss Predictor
L3 Cache
| Shared L3 Cache |
DRAM
(a) MBA 1.0
(b) MBA 2.0

Figure 1: Implementation differences between MBA1.0 [22]
and MBA2.0 [28]

MBAZ2.0: In MBA2.0, the changes can be separated into two
components. First, the amount of throttling enacted by each MBA
TL is not fixed but is subject to change with BIOS calibration. Using
different calibration settings, the control over the inter-spacing be-
tween requests for different MBA settings can be modified?. Second,
the addition of a new hardware controller to measure the precise
bandwidth delivered to a CPU allows the controller to limit the
request rate to meet the bandwidth setpoint specified for the as-
sociated CLOS [28]. This is similar to traditional feedback-based
bandwidth control [1].

By having a hardware controller external to the core parts of the
processor, the newer implementation of MBA can, in theory, provide
more refined control over the bandwidth allocated to different
CLOS. Furthermore, as the controller tracks the requests made to
the DRAM and not to the last-level cache. This prevents throttling
requests that could be satisfied by the L3 cache.

MBAS3.0: The only difference between MBA2.0 and MBA3.0 is
that the assignment of throttling levels is no longer restricted to a
per-core basis. As the CLOS association registers are defined on a
per-logical-core basis, MBA settings can be set to different levels
for each hyper-thread. This is different from MBA1.0 and MBA2.0

2 Albeit the feature is mentioned in the manuals, both the machines we used provided
no options for the calibration of MBA in the BIOS. This might be available in the
future.

Sohal et al.

where the same throttling level was applied to all the hyper-threads
on the same physical core.

3.2 Resource Monitoring

Monitoring the resource utilization of an application at different
levels of the memory hierarchy can help ensure adequate amount
of resource allocation and prevent over-provisioning [19, 61]. Fur-
thermore, monitoring can also help contextualize the observed
performance degradation when contention over shared resources
occurs [18, 49].

Monitoring is performed by tagging each core via a Resource
Monitoring ID (RMID) [26]. This infrastructure in RDT is common
across both of the monitoring features (CMT and MBM). Multiple
cores can be set to the same RMID; this can be useful to monitor an
application running on multiple cores simultaneously. The set of
supported event types (resources that can be monitored) varies by
generation.

An event code represents the shared resource that needs to
be monitored. Currently, RDT only supports three event codes:
1) L3 cache occupancy, 2) total external bandwidth, and 3) lo-
cal bandwidth. Before we can retrieve the data, the MSR register,
TA32_QM_EVTSEL needs to be set with an event code and RMID for
which the resource monitoring is presented. Multiple event codes
can be stored in this register to monitor multiple resources simulta-
neously. Same with RMIDs. Once this is done, the data can be read
from the counter register ITA32_QM_CTR.

3.2.1 Cache Monitoring Technology. The RMID along with CMT
event code provides the last-level cache occupancy for the appli-
cation/core linked to it. CMT and other L3 performance counters
can help configure the appropriate cache partitioning for sensitive
cache tasks subject to temporal constraints.

3.2.2 Memory Bandwidth Monitoring. In complex systems, appli-
cations can perform memory requests to memory subsystems out-
side the scope of the local processor. Multi-socket systems with
non-uniform memory access (NUMA) can differentiate the type of
memory requests into "local” and "remote!" Local requests represent
L3 misses, including prefetches, that a memory controller completes
on the same socket [26]. Remote requests are L3 misses fulfilled by
a memory controller attached to a different socket. RDT has two
MBM event code options: 1) local external bandwidth and, 2) total
external bandwidth. The former only includes the bandwidth ex-
tracted by requests completed by memory controller(s) on the local
NUMA node. Conversely, the latter also includes the bandwidth
extracted from other NUMA nodes. The bandwidth extracted by
remote requests alone can be calculated by subtracting local from
total bandwidth. Lastly, even though the manuals refer to what is
measured as "bandwidth,' in practice, the raw counter tracks the
number of transferred bytes.

Each of the RDT features can be manipulated via the correspond-
ing MSR register. The summary of the registers we considered is
provided in Table 2. All these registers can be modified at run-time.

3.3 Scope of RDT Analysis

Section 5 and Section 6 discuss the results of CAT, CMT, MBA, and
MBM on two different processor generations. The paper aims to

A Closer Look at Intel Resource Director Technology (RDT)

Register Use

Set the desired CLOS and RMID

Defined for each logical processor

Contains event codes and the RMID to be monitored
Need to set before retrieving the data

Reports the monitored data

Contains bits for checking errors and validation
Bitmask to assign cache ways to each CLOS

n registers, one per CLOS

Set to one of the available throttling levels

n registers, one per CLOS

Table 2: Summary of the MSR registers used in RDT.

TA32_PQR_ASSOC

TA32_QM_EVTSEL

IA32_QM_CTR

TA32_L3_MASK_n

TA32_L2_QoS_Ext_BW_Thrtl_n

justify whether the current implementation of RDT mechanisms is
useful for the real-time community. We structured the two sections
by asking a set of questions that we must evaluate before we can
respond with a conclusive answer.

In particular, we focus on answering the following questions.

o Is CAT helpful to enforce LLC cache partitioning?

o Can we strengthen the degree of isolation provided by CAT?

o Are the results provided by CMT interpretable and in line
with the theoretical value of the synthetic benchmark?

o Is MBA effective in throttling interfering cores to protect a
target application?

o Are the limitations of MBA1.0 addressed in MBA2.0?

e How accurately is MBM able to track memory transactions
of known applications?

By answering these questions, we aim to help future works make
more informed design decisions when using RDT mechanisms.

4 TARGET PLATFORM AND SYNTHETIC
BENCHMARKS

To better understand the experimental studies conducted in the
following sections, we hereby introduce the target platforms. In
this section, we also describe the synthetic benchmarks used to
stress-test the systems and characterize the RDT tools” workings.

4.1 Target Platforms

We provide an analysis of CAT, CMT, MBA, and MBM on two
different dual-socket Intel micro-architectures, released two years
apart, Cascade Lake and Ice Lake.We assume a single victim task
and the remaining physical cores on the same socket are used by
co-running tasks. A summary of the main system characteristics
can be found in Table 3 [11]. The platforms used in this paper were
released in April 2019 and 2021, respectively.

This paper uses more complex hardware than the traditional
embedded platform as our goal is to evaluate the most complete
RDT implementation available to date. Notwithstanding, a subset
of RDT mechanisms is available on Intel’s embedded platforms.
For instance, Tiger Lake, released in late 2020, introduces support
for CAT. We expect full-fledged RDT implementations to be more
available in embedded platforms as the remaining features (CMT,
MBA, MBM) become more stable.

