
A Closer Look at Intel Resource Director Technology (RDT)

Parul Sohal
Boston University
psohal@bu.edu

Michael Bechtel
University of Kansas
mbechtel@ku.edu

Renato Mancuso
Boston University
rmancuso@bu.edu

Heechul Yun
University of Kansas
heechul.yun@ku.edu

Orran Krieger
Boston University
okrieg@bu.edu

ABSTRACT

Unarbitrated contention over shared resources at different levels of

the memory hierarchy represents a major source of temporal inter-

ference. Hardware manufacturers are increasingly more receptive

to issues with temporal interference and are starting to propose

concrete solutions to mitigate the problem. Intel Resource Director

Technology (RDT) represents one such attempt. Given the wide

adoption of Intel platforms, RDT features can be an invaluable asset

for the consolidation of real-time systems on complex multi- and

many-core machines.

Unfortunately, to date, a systematic analysis of the capabilities

introduced by the RDT framework has not yet been conducted.

Moreover, no clear understanding has been matured about the

implementation-specific behavior of RDT primitives across pro-

cessor generations. And ultimately, the ability of RDT to provide

real-time guarantees is yet to be established.

In our work, we conduct a systematic investigation of the RDT

mechanisms from a real-time perspective. We experimentally eval-

uate the functionality and interpretability of RDT-aided allocation

and monitoring controls across the two most recent processor gen-

erations. Our evaluations show that while some features like Cache

Allocation Technology (CAT) yield promising results, the implemen-

tation of other primitives such as Memory Bandwidth Allocation

(MBA) has much room for improvement. Moreover, in some cases,

the presented interfaces range from blurry to incomplete, as is the

case for MBA and Memory Bandwidth Monitoring (MBM).

KEYWORDS

memory management, bandwidth control, shared cache partition-

ing, performance guarantees, application profiling, Resource Direc-

tor Technology, CAT, MBA, MBM, CMT, RDT

ACM Reference Format:

Parul Sohal, Michael Bechtel, Renato Mancuso, Heechul Yun, and Orran

Krieger. 2022. A Closer Look at Intel Resource Director Technology (RDT).

In Proceedings of the 30th International Conference on Real-Time Networks

and Systems (RTNS ’22), June 7–8, 2022, Paris, France. ACM, New York, NY,

USA, 13 pages. https://doi.org/10.1145/3534879.3534882

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

RTNS ’22, June 7–8, 2022, Paris, France

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9650-9/22/06. . . $15.00
https://doi.org/10.1145/3534879.3534882

1 INTRODUCTION

As multi-core systems have become more prevalent, providing

accurate performance guarantees has become increasingly chal-

lenging. With the advent of additional computing units, such as

accelerators, the pressure on the limited shared cache and mem-

ory controllers has increased [3, 51, 55, 56]. Embedded research

areas, such as real-time edge computing have become increasingly

more data-intensive. The real-time community has developed mul-

tiple hardware and software techniques to mitigate both spatial

and temporal interference at different levels of the memory hierar-

chy [9, 12, 13, 19, 49, 63, 67]. As already recognized in some of these

works, high-performance platforms are an attractive alternative for

complicated, highly interconnected real-time systems in need of

soft real-time guarantees [60, 61, 63].

Shared caches lead to inter-core interference as different tasks

can evict each other’s data from the cache and, as a result, make

calculating the worst-case execution time (WCET) convoluted and

pessimistic [32, 41, 64, 66] or overly pessimistic [20, 59]. Similarly,

main memory bandwidth is a significant bottleneck when various

applications are concurrently access DRAM [2, 30, 49, 66].

Hence, hardware techniques for cache partitioning and main

memory bandwidth regulation have found widespread adoption in

the real-time community [6, 67]. For example, ARM introduced a

specification for Memory Partitioning and Monitoring (MPAM) in

2017, which enables monitoring and control over the main mem-

ory usage [5]; ARM QoS extensions are already available in com-

mercial systems [49, 50]. In parallel, Intel has implemented new

hardware support for cache partitioning and memory bandwidth

regulation under their Resource Director Technology (RDT) um-

brella. For cache partitioning, Intel has introduced Cache Alloca-

tion Technology (CAT), which has already been used in a number

of works [61, 63]. For bandwidth regulation, Intel has introduced

Memory Bandwidth Allocation (MBA) [46, 60]. The management

tools are accompanied by their corresponding monitoring support,

i.e., Cache Monitoring Technology (CMT) and Memory Bandwidth

Monitoring (MBM).

In this paper, we provide a comprehensive analysis of the RDT

mechanisms as their use become more common in the real-time

community. Using synthetic benchmarks, we study their effective-

ness in providing temporal isolation for co-running applications.

Furthermore, we also investigate RDT monitoring features. We

substantiate our conclusion on the maturity of these features with

experiments conducted on two Intel platforms of different genera-

tions, namely Cascade Lake and Ice Lake.

RTNS ’22, June 7–8, 2022, Paris, France Sohal et al.

2 RELATED WORK

Shared resource contention is a well-known issue in the real-time

community, and many research papers have explored performance

degradation in multi-core systems [38]. For example, Sha et al. [48]

demonstrated how contention at both the shared last-level cache

(LLC) and main memory impacts real-time performance. Know-

ing this, research works have proposed and used several resource

allocation techniques to limit and bound contention over shared

resources at different levels of the memory hierarchy [19, 39, 39,

44, 52, 57, 62, 65, 67, 68]. Some works mandate strict resource par-

titioning between individual cores [31, 40, 48], or propose to de-

compose real-time tasks into a sequence of memory and execution

phases that can be explicitly scheduled. The Predictable Execution

Model (PREM) [47] and Acquisition Execution Restitution (AER)

model [37] are such examples. Additionally, specific works have pro-

posed custom hardware resource management primitives to resolve

contention over shared resources at different levels of the memory

hierarchy [15, 35, 36, 38]. For instance, the work in [36] proposes

a methodology to prioritize memory requests from high critical-

ity tasks by tagging them. Tag-based prioritization is enforced via

customizable hardware modules in the memory sub-system. In this

work, we focus on a commercially available resource management

primitives.

