This ICCV workshop paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

Using Synthetic Data Generation to Probe Multi-View Stereo Networks

Daniel Lohn*
Ehsan Sayyad

Pranav Acharya*

Vivian Ross*

Maya Ha Alexander Rich

Tobias Hollerer

University of California Santa Barbara, Santa Barbara, CA, USA

{pranavacharya, dlohn, vivianross, mayaha}@ucsb.edu, {anrich, holl}@cs.ucsb.edu,

ehsan@mat .ucsb.edu

Abstract

Synthetic data is highly useful for training machine
learning systems performing image-based 3D reconstruc-
tion, as synthetic data has applications in both extending
existing generalizable datasets and being tailored to train
neural networks for specific learning tasks of interest. In
this paper, we introduce and utilize a synthetic data gen-
eration suite capable of generating data given existing 3D
scene models as input. Specifically, we use our tool to
generate image sequences for use with Multi-View Stereo
(MVS), moving a camera through the virtual space accord-
ing to user-chosen camera parameters. We evaluate how the
given camera parameters and type of 3D environment affect
how applicable the generated image sequences are to the
MVS task using five pre-trained neural networks on image
sequences generated from three different 3D scene datasets.
We obtain generated predictions for each combination of
parameter value and input image sequence, using standard
error metrics to analyze the differences in depth predictions
on image sequences across 3D datasets, parameters, and
networks. Among other results, we find that camera height
and vertical camera viewing angle are the parameters that
cause the most variation in depth prediction errors on these
image sequences.

1. Introduction

Reconstruction from posed RGB images or depth scans
is a growing field with applications ranging from au-
tonomous driving to augmented reality. The task of 3D
scene reconstruction involves processing RGB images and
potentially depth scans and camera information to output a
3D model of the scene contained in the input images. The
field has gained significant attention and opened up a multi-
tude of opportunities for research, driving demand for data
over the last decade.

“Equal contribution

In recent years, researchers have developed state-of-the-
art machine learning models that perform 3D scene recon-
struction [3,6,8,11,17,18,27]. A large amount of data is
necessary to train these machine learning models, and sev-
eral data generation platforms have already been created to
satisfy this need for data [4,19-22,25,26].

Our research is focused on determining how differences
between such generated image sequences affect the perfor-
mance of image-based 3D scene reconstruction networks
trained on other data. Image-based 3D scene reconstruc-
tion encompasses a broad array of subtasks, some of which
are typically performed deterministically. We evaluate neu-
ral networks that perform Multi-View Stereo (MVS), which
involves using images of a scene from different viewpoints
to construct a 3D model of that scene.

We introduce our own data generation platform to semi-
automatically generate input data for these networks across
different 3D scene datasets and camera parameter settings
within the Unity real-time 3D development environment.
The platform is currently focused on 3D indoor scene recon-
struction, and to this end, allows researchers to load a vari-
ety of indoor scenes, artist-generated or scanned, and pro-
duce random but customizable ground-truth walk-through
image sequences from them, to be used in 3D-computer-
vision network training and testing.

We use our platform to generate image sequences for
three carefully chosen 3D scenes, representing a range of
realism from stylized synthetic (SUNCG [23]) to photoreal-
istic (ArchViz [1]) and scanned (Matterport3D [5]). We an-
alyze and gain useful insights into the performance of state-
of-the-art 3D scene reconstruction networks, their architec-
tures, and the properties of 3D scene datasets themselves.
Furthermore, we offer recommendations on advantageous
camera parameter settings and type of 3D scene datasets fa-
voring accurate depth predictions.

2. Related Work

There are two methods through which training data for
Multi-View Stereo algorithms is generally made available:

1583



data generation frameworks, and ready-made datasets con-
taining images, ground truth scans, camera poses, and other
relevant information. Data generation frameworks generate
synthetic training data on the fly, operating over either novel
or existing 3D scene datasets. These 3D scene datasets can
either consist of synthetic artist-created scenes or 3D re-
constructions of real scenes. Our data generation platform
currently only operates on indoor 3D datasets, focusing on
3D scene reconstruction networks. Therefore, indoor scene
simulators are most applicable to our work. We first cover
the inputs to data generation platforms, namely scanned and
virtual 3D scene datasets, followed by a discussion of exist-
ing data generation platforms.

Image Datasets: Image datasets fall into two categories:
those that are captured sequentially using an RGB-D video
recording [7,9, 15,24] and those that are captured without
specific ordering using placed camera rigs [5,12,13]. These
datasets can be used without a simulator or the resulting 3D
reconstruction can be used with a simulator.

We first cover datasets generated using precise camera
rigs. Tanks and Temples [13] provides videos and ground-
truth laser scans for both indoor and outdoor scenes. The
DTU dataset [12] is captured using an industrial robot arm
and a structured light sensor. It consists of “outside-in”
views of objects rather than “inside-out.” Matterport3D [5]
is captured using a panoramic RGB-D camera which takes
360° images. Full 3D reconstructions with 3D segmenta-
tion are provided for 90 large-scale indoor scenes, often en-
tire buildings. We selected the Matterport3D reconstruc-
tions for use with our tool for their size and completeness.