The architecture of the Cascade Lake processor is shown in
Figure 2. The CPU cores are connected in a mesh, where mesh com-
ponents are the individual cores (with a slice of LLC), the memory
controllers, PCI lanes, and Ultra Path Interconnect (UPI) endpoints.
Cascade Lake systems have two memory controllers with three

RTNS °22, June 7-8, 2022, Paris, France

Feature Details
Intel Xeon Gold 6248
CPU 40¢/80t, dual socket

2.5 GHz base, 3.9 GHz boost
32 KB(I)/32KB(D) L1 cache
Cache 1 MB L2 cache
27.5 MB L3 cache (LLC)
~ 376 GB Node 0
~ 378 GB Node 1
6 DDR4-2933 MHz (per node)
2 Memory Controllers (per node)
L2 CAT (not tested)
L3 CAT
L3 CMT
MBA1.0

(a) Cascade Lake Machine (Released 2019)

Memory

RDT

‘ Feature ‘ Details ‘
Intel Xeon Gold 6338
CPU 64c¢/128t, dual socket

1.8 GHz base, 2.4 GHz boost
32 KB(I)/48 KB(D) L1 cache
Cache 1.25 MB L2 cache
48 MB L3 cache (LLC)
~ 31GB Node 0
~ 31.5GB Node 1
8 DDR4-3200 MHz (per node)
4 Memory Controllers (per node)
L3 CAT
L3 CMT
MBA2.0
MBM

(b) Ice Lake Machine (Released 2021)

Memory

RDT

Table 3: Notable System Characteristics

2x UPI x20 PCle x16

PCle x16 On Pkg
DMI x4 PCle x16

HA/SF/LLC | CHA/SF/LL

1
CLX Core CLX Corée
SF/LLC | CHA/SF/

CLX Core CLX Core CLX Core CLX Core
-
HA/SF/LLC | CHA/SF/LI CHA/SF/LLC | CHA/SF/

1x UPI x20 PCle x16

CLX Core CLX Core

—
HA/SF/LLC | CHA/SF/LLC,
i i
CLX Core

CLX Core CLX Core

Figure 2: Cascade Lake Processor Architecture [17]

channels each. The newer Ice Lake systems have a similar design but
contain four memory controllers with two channels per controller.

4.2 Noise Control

In order to limit performance fluctuations, we configured the target
systems as follows. First, each of the experiments in this paper is
run 30 times to provide statistically significant results. Next, we
disable simultaneous multi-threading (SMT) and only consider a
single socket. We also disable the dynamic frequency governor

RTNS ’22, June 7-8, 2022, Paris, France

such that the processor operates at the fixed base frequencies on
each micro-architecture mentioned in Table 3. We also disable Intel
Turbo Boost in our experiments.

Additional features that introduce non-determinism in the per-
formance measurements are disabled. These include hardware
prefetchers, OS-level load balancing and power-saving features.
Specifically, load balancing was restricted via the isolcpus Linux
kernel boot parameter [21] for all the cores in the socket under anal-
ysis. Furthermore, the kernel is compiled with the NOHZ_FULL [4]
configuration option to disable the scheduling ticks when the CPU
is idle or has only one application scheduled on the core. This is true
in our experimental setup as each application is explicitly pinned
to a core and not allowed to migrate. Power-saving features were
disabled by restricting the C-states [53] of the processors.

Each socket in the target platform has multiple main memory
(DRAM) controllers, attached to a set of DRAM modules (DIMM)
local to the socket. We restrict physical memory allocation for
application workload to the local socket to limit inter-socket data
exchange. We do so with a combination of two methods. First,
we disable inter-socket memory interleaving. Second, we use the
numactl [45] utility to force physical memory allocation from the
local node/socket. We only consider one socket under analysis in
the remainder of this paper. The other socket is left unloaded and is
used for handling interrupts and other OS-level management tasks.

‘ Platform ‘ Tot. Ways ‘ Vic. Ways ‘ Co-Runner Ways ‘ Vic. Part. MB

Cascade Lake 11 6 5 15
Ice Lake 12 6 6 24

Table 4: Static cache partitioning on two micro-architectures.

An essential factor that impacts performance isolation is con-
tention over shared LLC cache space. We use strict cache parti-
tioning for the workload under analysis via CAT [26]. We have
fixed the number of ways allotted to the core under analysis unless
mentioned otherwise. The rest of the LLC is collectively assigned
to the remaining cores on the socket. As shown in Table 4, the
same number of ways was assigned to the core under analysis for
both the Cascade Lake and Ice Lake machines. The number of ways
allocated to the victim core is 6 in both platforms, but the partition
size is different as the two systems drastically differ in terms of total
LLC size. In our Cascade Lake machine, six ways correspond to
15 MB of partitioned LLC, whereas in our Ice Lake machine, it adds
up to 24 MB. Lastly, any change to the RDT registers is verified by
reading back the registers value.

4.3 Synthetic Benchmarks

The synthetic workload we use in our experiments is designed to
be memory intensive. We use the same “bandwidth” benchmark as
in [67]. It iterates multiple times — until terminated — over a buffer
with a given size. Each iteration performs a load or store every
64 bytes of data, which corresponds to the cache line size. Since
there are no dependencies between consecutive requests, they can
be carried out in parallel which maximizes the load on the DRAM.
The benchmark estimates the bandwidth received by measuring
its runtime and the number of completed memory operations. De-
pending on the size of the data buffer, this benchmark can be made
LLC sensitive or DRAM sensitive.

Sohal et al.

DRAM-Boms: In cases where we are interested in studying the
performance impact of contention over main memory resources,
we set up our synthetic benchmark to be DRAM sensitive. This is
done by using a buffer of 3X the size of the shared cache (much
bigger than the LLC cache partitioning in both platforms). When
the synthetic benchmark is configured with these parameters, we
refer to it as a “DRAM-BomB.”

LLC-Boms: Contention over LLC bandwidth is another important
aspect of our study. The synthetic benchmark described above is
configured to maximize LLC interference. For our Cascade Lake
machine experiments, we use a buffer size in the range [2.5 MB,
15 MB] since that is bigger than the L2 but still fits within the 15 MB
cache partition.

On Ice Lake, the buffer size is in the range [4 MB, 24 MB]. It is
three times the size of the L2 cache. When the synthetic benchmark
is configured in this way, we refer to it as a “LLC-BomB.” Recall that
apart from the core under analysis, all the other cores share an LLC
partition of about 24 MB in our Ice Lake machine and 12.5 MB in
our Cascade Lake system.

5 ANALYSIS OF CAT AND CMT

Cache partitioning is a widely used mechanism for providing tempo-
ral isolation at the shared last level cache between applications run-
ning on different cores simultaneously. In past research, both soft-
ware and hardware-based mechanisms have been used [39, 52, 63].
In general, hardware techniques have lower overheads and do not
need assistance from the OS or the compiler to create cache parti-
tions [61, 63]. An alternative hardware approach is implemented
in [16] where a slice-aware cache management methodology was
proposed. The paper shows that memory access latency can be re-
duced by allocating memory in LLC slices that are closer to the core
on the mesh architecture. The benefits of slice-aware allocation
are beyond the scope of this paper. Specifically, this work focuses
on Intel’s hardware-based cache partitioning mechanism, i.e., CAT,
which has previously been used in the real-time community. In this
section, we take a closer look at this mechanism and the related
cache monitoring primitive (CMT).