In particilar, we focus on the analysis of Intel RDT. Intel intro-

duced RDT features in the latest-generation Xeon processors to

manage contention over key memory resources. Several research

works have already employed Intel RDT technologies. Most notably,

many works employed CAT to manage cache allocation for critical

applications [19, 61, 63]. Farshin et al. implemented a slice-aware

cache management framework and compared it to CAT [16]. In

particular, they find that enabling CAT does not provide the desired

isolation and that limiting the available cache ways can instead add

more pressure on main memory bandwidth. However, the critical

assumption in these works is that CAT partitioning provides deter-

ministic results and can be trusted in providing way-based cache

partitioning.

Similarly, many techniques to regulate DRAM bandwidth have

been proposed. In software, a popular approach has been to monitor

memory bandwidth at the OS-level with LLC miss performance

counters and throttle cores that exceed a set bandwidth thresh-

old [67]. More recently, hardware-level designs have proposed

arbiters capable of enforcing bandwidth partitioning among co-

running applications [14, 44, 49, 57, 68]. Intel MBA—which is part

of RDT—is one such hardware-based bandwidth regulation mecha-

nism. Even though MBA is a recent addition to RDT, some works

have already attempted to apply MBA to decrease the performance

degradation caused by unregulated applications sharing the limited

main memory bandwidth [46, 60]. However, these works focus on

the earlier version of MBA which is known to have major limita-

tions and bugs [27].

While much prior research fundamentally assumed that CAT and

MBA have been correctly implemented, our goal is to specifically

put this hypothesis to the test. The description of the errors in the

document presented by Intel is vague and not comprehensive [27].

For example, specific workloads, especially memory intensive, can

use more of the shared cache than what allocated to them. Also,

MBA might throttle the cores at a different setting than the one

applied if the hardware register controlling the settings is read di-

rectly after changing the MBA level. Differently from the provided

errata documents, our approach is experiment-driven and our con-

clusions are tailored to the applicability of RDT from a real-time

perspective.

As RDT mechanisms become more common and more research

works attempt to build atop RDT to restore predictability, it is

crucial to analyze their functionality and maturity in depth. We

experimentally investigate the performance of both allocation and

monitoring primitives across two generations of processors. Fur-

thermore, we study whether the RDT framework is reliable enough

to be used by the real-time community by documenting the level

of isolation guarantees the resource allocations offer and the accu-

racy of the monitoring counters. Therefore, this paper sets itself

apart from previous works that have used Intel RDT mechanisms

as black-boxes.

3 RESOURCE DIRECTOR TECHNOLOGY

In this section, we provide an overview of the different components

of Intel RDT. The objective of these techniques, as explained by

Intel, is to reduce performance interference at the shared cache and

the main memory subsystem while enabling "key" applications to

maintain desired progress when the system has multiple applica-

tions running [10, 23]. These design goals are in line with the effort

placed by the real-time community in ensuring that high-criticality

tasks receive temporal isolation. Hence, the RDT framework is (in

principle) a viable alternative to existing techniques and tools.

RDT is made up of five mechanisms that can be subdivided

into resource allocation and resource monitoring capabilities - 1)

Cache Allocation Technology (CAT), 2) Code and Data Prioritiza-

tion (CDP), 3) Cache Monitoring Technology (CMT), 4) Memory

Bandwidth Allocation (MBA), and 5) Memory Bandwidth Moni-

toring (MBM). CAT and MBA help manage the shared cache and

main memory bandwidth, respectively. CDP is an extension of CAT

which enables the user to select the placement of code and data in

the shared cache. CMT and MBM monitor the shared cache and

mainmemory bandwidth. RDTwas first introduced in Intel Xeon E5

v3 family of processors with limited functionality [25]. Our paper

uses two different generations of Intel platforms: 1) 2nd Generation

Xeon Scalable Processors (Cascade Lake), and 2) 3rd Generation

Xeon Scalable Processors (Ice Lake). Table 1 lists the platforms that

support RDT features.

3.1 Resource Allocation

It has been extensively shown that sharing of unregulated hardware

resources leads to performance degradation due to a lack of tem-

poral isolation [7, 8, 43, 58, 65, 67]. Partitioning resources ensures

high-criticality applications can maintain their quality of service

(QoS) by mitigating interference. The resource allocation mecha-

nisms provided by RDT work on the same principle. They allow

system designers to enforce specific limits on using performance-

critical shared hardware resources by applications scheduled on

individual cores.

A Closer Look at Intel Resource Director Technology (RDT) RTNS ’22, June 7–8, 2022, Paris, France