Generally, sequential datasets are of indoor scenes.
TUM-RGBD [24], RGB-Dv2 [15], and 7Scenes [9] are
smaller-scale datasets consisting of video sequences cap-
tured using a Microsoft Kinect or similar hardware. Scan-
Net [7] provides sequences for 1500 different scenes, with
the 3D reconstruction, ground truth depth and both 2D and
3D segmentation provided. These datasets enable training
of 3D reconstruction methods, but the ground truth recon-
structions often have large holes. As such, we do not select
these resulting reconstructed 3D scenes as input to our data
generation tool.

Virtual Datasets: Virtual datasets consist of artist-
created 3D scene models, generally in the form of a triangle
mesh. A simulator is required to generate images from these
3D scene models, and we considered ICL-NUIM [10] and
SUNCG [23] for use with our tool. ICL-NUIM consists of
a small number of scenes with corresponding fly-through
image sequences provided. SUNCG [23] consists of more
than 45,000 indoor environments. We selected SUNCG for
use with our tool.

Simulators: Embodied Al agents are robots trained to
interact with a real-world environment in order to accom-
plish a given task. Indoor scene simulators are typically

used as a benchmark for embodied Al agents [14,21,22,26],
as training in these simulators is faster, safer, and less
resource intensive than real-world training [21]. Indoor
scene simulators are well-suited to generate training data
for 3D reconstruction, as camera positions, RGB images,
and depth maps are already outputted by many tools [19,21]
for the purposes of training agents performing scene under-
standing tasks such as navigation [19].

Habitat [21] and MINOS [20] are platforms for em-
bodied AI research with support for many 3D datasets,
most notably SUNCG [23] and Matterport3D [5]. Matter-
port3D provides more realism compared to SUNCG, but
SUNCG provides more customizability: its assets can be
recombined to form new datasets [25]. The limitation of
scanned 3D scene datasets such as Matterport3D is that each
scene’s lighting is baked into the scene’s texture data as
it is scanned. Hypersim [19] circumvents this limitation,
providing researchers with the ability to enhance its own
dataset of artist-created scenes by providing disentangled
lighting data, allowing support for different lighting algo-
rithms. Additionally, Hypersim releases the photorealistic
rendered frames, camera trajectories and object segmenta-
tion data but the 3D models are not provided since they are
from a commercial 3D asset package and should be pur-
chased separately. The iGibson [22] and AI2-THOR [14]
simulators add support for physics interactions between
agents and objects in the scene, and multiple agents inter-
acting in one scene, expanding the range of tasks embodied
Al agents can be trained to perform.

Our tool is similar to existing scene simulators because
we direct a virtual agent to navigate the scene and capture
data during every movement. However, our tool is not used
to evaluate scene navigation algorithms, as we delegate this
task to an existing API. Additionally, our tool has the ability
to load photorealistic datasets (see Fig. 1) on par with the
datasets supported by iGibson, AI2-THOR, and Hypersim.

3. Methods

In this section, we describe our tool for generating image
sequences given a 3D scene dataset as input.

We developed our tool using the Unity game engine.
Unity provides essential real time 3D components such as
shading, texturing, transformation and path finding. Our
tool leverages these components to extract multi-channel
2D data from these 3D datasets by creating controlled fly-

a) SUNCG (Synthetic)  b) Matterport3D (Scanned) c) ArchViz (Photorealistic)
Figure 1. 3D Datasets used for evaluation.

1584



Parameter Description
Height Camera distance above the
floor

Clockwise camera offset
from direction of travel
Camera angle below the
plane at the camera’s height
and parallel to the floor
Translational distance be-
tween image locations

Table 1. Parameters Used By Our Tool.

Camera Yaw

Camera Pitch

Sample Distance

through sequences and rendering outputs such as RGB im-
ages, depth images and semantic segmentation masks.

We briefly describe the steps in our data generation
pipeline (see Fig. 2). The input to our pipeline is a set of 3D
scene models in the form of triangle meshes. These meshes
can be textured or have material descriptions depending on
the dataset being used. The output is a sequence of RGB
images with corresponding camera extrinsic and intrinsic
matrices, and depth maps. Optionally, we can render ad-
ditional 2D information such as segmentation maps if the
given 3D scene contains said information. The main steps
to our pipeline are as follows. First, we load each scene into
the Unity game engine. Second, we generate a walkable
surface using the Unity NavMesh API. Third, we randomly
generate a set of waypoints on the walkable surface. Fourth,
we program a Unity camera to travel through a path in the
scene using a random selection of waypoints. Along this
path, we capture images, depth maps, and matrices at set
translational intervals.

To study the effect of input data on MVS depth predic-
tion networks, we add several user-specified camera param-
eters that affect how the image sequence is generated. Pa-
rameters are described in Table 1. The first three parame-
ters (height, camera yaw, and camera pitch) modify camera
viewing angle and height above the floor. The final param-
eter, sample distance, modifies how often images are cap-
tured.