5.1 Is CAT Helpful to Enforce Partitioning?

Our first experiment is designed to understand the benefits of using
CAT for LLC sensitive benchmarks. This is done by running the
same application with and without a private cache partition allo-
cated via CAT. The victim core executes an LLC-Boms with varying
buffer size performing read operations. The results are presented
in Figure 3. The x-axis tracks the number of other active cores run-
ning DRAM-BowmBs performing write operations. As the number
of co-runners increases, the pressure exerted on the limited shared
cache grows. The y-axis captures the percentage of LLC misses
triggered by the victim core on two considered micro-architectures.
The four sub-plots in Figure 3 present the results of four different
configurations: 1) Ice Lake machine without CAT (Figure 3a), 2)
Ice Lake machine with CAT (Figure 3b), 3) Cascade Lake machine
without CAT (Figure 3c), and 4) Cascade Lake machine with CAT
(Figure 3d). The cache misses are recorded via perf’; a userspace
utility for performance monitoring [33]. Also, as mentioned in Sec-
tion 4.2, when CAT is used, 6 ways in each platform are provided to

A Closer Look at Intel Resource Director Technology (RDT)

the core under analysis. Each line on the four sub-plots represents
a different working set size (WSS). Hence, on our Cascade Lake
processor, the WSS of the application goes from 2.5 MB to 15 MB
and on our Ice Lake system from 4 MB to 24 MB. The increment in
the WSS is equivalent to the size of one cache way on the respective
machines. Additionally, the largest buffer size in our experiments is
when the WSS is equal to the size of the L3 cache partition provided
to the victim core via CAT.

amB amB
-9- 3MB -#- 8MB
12MB A 12MB
80 ~* 16 MB Iy suq -+~ 16 MB
20 MB ¥ 20 MB
-#-24 MB # +- 24MB
- *
g o0 «F * g oo
i L, i
H s H
Ed f 7 ERU
/ *
¥ ./
= i > 2 e LAt g SN N Aew e e)
‘,,.*u;:,*f‘ Pratdebpbad d bbb b b bbb Ak

ek b
5 10 15 20 5 30 5 10
Interference Cores

15 20 25 30
Interference Cores

(a) Ice Lake - No CAT (b) Ice Lake - CAT

2.5MB 25MB
- 5MB ®- s5MB
7.5MB 7.5MB
a0 - 10MB 804 ~#- 10MB *
12.5 MB 12.5MB /
#- 15MB +- 15MB 4
g &0 g 60
3
é é 7 ¥
L ERS 4
/*/ *
20 2 4/*/* /
R T T WU S, SR
/ / 4 e g
o ks s DGO en® PR e D D

15 10
Interferance Cores

(d) Cascade Lake - CAT

10
Intarference Cores

(c) Cascade Lake - No CAT

Figure 3: The difference between shared cache misses in percent-
age as the working set size increases with DRAM interference with
and without CAT partitioning.

The answer to whether CAT provides isolation in the shared
cache is multi-fold. When no hardware partitioning exists in both
platforms, as the number of contenders increases, there is a drastic
increase in the percentage of cache misses, as measured by hardware
performance counters. In the worst-case scenario, the main memory
serves 80% of the data accesses. Even though the application is
cache sensitive, its progress is bounded by the rate at which main
memory can satisfy read/write requests. The inflection point in the
application’s performance is dependent on its WSS. The larger the
WSS, the earlier degradation in performance is observed.

Unfortunately, CAT behaves very differently in the two genera-
tions of processors. For fewer interfering cores (around less than 18
cores), the Ice Lake machine (newer generation) has more or equal
cache misses with CAT than without. Without reserved shared
cache, we see initial near 0% cache misses that increase slowly up
to ~5%, regardless of the WSS. CAT changes this behavior as even
with a few contenders, the percentage of LLC misses remains con-
stant as shown in Figure 3b. For example, when the buffer size is
20 MB in the Ice Lake experiments, with no CAT, and when there
are no co-runners, we see 0% cache misses. But with CAT under
the same conditions, we observe ~13% cache misses. Essentially,

RTNS 22, June 7-8, 2022, Paris, France

CAT limits the LLC misses to a relatively constant value (flat line
observed in Figure 3b) which is dependent on the WSS of the task
compared to the allocated shared cache; the values start around 0%
and go up to ~20% when the WSS is equal to the cache partition size.
In short, for our Ice Lake platform, the observed LLC misses do not
depend on the number of contenders performing DRAM-BomBs.
This deterministic behavior is better than having a sharp increase
in misses depending on the co-runners, as with no partitioning.
Even though the results for our Cascade Lake system (Figure 3¢ and
Figure 3d) initially perform similar to the newer generation, after a
certain number of contenders, a dramatic increase in cache misses
is observed. The initial flat lines for each WSS value ultimately
exhibit exponential growth, similar in magnitude to the case with
no hardware-based cache isolation. This increase is consistent with
different WSSs and occurs roughly at 11 contenders (Figure 3d).

25000

pef=d- O .
S -,,,.‘4’-'-1.—4-&;","""‘:«;:“-*'-;,

20000 20000

15000

M

B o s N
5000 T *4\“"\..

100001 -® 25MB
5MB
% 7.5MB

5000 10MB.

10000

Bandwidth (MB/s)
Bandwidth (MB/s)

5000

5 10 15 20 25 30
Interference Cores

18 15 20
Interference Cores

(a) Ice Lake (b) Cascade Lake

Figure 4: Impact on applications bandwidth while using
CAT.

Because the number of cache misses is not null, even when CAT
partitioning provides some determinism in the cache miss rate, we
expect additional side effects as the number of contending cores
increases. Specifically, the victim core suffers in terms of extracted
main memory bandwidth. In our Cascade Lake platform, this de-
crease in bandwidth, as shown in Figure 4b, can be attributed to the
increase in LLC misses. But for the Ice Lake machine (Figure 4a),
the percentage of LLC misses stays constant even as the co-runners
increase. Hence, it is necessary to note that even if the LLC misses
reported by the application do not increase; this does not correlate
to the application performing at peak performance. For the core
under analysis, the main memory serves the LLC misses. As other
cores run instances of DRAM-Bowms, the victim core competes for
main memory bandwidth. Hence, even when LLC misses are con-
stant, the victim core’s performance will degrade due to contention
over main memory.

No matter the generation, even when the WSS is half of the
cache partition size, we observe a non-negative cache miss rate. As
seen on these two platforms, even allocating a partition size three
times larger than the WSS, our Ice Lake machine at 8 MB incurs
~2% of cache misses and for Cascade Lake system for the 5 MB WSS
suffers ~8% cache misses. Furthermore, there is alack of consistency
between the results obtained on the two micro-architectures. While
over-provisioning the cache partition is beneficial, cache space is
an expensive resource, and over-provisioning negatively impacts
the rest of the system.

A plausible hypothesis for unexpectedly high LLC misses when
the partition size is larger than the WSS is set conflicts. Set conflicts

RTNS °22, June 7-8, 2022, Paris, France

are inevitable in CAT as CAT fundamentally reduces the associativ-
ity of the cache by partitioning cache ways. Reduced associativity
causes more set conflicts for the same cache space. In contrast, set-
based partitioning, i.e., page coloring, does not have this problem
of reduced associativity and thus can potentially better utilize the
given cache space [65].

Also, Intel platforms map addresses to cache sets by computing a
hash function over multiple bits of the physical address [16, 29, 42].
It is reasonable to assume that the hash function is balanced over
large enough continuous physical address spaces. In a typical OS,
physical memory is allocated at the granularity of 4 KB pages. De-
mand paging causes the allocated pages to be spread randomly
across the physical address space, creating unevenness in the cache
sets allocated to the user-space applications. We experiment with al-
locating larger continuous sequences of physical addresses space by
changing the default page size to be greater than 4 KB, as discussed
in Section 5.2.

5.2 Can Cache Partitioning be Strengthened?

We increased the page size from the default 4 KB to 1 GB (huge
pages). The findings from this experiment are depicted in Figure 5,
with results on the Ice Lake machine on the left and the Cascade
Lake system on the right. Increasing the page size helps distribute
the physical addresses across the shared cache via the unknown
hash function more uniformly. Reverse engineering the hash func-
tion is beyond the scope of this work, even though successful at-
tempts have been made in the past [16, 42]. In both these platforms,
there is abundant main memory. Hence, we study whether using
huge pages effectively limits self-eviction due to set conflicts.