Table 1: RDT with Availability Details

RDT Components Variations Generations

A

L

L

O

C

A

T

E

Cache Allocation

Technology

L2

Atom Server C3000

11th Gen i3,i5,i7

Atom X Series

Xeon W

L3

Xeon E3 v4

Xeon E5 v3,v4

Xeon D

Xeon Scalable

Xeon Scalable Gen2

Xeon Scalable Gen3

11th Gen i3,i5,i7

Atom X Series

Xeon W

Code and Data

Prioritization

L2

11th Gen i3,i5,i7

Atom X Series

Xeon W

L3

Xeon E5 v4

Xeon Scalable

Xeon Scalable Gen2

Xeon Scalable Gen3

Memory Bandwidth

Allocation

MBA 1.0
Xeon Scalable

Xeon Scalable Gen2

MBA 2.0
Xeon Scalable Gen3

Snow Ridge

MBA 3.0 Xeon Scalable Gen4

M

O

N

I

T

O

R

Cache Monitoring

Technology
N/A

Xeon E3 v4

Xeon E5 v3,v4

Xeon D

Xeon Scalable

Xeon Scalable Gen2

Xeon Scalable Gen3

Memory Bandwidth

Monitoring
N/A

Xeon E5 v4

Xeon D

Xeon Scalable

Xeon Scalable Gen2

Xeon Scalable Gen3

Currently, RDT specifications support management of L2 cache,

L3 cache, and main memory bandwidth. The number of imple-

mented management controls differs between processor genera-

tions. For cachemanagement, the partitioning is way-based, whereas

the main memory bandwidth controls limit the amount of band-

width extracted on a per-core basis. In this paper, we focus on LLC

partitioning and bandwidth throttling. In Section 3.1.1 we discuss

CAT, followed by two versions of MBA in Section 3.1.2.

RDT uses a notion of "criticality" to manage applications. In-

tel calls this Class of Service (CLOS/COS). The number of CLOS

available on a machine varies. Multiple cores can be mapped to

one CLOS. All cores with the same CLOS abide to the resource

allocation policy associated with that CLOS.

The CPUID assembly instruction can be used to see the resource

allocation features that exist for a particular platform [24]1. If allo-

cation for a resource exists, additional information about various

1When RDT exists, use CPUID with EAX=0X10 and ECX=0x0 to obtain the list of RDT
features available on the current platform. Register EDX reveals which resources for
either monitoring or allocating exist. Please refer to the Intel Software Manual for
more details [26].

knobs for controlling the resource partition is also provided. Specifi-

cally, for each resource type, CPUID instruction tabulates the number

of CLOS and the available allocation settings. By using per-CLOS

model-specific registers (MSRs), one can define the quantity of a

particular resource available to a given CLOS.

Once the values are assigned to each CLOS using the various

MSRs, a one-to-many mapping can be created to associate each

processor to its respective CLOS’s available resources. Thismapping

is established by setting the value for an MSR that exists on each

logical core to one of the CLOS identifiers. This control register,

namely IA32_PQR_ASSOC, can also be read to retrieve the current

CLOS at each context switch.

To summarize, to correctly allocate resources to applications, the

following steps need to be performed: 1) for each resource that can

be managed (e.g. shared cache, main memory bandwidth) use the

MSRs to define a partitioning scheme for shared resources for each

of the CLOS, and 2) create a mapping of cores to CLOS.

The remainder of this section describes the interfaces for man-

aging shared cache and memory bandwidth resource allocations.

3.1.1 Cache Allocation Technology. CAT has been extensively used

to provide temporal isolation at the shared cache level [19, 34, 61,

63]. CAT itself is a hardware way-based partitioning mechanism.

On the two micro-architectures that we considered, i.e., Cascade

Lake and Ice Lake, there are 16 CLOS available.

To do CLOS-based cache way partitioning, CAT provides a set

of per-CLOS MSRs where a bitmask forces the assignment of cache

ways. In each of those registers, the least, significant bits encode

whether each of the, ways can be used for allocation by any

of the CPUs in the considered CLOS. These registers are called,

IA32_L3_MASK_n MSRs where n ∈ {0,, 15} is the number of

CLOS available.

For example, setting IA32_L3_MASK_5=0b00011100000 expresses

that CLOS5 allows a core to allocate cache lines in only three cache

ways. This can be used to portion out a fixed number of ways

that are not allocated to any other CLOS. However, nothing in the

current definition prevents CLOS from sharing cache ways. For

example, IA32_L3_MASK_4=0b00110000000 could be assigned this

value, which means that CLOS4 and CLOS5 share only one cache

way. By default, all CLOS have access to all the cache ways as all of

the bits in their MSR bitmasks are set to one after reset.

Until now the literature has employed CAT for isolation, but no

systematic effort has been placed in investigating the strength of

the isolation that can be achieved with CAT. Over the years, many

researchers have also reported bugs in different generations of

CAT, including Intel themselves [27]. In this paper, we provide one

systematic approach to assess CAT’s validity along with methods

to improve temporal isolation when using current implementations

of CAT.

3.1.2 Memory Bandwidth Allocation. Currently, there are three

different implementations of MBA: MBA1.0, MBA2.0, and MBA3.0.

The available CLOS are different in the three versions of MBA, and

the granularity of MBA controls is linear, starting at 10% up to 100%

in increments of 10%. Percentage to represent regulation settings is

a piece of notation used by Intel [26]. Because it is unclear what

these percentages refer to, we call these settings "throttling levels

"(TLs).

A Closer Look at Intel Resource Director Technology (RDT) RTNS ’22, June 7–8, 2022, Paris, France

Register Use

IA32_PQR_ASSOC
Set the desired CLOS and RMID

Defined for each logical processor

IA32_QM_EVTSEL
Contains event codes and the RMID to be monitored

Need to set before retrieving the data

IA32_QM_CTR
Reports the monitored data

Contains bits for checking errors and validation

IA32_L3_MASK_n
Bitmask to assign cache ways to each CLOS

n registers, one per CLOS

IA32_L2_QoS_Ext_BW_Thrtl_n
Set to one of the available throttling levels

n registers, one per CLOS

Table 2: Summary of the MSR registers used in RDT.

justify whether the current implementation of RDT mechanisms is

useful for the real-time community. We structured the two sections

by asking a set of questions that we must evaluate before we can

respond with a conclusive answer.

In particular, we focus on answering the following questions.

• Is CAT helpful to enforce LLC cache partitioning?

• Can we strengthen the degree of isolation provided by CAT?