4. Experiments

We generate image sequences of a selected subset of
scenes from three different 3D scene datasets with differ-
ing values for each parameter in Table 2. When generat-
ing image sequences, the camera path in each house is kept
constant. This is to ensure that all image sequences that are
generated in a given house have identical paths, no matter
the parameter settings. See Fig. 3 for a representation of
different image sequences with a single parameter varied.
With these image sequences, we test five pre-trained depth
prediction networks.

Parameter Values

Height (m) 0, 0.15, 0.3, 0.45, 0.6, 0.75,
0.9, 1.05, 1.2, 1.35, 1.5, 1.65,
1.8,1.95, 2.1

Camera Yaw (°) -180, -135, -90, -45, 0, 45, 90,
135, 180,

Camera Pitch (°)
Sample Distance (m)

-90, -60, -30, 0, 30, 60, 90
0.2,0.3,04,0.5,0.6,0.7, 0.8,
0.9,1.0,1.1, 1.2, 1.3, 1.4, 1.5,
1.6,1.7, 1.8, 1.9, 2.0

Table 2. Values for each Parameter. The bold values indicate the

default parameter settings used to generate the control image se-
quences for each 3D dataset.

3D Scene Datasets We selected eight SUNCG [23]
scenes, six Matterport3D [5] scenes, and one ArchViz [1]
scene to load into Unity. These three datasets give us the
widest range of scene data in that SUNCG consists of non-
photorealistic synthetic scenes, Matterport3D consists of
scanned data of real houses captured by camera rigs, and
ArchViz consists of a photorealistic synthetic scene.

Parameters: See Table 2 for all parameter settings used
during image sequence generation. When generating an im-
age sequence in which we vary the settings for one param-
eter, we keep all the other parameter values at their default
settings (indicated in bold in the table).

Depth Prediction Networks: To test how dataset pa-
rameters affect MVS algorithm performance, we use five
existing neural networks with pre-trained weights to per-
form scene reconstruction on our data: DeepVideoMVS
Pair Network (Pairnet), DeepVideoMVS Spacio-temporal
Fusion (Fusionnet), Point-MVSNet (PMVS), Multi-view
Stereo by Gaussian Process (GPMVS), and Fast-MVSNet
(FMVS). Pairnet is a modified version of MVDepthNet that
uses additional feature extraction, and Fusionnet extends
Pairnet by including a ConvLSTM [8]. PMVS directly pro-
cesses scenes as point clouds in a coarse-to-fine manner [6].
GPMVS uses an encoder-decoder model with a nonpara-
metric Gaussian process that soft-constrains the bottleneck
layer [11]. FMVS is a lightweight framework that uses
sparse depth representation for fast and accurate MVS depth
prediction [27].

Protocols: We evaluate the five networks above on gen-
erated image sequences for all 3D datasets and parameters.
To make depth predictions on a given image, we use the pre-
vious and next image in the sequence as the source images
to assist in MVS. We compare the predicted depth maps
from each of the depth prediction methods to the ground-
truth depth maps generated by our Unity tool and calculate
the mean absolute relative depth error (abs-rel), given:

|d —d*|
d*

AbsRel = 12 (D)
n



Figure 2. Our data generation pipeline. First, our tool generates a walkable surface and a set of randomized camera destinations. The
camera moves along a path to each point, capturing data each frame the camera moves. More specific aspects of the camera’s behaviour
can be specified by the user as parameters. Our tool outputs RGB images, depth maps, and matrices that specify the camera’s intrinsics

and pose at each location.

0.90m 1.20m 1.50m 1.80m

Figure 3. Sample captures made by our tool taken within each 3D
scene dataset, with varying values for the camera height parameter.

where d and d* are the predicted and ground-truth depth
values respectively, and n is the number of pixels in the
given image [8].

To verify that our testing script is correctly programmed
to calculate the depth prediction error metrics for 2D image
sequences, we run forward passes through each of the five
networks with ScanNet. For Pairnet and Fusionnet, which
were trained on ScanNet [8], the error metrics closely match
the errors reported for these networks on ScanNet. For the
other three networks, the error metrics obtained here are
reasonable for methods not trained or finetuned on Scan-
Net. This verifies that our testing process did not produce
any inaccurate or misleading error metrics for our follow-
ing experiments on our generated image sequences. Table
3 holds these error metric results for our test script verifica-
tion process:

Method | Abs-Rel Error
Pairnet 0.069
Fusionnet 0.061
PMVS 0.389
GPMVS 0.121
FMVS 0.274

Table 3. Test Set Error vs. Network.

In addition to this quantitative verification, we also use
TSDF fusion to visually verify the depth prediction values
produced by our test script as well as the intrinsic and ex-
trinsic camera parameters.

With this error metric, we compare the accuracy of scene
reconstruction on all of our image sequences across the five
scene reconstruction networks, and the three 3D scene sets.