100 100
4 MB 2.5 MB
-#- 8MB 0.20 -% 5MB
80{ 12 MB - 80 7.5MB *
-%-16 MB -+ 10MB /
- 20 MB 0.15 - 125 MB
£ 6o -4-24MB £ gl -4 15MB f
g H {
8 0.10 8 i
S a0 LS a0 T
Q Q q 2
3 0.05 | = i
i r
e
1 20
20 000t ot "
bttt o
¥
0 ‘ - : » - 0 " e
5 10 15 20 25 30 0 5 10 15 20

Interference Cores

(b) Cascade Lake - Huge Pages

Interference Cores

(a) Ice Lake - Huge Pages

Figure 5: Percentage of LLC misses as the working set size in-
creases with DRAM interference and with CAT partitioning and
huge pages.

Again, the results in the two micro-architectures vary. The newer
class of Intel platforms exhibit visible improvements from the use
huge pages. This can be observed in the zoomed inset of Figure 5a.
In most of the considered buffer sizes, the percentage of LLC misses
drops to almost zero. The only exception is when the WSS of the
synthetic LLC-BomB is equal to the cache partition. Even in this
situation, the cache misses are minimal at 0.10% compared to the 20%
observed when the page size was 4 KB. Unfortunately, our Cascade
Lake machine with huge pages does not exhibit the same drastic
performance boost. When the WSS of the synthetic benchmark is

Sohal et al.

equal to the allocated cache, the percentage of LLC misses drops
from ~20% to ~10%. This is only true up to a certain number of
contenders. When 11-15 co-runners are active, our victim core
suffers an exponential performance degradation even with huge
pages (Figure 5b).

Also, in our Ice Lake system (Figure 6a) we do not observe a
decrease in bandwidth extracted by the victim core. The results for
our Cascade Lake machine in Figure 6b corroborate the previous
results where we observed an increase in LLC misses (Figure 5b).

In conclusion, we can have better results when the page size
increases, but it is not guaranteed. It is crucial to analyze the perfor-
mance of a system with CAT as optimal temporal isolation using
CAT is strictly dependent on the specific RDT implementation. In-
deed, the results vary depending on the number of co-runners and
the considered micro-architectures.

25000

G- Tngpm,
4 n g o
20000 20000 -

MB/s)

(
g

HDANAADARARASARARAR AR 15000

10000 -#- 4 MB 10000 -

Bandwidth (MB/s)

Bandwidth
©
H

5000 16 MB 5000

5 10 15 20 25 30

15 20
Interference Cores

ptd
Interference Cores

(a) Ice Lake (b) Cascade Lake
Figure 6: Impact on applications bandwidth while using CAT
with huge pages.

5.3 Are CMT Results Interpretable?

Modern computing systems have substantially increased in com-
plexity. Numerous hardware performance features have been in-
troduced to shed light on the interplay between applications and
hardware resources [5, 25, 33, 54]. Intel CMT, which tracks the
cache occupancy for a given RMID, is another available perfor-
mance monitoring capability.

We deploy the LLC-BomB benchmark with a known WSS. The
WSS ranges from size of one way to seven ways on respective
machines. The size of the cache partition is six ways, as in all
other experiments. For each of these scenarios, we monitor the
cache occupancy reported by CMT. Figure 7 shows the findings
of CMT on the considered two platforms. The cache occupancy
in both micro-architectures without huge pages is slightly higher
than the buffer size. Overall, it would appear that CMT can track
the WSS of the target application. With huge pages enabled, the
results on the two platforms differ drastically. The cache occupancy
reported by CMT on the Cascade Lake platform is almost equal to
the total cache size, whereas on the Ice Lake platform the cache
occuparncy is greater than the buffer size until the 5/6 portion case.
In either case, it is hard to explain the values reported by CMT, as
it is not clear how the cache occupancy of an application can be
larger than the used buffer size. The discrepancy between the cache
occupancy value reported by CMT for the same buffer size with and
without huge pages is unexpected and undermines the reliability
of CMT. Hence, the results from CMT are inconclusive. In theory,
this counter might have remarkable practical value for conducting

A Closer Look at Intel Resource Director Technology (RDT)

a live analysis of cache occupancy in deployed applications and
adjusting CAT-enforced partitioning accordingly. However, the
current implementation appears to be too imprecise (at least when
huge pages are used).

30000

25000 o oS .
/ P S
— -

20000

)

¥
8
8

-]
8
8

g
H

&
8
8

Cache Occupancy (KB,
Cache Occupancy (KB,

h

8
8
8

25 sumerse

/ ~4- Cache Partition
Obsarved via CMT
~#- Observed via CMT - Huge Pages
76

- Buter Size
- Cacha Parttion

Observed via CMT
-®- Obsarved via CMT - Huge Pages =

+ %
g
8

@
8
8

16 bt} 76 s 1w

172 b 5i6
Portlon of CAT Partition

(b) Cascade Lake

17 3 506
Portion of CAT Partition

(a) Ice Lake

Figure 7: CMT results for Ice Lake and Cascade Lake with
and without huge pages.

6 ANALYSIS OF MBA AND MBM

Memory bandwidth regulators, both hardware and software-based,
are used in real-time systems to control the memory traffic to the
DRAM subsystem. The goal is to limit the temporal interference
between applications that share resources [3, 19]. A few research
works have looked at the earlier version of MBA [46, 60] in the
context of both real-time and general-purpose systems. This sec-
tion shows the differences in behavior between the two versions
experimentally and if they are viable for the real-time community.

MBA1.0, available on Cascade Lake machines, does not distin-
guish between memory requests fulfilled by the shared cache versus
the main memory. This is due to the lack of additional hardware
present on this micro-architecture to track the memory transac-
tions leaving the core. Each MBA setting adds a fixed delay value
to the requests sent to LLC. On the other hand, MBAZ2.0, on Ice
Lake platforms, track the DRAM bandwidth through a hardware
controller and can change the inter-arrival between requests in
response.

§

writes with write cont. #0080 W
writes with read cont. *-..
4~ reads with write cont. 7000 H‘:\:\.
@ reads with read cont. 2 qo00 . \
=
o \‘

BandwidthmMBls .
ERE

g 2000 oy
2000 2 3000
o writes with write cont.
2000 *0‘“ “::“‘“c“:::’“. 2000 wites with read cont.
-4~ reads with write cont.
1000 1YY 1000 -9 reads with read cont.

H 10 15 20 25 30 5
Interference Cores

10 15 20
Interference Cores

(a) Ice Lake (b) Cascade Lake

Figure 8: Degradation in performance due to interfering
cores on the same socket.

6.1 Performance Degradation due to Limited
Bandwidth
In Figure 8, our victim application experiences a drastic decline

in the bandwidth received when multiple memory intensive ap-
plications are contending over the same shared resource — main

RTNS 22, June 7-8, 2022, Paris, France

memory. The x-axis shows the number of contending cores, and
the y-axis reports the extracted main memory bandwidth. As more
applications compete for the same limited main memory bandwidth,
both the Cascade Lake system and the Ice Lake machine exhibit
decline in performance. On our Ice Lake platform, when the victim
core is the sole runner performing reads, the reported bandwidth
is ~8000 MB/s. However, when 31 contending cores do the same, it
drops to below 1500 MB/s, showing an 80% drop in main memory
bandwidth performance. Our Cascade Lake system also demon-
strates a similar trend, even with fewer cores contending on the
same socket.