• Are the results provided by CMT interpretable and in line

with the theoretical value of the synthetic benchmark?

• Is MBA effective in throttling interfering cores to protect a

target application?

• Are the limitations of MBA1.0 addressed in MBA2.0?

• How accurately is MBM able to track memory transactions

of known applications?

By answering these questions, we aim to help future works make

more informed design decisions when using RDT mechanisms.

4 TARGET PLATFORM AND SYNTHETIC
BENCHMARKS

To better understand the experimental studies conducted in the

following sections, we hereby introduce the target platforms. In

this section, we also describe the synthetic benchmarks used to

stress-test the systems and characterize the RDT tools’ workings.

4.1 Target Platforms

We provide an analysis of CAT, CMT, MBA, and MBM on two

different dual-socket Intel micro-architectures, released two years

apart, Cascade Lake and Ice Lake.We assume a single victim task

and the remaining physical cores on the same socket are used by

co-running tasks. A summary of the main system characteristics

can be found in Table 3 [11]. The platforms used in this paper were

released in April 2019 and 2021, respectively.

This paper uses more complex hardware than the traditional

embedded platform as our goal is to evaluate the most complete

RDT implementation available to date. Notwithstanding, a subset

of RDT mechanisms is available on Intel’s embedded platforms.

For instance, Tiger Lake, released in late 2020, introduces support

for CAT. We expect full-fledged RDT implementations to be more

available in embedded platforms as the remaining features (CMT,

MBA, MBM) become more stable.

The architecture of the Cascade Lake processor is shown in

Figure 2. The CPU cores are connected in a mesh, where mesh com-

ponents are the individual cores (with a slice of LLC), the memory

controllers, PCI lanes, and Ultra Path Interconnect (UPI) endpoints.

Cascade Lake systems have two memory controllers with three

Feature Details

CPU

Intel Xeon Gold 6248

40c/80t, dual socket

2.5 GHz base, 3.9 GHz boost

Cache

32 KB(I)/32KB(D) L1 cache

1 MB L2 cache

27.5 MB L3 cache (LLC)

Memory

∼ 376 GB Node 0

∼ 378 GB Node 1

6 DDR4-2933 MHz (per node)

2 Memory Controllers (per node)

RDT

L2 CAT (not tested)

L3 CAT

L3 CMT

MBA1.0

(a) Cascade Lake Machine (Released 2019)

Feature Details

CPU

Intel Xeon Gold 6338

64c/128t, dual socket

1.8 GHz base, 2.4 GHz boost

Cache

32 KB(I)/48 KB(D) L1 cache

1.25 MB L2 cache

48 MB L3 cache (LLC)

Memory

∼ 31GB Node 0

∼ 31.5GB Node 1

8 DDR4-3200 MHz (per node)

4 Memory Controllers (per node)

RDT

L3 CAT

L3 CMT

MBA2.0

MBM

(b) Ice Lake Machine (Released 2021)

Table 3: Notable System Characteristics

CHA/SF/LLC

�$-9�$PSF

DDR4

DDR4

DDR4

MC

CHA/SF/LLC

�$-9�$PSF

CHA/SF/LLC

�$-9�$PSF

CHA/SF/LLC

�$-9�$PSF

CHA/SF/LLC

�$-9�$PSF

CHA/SF/LLC

�$-9�$PSF

CHA/SF/LLC

CHA/SF/LLC

�$-9�$PSF

CHA/SF/LLC

�$-9�$PSF

CHA/SF/LLC

�$-9�$PSF

CHA/SF/LLC

�$-9�$PSF

CHA/SF/LLC

�$-9�$PSF

CHA/SF/LLC

�$-9�$PSF

CHA/SF/LLC

�$-9�$PSF

CHA/SF/LLC

�$-9�$PSF

CHA/SF/LLC

�$-9�$PSF

CHA/SF/LLC

�$-9�$PSF

CHA/SF/LLC

�$-9�$PSF

CHA/SF/LLC

�$-9�$PSF

CHA/SF/LLC

�$-9�$PSF

CHA/SF/LLC

�$-9�$PSF

CHA/SF/LLC

$-9 $PSF

CHA/SF/LLC

�$-9�$PSF

CHA/SF/LLC

�$-9�$PSF

CHA/SF/LLC

�$-9�$PSF

DDR4

DDR4

DDR4

MC

CHA/SF/LLC

$-9 $PSF

CHA/SF/LLC

�$-9�$PSF

CHA/SF/LLC

�$-9�$PSF

2x UPI x20 PCIe x16 PCIe x16 On Pkg 1x UPI x20 PCIe x16
DMI x4 PCIe x16

�$-9�$PSF

Figure 2: Cascade Lake Processor Architecture [17]

channels each. The newer Ice Lake systems have a similar design but

contain four memory controllers with two channels per controller.

4.2 Noise Control

In order to limit performance fluctuations, we configured the target

systems as follows. First, each of the experiments in this paper is

run 30 times to provide statistically significant results. Next, we

disable simultaneous multi-threading (SMT) and only consider a

single socket. We also disable the dynamic frequency governor

RTNS ’22, June 7–8, 2022, Paris, France Sohal et al.

such that the processor operates at the fixed base frequencies on

each micro-architecture mentioned in Table 3. We also disable Intel

Turbo Boost in our experiments.

Additional features that introduce non-determinism in the per-

formance measurements are disabled. These include hardware

prefetchers, OS-level load balancing and power-saving features.

Specifically, load balancing was restricted via the isolcpus Linux

kernel boot parameter [21] for all the cores in the socket under anal-

ysis. Furthermore, the kernel is compiled with the NOHZ_FULL [4]

configuration option to disable the scheduling ticks when the CPU

is idle or has only one application scheduled on the core. This is true

in our experimental setup as each application is explicitly pinned

to a core and not allowed to migrate. Power-saving features were

disabled by restricting the C-states [53] of the processors.