5. Results

Our experiments allow us to identify interesting trends
by observing how changes in either the parameter values,
network architectures, or the 3D datasets from which image
sequences are generated affect depth-prediction accuracy.
In subsection 5.1, we assess how the values for each param-
eter set affect the individual networks. In subsection 5.2, we
report trends that applied to all networks. In subsection 5.3,
we analyze how performance of the networks changes based
on the 3D dataset from which the image sequences were
generated. Finally, in subsection 5.4, we discuss how the
network architectures of Pairnet, Fusionnet, and GPMVS
might be causing them to perform very differently on image
sequences with a low camera height parameter value.

5.1. Network Performance Optimization

We evaluate how each parameter affects the prediction
accuracy of all evaluated networks.

@ Pairnet @ Fusionnet @ GPMVS PMVS @ FMVS

2500
2.000
1.500

1.000

nsnn._.___;’_\\\._a__.‘. 2—2 P ——

Abs-Rel Error

0.000
0.000.150.30 0.45 0.60 0.75 0.90 1.05 1.20 1.35 1.50 1.65 1.80 1.95 2.10

Camera Height (m)
Figure 4. Average Error vs. Camera Height over all 3D datasets,

split by network. Data is from Table 1 in the appendix.

1586



@ Pairmet @ Fusionnet PMVS @ GPMVS @ FMVS

2.000

1.500

é m
0O
= 1000
o
wh
ES
0500 g —
% ——]
0.000
-135 -90 -45 1] 45 ED) 139 180

Camera Yaw (degrees)

Figure 5. Average Error vs. Camera Yaw over all 3D datasets, split

by network. Data is from Table 5 in the appendix.

@ Paimet @ Fusionnet PMYS @ GPMVS @ FMVS

2000

o >_74—\/'/-///4

1.000

0.500 ;

0.000
-9

Abs-Rel Error

0 -60 -30 0 30 60 90

Camera Pitch (degrees)
Figure 6. Average Error vs. Camera Pitch over all 3D datasets,
split by network. Data is from Table 9 in the appendix.

@ Paimet @ Fusionnet PMVS @ GPMVS @ FMVS

1.500

wnmn\\““\m\w

“UUM
o -~

=4

Abs-Rel Error

0.000
02030405060708091017.11213141516 17181920

Sample Distance (m)
Figure 7. Average Error vs. Sample Distance over all 3D datasets,
split by network. Data is from Table 13 in the appendix.

Height: For all the image sequences, the abs-rel errors
are higher at camera heights right at ground level and at
camera heights that are close to or at the ceiling. Pairnet
and Fusionnet perform the best with camera heights of 0.3m
to 0.75m based on Fig. 4, while the remaining networks
perform the best on image sequences with camera heights
of 1.05m to 1.65m.

Camera Yaw: The optimal yaw for each particular net-
work varies for each 3D dataset. See Fig. 5 and Tables 6-8
in the appendix. For instance, while Pairnet and Fusionnet
consistently have the least abs-rel error when tested on im-
age sequences in which the camera is moving backwards
relative to its viewing direction( yaw of £90° to £180°), the
other three networks follow this pattern except on image se-
quences generated from Matterport3D where they perform
the best with a +45° forward-facing yaw.

Parameters

Camera Camera Camera Sample Average
Networks . . .

Height Yaw Pitch Dis-

tance

Pairnet 0.356 0.351 0.313 0.305 0.331
Fusionnet 0.331 0.314 0.239 0.306 0.297
GPMVS 0.502 0.408 0.421 0.446 0.444
PMVS 1.485 1.294 1.447 0.976 1.301
FMVS 1.386 1.241 1.399 0.809 1.208
Average 0.812 0.721 0.764 0568 [[ 0716

Table 4. Average Error for each parameter-network pair.

Parameters X
Height Camera Camera Sample
Networks . .
Yaw Pitch Distance

Pairnet 0.461 0.403 0410 0.402
Fusionnet 0.494 0.363 0.360 0.406
GPMVS 1.075 0.517 1.199 0.841
PMVS 2.874 1.662 1.922 1.428
FMVS 2.879 1.335 1.858 1.378
Average 1.557 0.856 1.150 0.891

Table 5. Maximum Error Value for each parameter-network pair.

Parameters .
Height Camera Camera Sample Average
Networks | i
Yaw Pitch Distance

Pairnet 0.044 0.018 0.064 0.028 0.038
Fusionnet 0.050 0.026 0.079 0.019 0.043
GPMVS 0.155 0.048 0.149 0.056 0.102
PMVS 0.326 0.105 0.218 0.115 0.191
FMVS 0.322 0.110 0.236 0.155 0.206
Average 0.179 0.061 0.149 0074 [ o116

Table 6. Standard Deviation of Error for each parameter-network
pair.

Camera Pitch: The optimal pitch varies from network-
to-network. See Fig. 6. Pairnet is the only network that has
minimum error when tested on image sequences in which
the camera is looking up. All the remaining networks have
minimum error when the camera angle is either parallel to
the plane of the floor or pointed downwards.