8000 P 8000

........... —
-
7000 7000 /'
4 6000 a2
g gooo /
s000
= = 5000
B a0 5
s T om
E 2z
2 3000 2 2000
]]
& 2000 = 2000
1000 1000

20 100 20 80 100

4)
Throttling Level

(b) Cascade Lake - Reads

) &
Throttling Level

(a) Ice Lake - Reads

. S PP — PR
bt 5000
@ 5000 "
= = 4000
= =
£ £
o 5 3000
g 3
1= £ 2000
l"g 2000 g
1000 1000

20 100 20 50 100

40 50
Throttling Level

(d) Cascade Lake - Writes

40 £
Throttling Level

(c) Ice Lake - Writes

Figure 9: Default relation of throttling settings and band-
width when performing reads vs writes.

6.2 How to Interpret MBA Settings?

For MBA to be useful, it is important to interpret the 10%, 20%....,
throttling levels. To translate the throttling levels to a bandwidth
value, we run DRAM-BowMms pinned to a core and track the reported
bandwidth over several executions. The results on both micro-
architectures are shown in Figure 9. The x-axis denotes the throt-
tling levels, and the y-axis captures the main memory bandwidth
reported by the synthetic benchmark. The reported bandwidth over
multiple runs is consistent.

Figure 9b and Figure 9d depict the results for MBA1.0. The results
for bandwidth reported for both reads versus writes are comparable.
40% and above settings report the same bandwidth value. The main
memory bandwidth for each core for lower levels is not restrictive
enough. Furthermore, after the first few settings, the remainder of
the options quickly reach the peak bandwidth that can be extracted
via a core (~5200 MB/s for writes and ~8000 MB/s for reads). Lastly,
as mentioned before, the throttling controls are implemented be-
tween L2 and L3. So, memory requests that might be served in LLC
might also suffer delays.

On our Ice Lake platform (Figure 9a), when the victim core is
only performing loads, we observe a linear trend in the bandwidth.
This complies with the type of bandwidth control available on our
current platform reported via CPUID. Each throttling level offers

RTNS °22, June 7-8, 2022, Paris, France

a distinct main memory bandwidth for the restricted core. How-
ever, when the core performs write operations, the trend (Figure 9c)
becomes very similar to that of the Cascade Lake machine. The
initial three settings report different main memory bandwidth, but
beyond 30%, all throttling levels report the same extracted band-
width. Manipulating the inter-spacing of memory requests with
BIOS calibration might be possible. However, our current system
does not have support for this. Hence, we can not verify it in this
paper.

MBA'’s throttling is designed to throttle reads (cache-line refills)
more harshly than writes (write-backs) in both implementations.
Furthermore, another limitation of MBA that is evident from the
current programming interface is that reads and writes cannot be
independently regulated, even though they have a different impact
on the application’s performance and main memory controller
saturation.

Knowing the limitations of MBA, it is still essential to investigate
if MBA-enforced regulation is enough to shield an application with
strict temporal constraints from performance interference.

6.3 Is MBA Enough to Provide Protection?

Realizing the need for restricting certain non-critical applications
while ensuring bandwidth guarantees for critical applications, In-
tel increased the scope of RDT to include MBA. In the next set
of experiments, we evaluate if one can protect applications with
strict temporal constraints by restricting the bandwidth available
to interfering cores via MBA controls. The results from this study
can be found in Figure 10. Each line on the plot represents an MBA
setting for the interfering cores. On our Cascade Lake processor,
only 8 options are available — 10%, 20%, 30%, 40%, 50%, 60%, 90%
and 100%. On the Ice Lake machine, we have the full range from
10% to 100% in 10% increments.

7000 \‘:“.
@ TR
3 so00 FEe,
5000
%10
2 2000 20
% - 30
2 3000 20
- 50
2000 pos
8- 50

10 2 10 5
Interference Cores Interference Cores

(a) Ice Lake - Read Cont.

2000 fa e

(b) Cascade Lake - Read Cont.

7000 {14
£ 5000
=

= 5000

= 2000
E

2 3000

8883388885

2 2000

N
§
$odidie

1000 1000

°

5

10 2 10 5
Interference Cores Interference Cores

(c) Ice Lake - Write Cont. (d) Cascade Lake - Write Cont.
Figure 10: Isolation guarantees to victim synthetic bench-
mark from interfering cores running memory intensive syn-
thetic benchmarks.

Figure 10a showcases the result on our Ice Lake platform when
the victim core and the co-runners are running DRAM-BomBs
performing reads. As mentioned earlier, reads are throttled more

Sohal et al.

than writes in the current implementations on MBA. Hence, the
maximum degree of protection to the victim core is observed in
Figure 10a. With all contenders throttled at maximum level, the
performance decline of 80% without any control has dropped to only
36%. We see a similar result on our Cascade Lake machine. When
the 19 co-runners are set to 10%, the victim cores bandwidth drops
by 20% compared to 40% earlier without bandwidth restrictions.

However, in most cases, limiting bandwidth even with few con-
tending cores is not restrictive enough to protect the critical task. To
provide better protection, we need to decrease further the amount
of bandwidth extracted by each core at 10% and other settings. The
manual mentions the possibility of calibration settings in the BIOS.
But we ascertained that the current version of the BIOS we are us-
ing does not support it, despite it being the latest firmware available
to us at the time of the writing.

In summary, a notable shortcoming is not being able to throttle
reads versus writing separately. Figure 8 depicts how the application
under analysis suffers different performance degradation when
contending cores perform loads versus stores. Also, the number
of available throttling levels (8 on Cascade Lake and 10 on Ice
Lake) is limited in number. This lack of fine granularity between
levels prevents users from providing precise bandwidth controls
to their applications. Even if calibration through the BIOS restricts
the bandwidth for each throttling level, there is a chance at runtime
this might be a significant limitation, especially when the set of
applications running has drastically different load characteristics.

With the current results, it is not viable to use MBA by itself to
restrict the non-critical cores to provide temporal isolation to high
criticality tasks, and software-based approaches might still be more
suitable for real-time workloads.

Write - Max TWrite - No TLRead - Max TLRead - No TL
[ce Lake 96% 96% 108% 93%
[Cascade Lake 80% 81% 92% 75%
Table 5: Percentage of memory transcation reported by
MBM compared to the theoretical value.

6.4 How Accurate are MBM Counters?

A plethora of research works have tracked the number of LLC
misses of an application in isolation to compute the rate of memory
transactions [30, 67]. To avoid doing so, certain new platforms
include counters to track the requests sent to the DRAM sub-
system [49]. MBM monitors per-core memory transactions to the
DRAM sub-systems. It can sepearte traffic between local and remote
sockets. In this paper, our focus is on local DRAM sub-syetem as
we use one socket and force all main memory transactions to be
completed by DRAM on the same node.

The findings of MBM are summarized in Figure 11. The x-axis
tracks the progress of the application in seconds. The target ap-
plication is run for 5 seconds and monitored every 1us on our Ice
Lake machine and every 1s on the Cascade Lake platform. The
massive difference in the monitoring interval is due to an improve-
ment in the granularity of measurements between the Cascade
Lake platform and the Ice Lake machine. All eight graphs report the
cumulative number of memory requests to the DRAM sub-system

A Closer Look at Intel Resource Director Technology (RDT)

soo0
& %000 7 & Vel
25000
3 moos S v
8 8
% 15000 / % - /
& 10000 H W s v
g - e . . € soo0 / - hop. st
2 w0 e £ e
I e vos i e vloe
S PR R 3
Time (s) Time (s)
(a) Reads - No Throttling (b) Writes - No Throttling
5000 17500
. o e
2] 8o
= 4000 -
g E 12500
a / a
8 3000 8 10000
B / 2
g.lﬂﬂﬂ % 0
2 / 5000 -+ MBM Mesaured Mem. Req.
£ 10w VoM Mesursa Mo Rex. | £ ——- App. Start
o - . —== App. End
e e £ w0 L
~=-- Theor. Value “Twice Theor. Value
° 1 2 3 4 5 ° 1 2 3 5
Time (s} Time (s}