Each socket in the target platform has multiple main memory

(DRAM) controllers, attached to a set of DRAM modules (DIMM)

local to the socket. We restrict physical memory allocation for

application workload to the local socket to limit inter-socket data

exchange. We do so with a combination of two methods. First,

we disable inter-socket memory interleaving. Second, we use the

numactl [45] utility to force physical memory allocation from the

local node/socket. We only consider one socket under analysis in

the remainder of this paper. The other socket is left unloaded and is

used for handling interrupts and other OS-level management tasks.

Platform Tot. Ways Vic. Ways Co-Runner Ways Vic. Part. MB

Cascade Lake 11 6 5 15

Ice Lake 12 6 6 24

Table 4: Static cache partitioning on two micro-architectures.

An essential factor that impacts performance isolation is con-

tention over shared LLC cache space. We use strict cache parti-

tioning for the workload under analysis via CAT [26]. We have

fixed the number of ways allotted to the core under analysis unless

mentioned otherwise. The rest of the LLC is collectively assigned

to the remaining cores on the socket. As shown in Table 4, the

same number of ways was assigned to the core under analysis for

both the Cascade Lake and Ice Lake machines. The number of ways

allocated to the victim core is 6 in both platforms, but the partition

size is different as the two systems drastically differ in terms of total

LLC size. In our Cascade Lake machine, six ways correspond to

15 MB of partitioned LLC, whereas in our Ice Lake machine, it adds

up to 24 MB. Lastly, any change to the RDT registers is verified by

reading back the registers value.

4.3 Synthetic Benchmarks

The synthetic workload we use in our experiments is designed to

be memory intensive. We use the same “bandwidth” benchmark as

in [67]. It iterates multiple times — until terminated — over a buffer

with a given size. Each iteration performs a load or store every

64 bytes of data, which corresponds to the cache line size. Since

there are no dependencies between consecutive requests, they can

be carried out in parallel which maximizes the load on the DRAM.

The benchmark estimates the bandwidth received by measuring

its runtime and the number of completed memory operations. De-

pending on the size of the data buffer, this benchmark can be made

LLC sensitive or DRAM sensitive.

DRAM-Bomb: In cases where we are interested in studying the

performance impact of contention over main memory resources,

we set up our synthetic benchmark to be DRAM sensitive. This is

done by using a buffer of 3X the size of the shared cache (much

bigger than the LLC cache partitioning in both platforms). When

the synthetic benchmark is configured with these parameters, we

refer to it as a “DRAM-Bomb.”

LLC-Bomb: Contention over LLC bandwidth is another important

aspect of our study. The synthetic benchmark described above is

configured to maximize LLC interference. For our Cascade Lake

machine experiments, we use a buffer size in the range [2.5 MB,

15 MB] since that is bigger than the L2 but still fits within the 15 MB

cache partition.

On Ice Lake, the buffer size is in the range [4 MB, 24 MB]. It is

three times the size of the L2 cache. When the synthetic benchmark

is configured in this way, we refer to it as a “LLC-Bomb.” Recall that

apart from the core under analysis, all the other cores share an LLC

partition of about 24 MB in our Ice Lake machine and 12.5 MB in

our Cascade Lake system.

5 ANALYSIS OF CAT AND CMT

Cache partitioning is a widely usedmechanism for providing tempo-

ral isolation at the shared last level cache between applications run-

ning on different cores simultaneously. In past research, both soft-

ware and hardware-based mechanisms have been used [39, 52, 63].

In general, hardware techniques have lower overheads and do not

need assistance from the OS or the compiler to create cache parti-

tions [61, 63]. An alternative hardware approach is implemented

in [16] where a slice-aware cache management methodology was

proposed. The paper shows that memory access latency can be re-

duced by allocating memory in LLC slices that are closer to the core

on the mesh architecture. The benefits of slice-aware allocation

are beyond the scope of this paper. Specifically, this work focuses

on Intel’s hardware-based cache partitioning mechanism, i.e., CAT,

which has previously been used in the real-time community. In this

section, we take a closer look at this mechanism and the related

cache monitoring primitive (CMT).

5.1 Is CAT Helpful to Enforce Partitioning?

Our first experiment is designed to understand the benefits of using

CAT for LLC sensitive benchmarks. This is done by running the

same application with and without a private cache partition allo-

cated via CAT. The victim core executes an LLC-Bombwith varying

buffer size performing read operations. The results are presented

in Figure 3. The G-axis tracks the number of other active cores run-

ning DRAM-Bombs performing write operations. As the number

of co-runners increases, the pressure exerted on the limited shared

cache grows. The ~-axis captures the percentage of LLC misses

triggered by the victim core on two considered micro-architectures.

The four sub-plots in Figure 3 present the results of four different

configurations: 1) Ice Lake machine without CAT (Figure 3a), 2)

Ice Lake machine with CAT (Figure 3b), 3) Cascade Lake machine

without CAT (Figure 3c), and 4) Cascade Lake machine with CAT

(Figure 3d). The cache misses are recorded via perf; a userspace

utility for performance monitoring [33]. Also, as mentioned in Sec-

tion 4.2, when CAT is used, 6 ways in each platform are provided to

RTNS ’22, June 7–8, 2022, Paris, France Sohal et al.

on 10.16.2020.
[6] Arm. 2020. ARMArchitecture Reference Manual ARMv7-A and ARMv7-R edition.

Accessed on 10.16.2021.
[7] Michael Bechtel and Heechul Yun. 2019. Denial-of-service Attacks on Shared

Cache in Multicore: Analysis and Prevention. In 2019 IEEE Real-Time and Embed-
ded Technology and Applications Symposium (RTAS). IEEE, 357–367.