Sample Distance: We generally observe that the net-
works have their minimum abs-rel errors at sample dis-
tances of 1.2m to 1.9m, except for Fusionnet on Matter-
port3D in which the minimum error is at a sample distance
of 0.8m. See Fig. 7 and Tables 14-16 in the appendix.

Network Variability: For all of the parameter sets, the
data from Table 4 indicates that Pairnet and Fusionnet out-
perform the remaining three networks no matter which 3D
dataset is used to generate the image sequences. For nearly
all parameter sets, the networks in the ascending order of
their average abs-rel error on the varied image sequences
are Fusionnet, Pairnet, GPMVS, FMVS, and PMVS. More-

1587



over, from Table 6, we see that Pairnet and Fusionnet also
have substantially lower overall standard deviations across
all parameter sets than the other three networks, meaning
they produce relatively stable predictions and are less prone
to unpredictable spikes in error. The key reason that PMVS
and FMVS have significantly larger depth prediction errors
than the other three networks could be due to the RGB-D
datasets that the networks were trained on. Pairnet, Fu-
sionnet, and GPMVS were trained on indoor scene RGB-D
video sequences [8, 11], which are very similar to the im-
age sequences that we generated from the three 3D datasets
and tested the networks on. In contrast, PMVS and FMVS
were trained on DTU, which includes RGB-D images of
3D models that are captured “outside-in” from surrounding
cameras [6,27]. Therefore, it is a strong possibility that not
training on indoor scene image sequences resulted in PMVS
and FMVS producing depth predictions on indoor scene im-
age sequences that are significantly worse than depth pre-
dictions produced by the other three networks.

Conclusion: Through our experiments, we see that
when generating image sequences to optimize the perfor-
mance of existing 3D scene reconstruction networks, the
best choices of the values for each camera parameter vary
between networks. Additionally, based on their consistent
out-performance of the other networks and low prediction
variability, we hypothesize that Pairnet and Fusionnet are
best suited to generalize to image sequences from different
types of 3D datasets.

5.2. Trends Across All Networks

Table 5 shows the maximum abs-rel error value for each
parameter-network pair across the three 3D datasets, fol-
lowed by the average of those maximum values. Varying
the height parameter yields the largest average maximum
abs-rel error for most networks compared to other camera
parameters. Table 6 shows that the average standard devi-
ation of the abs-rel errors is the largest across all five net-
works when tested on image sequences that vary the height
parameter. These two data points suggest that variations of
the camera height have the most influence in determining
the prediction error for all five networks. Moreover, Tables
5 and 6 show us that varying camera pitch yields the second-
largest average maximum error and standard deviation of
abs-rel errors. The fact that variations of camera height and
pitch produce the two largest average maximum abs-rel er-
rors and standard deviations of error leads us to hypothesize
that all of the networks we use are affected most by image
sequences with varying vertical camera views, since both
camera height and pitch vary vertically in an “up and down”
sense. In future work, we aim to address the high error and
standard deviation caused by variations of camera height
and pitch by including more image sequences for these pa-
rameters in the training set for these networks. Then, the

networks can be tested to see if they produce higher accu-
racy depth predictions on these types of image sequence in-
puts after additional training.

5.3. Comparing 3D Dataset Results

Network Predictions based on 3D Datasets: We ob-
serve that image sequences generated from SUNCG gen-
erally result in larger depth-prediction errors for all net-
works compared to image sequences generated from Mat-
terport3D or ArchViz. This trend holds true for all tested
parameters, as shown by Figs. 8, 9, 10, and 11. This sug-
gests a correlation between the realism of generated data
and the accuracy of depth predictions made on this data.
Specifically, because the networks were trained on scanned
photorealistic datasets [6, 8, 11,27], we hypothesize that as
a result, the networks perform better on image sequences
from scanned (Matterport3D) and qualitatively photorealis-
tic (ArchViz) datasets as opposed to image sequences from
SUNCG, which are non-photorealistic synthetic. See Fig. 1
for visual representations of these datasets. The data is
inconclusive about whether it is Matterport3D or ArchViz
whose image sequences cause the least depth prediction er-
ror among the five networks.

Similarities between 3D Datasets: In addition to com-
paring the depth prediction errors resulting from the im-
age sequences generated by the three 3D scene datasets,
we would like to judge how well models trained on each
dataset will generalize to our desired application. In lieu
of training networks on our data, we quantitatively evaluate
how similar the datasets are to each other, with respect to
the performance that randomly generated image sequences

©® SunCG = Matterport3D + ArchViz

Abs-Rel Error

0 01503 0.45 06 0.75 0.9 1.05 1.2 1.35 1.5 1.65 1.8 1.95 21

Camera Height (m)
Figure 8. Average Error vs. Camera Height over all networks, split
by 3D dataset. Data is from Tables 2-4 in the appendix.

® SunCG m Matterport3D Archviz

1
075

s \_//

Abs-Rel Error

-90 60 -30 0 30 60 90

Camera Pitch (degrees)
Figure 9. Average Error vs. Camera Pitch over all networks, split
by 3D dataset. Data is from Tables 6-8 in the appendix.