—_
o
~

(c) Reads - Max Throttling Writes - Max Throttling

 MBM Mesaured Mem. Req,
50000 ——- App. Start

—=- App. End
-~ Theor, Value
0000 ‘Twice Theor. Value /

7.
/
10000 /
a 5 1

H
-
3

8
2
2

-

]
H
8

20000 / /
10000 « MBM Mesaured Mem. Req.
- App. Start
--- App. End

-~~~ Theor Value

2
H
3

Mem. Requests to DRAM (MB}
Mem. Requests to DRAM (MB)

1 2 3
Time (s}

(f) Writes - No Throttling

20000 /._
15000 /

10000
- MBM Mesaured Mem. Req
~== App. Start
——- App.End
-~ Theor. Valve
L Twice Theor. Value

a 5

2 3
Time (s)

) Reads - No Throttling

®

A7
/
S e

——- App.End
- Theor Vaiue

Mem. Requests to DRAM (MB)
H
g
o
g

Mem. Requests ta DRAM (MB)

1 2 3
Time (s}

(h) Writes - Max Throttling

2 3
Time (s}

(g) Reads - Max Throttling

Figure 11: Comparing MBM results for Ice Lake (a-d) and
Cascade Lake (e-h) under different throttling conditions.

on the y-axis. The goal is to verify the results reported by MBM

compared to the synthetic benchmark on both micro-architectures.

We plot the theoretical data reported by the synthetic benchmark
(horizontal flat line). The vertical lines represent the application’s
beginning and ending. The initial slope of the curve is slower than
the trend in the remainder of the plot. Also, even though the loop
in the synthetic benchmark executes for five seconds, all of these
eight graphs show longer runtimes. These observations can be
attributed to the additional time and bandwidth needed to set up
the application. Table 5 summarizes the results for the percentage
of data transferred from the DRAM sub-system as reported by MBM
compared to the theoretical value. The figures also show that when
the benchmarks are throttled more, the data requests completed
decrease in number because the termination of the application is
time-triggered.

RTNS 22, June 7-8, 2022, Paris, France

There appear to be non-negligible discrepancies between the
theoretical values expected in our synthetic benchmark and the
value reported by MBM. There is no immediate justification for
the under-accounting observed in all figures except Figure 11c.
Profiling the application for the precise memory bandwidth has
advantages as shown in previous works [49]. Hence, these counters
need to be accurate. MBM uses a single counter to accumulate main
memory read and write transactions. This makes characterizing the
impact of an unknown application even harder as read-intensive
applications have a rather different impact on the available system
bandwidth compared to write-intensive applications.

In short, even though the monitoring interval granularity has
changed significantly over one generation, further refinement is
needed for MBM to become an asset that can be confidently used
by the real-time community.

7 CONCLUSION

We analyzed the applicability of the Intel RDT framework for real-
time applications. The implementation of these features is changing
rapidly over processor generations. Our evaluation indicates that
RDT management and monitoring do not always behave as ex-
pected. Therefore, we currently caution against the indiscriminate
reliance on these features for real-time system consolidation. In-
stead, we encourage the reuse of our methodology to verify their
correctness on the considered platform experimentally. Even with
CAT, the most mature feature, there is a drastic difference in iso-
lation guarantees achieved by static partitioning between the two
generations of processors we considered. The monitoring tools also
need to be further refined to become interpretable enough to be
employed by the real-time community. Both CMT and MBM read-
ings cannot be wholly trusted, as neither accurately measured the
resource utilization of the synthetic benchmarks under observation.
We further invite the community to verify or contrast our findings
as newer generations of RDT-enabled platforms are released.

ACKNOWLEDGMENTS

The National Science Foundation (NSF) under the grant number
CCF-2008799 provided support for the work presented in this paper.
We also thank the Red Hat Collaboratory and the partners in the
Massachusetts Open Cloud Alliance. Any opinions, findings, and
conclusions or recommendations expressed in this publication are
those of the authors and do not necessarily reflect the views of the
NSE.

REFERENCES

[1] Luca Abeni, Luigi Palopoli, Giuseppe Lipari, and Jonathan Walpole. 2002. Analysis
of a Reservation-Based Feedback Scheduler. In 23rd IEEE Real-Time Systems
Symposium, 2002. RTSS 2002. IEEE, 71-80.

[2] Homa Aghilinasab, Waqar Ali, Heechul Yun, and Rodolfo Pellizzoni. 2020. Dy-
namic Memory Bandwidth Allocation for Real-Time GPU-based SoC Platforms.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
39, 11 (2020), 3348-3360.

[3] Sebastian Altmeyer, Roeland Douma, Will Lunniss, and Robert I Davis. 2014.
Outstanding Paper: Evaluation of Cache Partitioning for Hard Real-Time Systems.
In 2014 26th Euromicro Conference on Real-Time Systems. IEEE, 15-26.

[4] The Linux Kernel Archives. 2001. NO_HZ: Reducing Scheduling-Clock Ticks.
https://www.kernel.org/doc/Documentation/timers/NO_HZ.txt. Accessed on
04.12.2022.

[5] Arm. 2018-2020. Arm Architecture Reference Manual Supplement Memory
System Resource Partitioning and Monitoring(MPAM), for Armv8-A. Accessed

RTNS ’22, June 7-8, 2022, Paris, France

(6

~
= =

[11]

[12

[13]

[14

[15

[16

[17

[18]

[19

[20]

[21]

[22]

[23]

[24

[25]

[26

)
=

[28]

[29]

[30

on 10.16.2020.

Arm. 2020. ARM Architecture Reference Manual ARMv7-A and ARMv7-R edition.
Accessed on 10.16.2021.

Michael Bechtel and Heechul Yun. 2019. Denial-of-service Attacks on Shared
Cache in Multicore: Analysis and Prevention. In 2019 IEEE Real-Time and Embed-
ded Technology and Applications Symposium (RTAS). IEEE, 357-367.

Michael Bechtel and Heechul Yun. 2021. Memory-Aware Denial-of-Service
Attacks on Shared Cache in Multicore Real-Time Systems. IEEE Trans. Comput.
(2021).

Dai Bui, Edward A. Lee, Isaac Liu, Hiren Patel, and Jan Reineke. 2011. Temporal
Isolation on Multiprocessing Architectures. In Design Automation Conference
(DAC). 274 - 279. http://chess.eecs.berkeley.edu/pubs/839.html

Intel Corporation. 2015. Intel® Resource Director Technology (Intel® RDT)
Framework. https://www.intel.com/content/www/us/en/architecture-and-
technology/resource-director-technology.html. Accessed on 03.09.2019.

Intel Corporation. 2019. Welcome to the intel-cmt-cat Wiki,
https://github.com/intel/intel-cmt-cat/wiki. Accessed on 01.23.2022.

Cédric Courtaud, Julien Sopena, Gilles Muller, and Daniel Gracia Pérez. 2019.
Improving Prediction Accuracy of Memory Interferences for Multicore Platforms.
In 2019 IEEE Real-Time Systems Symposium (RTSS). IEEE, 246-259.

Farzad Farshchi, Qijing Huang, and Heechul Yun. 2020. BRU: Bandwidth Reg-
ulation Unit for Real-Time Multicore Processors. In 2020 IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS). 364-375. https:
//doi.org/10.1109/RTAS48715.2020.00011

Farzad Farshchi, Qijing Huang, and Heechul Yun. 2020. Bru: Bandwidth regulation
unit for real-time multicore processors. In 2020 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS). IEEE, 364-375.