[8] Michael Bechtel and Heechul Yun. 2021. Memory-Aware Denial-of-Service
Attacks on Shared Cache in Multicore Real-Time Systems. IEEE Trans. Comput.
(2021).

[9] Dai Bui, Edward A. Lee, Isaac Liu, Hiren Patel, and Jan Reineke. 2011. Temporal
Isolation on Multiprocessing Architectures. In Design Automation Conference
(DAC). 274 – 279. http://chess.eecs.berkeley.edu/pubs/839.html

[10] Intel Corporation. 2015. Intel® Resource Director Technology (Intel® RDT)
Framework. https://www.intel.com/content/www/us/en/architecture-and-
technology/resource-director-technology.html. Accessed on 03.09.2019.

[11] Intel Corporation. 2019. Welcome to the intel-cmt-cat Wiki,
https://github.com/intel/intel-cmt-cat/wiki. Accessed on 01.23.2022.

[12] Cédric Courtaud, Julien Sopena, Gilles Muller, and Daniel Gracia Pérez. 2019.
Improving Prediction Accuracy of Memory Interferences for Multicore Platforms.
In 2019 IEEE Real-Time Systems Symposium (RTSS). IEEE, 246–259.

[13] Farzad Farshchi, Qijing Huang, and Heechul Yun. 2020. BRU: Bandwidth Reg-
ulation Unit for Real-Time Multicore Processors. In 2020 IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS). 364–375. https:
//doi.org/10.1109/RTAS48715.2020.00011

[14] Farzad Farshchi, QijingHuang, andHeechul Yun. 2020. Bru: Bandwidth regulation
unit for real-time multicore processors. In 2020 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS). IEEE, 364–375.

[15] Farzad Farshchi, Prathap Kumar Valsan, Renato Mancuso, and Heechul Yun. 2018.
Deterministic Memory Abstraction and Supporting Multicore System Architec-
ture. In 30th Euromicro Conference on Real-Time Systems (ECRTS 2018) (Dagstuhl,
Germany) (Leibniz International Proceedings in Informatics (LIPIcs)), Sebastian
Altmeyer (Ed.), Vol. 106. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
Barcelona, Spain, 1:1–1:25. https://doi.org/10.4230/LIPIcs.ECRTS.2018.1

[16] Alireza Farshin, Amir Roozbeh, Gerald Q Maguire Jr, and Dejan Kostić. 2019.
Make the Most out of Last Level Cache in Intel Processors. In Proceedings of the
Fourteenth EuroSys Conference 2019. 1–17.

[17] Andrei Frumusanu. 2021. Intel 3rd Gen Xeon Scalable (Ice Lake Sp) review:
Generationally Big, competitively small. https://www.anandtech.com/show/
16594/intel-3rd-gen-xeon-scalable-review/4

[18] Golsana Ghaemi, Dharmesh Tarapore, and Renato Mancuso. 2021. Governing
with Insights: Towards Profile-Driven Cache Management of Black-Box Applica-
tions. In 33rd Euromicro Conference on Real-Time Systems (ECRTS 2021). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik.

[19] Robert Gifford, Neeraj Gandhi, Linh Thi Xuan Phan, and Andreas Haeberlen.
2021. DNA: Dynamic Resource Allocation for Soft Real-Time Multicore Systems.
In 2021 IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS). IEEE, 196–209.

[20] Nan Guan, Mingsong Lv, Wang Yi, and Ge Yu. 2014. WCET Analysis with MRU
Cache: Challenging LRU for Predictability. ACM Transactions on Embedded
Computing Systems (TECS) 13, 4s (2014), 1–26.

[21] Red Hat. 2011. Isolating CPUs Using Tuned-Profiles-Realtime.
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_for_
real_time/7/html/tuning_guide/isolating_cpus_using_tuned-profiles-realtime.
Accessed on 01.23.2019.

[22] Herdrich, Andrew J. and Cornu, Marcel and Abbasi, Khawar Munir. 2019.
Introduction to Memory Bandwidth Allocation. Data Center Documenta-
tion (March 2019). https://software.intel.com/en-us/articles/introduction-to-
memory-bandwidth-allocation Accessed on 01.23.2021.

[23] Intel Cloud Technology. 2017. Are Noisy Neighbors in Your Data Center Keeping
You Up at Night? Technical Report. Accessed on 08.11.2019.

[24] Author Andi Kleen Intel Corporation. 2009. Intel 64 and IA-32 Architectures
Software Developer’s Manual Volume 2A: Instruction Set Reference, A-M, 3-180
CPUID reference. Accessed on 01.23.2022.

[25] IntelCorporation. 2016. Increasing Platform Determinism with Platform Quality of
Service for the Data Plane Development Kit. 8–9 pages.

[26] IntelCorporation. 2019. Intel 64 and IA-32 Architectures Software Developer’s
Manual (volume 3 ed.). 17–64–17–68 pages.

[27] IntelCorporation. 2019. Intel® Resource Director Technology (Intel® RDT) on 2nd
Generation Intel® Xeon® Scalable Processors Reference Manual. 4–24 pages.

[28] IntelCorporation. 2021. Intel® Architecture Instruction Set Extensions and Future
Features. 10–2–10–4 pages.

[29] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. 2015. Systematic Reverse
Engineering of Cache Slice Selection in Intel Processors. In 2015 Euromicro Con-
ference on Digital System Design. IEEE, 629–636.

[30] Hyoseung Kim, Dionisio De Niz, Björn Andersson, Mark Klein, Onur Mutlu, and
Ragunathan Rajkumar. 2014. Bounding Memory Interference Delay in COTS-
based Multi-Core Systems. In 2014 IEEE 19th Real-Time and Embedded Technology
and Applications Symposium (RTAS). IEEE, 145–154.