1588



® SunCG  m Matterport3D Archviz

05

Abs-Rel Error

-180 135 90 45 0 45 90 135 180

Camera Yaw (degrees)
Figure 10. Average Error vs. Camera Yaw over all networks, split
by 3D dataset. Data is from Tables 10-12 in the appendix.

® SunCG = Matterport3D + ArchViz

04

Abs-Rel Error

02

00

Sample Distance (m)
Figure 11. Average Error vs. Sample Distance over all networks,
split by 3D dataset. Data from Tables 14-16 in the appendix.

from these datasets incur with the five pre-trained networks
that we use in our evaluation. By calculating this similarity,
we gain some understanding as to how a network trained on
one dataset might perform on another dataset.

We analyze the pair-wise differences between our three
datasets, namely Matterport3D to ArchViz, SUNCG to
ArchViz, and SUNCG to Matterport3D. For each of our
five pre-trained networks and each parameter in Table 2, we
take the absolute value of the difference in error between
the 3D datasets in the pair. We then average this difference
across all networks and all parameters to get an average dif-
ference in error for each pair. This gives us an approxima-
tion of how similar each network’s predictions are between
datasets controlling for parameter. We use this as a proxy
for how similar each given pair of datasets is. The results
are detailed in Table 7. Finally, for each dataset, we sum the
average difference in error between that dataset and each of
the other two. The results are detailed in Table 8.

From Table 8, we see that SUNCG differs the most from
the other two 3D datasets in abs-rel errors predicted from its
generated image sequences, while ArchViz differs the least
from the other two. From Table 7, we see Matterport3D and
ArchViz are the closest pair. We hypothesize that the simi-
larities of the textures between the scanned 3D dataset (Mat-
terport3D) and the photorealistic synthetic scene (ArchViz)
cause network predictions on image sequences derived from
these datasets to be closer to each other than predictions be-
tween any of these datasets to the non-photorealistic syn-

3D E;:aset Difference
3D Dataset Difference
Matt rt3D
tg Aeg,)I?Viz 0.128 ArchViz 0311
SUNCG 1o Matterport3D 0.361
ArchViz 0.183 SUNCG 0.416
SUNCG to 0.233 Table 8. Cumulative aver-
Matterport3D ’ age difference of 3D datasets.

Obtained by summing two
data values from Table 7 cor-
responding to each dataset.

Table 7. Pair-wise average ab-
solute difference in error be-
tween datasets controlling for
parameter and network.

thetic scenes from SUNCG. Additionally, ArchViz has the
least cumulative average difference, indicating that photore-
alistic synthetic scene datasets could be promising for gen-
erating training data.

® Paimet @ Fusionnet @ GPMVS
1.000

0.750

0.500

Abs-Rel Error

0.250

0f
0000.150.30 045060 0.750.90 1.05 1.20 1.35 1.50 1.65 1.80 1.95 2.10

Camera Height (m)
Figure 12. Graph of Average Error vs. Camera Height for Pairnet,

Fusionnet, and GPMVS over all 3D Datasets. For camera height
values less than 0.45m, GPMVS performs significantly worse than
Pairnet or Fusionnet. Data is from Table 1 in the appendix.

5.4. Understanding Network Architectures

The manipulation of certain parameter settings allows
our tool to generate data containing edge case situations in a
higher quantity compared to other datasets that cannot be re-
generated. The benefit of this edge case data is that differing
performance trends may emerge across networks that were
not trained specifically for this data. In this way, the perfor-
mance of networks on the edge case data helps to elucidate
how networks behave after training. For example, for small
height values less than 0.45m on all datasets (Fig. 12), GP-
MYVS degrades while Pairnet and Fusionnet perform well.
In most other settings, the trends amongst these three net-
works are similar. For these parameter values, most of the
generated images are dominated by the floor, which, as an
example, does not contain enough unique features in the
SUNCG dataset due to the absence of realistic lighting and
use of tiled textures (see Fig. 13).

1589



Figure 13. Example capture from SUNCG with Height = 0.15m.

We believe the lack of unique features in the floor plane results in
the breakdown of GPMVS predictions for low height values.

We briefly summarize a key difference amongst the three
networks that might explain this data point. All three net-
works in question construct a cost volume on the reference
camera frustum prior to depth prediction. In GPMVS, the
cost volume is constructed using a difference of raw image
RGB values from the reference and source images. In Pair-
net and Fusionnet however, the cost volume is constructed
using a dot product of deep features extracted from the
reference and source images. After this cost volume con-
struction, the architectures contain many similarities. All
three use a U-Net-style 2D network to make a coarse-to-
fine depth prediction from the cost volume. Fusionnet and
GPMVS also modify deep features at the bottleneck layer
of this UNet to improve depth predictions [8, 11]. Because
of these similarities, we hypothesize that this difference in
trends is caused by the absence of deep features in the cost
volume construction of GPMVS.