Farzad Farshchi, Prathap Kumar Valsan, Renato Mancuso, and Heechul Yun. 2018.
Deterministic Memory Abstraction and Supporting Multicore System Architec-
ture. In 30th Euromicro Conference on Real-Time Systems (ECRTS 2018) (Dagstuhl,
Germany) (Leibniz International Proceedings in Informatics (LIPIcs)), Sebastian
Altmeyer (Ed.), Vol. 106. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
Barcelona, Spain, 1:1-1:25. https://doi.org/10.4230/LIPIcs. ECRTS.2018.1
Alireza Farshin, Amir Roozbeh, Gerald Q Maguire Jr, and Dejan Kosti¢. 2019.
Make the Most out of Last Level Cache in Intel Processors. In Proceedings of the
Fourteenth EuroSys Conference 2019. 1-17.

Andrei Frumusanu. 2021. Intel 3rd Gen Xeon Scalable (Ice Lake Sp) review:
Generationally Big, competitively small. https://www.anandtech.com/show/
16594/intel-3rd- gen-xeon-scalable-review/4

Golsana Ghaemi, Dharmesh Tarapore, and Renato Mancuso. 2021. Governing
with Insights: Towards Profile-Driven Cache Management of Black-Box Applica-
tions. In 33rd Euromicro Conference on Real-Time Systems (ECRTS 2021). Schloss
Dagstuhl-Leibniz-Zentrum fiir Informatik.

Robert Gifford, Neeraj Gandhi, Linh Thi Xuan Phan, and Andreas Haeberlen.
2021. DNA: Dynamic Resource Allocation for Soft Real-Time Multicore Systems.
In 2021 IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS). IEEE, 196-209.

Nan Guan, Mingsong Lv, Wang Yi, and Ge Yu. 2014. WCET Analysis with MRU
Cache: Challenging LRU for Predictability. ACM Transactions on Embedded
Computing Systems (TECS) 13, 4s (2014), 1-26.

Red Hat. 2011. Isolating CPUs Using Tuned-Profiles-Realtime.
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_for_
real_time/7/html/tuning_guide/isolating_cpus_using_tuned-profiles-realtime.
Accessed on 01.23.2019.

Herdrich, Andrew J. and Cornu, Marcel and Abbasi, Khawar Munir. 2019.
Introduction to Memory Bandwidth Allocation. Data Center Documenta-
tion (March 2019). https://software.intel.com/en-us/articles/introduction-to-
memory-bandwidth-allocation Accessed on 01.23.2021.

Intel Cloud Technology. 2017. Are Noisy Neighbors in Your Data Center Keeping
You Up at Night? Technical Report. Accessed on 08.11.2019.

Author Andi Kleen Intel Corporation. 2009. Intel 64 and IA-32 Architectures
Software Developer’s Manual Volume 2A: Instruction Set Reference, A-M, 3-180
CPUID reference. Accessed on 01.23.2022.

IntelCorporation. 2016. Increasing Platform Determinism with Platform Quality of
Service for the Data Plane Development Kit. 8-9 pages.

IntelCorporation. 2019. Intel 64 and IA-32 Architectures Software Developer’s
Manual (volume 3 ed.). 17-64-17-68 pages.

IntelCorporation. 2019. Intel® Resource Director Technology (Intel® RDT) on 2nd
Generation Intel® Xeon® Scalable Processors Reference Manual. 4-24 pages.
IntelCorporation. 2021. Intel® Architecture Instruction Set Extensions and Future
Features. 10-2-10-4 pages.

Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. 2015. Systematic Reverse
Engineering of Cache Slice Selection in Intel Processors. In 2015 Euromicro Con-
ference on Digital System Design. IEEE, 629-636.

Hyoseung Kim, Dionisio De Niz, Bjérn Andersson, Mark Klein, Onur Mutlu, and
Ragunathan Rajkumar. 2014. Bounding Memory Interference Delay in COTS-
based Multi-Core Systems. In 2014 IEEE 19th Real-Time and Embedded Technology
and Applications Symposium (RTAS). IEEE, 145-154.

Sohal et al.

Namhoon Kim, Jeremy P Erickson, and James H Anderson. 2014. Mixed-criticality
on Multicore (MC2): A Status Report. OSPERT 2014 (2014), 45.

NG Chetan Kumar, Sudhanshu Vyas, Ron K Cytron, Christopher D Gill, Joseph
Zambreno, and Phillip H Jones. 2014. Cache Design for Mixed Criticality Real-
Time Systems. In 2014 IEEE 32nd International Conference on Computer Design
(ICCD). IEEE, 513-516.

Linux. 2014. Performance Analysis Tools for Linux. Accessed on 01.23.2022.
Fangfei Liu, Qian Ge, Yuval Yarom, Frank Mckeen, Carlos Rozas, Gernot Heiser,
and Ruby B Lee. 2016. Catalyst: Defeating Last-Level Cache Side channel Attacks
in Cloud Computing. In 2016 IEEE international symposium on high performance
computer architecture (HPCA). IEEE, 406—418.

Tamara Lugo, Santiago Lozano, Javier Fernandez, and Jesus Carretero. 2022. A
Survey of Techniques for Reducing Interference in Real-Time Applications on
Multicore Platforms. IEEE Access 10 (2022), 21853-21882. https://doi.org/10.
1109/ACCESS.2022.3151891

Jiuyue Ma, Xiufeng Sui, Ninghui Sun, Yupeng Li, Zihao Yu, Bowen Huang, Tianni
Xu, Zhicheng Yao, Yun Chen, Haibin Wang, et al. 2015. Supporting differentiated
services in computers via programmable architecture for resourcing-on-demand
(PARD). In Proceedings of the Twentieth International Conference on Architectural
Support for Programming Languages and Operating Systems. 131-143.

Claudio Maia, Luis Nogueira, Luis Miguel Pinho, and Daniel Gracia Pérez. 2016.
A Closer Look into the AER Model. In 2016 IEEE 21st International Conference on
Emerging Technologies and Factory Automation (ETFA). IEEE, 1-8.

Claire Maiza, Hamza Rihani, Juan M Rivas, Joél Goossens, Sebastian Altmeyer,
and Robert I Davis. 2018. A Survey of Timing Verification Techniques for Multi-
Core Real-Time Systems. Technical Report. Verimag Research Report TR-2018-9
(Technical Report).

Renato Mancuso, Roman Dudko, Emiliano Betti, Marco Cesati, Marco Caccamo,
and Rodolfo Pellizzoni. 2013. Real-Time Cache Management Framework for
Multi-Core Architectures. In 2013 IEEE 19th Real-Time and Embedded Technology
and Applications Symposium (RTAS). 45-54. https://doi.org/10.1109/RTAS.2013.
6531078

Renato Mancuso, Rodolfo Pellizzoni, Marco Caccamo, Lui Sha, and Heechul Yun.
2015. WCET (m) Estimation in Multi-Core Systems using Single Core Equivalence.
In 2015 27th Euromicro Conference on Real-Time Systems. IEEE, 174-183.

Renato Mancuso, Heechul Yun, and Isabelle Puaut. 2019. Impact of DM-LRU
on WCET: A Static Analysis Approach. Leibniz international proceedings in
informatics 133 (2019).

Clémentine Maurice, Nicolas le Scouarnec, Christoph Neumann, Olivier Heen,
and Aurélien Francillon. 2015. Reverse engineering Intel last-level cache complex
addressing using performance counters. In International Symposium on Recent
Advances in Intrusion Detection. Springer, 48-65.