[31] Namhoon Kim, Jeremy P Erickson, and James H Anderson. 2014. Mixed-criticality
on Multicore (MC2): A Status Report. OSPERT 2014 (2014), 45.

[32] NG Chetan Kumar, Sudhanshu Vyas, Ron K Cytron, Christopher D Gill, Joseph
Zambreno, and Phillip H Jones. 2014. Cache Design for Mixed Criticality Real-
Time Systems. In 2014 IEEE 32nd International Conference on Computer Design
(ICCD). IEEE, 513–516.

[33] Linux. 2014. Performance Analysis Tools for Linux. Accessed on 01.23.2022.
[34] Fangfei Liu, Qian Ge, Yuval Yarom, Frank Mckeen, Carlos Rozas, Gernot Heiser,

and Ruby B Lee. 2016. Catalyst: Defeating Last-Level Cache Side channel Attacks
in Cloud Computing. In 2016 IEEE international symposium on high performance
computer architecture (HPCA). IEEE, 406–418.

[35] Tamara Lugo, Santiago Lozano, Javier Fernández, and Jesus Carretero. 2022. A
Survey of Techniques for Reducing Interference in Real-Time Applications on
Multicore Platforms. IEEE Access 10 (2022), 21853–21882. https://doi.org/10.
1109/ACCESS.2022.3151891

[36] Jiuyue Ma, Xiufeng Sui, Ninghui Sun, Yupeng Li, Zihao Yu, Bowen Huang, Tianni
Xu, Zhicheng Yao, Yun Chen, Haibin Wang, et al. 2015. Supporting differentiated
services in computers via programmable architecture for resourcing-on-demand
(PARD). In Proceedings of the Twentieth International Conference on Architectural
Support for Programming Languages and Operating Systems. 131–143.

[37] Cláudio Maia, Luis Nogueira, Luis Miguel Pinho, and Daniel Gracia Pérez. 2016.
A Closer Look into the AER Model. In 2016 IEEE 21st International Conference on
Emerging Technologies and Factory Automation (ETFA). IEEE, 1–8.

[38] Claire Maiza, Hamza Rihani, Juan M Rivas, Joël Goossens, Sebastian Altmeyer,
and Robert I Davis. 2018. A Survey of Timing Verification Techniques for Multi-
Core Real-Time Systems. Technical Report. Verimag Research Report TR-2018-9
(Technical Report).

[39] Renato Mancuso, Roman Dudko, Emiliano Betti, Marco Cesati, Marco Caccamo,
and Rodolfo Pellizzoni. 2013. Real-Time Cache Management Framework for
Multi-Core Architectures. In 2013 IEEE 19th Real-Time and Embedded Technology
and Applications Symposium (RTAS). 45–54. https://doi.org/10.1109/RTAS.2013.
6531078

[40] Renato Mancuso, Rodolfo Pellizzoni, Marco Caccamo, Lui Sha, and Heechul Yun.
2015. WCET (m) Estimation inMulti-Core Systems using Single Core Equivalence.
In 2015 27th Euromicro Conference on Real-Time Systems. IEEE, 174–183.

[41] Renato Mancuso, Heechul Yun, and Isabelle Puaut. 2019. Impact of DM-LRU
on WCET: A Static Analysis Approach. Leibniz international proceedings in
informatics 133 (2019).

[42] Clémentine Maurice, Nicolas le Scouarnec, Christoph Neumann, Olivier Heen,
and Aurélien Francillon. 2015. Reverse engineering Intel last-level cache complex
addressing using performance counters. In International Symposium on Recent
Advances in Intrusion Detection. Springer, 48–65.

[43] Thomas Moscibroda and Onur Mutlu. 2007. Memory Performance Attacks:
Denial of Memory Service in Multi-Core Systems. In USENIX Security Symposium.
USENIX.

[44] Marco Pagani, Enrico Rossi, Alessandro Biondi, MauroMarinoni, Giuseppe Lipari,
and Giorgio Buttazzo. 2019. A Bandwidth Reservation Mechanism for AXI-based
Hardware Accelerators on FPGAs. In 31st Euromicro Conference on Real-Time
Systems (ECRTS 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[45] Linux Man Pages. 2004. numactl - Control NUMA policy for processes or shared
memory. https://linux.die.net/man/8/numactl. Accessed on 04.19.2019.

[46] Jinsu Park, Seongbeom Park, and Woongki Baek. 2019. CoPart: Coordinated
Partitioning of Last-Level Cache and Memory Bandwidth for Fairness-Aware
Workload Consolidation on Commodity Servers. In Proceedings of the Fourteenth
EuroSys Conference 2019. 1–16.

[47] Rodolfo Pellizzoni, Emiliano Betti, Stanley Bak, Gang Yao, John Criswell, Marco
Caccamo, and Russell Kegley. 2011. A predictable execution model for COTS-
based embedded systems. In 2011 17th IEEE Real-Time and Embedded Technology
and Applications Symposium. IEEE, 269–279.

[48] Lui Sha, Marco Caccamo, Renato Mancuso, Jung-Eun Kim, Man-Ki Yoon, Rodolfo
Pellizzoni, Heechul Yun, Russell B Kegley, Dennis R Perlman, Greg Arundale,
et al. 2016. Real-time Computing on Multicore Processors. Computer 49, 9 (2016),
69–77.

[49] Parul Sohal, Rohan Tabish, Ulrich Drepper, and Renato Mancuso. 2020. E-WarP:
A System-Wide Framework for Memory Bandwidth Profiling and Management.
In 2020 IEEE Real-Time Systems Symposium (RTSS). IEEE, 345–357.