Improving performance of depth prediction in untex-
tured regions was a central motivation for the use of deep
features in MVS. This data point supports this idea. More
experimentation is required to explore this further; however,
this is a promising avenue for future research with our tool.

6. Conclusion and Future Work

In this work, we utilize our data generation platform to
generate 2D image sequences with user-specified camera
parameter settings'. We then use these 2D image sequences
to investigate both the performance of existing 3D scene
reconstruction methods and the properties of the 3D scene
datasets themselves. Our results show that Pairnet and Fu-
sionnet, followed by GPMVS, produce significantly more
accurate depth predictions across image sequences gener-
ated with all parameter settings from all 3D scene datasets.
Matterport3D and ArchViz are more similar to each other
than SUNCG is to either, which makes sense given the sim-
ilarities of the textures of those two datasets. In addition,
varying the camera height parameter causes the most varia-
tion in network accuracy for all of the networks across im-
age sequences from all 3D scene datasets. Pairnet and Fu-
sionnet use deep features instead of color density matching,

TAll code (excluding datasets) used is available at
https://github.com/vivianross06/
Synthetic-Data-Generation—-ICCV-2021

which is a strong possible explanation for why they make
better depth predictions at very low camera heights com-
pared to GPMVS. One overarching takeaway from this is
that user-specified values for a given camera parameter for
generating the image sequence should be chosen based on
the 3D scene reconstruction network that the generated im-
age sequence will be used with.

By utilizing a widely used game engine as our realtime
platform, we have the capability of easily extending the
tool. Unity provides physically based shading, global illu-
mination light mapping tools, and screen space effects such
as ambient occlusion and screen space reflections, which
are utilized in the ArchViz scene to create higher realism.
Physically based path tracers such as Octane renderer [2]
can be used in Unity for more photorealistic images.

One limitation of our project is that it is structured to
be hosted on the Unity Editor and is difficult to export as
a stand-alone application. This requires potential users to
have a basic knowledge of Unity in order to use our tool.

None of our experiments produced state-of-the-art error
metrics, so investigating whether this is due to the chosen
parameter settings, or a lack of generalization, is an area
for future work. We suspect that this is due to the networks
being trained on different kinds of data. If the parameter
settings are at fault, this leaves open the possibility of deter-
mining an optimal combination of values for all the camera
parameters to achieve the lowest possible error. We could
also pursue a transfer learning approach: performing further
training of existing pre-trained methods using our generated
image sequences to hopefully achieve signficant decreases
in prediction error. Another path for further research is to
investigate why prediction accuracy varies greatly between
the five 3D scene reconstruction methods when tested on
our data.

An interesting way to explore the best parameters for
generating an image sequence in order to achieve best 3D
reconstruction is to train an over-fitted scene representation
network such as a NERF [16]. These networks in contrast
to methods we explored, are not pre-trained on a dataset and
are trained directly to a set of images and view directions to
create a scene representation. These scene representation
networks can be sampled as a signed distance function to
create a 3D geometry of the model. This will give us the
ability to directly compare the effect of our walk-through
generation parameters on the quality of 3D reconstruction.

7. Acknowledgements

We thank Noah Stier for helpful discussions on 3D scene
reconstruction networks. We also thank the mentoring team
from the Early Research Scholars Program: Diba Mirza,
William FEiers, and Aarti Jivrajani. Additionally, we thank
Dr. Feng Yang from Google for his mentorship. This work
was supported in part by NSF Grant #1821415.

1590



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]

(12]

(13]

[14]

ArchVizPRO: The best way to learn real-time archviz
visualization in unity. https://oneirosvr.com/
portfolio/archvizpro/. Accessed: 2021-03-01.

Octane for unity. https://unity.otoy.com/. Ac-
cessed: 2021-07-29.

Aljaz Bozi¢, Pablo Palafox, Justus Thies, Angela Dai,
and Matthias Niefner. Transformerfusion: Monocular rgb
scene reconstruction using transformers. arXiv preprint
arXiv:2107.02191, 2021.

Simon Brodeur, Ethan Perez, Ankesh Anand, Florian
Golemo, Luca Celotti, Florian Strub, Jean Rouat, Hugo
Larochelle, and Aaron Courville. Home: a household multi-
modal environment. arXiv preprint arXiv:1711.11017,2017.

Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Hal-
ber, Matthias Niessner, Manolis Savva, Shuran Song, Andy
Zeng, and Yinda Zhang. Matterport3D: Learning from RGB-
D data in indoor environments. International Conference on
3D Vision (3DV), 2017.

Rui Chen, Songfang Han, Jing Xu, and Hao Su. Point-based
multi-view stereo network. In The IEEE International Con-
ference on Computer Vision (ICCV), 2019.

Angela Dai, Angel X. Chang, Manolis Savva, Maciej Hal-
ber, Thomas Funkhouser, and Matthias Niener. Scannet:
Richly-annotated 3d reconstructions of indoor scenes, 2017.