Thomas Moscibroda and Onur Mutlu. 2007. Memory Performance Attacks:
Denial of Memory Service in Multi-Core Systems. In USENIX Security Symposium.
USENIX.

Marco Pagani, Enrico Rossi, Alessandro Biondi, Mauro Marinoni, Giuseppe Lipari,
and Giorgio Buttazzo. 2019. A Bandwidth Reservation Mechanism for AXI-based
Hardware Accelerators on FPGAs. In 31st Euromicro Conference on Real-Time
Systems (ECRTS 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.
Linux Man Pages. 2004. numactl - Control NUMA policy for processes or shared
memory. https://linux.die.net/man/8/numactl. Accessed on 04.19.2019.

Jinsu Park, Seongbeom Park, and Woongki Baek. 2019. CoPart: Coordinated
Partitioning of Last-Level Cache and Memory Bandwidth for Fairness-Aware
Workload Consolidation on Commodity Servers. In Proceedings of the Fourteenth
EuroSys Conference 2019. 1-16.

Rodolfo Pellizzoni, Emiliano Betti, Stanley Bak, Gang Yao, John Criswell, Marco
Caccamo, and Russell Kegley. 2011. A predictable execution model for COTS-
based embedded systems. In 2011 17th IEEE Real-Time and Embedded Technology
and Applications Symposium. IEEE, 269-279.

Lui Sha, Marco Caccamo, Renato Mancuso, Jung-Eun Kim, Man-Ki Yoon, Rodolfo
Pellizzoni, Heechul Yun, Russell B Kegley, Dennis R Perlman, Greg Arundale,
et al. 2016. Real-time Computing on Multicore Processors. Computer 49, 9 (2016),
69-77.

Parul Sohal, Rohan Tabish, Ulrich Drepper, and Renato Mancuso. 2020. E-WarP:
A System-Wide Framework for Memory Bandwidth Profiling and Management.
In 2020 IEEE Real-Time Systems Symposium (RTSS). IEEE, 345-357.

Parul Sohal, Rohan Tabish, Ulrich Drepper, and Renato Mancuso. 2022. Profile-
driven memory bandwidth management for accelerators and CPUs in QoS-
enabled platforms. Real-Time Systems (Dec. 2022). https://doi.org/10.1007/s11241-
022-09382-x

Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan, and Onur
Mutlu. 2015. The Application Slowdown Model: Quantifying and Controlling the
Impact of Inter-Application Interference at Shared Caches and Main Memory.
In Proceedings of the 48th International Symposium on Microarchitecture. ACM,
62-75.

Noriaki Suzuki, Hyoseung Kim, Dionisio De Niz, Bjorn Andersson, Lutz Wrage,
Mark Klein, and Ragunathan Rajkumar. 2013. Coordinated Bank and Cache Color-
ing for Temporal Protection of Memory Accesses. In 2013 IEEE 16th International

A Closer Look at Intel Resource Director Technology (RDT)

Conference on Computational Science and Engineering. IEEE, 685-692.

Taylor IoT Kidd. 2014. Power Management States: P-States, C-States,
and Package C-States. Intel® Xeon Phi™ Processor Documentation (April
2014). https://software.intel.com/en-us/articles/power-management-states-p-
states-c-states-and-package-c-states

Dan Terpstra, Heike Jagode, Haihang You, and Jack Dongarra. 2010. Collecting
performance data with PAPI-C. In Tools for High Performance Computing 2009.
Springer, 157-173.

Theo Ungerer, Francisco Cazorla, Pascal Sainrat, Guillem Bernat, Zlatko Petrov,
Christine Rochange, Eduardo Quinones, Mike Gerdes, Marco Paolieri, Julian
Wolf, et al. 2010. Merasa: Multicore Execution of Hard Real-Time applications
Supporting Analyzability. IEEE Micro 30, 5 (2010), 66-75.

Hiroyuki Usui, Lavanya Subramanian, Kevin Kai-Wei Chang, and Onur Mutlu.
2016. DASH: Deadline-Aware High-Performance Memory Scheduler for Hetero-
geneous Systems with Hardware Accelerators. ACM Transactions on Architecture
and Code Optimization (TACO) 12, 4 (2016), 1-28.

Prathap Kumar Valsan and Heechul Yun. 2015. MEDUSA: A Pedictable and
High-Performance DRAM Controller for Multicore based Embedded Systems. In
2015 IEEE 3rd International Conference on Cyber-Physical Systems, Networks, and
Applications. IEEE, 86-93.

Prathap Kumar Valsan, Heechul Yun, and Farzad Farshchi. 2016. Taming Non-
Blocking Caches to Improve Isolation in Multicore Real-Time systems. In 2016
IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS).
IEEE, 1-12.

Bryan C Ward, Jonathan L Herman, Christopher J Kenna, and James H Anderson.
2013. Outstanding Paper Award: Making Shared Caches more Predictable on
Multicore Platforms. In 2013 25th Euromicro Conference on Real-Time Systems.
IEEE, 157-167.

Yaocheng Xiang, Chencheng Ye, Xiaolin Wang, Yingwei Luo, and Zhenlin Wang.
2019. EMBA: Efficient Memory Bandwidth Allocation to Improve Performance

RTNS °22, June 7-8, 2022, Paris, France

on Intel Commodity Processor. In Proceedings of the 48th International Conference
on Parallel Processing. 1-12.

Meng Xu, Robert Gifford, and Linh Thi Xuan Phan. 2019. Holistic Multi-Resource
Allocation for Multicore Real-Time Virtualization. In Proceedings of the 56th
Annual Design Automation Conference (DAC). IEEE, 1-6.

Meng Xu, Linh Thi Xuan Phan, Hyon-Young Choi, and Insup Lee. 2016. Analysis
and Implementation of Global Preemptive Fixed-Priority Scheduling with Dy-
namic Cache Allocation. In 2016 IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS). IEEE, 1-12.

Meng Xu, Linh Thi, Xuan Phan, Hyon-Young Choi, and Insup Lee. 2017. vCAT:
Dynamic Cache Management using CAT Virtualization. In 2017 IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS). IEEE, 211-222.
Heechul Yun, Waqar Ali, Santosh Gondji, and Siddhartha Biswas. 2016. BWLOCK:
A Dynamic Memory Access Control Framework for Soft Real-Time Applications
on Multicore Platforms. IEEE Trans. Comput. 66, 7 (2016), 1247-1252.

Heechul Yun, Renato Mancuso, Zheng-Pei Wu, and Rodolfo Pellizzoni. 2014.
PALLOC: DRAM Bank-Aware Memory Allocator for Performance Isolation on
Multicore Platforms. In 2014 IEEE 19th Real-Time and Embedded Technology and
Applications Symposium (RTAS). IEEE, 155-166.

Heechul Yun, Rodolfo Pellizzon, and Prathap Kumar Valsan. 2015. Parallelism-
Aware Memory Interference Delay Analysis for COTS Multicore Systems. In 2015
27th Euromicro Conference on Real-Time Systems. IEEE, 184-195.

Heechul Yun, Gang Yao, Rodolfo Pellizzoni, Marco Caccamo, and Lui Sha. 2013.
Memguard: Memory bandwidth Reservation System for Efficient Performance
Isolation in Multi-Core Platforms. In 2013 IEEE 19th Real-Time and Embedded
Technology and Applications Symposium (RTAS). IEEE, 55-64.

Yangi Zhou and David Wentzlaff. 2016. MITTS: Memory Inter-Arrival Time
Traffic Shaping. ACM SIGARCH Computer Architecture News 44, 3 (2016), 532
544.