[50] Parul Sohal, Rohan Tabish, Ulrich Drepper, and Renato Mancuso. 2022. Profile-
driven memory bandwidth management for accelerators and CPUs in QoS-
enabled platforms. Real-Time Systems (Dec. 2022). https://doi.org/10.1007/s11241-
022-09382-x

[51] Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan, and Onur
Mutlu. 2015. The Application Slowdown Model: Quantifying and Controlling the
Impact of Inter-Application Interference at Shared Caches and Main Memory.
In Proceedings of the 48th International Symposium on Microarchitecture. ACM,
62–75.

[52] Noriaki Suzuki, Hyoseung Kim, Dionisio De Niz, Bjorn Andersson, Lutz Wrage,
Mark Klein, and Ragunathan Rajkumar. 2013. Coordinated Bank and Cache Color-
ing for Temporal Protection of Memory Accesses. In 2013 IEEE 16th International

A Closer Look at Intel Resource Director Technology (RDT) RTNS ’22, June 7–8, 2022, Paris, France

Conference on Computational Science and Engineering. IEEE, 685–692.
[53] Taylor IoT Kidd. 2014. Power Management States: P-States, C-States,

and Package C-States. Intel® Xeon Phi™ Processor Documentation (April
2014). https://software.intel.com/en-us/articles/power-management-states-p-
states-c-states-and-package-c-states

[54] Dan Terpstra, Heike Jagode, Haihang You, and Jack Dongarra. 2010. Collecting
performance data with PAPI-C. In Tools for High Performance Computing 2009.
Springer, 157–173.

[55] Theo Ungerer, Francisco Cazorla, Pascal Sainrat, Guillem Bernat, Zlatko Petrov,
Christine Rochange, Eduardo Quinones, Mike Gerdes, Marco Paolieri, Julian
Wolf, et al. 2010. Merasa: Multicore Execution of Hard Real-Time applications
Supporting Analyzability. IEEE Micro 30, 5 (2010), 66–75.

[56] Hiroyuki Usui, Lavanya Subramanian, Kevin Kai-Wei Chang, and Onur Mutlu.
2016. DASH: Deadline-Aware High-Performance Memory Scheduler for Hetero-
geneous Systems with Hardware Accelerators. ACM Transactions on Architecture
and Code Optimization (TACO) 12, 4 (2016), 1–28.

[57] Prathap Kumar Valsan and Heechul Yun. 2015. MEDUSA: A Pedictable and
High-Performance DRAM Controller for Multicore based Embedded Systems. In
2015 IEEE 3rd International Conference on Cyber-Physical Systems, Networks, and
Applications. IEEE, 86–93.

[58] Prathap Kumar Valsan, Heechul Yun, and Farzad Farshchi. 2016. Taming Non-
Blocking Caches to Improve Isolation in Multicore Real-Time systems. In 2016
IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS).
IEEE, 1–12.

[59] Bryan C Ward, Jonathan L Herman, Christopher J Kenna, and James H Anderson.
2013. Outstanding Paper Award: Making Shared Caches more Predictable on
Multicore Platforms. In 2013 25th Euromicro Conference on Real-Time Systems.
IEEE, 157–167.

[60] Yaocheng Xiang, Chencheng Ye, Xiaolin Wang, Yingwei Luo, and Zhenlin Wang.
2019. EMBA: Efficient Memory Bandwidth Allocation to Improve Performance

on Intel Commodity Processor. In Proceedings of the 48th International Conference
on Parallel Processing. 1–12.

[61] Meng Xu, Robert Gifford, and Linh Thi Xuan Phan. 2019. Holistic Multi-Resource
Allocation for Multicore Real-Time Virtualization. In Proceedings of the 56th
Annual Design Automation Conference (DAC). IEEE, 1–6.

[62] Meng Xu, Linh Thi Xuan Phan, Hyon-Young Choi, and Insup Lee. 2016. Analysis
and Implementation of Global Preemptive Fixed-Priority Scheduling with Dy-
namic Cache Allocation. In 2016 IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS). IEEE, 1–12.

[63] Meng Xu, Linh Thi, Xuan Phan, Hyon-Young Choi, and Insup Lee. 2017. vCAT:
Dynamic Cache Management using CAT Virtualization. In 2017 IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS). IEEE, 211–222.

[64] Heechul Yun, Waqar Ali, Santosh Gondi, and Siddhartha Biswas. 2016. BWLOCK:
A Dynamic Memory Access Control Framework for Soft Real-Time Applications
on Multicore Platforms. IEEE Trans. Comput. 66, 7 (2016), 1247–1252.

[65] Heechul Yun, Renato Mancuso, Zheng-Pei Wu, and Rodolfo Pellizzoni. 2014.
PALLOC: DRAM Bank-Aware Memory Allocator for Performance Isolation on
Multicore Platforms. In 2014 IEEE 19th Real-Time and Embedded Technology and
Applications Symposium (RTAS). IEEE, 155–166.

[66] Heechul Yun, Rodolfo Pellizzon, and Prathap Kumar Valsan. 2015. Parallelism-
Aware Memory Interference Delay Analysis for COTS Multicore Systems. In 2015
27th Euromicro Conference on Real-Time Systems. IEEE, 184–195.

[67] Heechul Yun, Gang Yao, Rodolfo Pellizzoni, Marco Caccamo, and Lui Sha. 2013.
Memguard: Memory bandwidth Reservation System for Efficient Performance
Isolation in Multi-Core Platforms. In 2013 IEEE 19th Real-Time and Embedded
Technology and Applications Symposium (RTAS). IEEE, 55–64.

[68] Yanqi Zhou and David Wentzlaff. 2016. MITTS: Memory Inter-Arrival Time
Traffic Shaping. ACM SIGARCH Computer Architecture News 44, 3 (2016), 532–
544.