Arda Duzceker, Silvano Galliani, Christoph Vogel, Pablo
Speciale, Mihai Dusmanu, and Marc Pollefeys. Deep-
videomvs: Multi-view stereo on video with recurrent spatio-
temporal fusion. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 15324-15333, June 2021.

Ben Glocker, Shahram Izadi, Jamie Shotton, and Antonio
Criminisi. Real-time RGB-D camera relocalization. In Inter-
national Symposium on Mixed and Augmented Reality (IS-
MAR), 2013.

Ankur Handa, Thomas Whelan, John McDonald, and An-
drew J. Davison. A benchmark for RGB-D visual odom-
etry, 3D reconstruction and SLAM. In International Con-
ference on Robotics and Automation (ICRA), Hong Kong,
China, May 2014.

Yuxin Hou, Juho Kannala, and Arno Solin. Multi-view
stereo by temporal nonparametric fusion. In Proceedings of
the IEEE/CVF International Conference on Computer Vision
(ICCV), October 2019.

Rasmus Jensen, Anders Dahl, George Vogiatzis, Engil Tola,
and Henrik Aanzs. Large scale multi-view stereopsis evalu-
ation. In Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 406-413. IEEE, 2014.

Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen
Koltun. Tanks and temples: Benchmarking large-scale scene
reconstruction. ACM Transactions on Graphics, 36(4), 2017.
Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt,
Luca Weihs, Alvaro Herrasti, Daniel Gordon, Yuke Zhu, Ab-
hinav Gupta, and Ali Farhadi. AI2-THOR: An Interactive 3D
Environment for Visual Al arXiv, 2017.

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

[27]

1591

Kevin Lai, Liefeng Bo, and Dieter Fox. Unsupervised fea-
ture learning for 3D scene labeling. In /EEE International
Conference on Robotics and Automation (ICRA), 2014.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In European conference on computer vision, pages
405-421. Springer, 2020.

Zak Murez, Tarrence van As, James Bartolozzi, Ayan Sinha,
Vijay Badrinarayanan, and Andrew Rabinovich. Atlas: End-
to-end 3d scene reconstruction from posed images. In ECCV,
2020.

Stefan Popov, Pablo Bauszat, and Vittorio Ferrari. Corenet:
Coherent 3d scene reconstruction from a single rgb image.
In Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-
Michael Frahm, editors, Computer Vision — ECCV 2020,
pages 366-383, Cham, 2020. Springer International Publish-
ing.

Mike Roberts, Jason Ramapuram, Anurag Ranjan, Atulit
Kumar, Miguel Angel Bautista, Nathan Paczan, Russ Webb,
and Joshua M. Susskind. Hypersim: A photorealistic syn-
thetic dataset for holistic indoor scene understanding.
Manolis Savva, Angel X. Chang, Alexey Dosovitskiy,
Thomas Funkhouser, and Vladlen Koltun. MINOS: Multi-
modal indoor simulator for navigation in complex environ-
ments. arXiv:1712.03931,2017.

Manolis Savva, Abhishek Kadian, Oleksandr Maksymets,
Yili Zhao, Erik Wijmans, Bhavana Jain, Julian Straub, Jia
Liu, Vladlen Koltun, Jitendra Malik, Devi Parikh, and Dhruv
Batra. Habitat: A platform for embodied ai research. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), October 2019.

Bokui Shen*, Fei Xia*, Chengshu Li*, Roberto Martin-
Martin*, Linxi Fan, Guanzhi Wang, Shyamal Buch, Clau-
dia D’Arpino, Sanjana Srivastava, Lyne P Tchapmi, Kent
Vainio, Li Fei-Fei, and Silvio Savarese. igibson, a simulation
environment for interactive tasks in large realistic scenes.
arXiv preprint arXiv:2012.02924, 2020.

Shuran Song, Fisher Yu, Andy Zeng, Angel X Chang, Mano-
lis Savva, and Thomas Funkhouser. Semantic scene comple-
tion from a single depth image. Proceedings of 30th IEEE
Conference on Computer Vision and Pattern Recognition,
2017.

Jiirgen Sturm, Nikolas Engelhard, Felix Endres, Wolfram
Burgard, and Daniel Cremers. A benchmark for the evalua-
tion of RGB-D SLAM systems. In International Conference
on Intelligent Robot Systems (IROS), Oct. 2012.

Yi Wu, Yuxin Wu, Georgia Gkioxari, and Yuandong Tian.
Building generalizable agents with a realistic and rich 3d en-
vironment. arXiv preprint arXiv:1801.02209, 2018.

Fei Xia, Amir R. Zamir, Zhi- Yang He, Alexander Sax, Jiten-
dra Malik, and Silvio Savarese. Gibson Env: real-world per-
ception for embodied agents. In Computer Vision and Pat-
tern Recognition (CVPR), 2018 IEEE Conference on. IEEE,
2018.

Zehao Yu and Shenghua Gao. Fast-mvsnet: Sparse-to-
dense multi-view stereo with learned propagation and gauss-
newton refinement. In CVPR, 2020.



